rmap.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. }
  66. void anon_vma_free(struct anon_vma *anon_vma)
  67. {
  68. kmem_cache_free(anon_vma_cachep, anon_vma);
  69. }
  70. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  71. {
  72. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  73. }
  74. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  75. {
  76. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  77. }
  78. /**
  79. * anon_vma_prepare - attach an anon_vma to a memory region
  80. * @vma: the memory region in question
  81. *
  82. * This makes sure the memory mapping described by 'vma' has
  83. * an 'anon_vma' attached to it, so that we can associate the
  84. * anonymous pages mapped into it with that anon_vma.
  85. *
  86. * The common case will be that we already have one, but if
  87. * if not we either need to find an adjacent mapping that we
  88. * can re-use the anon_vma from (very common when the only
  89. * reason for splitting a vma has been mprotect()), or we
  90. * allocate a new one.
  91. *
  92. * Anon-vma allocations are very subtle, because we may have
  93. * optimistically looked up an anon_vma in page_lock_anon_vma()
  94. * and that may actually touch the spinlock even in the newly
  95. * allocated vma (it depends on RCU to make sure that the
  96. * anon_vma isn't actually destroyed).
  97. *
  98. * As a result, we need to do proper anon_vma locking even
  99. * for the new allocation. At the same time, we do not want
  100. * to do any locking for the common case of already having
  101. * an anon_vma.
  102. *
  103. * This must be called with the mmap_sem held for reading.
  104. */
  105. int anon_vma_prepare(struct vm_area_struct *vma)
  106. {
  107. struct anon_vma *anon_vma = vma->anon_vma;
  108. struct anon_vma_chain *avc;
  109. might_sleep();
  110. if (unlikely(!anon_vma)) {
  111. struct mm_struct *mm = vma->vm_mm;
  112. struct anon_vma *allocated;
  113. avc = anon_vma_chain_alloc();
  114. if (!avc)
  115. goto out_enomem;
  116. anon_vma = find_mergeable_anon_vma(vma);
  117. allocated = NULL;
  118. if (!anon_vma) {
  119. anon_vma = anon_vma_alloc();
  120. if (unlikely(!anon_vma))
  121. goto out_enomem_free_avc;
  122. allocated = anon_vma;
  123. /*
  124. * This VMA had no anon_vma yet. This anon_vma is
  125. * the root of any anon_vma tree that might form.
  126. */
  127. anon_vma->root = anon_vma;
  128. }
  129. anon_vma_lock(anon_vma);
  130. /* page_table_lock to protect against threads */
  131. spin_lock(&mm->page_table_lock);
  132. if (likely(!vma->anon_vma)) {
  133. vma->anon_vma = anon_vma;
  134. avc->anon_vma = anon_vma;
  135. avc->vma = vma;
  136. list_add(&avc->same_vma, &vma->anon_vma_chain);
  137. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  138. allocated = NULL;
  139. avc = NULL;
  140. }
  141. spin_unlock(&mm->page_table_lock);
  142. anon_vma_unlock(anon_vma);
  143. if (unlikely(allocated))
  144. anon_vma_free(allocated);
  145. if (unlikely(avc))
  146. anon_vma_chain_free(avc);
  147. }
  148. return 0;
  149. out_enomem_free_avc:
  150. anon_vma_chain_free(avc);
  151. out_enomem:
  152. return -ENOMEM;
  153. }
  154. static void anon_vma_chain_link(struct vm_area_struct *vma,
  155. struct anon_vma_chain *avc,
  156. struct anon_vma *anon_vma)
  157. {
  158. avc->vma = vma;
  159. avc->anon_vma = anon_vma;
  160. list_add(&avc->same_vma, &vma->anon_vma_chain);
  161. anon_vma_lock(anon_vma);
  162. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  163. anon_vma_unlock(anon_vma);
  164. }
  165. /*
  166. * Attach the anon_vmas from src to dst.
  167. * Returns 0 on success, -ENOMEM on failure.
  168. */
  169. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  170. {
  171. struct anon_vma_chain *avc, *pavc;
  172. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  173. avc = anon_vma_chain_alloc();
  174. if (!avc)
  175. goto enomem_failure;
  176. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  177. }
  178. return 0;
  179. enomem_failure:
  180. unlink_anon_vmas(dst);
  181. return -ENOMEM;
  182. }
  183. /*
  184. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  185. * the corresponding VMA in the parent process is attached to.
  186. * Returns 0 on success, non-zero on failure.
  187. */
  188. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  189. {
  190. struct anon_vma_chain *avc;
  191. struct anon_vma *anon_vma;
  192. /* Don't bother if the parent process has no anon_vma here. */
  193. if (!pvma->anon_vma)
  194. return 0;
  195. /*
  196. * First, attach the new VMA to the parent VMA's anon_vmas,
  197. * so rmap can find non-COWed pages in child processes.
  198. */
  199. if (anon_vma_clone(vma, pvma))
  200. return -ENOMEM;
  201. /* Then add our own anon_vma. */
  202. anon_vma = anon_vma_alloc();
  203. if (!anon_vma)
  204. goto out_error;
  205. avc = anon_vma_chain_alloc();
  206. if (!avc)
  207. goto out_error_free_anon_vma;
  208. /*
  209. * The root anon_vma's spinlock is the lock actually used when we
  210. * lock any of the anon_vmas in this anon_vma tree.
  211. */
  212. anon_vma->root = pvma->anon_vma->root;
  213. /*
  214. * With KSM refcounts, an anon_vma can stay around longer than the
  215. * process it belongs to. The root anon_vma needs to be pinned
  216. * until this anon_vma is freed, because the lock lives in the root.
