vmalloc.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. bool vmap_lazy_unmap __read_mostly = true;
  33. /*** Page table manipulation functions ***/
  34. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  35. {
  36. pte_t *pte;
  37. pte = pte_offset_kernel(pmd, addr);
  38. do {
  39. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  40. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  41. } while (pte++, addr += PAGE_SIZE, addr != end);
  42. }
  43. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  44. {
  45. pmd_t *pmd;
  46. unsigned long next;
  47. pmd = pmd_offset(pud, addr);
  48. do {
  49. next = pmd_addr_end(addr, end);
  50. if (pmd_none_or_clear_bad(pmd))
  51. continue;
  52. vunmap_pte_range(pmd, addr, next);
  53. } while (pmd++, addr = next, addr != end);
  54. }
  55. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  56. {
  57. pud_t *pud;
  58. unsigned long next;
  59. pud = pud_offset(pgd, addr);
  60. do {
  61. next = pud_addr_end(addr, end);
  62. if (pud_none_or_clear_bad(pud))
  63. continue;
  64. vunmap_pmd_range(pud, addr, next);
  65. } while (pud++, addr = next, addr != end);
  66. }
  67. static void vunmap_page_range(unsigned long addr, unsigned long end)
  68. {
  69. pgd_t *pgd;
  70. unsigned long next;
  71. BUG_ON(addr >= end);
  72. pgd = pgd_offset_k(addr);
  73. do {
  74. next = pgd_addr_end(addr, end);
  75. if (pgd_none_or_clear_bad(pgd))
  76. continue;
  77. vunmap_pud_range(pgd, addr, next);
  78. } while (pgd++, addr = next, addr != end);
  79. }
  80. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  81. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  82. {
  83. pte_t *pte;
  84. /*
  85. * nr is a running index into the array which helps higher level
  86. * callers keep track of where we're up to.
  87. */
  88. pte = pte_alloc_kernel(pmd, addr);
  89. if (!pte)
  90. return -ENOMEM;
  91. do {
  92. struct page *page = pages[*nr];
  93. if (WARN_ON(!pte_none(*pte)))
  94. return -EBUSY;
  95. if (WARN_ON(!page))
  96. return -ENOMEM;
  97. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  98. (*nr)++;
  99. } while (pte++, addr += PAGE_SIZE, addr != end);
  100. return 0;
  101. }
  102. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  103. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  104. {
  105. pmd_t *pmd;
  106. unsigned long next;
  107. pmd = pmd_alloc(&init_mm, pud, addr);
  108. if (!pmd)
  109. return -ENOMEM;
  110. do {
  111. next = pmd_addr_end(addr, end);
  112. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  113. return -ENOMEM;
  114. } while (pmd++, addr = next, addr != end);
  115. return 0;
  116. }
  117. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  118. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  119. {
  120. pud_t *pud;
  121. unsigned long next;
  122. pud = pud_alloc(&init_mm, pgd, addr);
  123. if (!pud)
  124. return -ENOMEM;
  125. do {
  126. next = pud_addr_end(addr, end);
  127. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  128. return -ENOMEM;
  129. } while (pud++, addr = next, addr != end);
  130. return 0;
  131. }
  132. /*
  133. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  134. * will have pfns corresponding to the "pages" array.
  135. *
  136. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  137. */
  138. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  139. pgprot_t prot, struct page **pages)
  140. {
  141. pgd_t *pgd;
  142. unsigned long next;
  143. unsigned long addr = start;
  144. int err = 0;
  145. int nr = 0;
  146. BUG_ON(addr >= end);
  147. pgd = pgd_offset_k(addr);
  148. do {
  149. next = pgd_addr_end(addr, end);
  150. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  151. if (err)
  152. return err;
  153. } while (pgd++, addr = next, addr != end);
  154. return nr;
  155. }
  156. static int vmap_page_range(unsigned long start, unsigned long end,
  157. pgprot_t prot, struct page **pages)
  158. {
  159. int ret;
  160. ret = vmap_page_range_noflush(start, end, prot, pages);
  161. flush_cache_vmap(start, end);
  162. return ret;
  163. }
  164. int is_vmalloc_or_module_addr(const void *x)
  165. {
  166. /*
  167. * ARM, x86-64 and sparc64 put modules in a special place,
  168. * and fall back on vmalloc() if that fails. Others
  169. * just put it in the vmalloc space.
  170. */
  171. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  172. unsigned long addr = (unsigned long)x;
  173. if (addr >= MODULES_VADDR && addr < MODULES_END)
  174. return 1;
  175. #endif
  176. return is_vmalloc_addr(x);
  177. }
  178. /*
  179. * Walk a vmap address to the struct page it maps.
  180. */
  181. struct page *vmalloc_to_page(const void *vmalloc_addr)
  182. {
  183. unsigned long addr = (unsigned long) vmalloc_addr;
  184. struct page *page = NULL;
  185. pgd_t *pgd = pgd_offset_k(addr);
  186. /*
  187. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  188. * architectures that do not vmalloc module space
  189. */
  190. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  191. if (!pgd_none(*pgd)) {
  192. pud_t *pud = pud_offset(pgd, addr);
  193. if (!pud_none(*pud)) {
  194. pmd_t *pmd = pmd_offset(pud, addr);
  195. if (!pmd_none(*pmd)) {
  196. pte_t *ptep, pte;
  197. ptep = pte_offset_map(pmd, addr);
  198. pte = *ptep;
  199. if (pte_present(pte))
  200. page = pte_page(pte);
  201. pte_unmap(ptep);
  202. }
  203. }
  204. }
  205. return page;
  206. }
  207. EXPORT_SYMBOL(vmalloc_to_page);
  208. /*
  209. * Map a vmalloc()-space virtual address to the physical page frame number.
  210. */
  211. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  212. {
  213. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  214. }
  215. EXPORT_SYMBOL(vmalloc_to_pfn);
  216. /*** Global kva allocator ***/
  217. #define VM_LAZY_FREE 0x01
  218. #define VM_LAZY_FREEING 0x02
  219. #define VM_VM_AREA 0x04
  220. struct vmap_area {
  221. unsigned long va_start;
  222. unsigned long va_end;
  223. unsigned long flags;
  224. struct rb_node rb_node; /* address sorted rbtree */
  225. struct list_head list; /* address sorted list */
  226. struct list_head purge_list; /* "lazy purge" list */
  227. void *private;
  228. struct rcu_head rcu_head;
  229. };
  230. static DEFINE_SPINLOCK(vmap_area_lock);
  231. static struct rb_root vmap_area_root = RB_ROOT;
  232. static LIST_HEAD(vmap_area_list);
  233. static unsigned long vmap_area_pcpu_hole;
  234. static struct vmap_area *__find_vmap_area(unsigned long addr)
  235. {
  236. struct rb_node *n = vmap_area_root.rb_node;
  237. while (n) {
  238. struct vmap_area *va;
  239. va = rb_entry(n, struct vmap_area, rb_node);
  240. if (addr < va->va_start)
  241. n = n->rb_left;
  242. else if (addr > va->va_start)
  243. n = n->rb_right;
  244. else
  245. return va;
  246. }
  247. return NULL;
  248. }
  249. static void __insert_vmap_area(struct vmap_area *va)
  250. {
  251. struct rb_node **p = &vmap_area_root.rb_node;
  252. struct rb_node *parent = NULL;
  253. struct rb_node *tmp;
  254. while (*p) {
  255. struct vmap_area *tmp_va;
  256. parent = *p;
  257. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  258. if (va->va_start < tmp_va->va_end)
  259. p = &(*p)->rb_left;
  260. else if (va->va_end > tmp_va->va_start)
  261. p = &(*p)->rb_right;
  262. else
  263. BUG();
  264. }
  265. rb_link_node(&va->rb_node, parent, p);
  266. rb_insert_color(&va->rb_node, &vmap_area_root);
  267. /* address-sort this list so it is usable like the vmlist */
  268. tmp = rb_prev(&va->rb_node);
  269. if (tmp) {
  270. struct vmap_area *prev;
  271. prev = rb_entry(tmp, struct vmap_area, rb_node);
  272. list_add_rcu(&va->list, &prev->list);
  273. } else
  274. list_add_rcu(&va->list, &vmap_area_list);
  275. }
  276. static void purge_vmap_area_lazy(void);
  277. /*
  278. * Allocate a region of KVA of the specified size and alignment, within the
  279. * vstart and vend.