  217. */
  218. get_anon_vma(anon_vma->root);
  219. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  220. vma->anon_vma = anon_vma;
  221. anon_vma_chain_link(vma, avc, anon_vma);
  222. return 0;
  223. out_error_free_anon_vma:
  224. anon_vma_free(anon_vma);
  225. out_error:
  226. unlink_anon_vmas(vma);
  227. return -ENOMEM;
  228. }
  229. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  230. {
  231. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  232. int empty;
  233. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  234. if (!anon_vma)
  235. return;
  236. anon_vma_lock(anon_vma);
  237. list_del(&anon_vma_chain->same_anon_vma);
  238. /* We must garbage collect the anon_vma if it's empty */
  239. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  240. anon_vma_unlock(anon_vma);
  241. if (empty) {
  242. /* We no longer need the root anon_vma */
  243. if (anon_vma->root != anon_vma)
  244. drop_anon_vma(anon_vma->root);
  245. anon_vma_free(anon_vma);
  246. }
  247. }
  248. void unlink_anon_vmas(struct vm_area_struct *vma)
  249. {
  250. struct anon_vma_chain *avc, *next;
  251. /*
  252. * Unlink each anon_vma chained to the VMA. This list is ordered
  253. * from newest to oldest, ensuring the root anon_vma gets freed last.
  254. */
  255. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  256. anon_vma_unlink(avc);
  257. list_del(&avc->same_vma);
  258. anon_vma_chain_free(avc);
  259. }
  260. }
  261. static void anon_vma_ctor(void *data)
  262. {
  263. struct anon_vma *anon_vma = data;
  264. spin_lock_init(&anon_vma->lock);
  265. anonvma_external_refcount_init(anon_vma);
  266. INIT_LIST_HEAD(&anon_vma->head);
  267. }
  268. void __init anon_vma_init(void)
  269. {
  270. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  271. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  272. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  273. }
  274. /*
  275. * Getting a lock on a stable anon_vma from a page off the LRU is
  276. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  277. */
  278. struct anon_vma *__page_lock_anon_vma(struct page *page)
  279. {
  280. struct anon_vma *anon_vma, *root_anon_vma;
  281. unsigned long anon_mapping;
  282. rcu_read_lock();
  283. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  284. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  285. goto out;
  286. if (!page_mapped(page))
  287. goto out;
  288. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  289. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  290. spin_lock(&root_anon_vma->lock);
  291. /*
  292. * If this page is still mapped, then its anon_vma cannot have been
  293. * freed. But if it has been unmapped, we have no security against
  294. * the anon_vma structure being freed and reused (for another anon_vma:
  295. * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
  296. * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
  297. * anon_vma->root before page_unlock_anon_vma() is called to unlock.
  298. */
  299. if (page_mapped(page))
  300. return anon_vma;
  301. spin_unlock(&root_anon_vma->lock);
  302. out:
  303. rcu_read_unlock();
  304. return NULL;
  305. }
  306. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  307. __releases(&anon_vma->root->lock)
  308. __releases(RCU)
  309. {
  310. anon_vma_unlock(anon_vma);
  311. rcu_read_unlock();
  312. }
  313. /*
  314. * At what user virtual address is page expected in @vma?
  315. * Returns virtual address or -EFAULT if page's index/offset is not
  316. * within the range mapped the @vma.
  317. */
  318. static inline unsigned long
  319. vma_address(struct page *page, struct vm_area_struct *vma)
  320. {
  321. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  322. unsigned long address;
  323. if (unlikely(is_vm_hugetlb_page(vma)))
  324. pgoff = page->index << huge_page_order(page_hstate(page));
  325. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  326. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  327. /* page should be within @vma mapping range */
  328. return -EFAULT;
  329. }
  330. return address;
  331. }
  332. /*
  333. * At what user virtual address is page expected in vma?
  334. * Caller should check the page is actually part of the vma.
  335. */
  336. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  337. {
  338. if (PageAnon(page)) {
  339. struct anon_vma *page__anon_vma = page_anon_vma(page);
  340. /*
  341. * Note: swapoff's unuse_vma() is more efficient with this
  342. * check, and needs it to match anon_vma when KSM is active.
  343. */
  344. if (!vma->anon_vma || !page__anon_vma ||
  345. vma->anon_vma->root != page__anon_vma->root)
  346. return -EFAULT;
  347. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  348. if (!vma->vm_file ||
  349. vma->vm_file->f_mapping != page->mapping)
  350. return -EFAULT;
  351. } else
  352. return -EFAULT;
  353. return vma_address(page, vma);
  354. }
  355. /*
  356. * Check that @page is mapped at @address into @mm.
  357. *
  358. * If @sync is false, page_check_address may perform a racy check to avoid
  359. * the page table lock when the pte is not present (helpful when reclaiming
  360. * highly shared pages).
  361. *
  362. * On success returns with pte mapped and locked.
  363. */
  364. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  365. unsigned long address, spinlock_t **ptlp, int sync)
  366. {
  367. pgd_t *pgd;
  368. pud_t *pud;
  369. pmd_t *pmd;
  370. pte_t *pte;
  371. spinlock_t *ptl;
  372. if (unlikely(PageHuge(page))) {
  373. pte = huge_pte_offset(mm, address);
  374. ptl = &mm->page_table_lock;
  375. goto check;
  376. }
  377. pgd = pgd_offset(mm, address);
  378. if (!pgd_present(*pgd))
  379. return NULL;
  380. pud = pud_offset(pgd, address);
  381. if (!pud_present(*pud))
  382. return NULL;
  383. pmd = pmd_offset(pud, address);
  384. if (!pmd_present(*pmd))
  385. return NULL;
  386. pte = pte_offset_map(pmd, address);
  387. /* Make a quick check before getting the lock */
  388. if (!sync && !pte_present(*pte)) {
  389. pte_unmap(pte);
  390. return NULL;
  391. }
  392. ptl = pte_lockptr(mm, pmd);
  393. check:
  394. spin_lock(ptl);
  395. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  396. *ptlp = ptl;
  397. return pte;
  398. }
  399. pte_unmap_unlock(pte, ptl);
  400. return NULL;
  401. }
  402. /**
  403. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  404. * @page: the page to test
  405. * @vma: the VMA to test
  406. *
  407. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  408. * if the page is not mapped into the page tables of this VMA. Only
  409. * valid for normal file or anonymous VMAs.
  410. */
  411. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  412. {
  413. unsigned long address;
  414. pte_t *pte;
  415. spinlock_t *ptl;
  416. address = vma_address(page, vma);
  417. if (address == -EFAULT) /* out of vma range */
  418. return 0;
  419. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  420. if (!pte) /* the page is not in this mm */
  421. return 0;
  422. pte_unmap_unlock(pte, ptl);
  423. return 1;
  424. }
  425. /*
  426. * Subfunctions of page_referenced: page_referenced_one called
  427. * repeatedly from either page_referenced_anon or page_referenced_file.
  428. */
  429. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  430. unsigned long address, unsigned int *mapcount,
  431. unsigned long *vm_flags)
  432. {
  433. struct mm_struct *mm = vma->vm_mm;
  434. pte_t *pte;
  435. spinlock_t *ptl;
  436. int referenced = 0;
  437. pte = page_check_address(page, mm, address, &ptl, 0);
  438. if (!pte)
  439. goto out;
  440. /*
  441. * Don't want to elevate referenced for mlocked page that gets this far,
  442. * in order that it progresses to try_to_unmap and is moved to the
  443. * unevictable list.
  444. */
  445. if (vma->vm_flags & VM_LOCKED) {
  446. *mapcount = 1; /* break early from loop */
  447. *vm_flags |= VM_LOCKED;
  448. goto out_unmap;
  449. }
  450. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  451. /*
  452. * Don't treat a reference through a sequentially read
  453. * mapping as such. If the page has been used in
  454. * another mapping, we will catch it; if this other
  455. * mapping is already gone, the unmap path will have
  456. * set PG_referenced or activated the page.
  457. */
  458. if (likely(!VM_SequentialReadHint(vma)))
  459. referenced++;
  460. }
  461. /* Pretend the page is referenced if the task has the
  462. swap token and is in the middle of a page fault. */
  463. if (mm != current->mm && has_swap_token(mm) &&
  464. rwsem_is_locked(&mm->mmap_sem))
  465. referenced++;
  466. out_unmap:
  467. (*mapcount)--;
  468. pte_unmap_unlock(pte, ptl);
  469. if (referenced)
  470. *vm_flags |= vma->vm_flags;
  471. out:
  472. return referenced;
  473. }
  474. static int page_referenced_anon(struct page *page,
  475. struct mem_cgroup *mem_cont,
  476. unsigned long *vm_flags)
  477. {
  478. unsigned int mapcount;
  479. struct anon_vma *anon_vma;
  480. struct anon_vma_chain *avc;
  481. int referenced = 0;
  482. anon_vma = page_lock_anon_vma(page);
  483. if (!anon_vma)
  484. return referenced;
  485. mapcount = page_mapcount(page);
  486. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  487. struct vm_area_struct *vma = avc->vma;
  488. unsigned long address = vma_address(page, vma);
  489. if (address == -EFAULT)
  490. continue;
  491. /*
  492. * If we are reclaiming on behalf of a cgroup, skip
  493. * counting on behalf of references from different
  494. * cgroups
  495. */
  496. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  497. continue;
  498. referenced += page_referenced_one(page, vma, address,
  499. &mapcount, vm_flags);
  500. if (!mapcount)
  501. break;
  502. }
  503. page_unlock_anon_vma(anon_vma);
  504. return referenced;
  505. }
  506. /**
  507. * page_referenced_file - referenced check for object-based rmap
  508. * @page: the page we're checking references on.
  509. * @mem_cont: target memory controller
  510. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  511. *
  512. * For an object-based mapped page, find all the places it is mapped and
  513. * check/clear the referenced flag. This is done by following the page->mapping
  514. * pointer, then walking the chain of vmas it holds. It returns the number
  515. * of references it found.
  516. *
  517. * This function is only called from page_referenced for object-based pages.
  518. */
  519. static int page_referenced_file(struct page *page,
  520. struct mem_cgroup *mem_cont,
  521. unsigned long *vm_flags)
  522. {
  523. unsigned int mapcount;
  524. struct address_space *mapping = page->mapping;
  525. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  526. struct vm_area_struct *vma;
  527. struct prio_tree_iter iter;
  528. int referenced = 0;
  529. /*
  530. * The caller's checks on page->mapping and !PageAnon have made
  531. * sure that this is a file page: the check for page->mapping
  532. * excludes the case just before it gets set on an anon page.
  533. */
  534. BUG_ON(PageAnon(page));
  535. /*
  536. * The page lock not only makes sure that page->mapping cannot
  537. * suddenly be NULLified by truncation, it makes sure that the
  538. * structure at mapping cannot be freed and reused yet,
  539. * so we can safely take mapping->i_mmap_lock.
  540. */
  541. BUG_ON(!PageLocked(page));
  542. spin_lock(&mapping->i_mmap_lock);
  543. /*
  544. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  545. * is more likely to be accurate if we note it after spinning.
  546. */
  547. mapcount = page_mapcount(page);
  548. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  549. unsigned long address = vma_address(page, vma);
  550. if (address == -EFAULT)
  551. continue;
  552. /*
  553. * If we are reclaiming on behalf of a cgroup, skip
  554. * counting on behalf of references from different
  555. * cgroups
  556. */
  557. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  558. continue;
  559. referenced += page_referenced_one(page, vma, address,
  560. &mapcount, vm_flags);
  561. if (!mapcount)
  562. break;
  563. }
  564. spin_unlock(&mapping->i_mmap_lock);
  565. return referenced;
  566. }
  567. /**
  568. * page_referenced - test if the page was referenced
  569. * @page: the page to test
  570. * @is_locked: caller holds lock on the page
  571. * @mem_cont: target memory controller
  572. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  573. *
  574. * Quick test_and_clear_referenced for all mappings to a page,
  575. * returns the number of ptes which referenced the page.