  280. */
  281. static struct vmap_area *alloc_vmap_area(unsigned long size,
  282. unsigned long align,
  283. unsigned long vstart, unsigned long vend,
  284. int node, gfp_t gfp_mask)
  285. {
  286. struct vmap_area *va;
  287. struct rb_node *n;
  288. unsigned long addr;
  289. int purged = 0;
  290. BUG_ON(!size);
  291. BUG_ON(size & ~PAGE_MASK);
  292. va = kmalloc_node(sizeof(struct vmap_area),
  293. gfp_mask & GFP_RECLAIM_MASK, node);
  294. if (unlikely(!va))
  295. return ERR_PTR(-ENOMEM);
  296. retry:
  297. addr = ALIGN(vstart, align);
  298. spin_lock(&vmap_area_lock);
  299. if (addr + size - 1 < addr)
  300. goto overflow;
  301. /* XXX: could have a last_hole cache */
  302. n = vmap_area_root.rb_node;
  303. if (n) {
  304. struct vmap_area *first = NULL;
  305. do {
  306. struct vmap_area *tmp;
  307. tmp = rb_entry(n, struct vmap_area, rb_node);
  308. if (tmp->va_end >= addr) {
  309. if (!first && tmp->va_start < addr + size)
  310. first = tmp;
  311. n = n->rb_left;
  312. } else {
  313. first = tmp;
  314. n = n->rb_right;
  315. }
  316. } while (n);
  317. if (!first)
  318. goto found;
  319. if (first->va_end < addr) {
  320. n = rb_next(&first->rb_node);
  321. if (n)
  322. first = rb_entry(n, struct vmap_area, rb_node);
  323. else
  324. goto found;
  325. }
  326. while (addr + size > first->va_start && addr + size <= vend) {
  327. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  328. if (addr + size - 1 < addr)
  329. goto overflow;
  330. n = rb_next(&first->rb_node);
  331. if (n)
  332. first = rb_entry(n, struct vmap_area, rb_node);
  333. else
  334. goto found;
  335. }
  336. }
  337. found:
  338. if (addr + size > vend) {
  339. overflow:
  340. spin_unlock(&vmap_area_lock);
  341. if (!purged) {
  342. purge_vmap_area_lazy();
  343. purged = 1;
  344. goto retry;
  345. }
  346. if (printk_ratelimit())
  347. printk(KERN_WARNING
  348. "vmap allocation for size %lu failed: "
  349. "use vmalloc=<size> to increase size.\n", size);
  350. kfree(va);
  351. return ERR_PTR(-EBUSY);
  352. }
  353. BUG_ON(addr & (align-1));
  354. va->va_start = addr;
  355. va->va_end = addr + size;
  356. va->flags = 0;
  357. __insert_vmap_area(va);
  358. spin_unlock(&vmap_area_lock);
  359. return va;
  360. }
  361. static void rcu_free_va(struct rcu_head *head)
  362. {
  363. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  364. kfree(va);
  365. }
  366. static void __free_vmap_area(struct vmap_area *va)
  367. {
  368. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  369. rb_erase(&va->rb_node, &vmap_area_root);
  370. RB_CLEAR_NODE(&va->rb_node);
  371. list_del_rcu(&va->list);
  372. /*
  373. * Track the highest possible candidate for pcpu area
  374. * allocation. Areas outside of vmalloc area can be returned
  375. * here too, consider only end addresses which fall inside
  376. * vmalloc area proper.
  377. */
  378. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  379. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  380. call_rcu(&va->rcu_head, rcu_free_va);
  381. }
  382. /*
  383. * Free a region of KVA allocated by alloc_vmap_area
  384. */
  385. static void free_vmap_area(struct vmap_area *va)
  386. {
  387. spin_lock(&vmap_area_lock);
  388. __free_vmap_area(va);
  389. spin_unlock(&vmap_area_lock);
  390. }
  391. /*
  392. * Clear the pagetable entries of a given vmap_area
  393. */
  394. static void unmap_vmap_area(struct vmap_area *va)
  395. {
  396. vunmap_page_range(va->va_start, va->va_end);
  397. }
  398. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  399. {
  400. /*
  401. * Unmap page tables and force a TLB flush immediately if
  402. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  403. * bugs similarly to those in linear kernel virtual address
  404. * space after a page has been freed.
  405. *
  406. * All the lazy freeing logic is still retained, in order to
  407. * minimise intrusiveness of this debugging feature.
  408. *
  409. * This is going to be *slow* (linear kernel virtual address
  410. * debugging doesn't do a broadcast TLB flush so it is a lot
  411. * faster).
  412. */
  413. #ifdef CONFIG_DEBUG_PAGEALLOC
  414. vunmap_page_range(start, end);
  415. flush_tlb_kernel_range(start, end);
  416. #endif
  417. }
  418. /*
  419. * lazy_max_pages is the maximum amount of virtual address space we gather up
  420. * before attempting to purge with a TLB flush.
  421. *
  422. * There is a tradeoff here: a larger number will cover more kernel page tables
  423. * and take slightly longer to purge, but it will linearly reduce the number of
  424. * global TLB flushes that must be performed. It would seem natural to scale
  425. * this number up linearly with the number of CPUs (because vmapping activity
  426. * could also scale linearly with the number of CPUs), however it is likely
  427. * that in practice, workloads might be constrained in other ways that mean
  428. * vmap activity will not scale linearly with CPUs. Also, I want to be
  429. * conservative and not introduce a big latency on huge systems, so go with
  430. * a less aggressive log scale. It will still be an improvement over the old
  431. * code, and it will be simple to change the scale factor if we find that it
  432. * becomes a problem on bigger systems.
  433. */
  434. static unsigned long lazy_max_pages(void)
  435. {
  436. unsigned int log;
  437. if (!vmap_lazy_unmap)
  438. return 0;
  439. log = fls(num_online_cpus());
  440. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  441. }
  442. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  443. /* for per-CPU blocks */
  444. static void purge_fragmented_blocks_allcpus(void);
  445. /*
  446. * called before a call to iounmap() if the caller wants vm_area_struct's
  447. * immediately freed.
  448. */
  449. void set_iounmap_nonlazy(void)
  450. {
  451. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  452. }
  453. /*
  454. * Purges all lazily-freed vmap areas.
  455. *
  456. * If sync is 0 then don't purge if there is already a purge in progress.
  457. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  458. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  459. * their own TLB flushing).
  460. * Returns with *start = min(*start, lowest purged address)
  461. * *end = max(*end, highest purged address)
  462. */
  463. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  464. int sync, int force_flush)
  465. {
  466. static DEFINE_SPINLOCK(purge_lock);
  467. LIST_HEAD(valist);
  468. struct vmap_area *va;
  469. struct vmap_area *n_va;
  470. int nr = 0;
  471. /*
  472. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  473. * should not expect such behaviour. This just simplifies locking for
  474. * the case that isn't actually used at the moment anyway.
  475. */
  476. if (!sync && !force_flush) {
  477. if (!spin_trylock(&purge_lock))
  478. return;
  479. } else
  480. spin_lock(&purge_lock);
  481. if (sync)
  482. purge_fragmented_blocks_allcpus();
  483. rcu_read_lock();
  484. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  485. if (va->flags & VM_LAZY_FREE) {
  486. if (va->va_start < *start)
  487. *start = va->va_start;
  488. if (va->va_end > *end)
  489. *end = va->va_end;
  490. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  491. unmap_vmap_area(va);
  492. list_add_tail(&va->purge_list, &valist);
  493. va->flags |= VM_LAZY_FREEING;
  494. va->flags &= ~VM_LAZY_FREE;
  495. }
  496. }
  497. rcu_read_unlock();
  498. if (nr)
  499. atomic_sub(nr, &vmap_lazy_nr);
  500. if (nr || force_flush)
  501. flush_tlb_kernel_range(*start, *end);
  502. if (nr) {
  503. spin_lock(&vmap_area_lock);
  504. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  505. __free_vmap_area(va);
  506. spin_unlock(&vmap_area_lock);
  507. }
  508. spin_unlock(&purge_lock);
  509. }
  510. /*
  511. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  512. * is already purging.
  513. */
  514. static void try_purge_vmap_area_lazy(void)
  515. {
  516. unsigned long start = ULONG_MAX, end = 0;
  517. __purge_vmap_area_lazy(&start, &end, 0, 0);
  518. }
  519. /*
  520. * Kick off a purge of the outstanding lazy areas.
  521. */
  522. static void purge_vmap_area_lazy(void)
  523. {
  524. unsigned long start = ULONG_MAX, end = 0;
  525. __purge_vmap_area_lazy(&start, &end, 1, 0);
  526. }
  527. /*
  528. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  529. * called for the correct range previously.
  530. */
  531. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  532. {
  533. va->flags |= VM_LAZY_FREE;
  534. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  535. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  536. try_purge_vmap_area_lazy();
  537. }
  538. /*
  539. * Free and unmap a vmap area
  540. */
  541. static void free_unmap_vmap_area(struct vmap_area *va)
  542. {
  543. flush_cache_vunmap(va->va_start, va->va_end);
  544. free_unmap_vmap_area_noflush(va);
  545. }
  546. static struct vmap_area *find_vmap_area(unsigned long addr)
  547. {
  548. struct vmap_area *va;
  549. spin_lock(&vmap_area_lock);
  550. va = __find_vmap_area(addr);
  551. spin_unlock(&vmap_area_lock);
  552. return va;
  553. }
  554. static void free_unmap_vmap_area_addr(unsigned long addr)
  555. {
  556. struct vmap_area *va;
  557. va = find_vmap_area(addr);
  558. BUG_ON(!va);
  559. free_unmap_vmap_area(va);
  560. }
  561. /*** Per cpu kva allocator ***/
  562. /*
  563. * vmap space is limited especially on 32 bit architectures. Ensure there is
  564. * room for at least 16 percpu vmap blocks per CPU.
  565. */
  566. /*
  567. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  568. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  569. * instead (we just need a rough idea)
  570. */
  571. #if BITS_PER_LONG == 32
  572. #define VMALLOC_SPACE (128UL*1024*1024)
  573. #else
  574. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  575. #endif
  576. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  577. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  578. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  579. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  580. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  581. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  582. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  583. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  584. VMALLOC_PAGES / NR_CPUS / 16))
  585. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  586. static bool vmap_initialized __read_mostly = false;
  587. struct vmap_block_queue {
  588. spinlock_t lock;
  589. struct list_head free;
  590. };
  591. struct vmap_block {
  592. spinlock_t lock;
  593. struct vmap_area *va;
  594. struct vmap_block_queue *vbq;
  595. unsigned long free, dirty;
  596. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  597. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  598. struct list_head free_list;
  599. struct rcu_head rcu_head;
  600. struct list_head purge;
  601. };
  602. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  603. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  604. /*
  605. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  606. * in the free path. Could get rid of this if we change the API to return a
  607. * "cookie" from alloc, to be passed to free. But no big deal yet.
  608. */
  609. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  610. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  611. /*
  612. * We should probably have a fallback mechanism to allocate virtual memory
  613. * out of partially filled vmap blocks. However vmap block sizing should be
  614. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  615. * big problem.
  616. */
  617. static unsigned long addr_to_vb_idx(unsigned long addr)
  618. {
  619. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  620. addr /= VMAP_BLOCK_SIZE;
  621. return addr;
  622. }
  623. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  624. {
  625. struct vmap_block_queue *vbq;
  626. struct vmap_block *vb;
  627. struct vmap_area *va;
  628. unsigned long vb_idx;
  629. int node, err;
  630. node = numa_node_id();
  631. vb = kmalloc_node(sizeof(struct vmap_block),
  632. gfp_mask & GFP_RECLAIM_MASK, node);
  633. if (unlikely(!vb))
  634. return ERR_PTR(-ENOMEM);
  635. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  636. VMALLOC_START, VMALLOC_END,
  637. node, gfp_mask);
  638. if (unlikely(IS_ERR(va))) {
  639. kfree(vb);
  640. return ERR_CAST(va);
  641. }
  642. err = radix_tree_preload(gfp_mask);
  643. if (unlikely(err)) {
  644. kfree(vb);
  645. free_vmap_area(va);
  646. return ERR_PTR(err);
  647. }
  648. spin_lock_init(&vb->lock);
  649. vb->va = va;
  650. vb->free = VMAP_BBMAP_BITS;
  651. vb->dirty = 0;
  652. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  653. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  654. INIT_LIST_HEAD(&vb->free_list);
  655. vb_idx = addr_to_vb_idx(va->va_start);
  656. spin_lock(&vmap_block_tree_lock);
  657. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  658. spin_unlock(&vmap_block_tree_lock);
  659. BUG_ON(err);
  660. radix_tree_preload_end();
  661. vbq = &get_cpu_var(vmap_block_queue);
  662. vb->vbq = vbq;
  663. spin_lock(&vbq->lock);
  664. list_add_rcu(&vb->free_list, &vbq->free);
  665. spin_unlock(&vbq->lock);
  666. put_cpu_var(vmap_block_queue);
  667. return vb;
  668. }
  669. static void rcu_free_vb(struct rcu_head *head)
  670. {
  671. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  672. kfree(vb);
  673. }
  674. static void free_vmap_block(struct vmap_block *vb)
  675. {
  676. struct vmap_block *tmp;
  677. unsigned long vb_idx;
  678. vb_idx = addr_to_vb_idx(vb->va->va_start);
  679. spin_lock(&vmap_block_tree_lock);
  680. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  681. spin_unlock(&vmap_block_tree_lock);
  682. BUG_ON(tmp != vb);
  683. free_unmap_vmap_area_noflush(vb->va);
  684. call_rcu(&vb->rcu_head, rcu_free_vb);
  685. }
  686. static void purge_fragmented_blocks(int cpu)
  687. {
  688. LIST_HEAD(purge);
  689. struct vmap_block *vb;
  690. struct vmap_block *n_vb;
  691. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  692. rcu_read_lock();
  693. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  694. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  695. continue;
  696. spin_lock(&vb->lock);
  697. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  698. vb->free = 0; /* prevent further allocs after releasing lock */
  699. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  700. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  701. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  702. spin_lock(&vbq->lock);
  703. list_del_rcu(&vb->free_list);
  704. spin_unlock(&vbq->lock);
  705. spin_unlock(&vb->lock);
  706. list_add_tail(&vb->purge, &purge);
  707. } else
  708. spin_unlock(&vb->lock);
  709. }
  710. rcu_read_unlock();
  711. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  712. list_del(&vb->purge);
  713. free_vmap_block(vb);
  714. }
  715. }
  716. static void purge_fragmented_blocks_thiscpu(void)
  717. {
  718. purge_fragmented_blocks(smp_processor_id());
  719. }
  720. static void purge_fragmented_blocks_allcpus(void)
  721. {
  722. int cpu;
  723. for_each_possible_cpu(cpu)
  724. purge_fragmented_blocks(cpu);
  725. }
  726. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  727. {
  728. struct vmap_block_queue *vbq;
  729. struct vmap_block *vb;
  730. unsigned long addr = 0;
  731. unsigned int order;
  732. int purge = 0;
  733. BUG_ON(size & ~PAGE_MASK);
  734. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  735. order = get_order(size);
  736. again:
  737. rcu_read_lock();
  738. vbq = &get_cpu_var(vmap_block_queue);
  739. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  740. int i;
  741. spin_lock(&vb->lock);
  742. if (vb->free < 1UL << order)
  743. goto next;
  744. i = bitmap_find_free_region(vb->alloc_map,
  745. VMAP_BBMAP_BITS, order);
  746. if (i < 0) {
  747. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  748. /* fragmented and no outstanding allocations */
  749. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  750. purge = 1;
  751. }
  752. goto next;
  753. }
  754. addr = vb->va->va_start + (i << PAGE_SHIFT);
  755. BUG_ON(addr_to_vb_idx(addr) !=
  756. addr_to_vb_idx(vb->va->va_start));
  757. vb->free -= 1UL << order;
  758. if (vb->free == 0) {
  759. spin_lock(&vbq->lock);
  760. list_del_rcu(&vb->free_list);
  761. spin_unlock(&vbq->lock);
  762. }
  763. spin_unlock(&vb->lock);
  764. break;
  765. next:
  766. spin_unlock(&vb->lock);
  767. }
  768. if (purge)
  769. purge_fragmented_blocks_thiscpu();
  770. put_cpu_var(vmap_block_queue);
  771. rcu_read_unlock();
  772. if (!addr) {
  773. vb = new_vmap_block(gfp_mask);
  774. if (IS_ERR(vb))
  775. return vb;
  776. goto again;
  777. }
  778. return (void *)addr;
  779. }
  780. static void vb_free(const void *addr, unsigned long size)
  781. {
  782. unsigned long offset;
  783. unsigned long vb_idx;
  784. unsigned int order;
  785. struct vmap_block *vb;
  786. BUG_ON(size & ~PAGE_MASK);
  787. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  788. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  789. order = get_order(size);
  790. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  791. vb_idx = addr_to_vb_idx((unsigned long)addr);
  792. rcu_read_lock();
  793. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  794. rcu_read_unlock();
  795. BUG_ON(!vb);
  796. spin_lock(&vb->lock);
  797. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  798. vb->dirty += 1UL << order;
  799. if (vb->dirty == VMAP_BBMAP_BITS) {
  800. BUG_ON(vb->free);
  801. spin_unlock(&vb->lock);
  802. free_vmap_block(vb);
  803. } else
  804. spin_unlock(&vb->lock);
  805. }
  806. /**
  807. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  808. *
  809. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  810. * to amortize TLB flushing overheads. What this means is that any page you
  811. * have now, may, in a former life, have been mapped into kernel virtual
  812. * address by the vmap layer and so there might be some CPUs with TLB entries
  813. * still referencing that page (additional to the regular 1:1 kernel mapping).
  814. *
  815. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  816. * be sure that none of the pages we have control over will have any aliases
  817. * from the vmap layer.