  576. */
  577. int page_referenced(struct page *page,
  578. int is_locked,
  579. struct mem_cgroup *mem_cont,
  580. unsigned long *vm_flags)
  581. {
  582. int referenced = 0;
  583. int we_locked = 0;
  584. *vm_flags = 0;
  585. if (page_mapped(page) && page_rmapping(page)) {
  586. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  587. we_locked = trylock_page(page);
  588. if (!we_locked) {
  589. referenced++;
  590. goto out;
  591. }
  592. }
  593. if (unlikely(PageKsm(page)))
  594. referenced += page_referenced_ksm(page, mem_cont,
  595. vm_flags);
  596. else if (PageAnon(page))
  597. referenced += page_referenced_anon(page, mem_cont,
  598. vm_flags);
  599. else if (page->mapping)
  600. referenced += page_referenced_file(page, mem_cont,
  601. vm_flags);
  602. if (we_locked)
  603. unlock_page(page);
  604. }
  605. out:
  606. if (page_test_and_clear_young(page))
  607. referenced++;
  608. return referenced;
  609. }
  610. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  611. unsigned long address)
  612. {
  613. struct mm_struct *mm = vma->vm_mm;
  614. pte_t *pte;
  615. spinlock_t *ptl;
  616. int ret = 0;
  617. pte = page_check_address(page, mm, address, &ptl, 1);
  618. if (!pte)
  619. goto out;
  620. if (pte_dirty(*pte) || pte_write(*pte)) {
  621. pte_t entry;
  622. flush_cache_page(vma, address, pte_pfn(*pte));
  623. entry = ptep_clear_flush_notify(vma, address, pte);
  624. entry = pte_wrprotect(entry);
  625. entry = pte_mkclean(entry);
  626. set_pte_at(mm, address, pte, entry);
  627. ret = 1;
  628. }
  629. pte_unmap_unlock(pte, ptl);
  630. out:
  631. return ret;
  632. }
  633. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  634. {
  635. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  636. struct vm_area_struct *vma;
  637. struct prio_tree_iter iter;
  638. int ret = 0;
  639. BUG_ON(PageAnon(page));
  640. spin_lock(&mapping->i_mmap_lock);
  641. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  642. if (vma->vm_flags & VM_SHARED) {
  643. unsigned long address = vma_address(page, vma);
  644. if (address == -EFAULT)
  645. continue;
  646. ret += page_mkclean_one(page, vma, address);
  647. }
  648. }
  649. spin_unlock(&mapping->i_mmap_lock);
  650. return ret;
  651. }
  652. int page_mkclean(struct page *page)
  653. {
  654. int ret = 0;
  655. BUG_ON(!PageLocked(page));
  656. if (page_mapped(page)) {
  657. struct address_space *mapping = page_mapping(page);
  658. if (mapping) {
  659. ret = page_mkclean_file(mapping, page);
  660. if (page_test_dirty(page)) {
  661. page_clear_dirty(page, 1);
  662. ret = 1;
  663. }
  664. }
  665. }
  666. return ret;
  667. }
  668. EXPORT_SYMBOL_GPL(page_mkclean);
  669. /**
  670. * page_move_anon_rmap - move a page to our anon_vma
  671. * @page: the page to move to our anon_vma
  672. * @vma: the vma the page belongs to
  673. * @address: the user virtual address mapped
  674. *
  675. * When a page belongs exclusively to one process after a COW event,
  676. * that page can be moved into the anon_vma that belongs to just that
  677. * process, so the rmap code will not search the parent or sibling
  678. * processes.
  679. */
  680. void page_move_anon_rmap(struct page *page,
  681. struct vm_area_struct *vma, unsigned long address)
  682. {
  683. struct anon_vma *anon_vma = vma->anon_vma;
  684. VM_BUG_ON(!PageLocked(page));
  685. VM_BUG_ON(!anon_vma);
  686. VM_BUG_ON(page->index != linear_page_index(vma, address));
  687. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  688. page->mapping = (struct address_space *) anon_vma;
  689. }
  690. /**
  691. * __page_set_anon_rmap - set up new anonymous rmap
  692. * @page: Page to add to rmap
  693. * @vma: VM area to add page to.
  694. * @address: User virtual address of the mapping
  695. * @exclusive: the page is exclusively owned by the current process
  696. */
  697. static void __page_set_anon_rmap(struct page *page,
  698. struct vm_area_struct *vma, unsigned long address, int exclusive)
  699. {
  700. struct anon_vma *anon_vma = vma->anon_vma;
  701. BUG_ON(!anon_vma);
  702. if (PageAnon(page))
  703. return;
  704. /*
  705. * If the page isn't exclusively mapped into this vma,
  706. * we must use the _oldest_ possible anon_vma for the
  707. * page mapping!
  708. */
  709. if (!exclusive)
  710. anon_vma = anon_vma->root;
  711. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  712. page->mapping = (struct address_space *) anon_vma;
  713. page->index = linear_page_index(vma, address);
  714. }
  715. /**
  716. * __page_check_anon_rmap - sanity check anonymous rmap addition
  717. * @page: the page to add the mapping to
  718. * @vma: the vm area in which the mapping is added
  719. * @address: the user virtual address mapped
  720. */
  721. static void __page_check_anon_rmap(struct page *page,
  722. struct vm_area_struct *vma, unsigned long address)
  723. {
  724. #ifdef CONFIG_DEBUG_VM
  725. /*
  726. * The page's anon-rmap details (mapping and index) are guaranteed to
  727. * be set up correctly at this point.