  818. */
  819. void vm_unmap_aliases(void)
  820. {
  821. unsigned long start = ULONG_MAX, end = 0;
  822. int cpu;
  823. int flush = 0;
  824. if (unlikely(!vmap_initialized))
  825. return;
  826. for_each_possible_cpu(cpu) {
  827. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  828. struct vmap_block *vb;
  829. rcu_read_lock();
  830. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  831. int i;
  832. spin_lock(&vb->lock);
  833. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  834. while (i < VMAP_BBMAP_BITS) {
  835. unsigned long s, e;
  836. int j;
  837. j = find_next_zero_bit(vb->dirty_map,
  838. VMAP_BBMAP_BITS, i);
  839. s = vb->va->va_start + (i << PAGE_SHIFT);
  840. e = vb->va->va_start + (j << PAGE_SHIFT);
  841. vunmap_page_range(s, e);
  842. flush = 1;
  843. if (s < start)
  844. start = s;
  845. if (e > end)
  846. end = e;
  847. i = j;
  848. i = find_next_bit(vb->dirty_map,
  849. VMAP_BBMAP_BITS, i);
  850. }
  851. spin_unlock(&vb->lock);
  852. }
  853. rcu_read_unlock();
  854. }
  855. __purge_vmap_area_lazy(&start, &end, 1, flush);
  856. }
  857. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  858. /**
  859. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  860. * @mem: the pointer returned by vm_map_ram
  861. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  862. */
  863. void vm_unmap_ram(const void *mem, unsigned int count)
  864. {
  865. unsigned long size = count << PAGE_SHIFT;
  866. unsigned long addr = (unsigned long)mem;
  867. BUG_ON(!addr);
  868. BUG_ON(addr < VMALLOC_START);
  869. BUG_ON(addr > VMALLOC_END);
  870. BUG_ON(addr & (PAGE_SIZE-1));
  871. debug_check_no_locks_freed(mem, size);
  872. vmap_debug_free_range(addr, addr+size);
  873. if (likely(count <= VMAP_MAX_ALLOC))
  874. vb_free(mem, size);
  875. else
  876. free_unmap_vmap_area_addr(addr);
  877. }
  878. EXPORT_SYMBOL(vm_unmap_ram);
  879. /**
  880. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  881. * @pages: an array of pointers to the pages to be mapped
  882. * @count: number of pages
  883. * @node: prefer to allocate data structures on this node
  884. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  885. *
  886. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  887. */
  888. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  889. {
  890. unsigned long size = count << PAGE_SHIFT;
  891. unsigned long addr;
  892. void *mem;
  893. if (likely(count <= VMAP_MAX_ALLOC)) {
  894. mem = vb_alloc(size, GFP_KERNEL);
  895. if (IS_ERR(mem))
  896. return NULL;
  897. addr = (unsigned long)mem;
  898. } else {
  899. struct vmap_area *va;
  900. va = alloc_vmap_area(size, PAGE_SIZE,
  901. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  902. if (IS_ERR(va))
  903. return NULL;
  904. addr = va->va_start;
  905. mem = (void *)addr;
  906. }
  907. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  908. vm_unmap_ram(mem, count);
  909. return NULL;
  910. }
  911. return mem;
  912. }
  913. EXPORT_SYMBOL(vm_map_ram);
  914. /**
  915. * vm_area_register_early - register vmap area early during boot
  916. * @vm: vm_struct to register
  917. * @align: requested alignment
  918. *
  919. * This function is used to register kernel vm area before
  920. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  921. * proper values on entry and other fields should be zero. On return,
  922. * vm->addr contains the allocated address.
  923. *
  924. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  925. */
  926. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  927. {
  928. static size_t vm_init_off __initdata;
  929. unsigned long addr;
  930. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  931. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  932. vm->addr = (void *)addr;
  933. vm->next = vmlist;
  934. vmlist = vm;
  935. }
  936. void __init vmalloc_init(void)
  937. {
  938. struct vmap_area *va;
  939. struct vm_struct *tmp;
  940. int i;
  941. for_each_possible_cpu(i) {
  942. struct vmap_block_queue *vbq;
  943. vbq = &per_cpu(vmap_block_queue, i);
  944. spin_lock_init(&vbq->lock);
  945. INIT_LIST_HEAD(&vbq->free);
  946. }
  947. /* Import existing vmlist entries. */
  948. for (tmp = vmlist; tmp; tmp = tmp->next) {
  949. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  950. va->flags = tmp->flags | VM_VM_AREA;
  951. va->va_start = (unsigned long)tmp->addr;
  952. va->va_end = va->va_start + tmp->size;
  953. __insert_vmap_area(va);
  954. }
  955. vmap_area_pcpu_hole = VMALLOC_END;
  956. vmap_initialized = true;
  957. }
  958. /**
  959. * map_kernel_range_noflush - map kernel VM area with the specified pages
  960. * @addr: start of the VM area to map
  961. * @size: size of the VM area to map
  962. * @prot: page protection flags to use
  963. * @pages: pages to map
  964. *
  965. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  966. * specify should have been allocated using get_vm_area() and its
  967. * friends.
  968. *
  969. * NOTE:
  970. * This function does NOT do any cache flushing. The caller is
  971. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  972. * before calling this function.
  973. *
  974. * RETURNS:
  975. * The number of pages mapped on success, -errno on failure.
  976. */
  977. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  978. pgprot_t prot, struct page **pages)
  979. {
  980. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  981. }
  982. /**
  983. * unmap_kernel_range_noflush - unmap kernel VM area
  984. * @addr: start of the VM area to unmap
  985. * @size: size of the VM area to unmap
  986. *
  987. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  988. * specify should have been allocated using get_vm_area() and its
  989. * friends.
  990. *
  991. * NOTE:
  992. * This function does NOT do any cache flushing. The caller is
  993. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  994. * before calling this function and flush_tlb_kernel_range() after.
  995. */
  996. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  997. {
  998. vunmap_page_range(addr, addr + size);
  999. }
  1000. /**
  1001. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1002. * @addr: start of the VM area to unmap
  1003. * @size: size of the VM area to unmap
  1004. *
  1005. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1006. * the unmapping and tlb after.
  1007. */
  1008. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1009. {
  1010. unsigned long end = addr + size;
  1011. flush_cache_vunmap(addr, end);
  1012. vunmap_page_range(addr, end);
  1013. flush_tlb_kernel_range(addr, end);
  1014. }
  1015. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1016. {
  1017. unsigned long addr = (unsigned long)area->addr;
  1018. unsigned long end = addr + area->size - PAGE_SIZE;
  1019. int err;
  1020. err = vmap_page_range(addr, end, prot, *pages);
  1021. if (err > 0) {
  1022. *pages += err;
  1023. err = 0;
  1024. }
  1025. return err;
  1026. }
  1027. EXPORT_SYMBOL_GPL(map_vm_area);
  1028. /*** Old vmalloc interfaces ***/
  1029. DEFINE_RWLOCK(vmlist_lock);
  1030. struct vm_struct *vmlist;
  1031. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1032. unsigned long flags, void *caller)
  1033. {
  1034. struct vm_struct *tmp, **p;
  1035. vm->flags = flags;
  1036. vm->addr = (void *)va->va_start;
  1037. vm->size = va->va_end - va->va_start;
  1038. vm->caller = caller;
  1039. va->private = vm;
  1040. va->flags |= VM_VM_AREA;
  1041. write_lock(&vmlist_lock);
  1042. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1043. if (tmp->addr >= vm->addr)
  1044. break;
  1045. }
  1046. vm->next = *p;
  1047. *p = vm;
  1048. write_unlock(&vmlist_lock);
  1049. }
  1050. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1051. unsigned long align, unsigned long flags, unsigned long start,
  1052. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1053. {
  1054. static struct vmap_area *va;
  1055. struct vm_struct *area;
  1056. BUG_ON(in_interrupt());
  1057. if (flags & VM_IOREMAP) {
  1058. int bit = fls(size);
  1059. if (bit > IOREMAP_MAX_ORDER)
  1060. bit = IOREMAP_MAX_ORDER;
  1061. else if (bit < PAGE_SHIFT)
  1062. bit = PAGE_SHIFT;
  1063. align = 1ul << bit;
  1064. }
  1065. size = PAGE_ALIGN(size);
  1066. if (unlikely(!size))
  1067. return NULL;
  1068. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1069. if (unlikely(!area))
  1070. return NULL;
  1071. /*
  1072. * We always allocate a guard page.
  1073. */
  1074. size += PAGE_SIZE;
  1075. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1076. if (IS_ERR(va)) {
  1077. kfree(area);
  1078. return NULL;
  1079. }
  1080. insert_vmalloc_vm(area, va, flags, caller);
  1081. return area;
  1082. }
  1083. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1084. unsigned long start, unsigned long end)
  1085. {
  1086. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1087. __builtin_return_address(0));
  1088. }
  1089. EXPORT_SYMBOL_GPL(__get_vm_area);
  1090. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1091. unsigned long start, unsigned long end,
  1092. void *caller)
  1093. {
  1094. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1095. caller);
  1096. }
  1097. /**
  1098. * get_vm_area - reserve a contiguous kernel virtual area
  1099. * @size: size of the area
  1100. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1101. *
  1102. * Search an area of @size in the kernel virtual mapping area,
  1103. * and reserved it for out purposes. Returns the area descriptor
  1104. * on success or %NULL on failure.
  1105. */
  1106. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1107. {
  1108. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1109. -1, GFP_KERNEL, __builtin_return_address(0));
  1110. }
  1111. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1112. void *caller)
  1113. {
  1114. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1115. -1, GFP_KERNEL, caller);
  1116. }
  1117. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1118. int node, gfp_t gfp_mask)
  1119. {
  1120. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1121. node, gfp_mask, __builtin_return_address(0));
  1122. }
  1123. static struct vm_struct *find_vm_area(const void *addr)
  1124. {
  1125. struct vmap_area *va;
  1126. va = find_vmap_area((unsigned long)addr);
  1127. if (va && va->flags & VM_VM_AREA)
  1128. return va->private;
  1129. return NULL;
  1130. }
  1131. /**
  1132. * remove_vm_area - find and remove a continuous kernel virtual area
  1133. * @addr: base address
  1134. *
  1135. * Search for the kernel VM area starting at @addr, and remove it.
  1136. * This function returns the found VM area, but using it is NOT safe
  1137. * on SMP machines, except for its size or flags.
  1138. */
  1139. struct vm_struct *remove_vm_area(const void *addr)
  1140. {
  1141. struct vmap_area *va;
  1142. va = find_vmap_area((unsigned long)addr);
  1143. if (va && va->flags & VM_VM_AREA) {
  1144. struct vm_struct *vm = va->private;
  1145. struct vm_struct *tmp, **p;
  1146. /*
  1147. * remove from list and disallow access to this vm_struct
  1148. * before unmap. (address range confliction is maintained by
  1149. * vmap.)
  1150. */
  1151. write_lock(&vmlist_lock);
  1152. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1153. ;
  1154. *p = tmp->next;
  1155. write_unlock(&vmlist_lock);
  1156. vmap_debug_free_range(va->va_start, va->va_end);
  1157. free_unmap_vmap_area(va);
  1158. vm->size -= PAGE_SIZE;
  1159. return vm;
  1160. }
  1161. return NULL;
  1162. }
  1163. static void __vunmap(const void *addr, int deallocate_pages)
  1164. {
  1165. struct vm_struct *area;
  1166. if (!addr)
  1167. return;
  1168. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1169. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1170. return;
  1171. }
  1172. area = remove_vm_area(addr);
  1173. if (unlikely(!area)) {
  1174. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1175. addr);
  1176. return;
  1177. }
  1178. debug_check_no_locks_freed(addr, area->size);
  1179. debug_check_no_obj_freed(addr, area->size);
  1180. if (deallocate_pages) {
  1181. int i;
  1182. for (i = 0; i < area->nr_pages; i++) {
  1183. struct page *page = area->pages[i];
  1184. BUG_ON(!page);
  1185. __free_page(page);
  1186. }
  1187. if (area->flags & VM_VPAGES)
  1188. vfree(area->pages);
  1189. else
  1190. kfree(area->pages);
  1191. }
  1192. kfree(area);
  1193. return;
  1194. }
  1195. /**
  1196. * vfree - release memory allocated by vmalloc()
  1197. * @addr: memory base address
  1198. *
  1199. * Free the virtually continuous memory area starting at @addr, as
  1200. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1201. * NULL, no operation is performed.
  1202. *
  1203. * Must not be called in interrupt context.
  1204. */
  1205. void vfree(const void *addr)
  1206. {
  1207. BUG_ON(in_interrupt());
  1208. kmemleak_free(addr);
  1209. __vunmap(addr, 1);
  1210. }
  1211. EXPORT_SYMBOL(vfree);
  1212. /**
  1213. * vunmap - release virtual mapping obtained by vmap()
  1214. * @addr: memory base address
  1215. *
  1216. * Free the virtually contiguous memory area starting at @addr,
  1217. * which was created from the page array passed to vmap().
  1218. *
  1219. * Must not be called in interrupt context.
  1220. */
  1221. void vunmap(const void *addr)
  1222. {
  1223. BUG_ON(in_interrupt());
  1224. might_sleep();
  1225. __vunmap(addr, 0);
  1226. }
  1227. EXPORT_SYMBOL(vunmap);
  1228. /**
  1229. * vmap - map an array of pages into virtually contiguous space
  1230. * @pages: array of page pointers
  1231. * @count: number of pages to map
  1232. * @flags: vm_area->flags
  1233. * @prot: page protection for the mapping
  1234. *
  1235. * Maps @count pages from @pages into contiguous kernel virtual
  1236. * space.
  1237. */
  1238. void *vmap(struct page **pages, unsigned int count,
  1239. unsigned long flags, pgprot_t prot)
  1240. {
  1241. struct vm_struct *area;
  1242. might_sleep();
  1243. if (count > totalram_pages)
  1244. return NULL;
  1245. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1246. __builtin_return_address(0));
  1247. if (!area)
  1248. return NULL;
  1249. if (map_vm_area(area, prot, &pages)) {
  1250. vunmap(area->addr);
  1251. return NULL;
  1252. }
  1253. return area->addr;
  1254. }
  1255. EXPORT_SYMBOL(vmap);
  1256. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1257. gfp_t gfp_mask, pgprot_t prot,
  1258. int node, void *caller);
  1259. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1260. pgprot_t prot, int node, void *caller)
  1261. {
  1262. struct page **pages;
  1263. unsigned int nr_pages, array_size, i;
  1264. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1265. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1266. array_size = (nr_pages * sizeof(struct page *));
  1267. area->nr_pages = nr_pages;
  1268. /* Please note that the recursion is strictly bounded. */
  1269. if (array_size > PAGE_SIZE) {
  1270. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1271. PAGE_KERNEL, node, caller);
  1272. area->flags |= VM_VPAGES;
  1273. } else {
  1274. pages = kmalloc_node(array_size, nested_gfp, node);
  1275. }
  1276. area->pages = pages;
  1277. area->caller = caller;
  1278. if (!area->pages) {
  1279. remove_vm_area(area->addr);
  1280. kfree(area);
  1281. return NULL;
  1282. }
  1283. for (i = 0; i < area->nr_pages; i++) {
  1284. struct page *page;
  1285. if (node < 0)
  1286. page = alloc_page(gfp_mask);
  1287. else
  1288. page = alloc_pages_node(node, gfp_mask, 0);
  1289. if (unlikely(!page)) {
  1290. /* Successfully allocated i pages, free them in __vunmap() */
  1291. area->nr_pages = i;
  1292. goto fail;
  1293. }
  1294. area->pages[i] = page;
  1295. }
  1296. if (map_vm_area(area, prot, &pages))
  1297. goto fail;
  1298. return area->addr;
  1299. fail:
  1300. vfree(area->addr);
  1301. return NULL;
  1302. }
  1303. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1304. {
  1305. void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
  1306. __builtin_return_address(0));
  1307. /*
  1308. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1309. * structures allocated in the __get_vm_area_node() function contain
  1310. * references to the virtual address of the vmalloc'ed block.
  1311. */
  1312. kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
  1313. return addr;
  1314. }
  1315. /**
  1316. * __vmalloc_node - allocate virtually contiguous memory
  1317. * @size: allocation size
  1318. * @align: desired alignment
  1319. * @gfp_mask: flags for the page level allocator
  1320. * @prot: protection mask for the allocated pages
  1321. * @node: node to use for allocation or -1
  1322. * @caller: caller's return address
  1323. *
  1324. * Allocate enough pages to cover @size from the page level
  1325. * allocator with @gfp_mask flags. Map them into contiguous
  1326. * kernel virtual space, using a pagetable protection of @prot.
  1327. */
  1328. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1329. gfp_t gfp_mask, pgprot_t prot,
  1330. int node, void *caller)
  1331. {
  1332. struct vm_struct *area;
  1333. void *addr;
  1334. unsigned long real_size = size;
  1335. size = PAGE_ALIGN(size);
  1336. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1337. return NULL;
  1338. area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
  1339. VMALLOC_END, node, gfp_mask, caller);
  1340. if (!area)
  1341. return NULL;
  1342. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1343. /*
  1344. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1345. * structures allocated in the __get_vm_area_node() function contain
  1346. * references to the virtual address of the vmalloc'ed block.
  1347. */
  1348. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1349. return addr;
  1350. }
  1351. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1352. {
  1353. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1354. __builtin_return_address(0));
  1355. }
  1356. EXPORT_SYMBOL(__vmalloc);
  1357. static inline void *__vmalloc_node_flags(unsigned long size,
  1358. int node, gfp_t flags)
  1359. {
  1360. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1361. node, __builtin_return_address(0));
  1362. }
  1363. /**
  1364. * vmalloc - allocate virtually contiguous memory
  1365. * @size: allocation size
  1366. * Allocate enough pages to cover @size from the page level
  1367. * allocator and map them into contiguous kernel virtual space.
  1368. *
  1369. * For tight control over page level allocator and protection flags
  1370. * use __vmalloc() instead.
  1371. */
  1372. void *vmalloc(unsigned long size)
  1373. {
  1374. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1375. }
  1376. EXPORT_SYMBOL(vmalloc);
  1377. /**
  1378. * vzalloc - allocate virtually contiguous memory with zero fill
  1379. * @size: allocation size
  1380. * Allocate enough pages to cover @size from the page level
  1381. * allocator and map them into contiguous kernel virtual space.
  1382. * The memory allocated is set to zero.
  1383. *
  1384. * For tight control over page level allocator and protection flags
  1385. * use __vmalloc() instead.