  728. *
  729. * We have exclusion against page_add_anon_rmap because the caller
  730. * always holds the page locked, except if called from page_dup_rmap,
  731. * in which case the page is already known to be setup.
  732. *
  733. * We have exclusion against page_add_new_anon_rmap because those pages
  734. * are initially only visible via the pagetables, and the pte is locked
  735. * over the call to page_add_new_anon_rmap.
  736. */
  737. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  738. BUG_ON(page->index != linear_page_index(vma, address));
  739. #endif
  740. }
  741. /**
  742. * page_add_anon_rmap - add pte mapping to an anonymous page
  743. * @page: the page to add the mapping to
  744. * @vma: the vm area in which the mapping is added
  745. * @address: the user virtual address mapped
  746. *
  747. * The caller needs to hold the pte lock, and the page must be locked in
  748. * the anon_vma case: to serialize mapping,index checking after setting,
  749. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  750. * (but PageKsm is never downgraded to PageAnon).
  751. */
  752. void page_add_anon_rmap(struct page *page,
  753. struct vm_area_struct *vma, unsigned long address)
  754. {
  755. do_page_add_anon_rmap(page, vma, address, 0);
  756. }
  757. /*
  758. * Special version of the above for do_swap_page, which often runs
  759. * into pages that are exclusively owned by the current process.
  760. * Everybody else should continue to use page_add_anon_rmap above.
  761. */
  762. void do_page_add_anon_rmap(struct page *page,
  763. struct vm_area_struct *vma, unsigned long address, int exclusive)
  764. {
  765. int first = atomic_inc_and_test(&page->_mapcount);
  766. if (first)
  767. __inc_zone_page_state(page, NR_ANON_PAGES);
  768. if (unlikely(PageKsm(page)))
  769. return;
  770. VM_BUG_ON(!PageLocked(page));
  771. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  772. if (first)
  773. __page_set_anon_rmap(page, vma, address, exclusive);
  774. else
  775. __page_check_anon_rmap(page, vma, address);
  776. }
  777. /**
  778. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  779. * @page: the page to add the mapping to
  780. * @vma: the vm area in which the mapping is added
  781. * @address: the user virtual address mapped
  782. *
  783. * Same as page_add_anon_rmap but must only be called on *new* pages.
  784. * This means the inc-and-test can be bypassed.
  785. * Page does not have to be locked.
  786. */
  787. void page_add_new_anon_rmap(struct page *page,
  788. struct vm_area_struct *vma, unsigned long address)
  789. {
  790. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  791. SetPageSwapBacked(page);
  792. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  793. __inc_zone_page_state(page, NR_ANON_PAGES);
  794. __page_set_anon_rmap(page, vma, address, 1);
  795. if (page_evictable(page, vma))
  796. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  797. else
  798. add_page_to_unevictable_list(page);
  799. }
  800. /**
  801. * page_add_file_rmap - add pte mapping to a file page
  802. * @page: the page to add the mapping to
  803. *
  804. * The caller needs to hold the pte lock.
  805. */
  806. void page_add_file_rmap(struct page *page)
  807. {
  808. if (atomic_inc_and_test(&page->_mapcount)) {
  809. __inc_zone_page_state(page, NR_FILE_MAPPED);
  810. mem_cgroup_update_file_mapped(page, 1);
  811. }
  812. }
  813. /**
  814. * page_remove_rmap - take down pte mapping from a page
  815. * @page: page to remove mapping from
  816. *
  817. * The caller needs to hold the pte lock.
  818. */
  819. void page_remove_rmap(struct page *page)
  820. {
  821. /* page still mapped by someone else? */
  822. if (!atomic_add_negative(-1, &page->_mapcount))
  823. return;
  824. /*
  825. * Now that the last pte has gone, s390 must transfer dirty
  826. * flag from storage key to struct page. We can usually skip
  827. * this if the page is anon, so about to be freed; but perhaps
  828. * not if it's in swapcache - there might be another pte slot
  829. * containing the swap entry, but page not yet written to swap.
  830. */
  831. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  832. page_clear_dirty(page, 1);
  833. set_page_dirty(page);
  834. }
  835. /*
  836. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  837. * and not charged by memcg for now.
  838. */
  839. if (unlikely(PageHuge(page)))
  840. return;
  841. if (PageAnon(page)) {
  842. mem_cgroup_uncharge_page(page);
  843. __dec_zone_page_state(page, NR_ANON_PAGES);
  844. } else {
  845. __dec_zone_page_state(page, NR_FILE_MAPPED);
  846. mem_cgroup_update_file_mapped(page, -1);
  847. }
  848. /*
  849. * It would be tidy to reset the PageAnon mapping here,
  850. * but that might overwrite a racing page_add_anon_rmap
  851. * which increments mapcount after us but sets mapping
  852. * before us: so leave the reset to free_hot_cold_page,
  853. * and remember that it's only reliable while mapped.
  854. * Leaving it set also helps swapoff to reinstate ptes
  855. * faster for those pages still in swapcache.
  856. */
  857. }
  858. /*
  859. * Subfunctions of try_to_unmap: try_to_unmap_one called
  860. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  861. */
  862. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  863. unsigned long address, enum ttu_flags flags)
  864. {
  865. struct mm_struct *mm = vma->vm_mm;
  866. pte_t *pte;
  867. pte_t pteval;
  868. spinlock_t *ptl;
  869. int ret = SWAP_AGAIN;
  870. pte = page_check_address(page, mm, address, &ptl, 0);
  871. if (!pte)
  872. goto out;
  873. /*
  874. * If the page is mlock()d, we cannot swap it out.
  875. * If it's recently referenced (perhaps page_referenced
  876. * skipped over this mm) then we should reactivate it.