  1386. */
  1387. void *vzalloc(unsigned long size)
  1388. {
  1389. return __vmalloc_node_flags(size, -1,
  1390. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1391. }
  1392. EXPORT_SYMBOL(vzalloc);
  1393. /**
  1394. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1395. * @size: allocation size
  1396. *
  1397. * The resulting memory area is zeroed so it can be mapped to userspace
  1398. * without leaking data.
  1399. */
  1400. void *vmalloc_user(unsigned long size)
  1401. {
  1402. struct vm_struct *area;
  1403. void *ret;
  1404. ret = __vmalloc_node(size, SHMLBA,
  1405. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1406. PAGE_KERNEL, -1, __builtin_return_address(0));
  1407. if (ret) {
  1408. area = find_vm_area(ret);
  1409. area->flags |= VM_USERMAP;
  1410. }
  1411. return ret;
  1412. }
  1413. EXPORT_SYMBOL(vmalloc_user);
  1414. /**
  1415. * vmalloc_node - allocate memory on a specific node
  1416. * @size: allocation size
  1417. * @node: numa node
  1418. *
  1419. * Allocate enough pages to cover @size from the page level
  1420. * allocator and map them into contiguous kernel virtual space.
  1421. *
  1422. * For tight control over page level allocator and protection flags
  1423. * use __vmalloc() instead.
  1424. */
  1425. void *vmalloc_node(unsigned long size, int node)
  1426. {
  1427. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1428. node, __builtin_return_address(0));
  1429. }
  1430. EXPORT_SYMBOL(vmalloc_node);
  1431. /**
  1432. * vzalloc_node - allocate memory on a specific node with zero fill
  1433. * @size: allocation size
  1434. * @node: numa node
  1435. *
  1436. * Allocate enough pages to cover @size from the page level
  1437. * allocator and map them into contiguous kernel virtual space.
  1438. * The memory allocated is set to zero.
  1439. *
  1440. * For tight control over page level allocator and protection flags
  1441. * use __vmalloc_node() instead.
  1442. */
  1443. void *vzalloc_node(unsigned long size, int node)
  1444. {
  1445. return __vmalloc_node_flags(size, node,
  1446. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1447. }
  1448. EXPORT_SYMBOL(vzalloc_node);
  1449. #ifndef PAGE_KERNEL_EXEC
  1450. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1451. #endif
  1452. /**
  1453. * vmalloc_exec - allocate virtually contiguous, executable memory
  1454. * @size: allocation size
  1455. *
  1456. * Kernel-internal function to allocate enough pages to cover @size
  1457. * the page level allocator and map them into contiguous and
  1458. * executable kernel virtual space.
  1459. *
  1460. * For tight control over page level allocator and protection flags
  1461. * use __vmalloc() instead.
  1462. */
  1463. void *vmalloc_exec(unsigned long size)
  1464. {
  1465. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1466. -1, __builtin_return_address(0));
  1467. }
  1468. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1469. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1470. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1471. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1472. #else
  1473. #define GFP_VMALLOC32 GFP_KERNEL
  1474. #endif
  1475. /**
  1476. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1477. * @size: allocation size
  1478. *
  1479. * Allocate enough 32bit PA addressable pages to cover @size from the
  1480. * page level allocator and map them into contiguous kernel virtual space.
  1481. */
  1482. void *vmalloc_32(unsigned long size)
  1483. {
  1484. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1485. -1, __builtin_return_address(0));
  1486. }
  1487. EXPORT_SYMBOL(vmalloc_32);
  1488. /**
  1489. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1490. * @size: allocation size
  1491. *
  1492. * The resulting memory area is 32bit addressable and zeroed so it can be
  1493. * mapped to userspace without leaking data.
  1494. */
  1495. void *vmalloc_32_user(unsigned long size)
  1496. {
  1497. struct vm_struct *area;
  1498. void *ret;
  1499. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1500. -1, __builtin_return_address(0));
  1501. if (ret) {
  1502. area = find_vm_area(ret);
  1503. area->flags |= VM_USERMAP;
  1504. }
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL(vmalloc_32_user);
  1508. /*
  1509. * small helper routine , copy contents to buf from addr.
  1510. * If the page is not present, fill zero.
  1511. */
  1512. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1513. {
  1514. struct page *p;
  1515. int copied = 0;
  1516. while (count) {
  1517. unsigned long offset, length;
  1518. offset = (unsigned long)addr & ~PAGE_MASK;
  1519. length = PAGE_SIZE - offset;
  1520. if (length > count)
  1521. length = count;
  1522. p = vmalloc_to_page(addr);
  1523. /*
  1524. * To do safe access to this _mapped_ area, we need
  1525. * lock. But adding lock here means that we need to add
  1526. * overhead of vmalloc()/vfree() calles for this _debug_
  1527. * interface, rarely used. Instead of that, we'll use
  1528. * kmap() and get small overhead in this access function.
  1529. */
  1530. if (p) {
  1531. /*
  1532. * we can expect USER0 is not used (see vread/vwrite's
  1533. * function description)
  1534. */
  1535. void *map = kmap_atomic(p, KM_USER0);
  1536. memcpy(buf, map + offset, length);
  1537. kunmap_atomic(map, KM_USER0);
  1538. } else
  1539. memset(buf, 0, length);
  1540. addr += length;
  1541. buf += length;
  1542. copied += length;
  1543. count -= length;
  1544. }
  1545. return copied;
  1546. }
  1547. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1548. {
  1549. struct page *p;
  1550. int copied = 0;
  1551. while (count) {
  1552. unsigned long offset, length;
  1553. offset = (unsigned long)addr & ~PAGE_MASK;
  1554. length = PAGE_SIZE - offset;
  1555. if (length > count)
  1556. length = count;
  1557. p = vmalloc_to_page(addr);
  1558. /*
  1559. * To do safe access to this _mapped_ area, we need
  1560. * lock. But adding lock here means that we need to add
  1561. * overhead of vmalloc()/vfree() calles for this _debug_
  1562. * interface, rarely used. Instead of that, we'll use
  1563. * kmap() and get small overhead in this access function.
  1564. */
  1565. if (p) {
  1566. /*
  1567. * we can expect USER0 is not used (see vread/vwrite's
  1568. * function description)
  1569. */
  1570. void *map = kmap_atomic(p, KM_USER0);
  1571. memcpy(map + offset, buf, length);
  1572. kunmap_atomic(map, KM_USER0);
  1573. }
  1574. addr += length;
  1575. buf += length;
  1576. copied += length;
  1577. count -= length;
  1578. }
  1579. return copied;
  1580. }
  1581. /**
  1582. * vread() - read vmalloc area in a safe way.
  1583. * @buf: buffer for reading data
  1584. * @addr: vm address.
  1585. * @count: number of bytes to be read.
  1586. *
  1587. * Returns # of bytes which addr and buf should be increased.
  1588. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1589. * includes any intersect with alive vmalloc area.
  1590. *
  1591. * This function checks that addr is a valid vmalloc'ed area, and
  1592. * copy data from that area to a given buffer. If the given memory range
  1593. * of [addr...addr+count) includes some valid address, data is copied to
  1594. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1595. * IOREMAP area is treated as memory hole and no copy is done.
  1596. *
  1597. * If [addr...addr+count) doesn't includes any intersects with alive
  1598. * vm_struct area, returns 0.
  1599. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1600. * the caller should guarantee KM_USER0 is not used.
  1601. *
  1602. * Note: In usual ops, vread() is never necessary because the caller
  1603. * should know vmalloc() area is valid and can use memcpy().
  1604. * This is for routines which have to access vmalloc area without
  1605. * any informaion, as /dev/kmem.
  1606. *
  1607. */
  1608. long vread(char *buf, char *addr, unsigned long count)
  1609. {
  1610. struct vm_struct *tmp;
  1611. char *vaddr, *buf_start = buf;
  1612. unsigned long buflen = count;
  1613. unsigned long n;
  1614. /* Don't allow overflow */
  1615. if ((unsigned long) addr + count < count)
  1616. count = -(unsigned long) addr;
  1617. read_lock(&vmlist_lock);
  1618. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1619. vaddr = (char *) tmp->addr;
  1620. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1621. continue;
  1622. while (addr < vaddr) {
  1623. if (count == 0)
  1624. goto finished;
  1625. *buf = '\0';
  1626. buf++;
  1627. addr++;
  1628. count--;
  1629. }
  1630. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1631. if (n > count)
  1632. n = count;
  1633. if (!(tmp->flags & VM_IOREMAP))
  1634. aligned_vread(buf, addr, n);
  1635. else /* IOREMAP area is treated as memory hole */
  1636. memset(buf, 0, n);
  1637. buf += n;
  1638. addr += n;
  1639. count -= n;
  1640. }
  1641. finished:
  1642. read_unlock(&vmlist_lock);
  1643. if (buf == buf_start)
  1644. return 0;
  1645. /* zero-fill memory holes */
  1646. if (buf != buf_start + buflen)
  1647. memset(buf, 0, buflen - (buf - buf_start));
  1648. return buflen;
  1649. }
  1650. /**
  1651. * vwrite() - write vmalloc area in a safe way.
  1652. * @buf: buffer for source data
  1653. * @addr: vm address.
  1654. * @count: number of bytes to be read.
  1655. *
  1656. * Returns # of bytes which addr and buf should be incresed.
  1657. * (same number to @count).
  1658. * If [addr...addr+count) doesn't includes any intersect with valid
  1659. * vmalloc area, returns 0.
  1660. *
  1661. * This function checks that addr is a valid vmalloc'ed area, and
  1662. * copy data from a buffer to the given addr. If specified range of
  1663. * [addr...addr+count) includes some valid address, data is copied from
  1664. * proper area of @buf. If there are memory holes, no copy to hole.
  1665. * IOREMAP area is treated as memory hole and no copy is done.
  1666. *
  1667. * If [addr...addr+count) doesn't includes any intersects with alive
  1668. * vm_struct area, returns 0.
  1669. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1670. * the caller should guarantee KM_USER0 is not used.
  1671. *
  1672. * Note: In usual ops, vwrite() is never necessary because the caller
  1673. * should know vmalloc() area is valid and can use memcpy().
  1674. * This is for routines which have to access vmalloc area without
  1675. * any informaion, as /dev/kmem.
  1676. *
  1677. * The caller should guarantee KM_USER1 is not used.
  1678. */
  1679. long vwrite(char *buf, char *addr, unsigned long count)
  1680. {
  1681. struct vm_struct *tmp;
  1682. char *vaddr;
  1683. unsigned long n, buflen;
  1684. int copied = 0;
  1685. /* Don't allow overflow */
  1686. if ((unsigned long) addr + count < count)
  1687. count = -(unsigned long) addr;
  1688. buflen = count;
  1689. read_lock(&vmlist_lock);
  1690. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1691. vaddr = (char *) tmp->addr;
  1692. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1693. continue;
  1694. while (addr < vaddr) {
  1695. if (count == 0)
  1696. goto finished;
  1697. buf++;
  1698. addr++;
  1699. count--;
  1700. }
  1701. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1702. if (n > count)
  1703. n = count;
  1704. if (!(tmp->flags & VM_IOREMAP)) {
  1705. aligned_vwrite(buf, addr, n);
  1706. copied++;
  1707. }
  1708. buf += n;
  1709. addr += n;
  1710. count -= n;
  1711. }
  1712. finished:
  1713. read_unlock(&vmlist_lock);
  1714. if (!copied)
  1715. return 0;
  1716. return buflen;
  1717. }
  1718. /**
  1719. * remap_vmalloc_range - map vmalloc pages to userspace
  1720. * @vma: vma to cover (map full range of vma)
  1721. * @addr: vmalloc memory
  1722. * @pgoff: number of pages into addr before first page to map
  1723. *
  1724. * Returns: 0 for success, -Exxx on failure
  1725. *
  1726. * This function checks that addr is a valid vmalloc'ed area, and
  1727. * that it is big enough to cover the vma. Will return failure if
  1728. * that criteria isn't met.
  1729. *
  1730. * Similar to remap_pfn_range() (see mm/memory.c)
  1731. */
  1732. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1733. unsigned long pgoff)
  1734. {
  1735. struct vm_struct *area;
  1736. unsigned long uaddr = vma->vm_start;
  1737. unsigned long usize = vma->vm_end - vma->vm_start;
  1738. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1739. return -EINVAL;
  1740. area = find_vm_area(addr);
  1741. if (!area)
  1742. return -EINVAL;
  1743. if (!(area->flags & VM_USERMAP))
  1744. return -EINVAL;
  1745. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1746. return -EINVAL;
  1747. addr += pgoff << PAGE_SHIFT;
  1748. do {
  1749. struct page *page = vmalloc_to_page(addr);
  1750. int ret;
  1751. ret = vm_insert_page(vma, uaddr, page);
  1752. if (ret)
  1753. return ret;
  1754. uaddr += PAGE_SIZE;
  1755. addr += PAGE_SIZE;
  1756. usize -= PAGE_SIZE;
  1757. } while (usize > 0);
  1758. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1759. vma->vm_flags |= VM_RESERVED;
  1760. return 0;
  1761. }
  1762. EXPORT_SYMBOL(remap_vmalloc_range);
  1763. /*
  1764. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1765. * have one.
  1766. */
  1767. void __attribute__((weak)) vmalloc_sync_all(void)
  1768. {
  1769. }
  1770. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1771. {
  1772. /* apply_to_page_range() does all the hard work. */
  1773. return 0;
  1774. }
  1775. /**
  1776. * alloc_vm_area - allocate a range of kernel address space
  1777. * @size: size of the area
  1778. *
  1779. * Returns: NULL on failure, vm_struct on success
  1780. *
  1781. * This function reserves a range of kernel address space, and
  1782. * allocates pagetables to map that range. No actual mappings
  1783. * are created. If the kernel address space is not shared
  1784. * between processes, it syncs the pagetable across all
  1785. * processes.
  1786. */
  1787. struct vm_struct *alloc_vm_area(size_t size)
  1788. {
  1789. struct vm_struct *area;
  1790. area = get_vm_area_caller(size, VM_IOREMAP,
  1791. __builtin_return_address(0));
  1792. if (area == NULL)
  1793. return NULL;
  1794. /*
  1795. * This ensures that page tables are constructed for this region
  1796. * of kernel virtual address space and mapped into init_mm.
  1797. */
  1798. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1799. area->size, f, NULL)) {
  1800. free_vm_area(area);
  1801. return NULL;
  1802. }
  1803. /* Make sure the pagetables are constructed in process kernel
  1804. mappings */
  1805. vmalloc_sync_all();
  1806. return area;
  1807. }
  1808. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1809. void free_vm_area(struct vm_struct *area)
  1810. {
  1811. struct vm_struct *ret;
  1812. ret = remove_vm_area(area->addr);
  1813. BUG_ON(ret != area);
  1814. kfree(area);
  1815. }
  1816. EXPORT_SYMBOL_GPL(free_vm_area);
  1817. #ifdef CONFIG_SMP
  1818. static struct vmap_area *node_to_va(struct rb_node *n)
  1819. {
  1820. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1821. }
  1822. /**
  1823. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1824. * @end: target address
  1825. * @pnext: out arg for the next vmap_area
  1826. * @pprev: out arg for the previous vmap_area
  1827. *
  1828. * Returns: %true if either or both of next and prev are found,
  1829. * %false if no vmap_area exists
  1830. *
  1831. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1832. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1833. */
  1834. static bool pvm_find_next_prev(unsigned long end,
  1835. struct vmap_area **pnext,
  1836. struct vmap_area **pprev)
  1837. {
  1838. struct rb_node *n = vmap_area_root.rb_node;
  1839. struct vmap_area *va = NULL;
  1840. while (n) {
  1841. va = rb_entry(n, struct vmap_area, rb_node);
  1842. if (end < va->va_end)
  1843. n = n->rb_left;
  1844. else if (end > va->va_end)
  1845. n = n->rb_right;
  1846. else
  1847. break;
  1848. }
  1849. if (!va)
  1850. return false;
  1851. if (va->va_end > end) {
  1852. *pnext = va;
  1853. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1854. } else {
  1855. *pprev = va;
  1856. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1857. }
  1858. return true;
  1859. }
  1860. /**
  1861. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1862. * @pnext: in/out arg for the next vmap_area
  1863. * @pprev: in/out arg for the previous vmap_area
  1864. * @align: alignment
  1865. *
  1866. * Returns: determined end address
  1867. *
  1868. * Find the highest aligned address between *@pnext and *@pprev below
  1869. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1870. * down address is between the end addresses of the two vmap_areas.
  1871. *
  1872. * Please note that the address returned by this function may fall
  1873. * inside *@pnext vmap_area. The caller is responsible for checking
  1874. * that.
  1875. */
  1876. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1877. struct vmap_area **pprev,
  1878. unsigned long align)
  1879. {
  1880. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1881. unsigned long addr;
  1882. if (*pnext)
  1883. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1884. else
  1885. addr = vmalloc_end;
  1886. while (*pprev && (*pprev)->va_end > addr) {
  1887. *pnext = *pprev;
  1888. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1889. }
  1890. return addr;
  1891. }
  1892. /**
  1893. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1894. * @offsets: array containing offset of each area
  1895. * @sizes: array containing size of each area
  1896. * @nr_vms: the number of areas to allocate
  1897. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1898. * @gfp_mask: allocation mask
  1899. *
  1900. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1901. * vm_structs on success, %NULL on failure
  1902. *
  1903. * Percpu allocator wants to use congruent vm areas so that it can
  1904. * maintain the offsets among percpu areas. This function allocates
  1905. * congruent vmalloc areas for it. These areas tend to be scattered
  1906. * pretty far, distance between two areas easily going up to
  1907. * gigabytes. To avoid interacting with regular vmallocs, these areas
  1908. * are allocated from top.