  877. */
  878. if (!(flags & TTU_IGNORE_MLOCK)) {
  879. if (vma->vm_flags & VM_LOCKED)
  880. goto out_mlock;
  881. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  882. goto out_unmap;
  883. }
  884. if (!(flags & TTU_IGNORE_ACCESS)) {
  885. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  886. ret = SWAP_FAIL;
  887. goto out_unmap;
  888. }
  889. }
  890. /* Nuke the page table entry. */
  891. flush_cache_page(vma, address, page_to_pfn(page));
  892. pteval = ptep_clear_flush_notify(vma, address, pte);
  893. /* Move the dirty bit to the physical page now the pte is gone. */
  894. if (pte_dirty(pteval))
  895. set_page_dirty(page);
  896. /* Update high watermark before we lower rss */
  897. update_hiwater_rss(mm);
  898. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  899. if (PageAnon(page))
  900. dec_mm_counter(mm, MM_ANONPAGES);
  901. else
  902. dec_mm_counter(mm, MM_FILEPAGES);
  903. set_pte_at(mm, address, pte,
  904. swp_entry_to_pte(make_hwpoison_entry(page)));
  905. } else if (PageAnon(page)) {
  906. swp_entry_t entry = { .val = page_private(page) };
  907. if (PageSwapCache(page)) {
  908. /*
  909. * Store the swap location in the pte.
  910. * See handle_pte_fault() ...
  911. */
  912. if (swap_duplicate(entry) < 0) {
  913. set_pte_at(mm, address, pte, pteval);
  914. ret = SWAP_FAIL;
  915. goto out_unmap;
  916. }
  917. if (list_empty(&mm->mmlist)) {
  918. spin_lock(&mmlist_lock);
  919. if (list_empty(&mm->mmlist))
  920. list_add(&mm->mmlist, &init_mm.mmlist);
  921. spin_unlock(&mmlist_lock);
  922. }
  923. dec_mm_counter(mm, MM_ANONPAGES);
  924. inc_mm_counter(mm, MM_SWAPENTS);
  925. } else if (PAGE_MIGRATION) {
  926. /*
  927. * Store the pfn of the page in a special migration
  928. * pte. do_swap_page() will wait until the migration
  929. * pte is removed and then restart fault handling.
  930. */
  931. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  932. entry = make_migration_entry(page, pte_write(pteval));
  933. }
  934. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  935. BUG_ON(pte_file(*pte));
  936. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  937. /* Establish migration entry for a file page */
  938. swp_entry_t entry;
  939. entry = make_migration_entry(page, pte_write(pteval));
  940. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  941. } else
  942. dec_mm_counter(mm, MM_FILEPAGES);
  943. page_remove_rmap(page);
  944. page_cache_release(page);
  945. out_unmap:
  946. pte_unmap_unlock(pte, ptl);
  947. out:
  948. return ret;
  949. out_mlock:
  950. pte_unmap_unlock(pte, ptl);
  951. /*
  952. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  953. * unstable result and race. Plus, We can't wait here because
  954. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  955. * if trylock failed, the page remain in evictable lru and later
  956. * vmscan could retry to move the page to unevictable lru if the
  957. * page is actually mlocked.
  958. */
  959. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  960. if (vma->vm_flags & VM_LOCKED) {
  961. mlock_vma_page(page);
  962. ret = SWAP_MLOCK;
  963. }
  964. up_read(&vma->vm_mm->mmap_sem);
  965. }
  966. return ret;
  967. }
  968. /*
  969. * objrmap doesn't work for nonlinear VMAs because the assumption that
  970. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  971. * Consequently, given a particular page and its ->index, we cannot locate the
  972. * ptes which are mapping that page without an exhaustive linear search.
  973. *
  974. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  975. * maps the file to which the target page belongs. The ->vm_private_data field
  976. * holds the current cursor into that scan. Successive searches will circulate
  977. * around the vma's virtual address space.
  978. *
  979. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  980. * more scanning pressure is placed against them as well. Eventually pages
  981. * will become fully unmapped and are eligible for eviction.
  982. *
  983. * For very sparsely populated VMAs this is a little inefficient - chances are
  984. * there there won't be many ptes located within the scan cluster. In this case
  985. * maybe we could scan further - to the end of the pte page, perhaps.
  986. *
  987. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  988. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  989. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  990. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  991. */
  992. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  993. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  994. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  995. struct vm_area_struct *vma, struct page *check_page)
  996. {
  997. struct mm_struct *mm = vma->vm_mm;
  998. pgd_t *pgd;
  999. pud_t *pud;
  1000. pmd_t *pmd;
  1001. pte_t *pte;
  1002. pte_t pteval;
  1003. spinlock_t *ptl;
  1004. struct page *page;
  1005. unsigned long address;
  1006. unsigned long end;
  1007. int ret = SWAP_AGAIN;
  1008. int locked_vma = 0;
  1009. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1010. end = address + CLUSTER_SIZE;
  1011. if (address < vma->vm_start)
  1012. address = vma->vm_start;
  1013. if (end > vma->vm_end)
  1014. end = vma->vm_end;
  1015. pgd = pgd_offset(mm, address);
  1016. if (!pgd_present(*pgd))
  1017. return ret;
  1018. pud = pud_offset(pgd, address);
  1019. if (!pud_present(*pud))
  1020. return ret;
  1021. pmd = pmd_offset(pud, address);
  1022. if (!pmd_present(*pmd))
  1023. return ret;
  1024. /*
  1025. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1026. * keep the sem while scanning the cluster for mlocking pages.