  1909. *
  1910. * Despite its complicated look, this allocator is rather simple. It
  1911. * does everything top-down and scans areas from the end looking for
  1912. * matching slot. While scanning, if any of the areas overlaps with
  1913. * existing vmap_area, the base address is pulled down to fit the
  1914. * area. Scanning is repeated till all the areas fit and then all
  1915. * necessary data structres are inserted and the result is returned.
  1916. */
  1917. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1918. const size_t *sizes, int nr_vms,
  1919. size_t align, gfp_t gfp_mask)
  1920. {
  1921. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1922. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1923. struct vmap_area **vas, *prev, *next;
  1924. struct vm_struct **vms;
  1925. int area, area2, last_area, term_area;
  1926. unsigned long base, start, end, last_end;
  1927. bool purged = false;
  1928. gfp_mask &= GFP_RECLAIM_MASK;
  1929. /* verify parameters and allocate data structures */
  1930. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1931. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1932. start = offsets[area];
  1933. end = start + sizes[area];
  1934. /* is everything aligned properly? */
  1935. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1936. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1937. /* detect the area with the highest address */
  1938. if (start > offsets[last_area])
  1939. last_area = area;
  1940. for (area2 = 0; area2 < nr_vms; area2++) {
  1941. unsigned long start2 = offsets[area2];
  1942. unsigned long end2 = start2 + sizes[area2];
  1943. if (area2 == area)
  1944. continue;
  1945. BUG_ON(start2 >= start && start2 < end);
  1946. BUG_ON(end2 <= end && end2 > start);
  1947. }
  1948. }
  1949. last_end = offsets[last_area] + sizes[last_area];
  1950. if (vmalloc_end - vmalloc_start < last_end) {
  1951. WARN_ON(true);
  1952. return NULL;
  1953. }
  1954. vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
  1955. vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
  1956. if (!vas || !vms)
  1957. goto err_free;
  1958. for (area = 0; area < nr_vms; area++) {
  1959. vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
  1960. vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
  1961. if (!vas[area] || !vms[area])
  1962. goto err_free;
  1963. }
  1964. retry:
  1965. spin_lock(&vmap_area_lock);
  1966. /* start scanning - we scan from the top, begin with the last area */
  1967. area = term_area = last_area;
  1968. start = offsets[area];
  1969. end = start + sizes[area];
  1970. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  1971. base = vmalloc_end - last_end;
  1972. goto found;
  1973. }
  1974. base = pvm_determine_end(&next, &prev, align) - end;
  1975. while (true) {
  1976. BUG_ON(next && next->va_end <= base + end);
  1977. BUG_ON(prev && prev->va_end > base + end);
  1978. /*
  1979. * base might have underflowed, add last_end before
  1980. * comparing.
  1981. */
  1982. if (base + last_end < vmalloc_start + last_end) {
  1983. spin_unlock(&vmap_area_lock);
  1984. if (!purged) {
  1985. purge_vmap_area_lazy();
  1986. purged = true;
  1987. goto retry;
  1988. }
  1989. goto err_free;
  1990. }
  1991. /*
  1992. * If next overlaps, move base downwards so that it's
  1993. * right below next and then recheck.
  1994. */
  1995. if (next && next->va_start < base + end) {
  1996. base = pvm_determine_end(&next, &prev, align) - end;
  1997. term_area = area;
  1998. continue;
  1999. }
  2000. /*
  2001. * If prev overlaps, shift down next and prev and move
  2002. * base so that it's right below new next and then
  2003. * recheck.
  2004. */
  2005. if (prev && prev->va_end > base + start) {
  2006. next = prev;
  2007. prev = node_to_va(rb_prev(&next->rb_node));
  2008. base = pvm_determine_end(&next, &prev, align) - end;
  2009. term_area = area;
  2010. continue;
  2011. }
  2012. /*
  2013. * This area fits, move on to the previous one. If
  2014. * the previous one is the terminal one, we're done.
  2015. */
  2016. area = (area + nr_vms - 1) % nr_vms;
  2017. if (area == term_area)
  2018. break;
  2019. start = offsets[area];
  2020. end = start + sizes[area];
  2021. pvm_find_next_prev(base + end, &next, &prev);
  2022. }
  2023. found:
  2024. /* we've found a fitting base, insert all va's */
  2025. for (area = 0; area < nr_vms; area++) {
  2026. struct vmap_area *va = vas[area];
  2027. va->va_start = base + offsets[area];
  2028. va->va_end = va->va_start + sizes[area];
  2029. __insert_vmap_area(va);
  2030. }
  2031. vmap_area_pcpu_hole = base + offsets[last_area];
  2032. spin_unlock(&vmap_area_lock);
  2033. /* insert all vm's */
  2034. for (area = 0; area < nr_vms; area++)
  2035. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2036. pcpu_get_vm_areas);
  2037. kfree(vas);
  2038. return vms;
  2039. err_free:
  2040. for (area = 0; area < nr_vms; area++) {
  2041. if (vas)
  2042. kfree(vas[area]);
  2043. if (vms)
  2044. kfree(vms[area]);
  2045. }
  2046. kfree(vas);
  2047. kfree(vms);
  2048. return NULL;
  2049. }
  2050. /**
  2051. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2052. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2053. * @nr_vms: the number of allocated areas
  2054. *
  2055. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2056. */
  2057. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2058. {
  2059. int i;
  2060. for (i = 0; i < nr_vms; i++)
  2061. free_vm_area(vms[i]);
  2062. kfree(vms);
  2063. }
  2064. #endif /* CONFIG_SMP */
  2065. #ifdef CONFIG_PROC_FS
  2066. static void *s_start(struct seq_file *m, loff_t *pos)
  2067. __acquires(&vmlist_lock)
  2068. {
  2069. loff_t n = *pos;
  2070. struct vm_struct *v;
  2071. read_lock(&vmlist_lock);
  2072. v = vmlist;
  2073. while (n > 0 && v) {
  2074. n--;
  2075. v = v->next;
  2076. }
  2077. if (!n)
  2078. return v;
  2079. return NULL;
  2080. }
  2081. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2082. {
  2083. struct vm_struct *v = p;
  2084. ++*pos;
  2085. return v->next;
  2086. }
  2087. static void s_stop(struct seq_file *m, void *p)
  2088. __releases(&vmlist_lock)
  2089. {
  2090. read_unlock(&vmlist_lock);
  2091. }
  2092. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2093. {
  2094. if (NUMA_BUILD) {
  2095. unsigned int nr, *counters = m->private;
  2096. if (!counters)
  2097. return;
  2098. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2099. for (nr = 0; nr < v->nr_pages; nr++)
  2100. counters[page_to_nid(v->pages[nr])]++;
  2101. for_each_node_state(nr, N_HIGH_MEMORY)
  2102. if (counters[nr])
  2103. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2104. }
  2105. }
  2106. static int s_show(struct seq_file *m, void *p)
  2107. {
  2108. struct vm_struct *v = p;
  2109. seq_printf(m, "0x%p-0x%p %7ld",
  2110. v->addr, v->addr + v->size, v->size);
  2111. if (v->caller) {
  2112. char buff[KSYM_SYMBOL_LEN];
  2113. seq_putc(m, ' ');
  2114. sprint_symbol(buff, (unsigned long)v->caller);
  2115. seq_puts(m, buff);
  2116. }
  2117. if (v->nr_pages)
  2118. seq_printf(m, " pages=%d", v->nr_pages);
  2119. if (v->phys_addr)
  2120. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2121. if (v->flags & VM_IOREMAP)
  2122. seq_printf(m, " ioremap");
  2123. if (v->flags & VM_ALLOC)
  2124. seq_printf(m, " vmalloc");
  2125. if (v->flags & VM_MAP)
  2126. seq_printf(m, " vmap");
  2127. if (v->flags & VM_USERMAP)
  2128. seq_printf(m, " user");
  2129. if (v->flags & VM_VPAGES)
  2130. seq_printf(m, " vpages");
  2131. show_numa_info(m, v);
  2132. seq_putc(m, '\n');
  2133. return 0;
  2134. }
  2135. static const struct seq_operations vmalloc_op = {
  2136. .start = s_start,
  2137. .next = s_next,
  2138. .stop = s_stop,
  2139. .show = s_show,
  2140. };
  2141. static int vmalloc_open(struct inode *inode, struct file *file)
  2142. {
  2143. unsigned int *ptr = NULL;
  2144. int ret;
  2145. if (NUMA_BUILD) {
  2146. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2147. if (ptr == NULL)
  2148. return -ENOMEM;
  2149. }
  2150. ret = seq_open(file, &vmalloc_op);
  2151. if (!ret) {
  2152. struct seq_file *m = file->private_data;
  2153. m->private = ptr;
  2154. } else
  2155. kfree(ptr);
  2156. return ret;
  2157. }
  2158. static const struct file_operations proc_vmalloc_operations = {
  2159. .open = vmalloc_open,
  2160. .read = seq_read,
  2161. .llseek = seq_lseek,
  2162. .release = seq_release_private,
  2163. };
  2164. static int __init proc_vmalloc_init(void)
  2165. {
  2166. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2167. return 0;
  2168. }
  2169. module_init(proc_vmalloc_init);
  2170. #endif