  1027. */
  1028. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1029. locked_vma = (vma->vm_flags & VM_LOCKED);
  1030. if (!locked_vma)
  1031. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1032. }
  1033. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1034. /* Update high watermark before we lower rss */
  1035. update_hiwater_rss(mm);
  1036. for (; address < end; pte++, address += PAGE_SIZE) {
  1037. if (!pte_present(*pte))
  1038. continue;
  1039. page = vm_normal_page(vma, address, *pte);
  1040. BUG_ON(!page || PageAnon(page));
  1041. if (locked_vma) {
  1042. mlock_vma_page(page); /* no-op if already mlocked */
  1043. if (page == check_page)
  1044. ret = SWAP_MLOCK;
  1045. continue; /* don't unmap */
  1046. }
  1047. if (ptep_clear_flush_young_notify(vma, address, pte))
  1048. continue;
  1049. /* Nuke the page table entry. */
  1050. flush_cache_page(vma, address, pte_pfn(*pte));
  1051. pteval = ptep_clear_flush_notify(vma, address, pte);
  1052. /* If nonlinear, store the file page offset in the pte. */
  1053. if (page->index != linear_page_index(vma, address))
  1054. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1055. /* Move the dirty bit to the physical page now the pte is gone. */
  1056. if (pte_dirty(pteval))
  1057. set_page_dirty(page);
  1058. page_remove_rmap(page);
  1059. page_cache_release(page);
  1060. dec_mm_counter(mm, MM_FILEPAGES);
  1061. (*mapcount)--;
  1062. }
  1063. pte_unmap_unlock(pte - 1, ptl);
  1064. if (locked_vma)
  1065. up_read(&vma->vm_mm->mmap_sem);
  1066. return ret;
  1067. }
  1068. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1069. {
  1070. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1071. if (!maybe_stack)
  1072. return false;
  1073. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1074. VM_STACK_INCOMPLETE_SETUP)
  1075. return true;
  1076. return false;
  1077. }
  1078. /**
  1079. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1080. * rmap method
  1081. * @page: the page to unmap/unlock
  1082. * @flags: action and flags
  1083. *
  1084. * Find all the mappings of a page using the mapping pointer and the vma chains
  1085. * contained in the anon_vma struct it points to.
  1086. *
  1087. * This function is only called from try_to_unmap/try_to_munlock for
  1088. * anonymous pages.
  1089. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1090. * where the page was found will be held for write. So, we won't recheck
  1091. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1092. * 'LOCKED.
  1093. */
  1094. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1095. {
  1096. struct anon_vma *anon_vma;
  1097. struct anon_vma_chain *avc;
  1098. int ret = SWAP_AGAIN;
  1099. anon_vma = page_lock_anon_vma(page);
  1100. if (!anon_vma)
  1101. return ret;
  1102. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1103. struct vm_area_struct *vma = avc->vma;
  1104. unsigned long address;
  1105. /*
  1106. * During exec, a temporary VMA is setup and later moved.
  1107. * The VMA is moved under the anon_vma lock but not the
  1108. * page tables leading to a race where migration cannot
  1109. * find the migration ptes. Rather than increasing the
  1110. * locking requirements of exec(), migration skips
  1111. * temporary VMAs until after exec() completes.
  1112. */
  1113. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1114. is_vma_temporary_stack(vma))
  1115. continue;
  1116. address = vma_address(page, vma);
  1117. if (address == -EFAULT)
  1118. continue;
  1119. ret = try_to_unmap_one(page, vma, address, flags);
  1120. if (ret != SWAP_AGAIN || !page_mapped(page))
  1121. break;
  1122. }
  1123. page_unlock_anon_vma(anon_vma);
  1124. return ret;
  1125. }
  1126. /**
  1127. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1128. * @page: the page to unmap/unlock
  1129. * @flags: action and flags
  1130. *
  1131. * Find all the mappings of a page using the mapping pointer and the vma chains
  1132. * contained in the address_space struct it points to.
  1133. *
  1134. * This function is only called from try_to_unmap/try_to_munlock for
  1135. * object-based pages.
  1136. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1137. * where the page was found will be held for write. So, we won't recheck
  1138. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1139. * 'LOCKED.
  1140. */
  1141. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1142. {
  1143. struct address_space *mapping = page->mapping;
  1144. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1145. struct vm_area_struct *vma;
  1146. struct prio_tree_iter iter;
  1147. int ret = SWAP_AGAIN;
  1148. unsigned long cursor;
  1149. unsigned long max_nl_cursor = 0;
  1150. unsigned long max_nl_size = 0;
  1151. unsigned int mapcount;
  1152. spin_lock(&mapping->i_mmap_lock);
  1153. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1154. unsigned long address = vma_address(page, vma);
  1155. if (address == -EFAULT)
  1156. continue;
  1157. ret = try_to_unmap_one(page, vma, address, flags);
  1158. if (ret != SWAP_AGAIN || !page_mapped(page))
  1159. goto out;
  1160. }
  1161. if (list_empty(&mapping->i_mmap_nonlinear))
  1162. goto out;
  1163. /*
  1164. * We don't bother to try to find the munlocked page in nonlinears.
  1165. * It's costly. Instead, later, page reclaim logic may call
  1166. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1167. */
  1168. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1169. goto out;
  1170. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1171. shared.vm_set.list) {
  1172. cursor = (unsigned long) vma->vm_private_data;
  1173. if (cursor > max_nl_cursor)
  1174. max_nl_cursor = cursor;
  1175. cursor = vma->vm_end - vma->vm_start;
  1176. if (cursor > max_nl_size)
  1177. max_nl_size = cursor;
  1178. }
  1179. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1180. ret = SWAP_FAIL;
  1181. goto out;
  1182. }
  1183. /*
  1184. * We don't try to search for this page in the nonlinear vmas,
  1185. * and page_referenced wouldn't have found it anyway. Instead
  1186. * just walk the nonlinear vmas trying to age and unmap some.
  1187. * The mapcount of the page we came in with is irrelevant,
  1188. * but even so use it as a guide to how hard we should try?
  1189. */
  1190. mapcount = page_mapcount(page);
  1191. if (!mapcount)
  1192. goto out;
  1193. cond_resched_lock(&mapping->i_mmap_lock);
  1194. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1195. if (max_nl_cursor == 0)
  1196. max_nl_cursor = CLUSTER_SIZE;
  1197. do {
  1198. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1199. shared.vm_set.list) {
  1200. cursor = (unsigned long) vma->vm_private_data;
  1201. while ( cursor < max_nl_cursor &&
  1202. cursor < vma->vm_end - vma->vm_start) {
  1203. if (try_to_unmap_cluster(cursor, &mapcount,
  1204. vma, page) == SWAP_MLOCK)
  1205. ret = SWAP_MLOCK;
  1206. cursor += CLUSTER_SIZE;
  1207. vma->vm_private_data = (void *) cursor;
  1208. if ((int)mapcount <= 0)
  1209. goto out;
  1210. }
  1211. vma->vm_private_data = (void *) max_nl_cursor;
  1212. }
  1213. cond_resched_lock(&mapping->i_mmap_lock);
  1214. max_nl_cursor += CLUSTER_SIZE;
  1215. } while (max_nl_cursor <= max_nl_size);
  1216. /*
  1217. * Don't loop forever (perhaps all the remaining pages are
  1218. * in locked vmas). Reset cursor on all unreserved nonlinear
  1219. * vmas, now forgetting on which ones it had fallen behind.
  1220. */
  1221. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1222. vma->vm_private_data = NULL;
  1223. out:
  1224. spin_unlock(&mapping->i_mmap_lock);
  1225. return ret;
  1226. }
  1227. /**
  1228. * try_to_unmap - try to remove all page table mappings to a page
  1229. * @page: the page to get unmapped
  1230. * @flags: action and flags
  1231. *
  1232. * Tries to remove all the page table entries which are mapping this
  1233. * page, used in the pageout path. Caller must hold the page lock.
  1234. * Return values are:
  1235. *
  1236. * SWAP_SUCCESS - we succeeded in removing all mappings
  1237. * SWAP_AGAIN - we missed a mapping, try again later
  1238. * SWAP_FAIL - the page is unswappable
  1239. * SWAP_MLOCK - page is mlocked.
  1240. */
  1241. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1242. {
  1243. int ret;
  1244. BUG_ON(!PageLocked(page));
  1245. if (unlikely(PageKsm(page)))
  1246. ret = try_to_unmap_ksm(page, flags);
  1247. else if (PageAnon(page))
  1248. ret = try_to_unmap_anon(page, flags);
  1249. else
  1250. ret = try_to_unmap_file(page, flags);
  1251. if (ret != SWAP_MLOCK && !page_mapped(page))
  1252. ret = SWAP_SUCCESS;
  1253. return ret;
  1254. }
  1255. /**
  1256. * try_to_munlock - try to munlock a page
  1257. * @page: the page to be munlocked
  1258. *
  1259. * Called from munlock code. Checks all of the VMAs mapping the page
  1260. * to make sure nobody else has this page mlocked. The page will be
  1261. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1262. *
  1263. * Return values are:
  1264. *
  1265. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1266. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1267. * SWAP_FAIL - page cannot be located at present
  1268. * SWAP_MLOCK - page is now mlocked.
  1269. */
  1270. int try_to_munlock(struct page *page)
  1271. {
  1272. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1273. if (unlikely(PageKsm(page)))
  1274. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1275. else if (PageAnon(page))
  1276. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1277. else
  1278. return try_to_unmap_file(page, TTU_MUNLOCK);
  1279. }
  1280. #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
  1281. /*
  1282. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1283. * if necessary. Be careful to do all the tests under the lock. Once
  1284. * we know we are the last user, nobody else can get a reference and we
  1285. * can do the freeing without the lock.
  1286. */
  1287. void drop_anon_vma(struct anon_vma *anon_vma)
  1288. {
  1289. BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
  1290. if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
  1291. struct anon_vma *root = anon_vma->root;
  1292. int empty = list_empty(&anon_vma->head);
  1293. int last_root_user = 0;
  1294. int root_empty = 0;
  1295. /*
  1296. * The refcount on a non-root anon_vma got dropped. Drop
  1297. * the refcount on the root and check if we need to free it.
  1298. */
  1299. if (empty && anon_vma != root) {
  1300. BUG_ON(atomic_read(&root->external_refcount) <= 0);
  1301. last_root_user = atomic_dec_and_test(&root->external_refcount);
  1302. root_empty = list_empty(&root->head);
  1303. }
  1304. anon_vma_unlock(anon_vma);
  1305. if (empty) {
  1306. anon_vma_free(anon_vma);
  1307. if (root_empty && last_root_user)
  1308. anon_vma_free(root);
  1309. }
  1310. }
  1311. }
  1312. #endif
  1313. #ifdef CONFIG_MIGRATION
  1314. /*
  1315. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1316. * Called by migrate.c to remove migration ptes, but might be used more later.
  1317. */
  1318. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1319. struct vm_area_struct *, unsigned long, void *), void *arg)
  1320. {
  1321. struct anon_vma *anon_vma;
  1322. struct anon_vma_chain *avc;
  1323. int ret = SWAP_AGAIN;
  1324. /*
  1325. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1326. * because that depends on page_mapped(); but not all its usages
  1327. * are holding mmap_sem. Users without mmap_sem are required to
  1328. * take a reference count to prevent the anon_vma disappearing
  1329. */
  1330. anon_vma = page_anon_vma(page);
  1331. if (!anon_vma)
  1332. return ret;
  1333. anon_vma_lock(anon_vma);
  1334. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1335. struct vm_area_struct *vma = avc->vma;
  1336. unsigned long address = vma_address(page, vma);
  1337. if (address == -EFAULT)
  1338. continue;
  1339. ret = rmap_one(page, vma, address, arg);
  1340. if (ret != SWAP_AGAIN)
  1341. break;
  1342. }
  1343. anon_vma_unlock(anon_vma);
  1344. return ret;
  1345. }
  1346. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1347. struct vm_area_struct *, unsigned long, void *), void *arg)
  1348. {
  1349. struct address_space *mapping = page->mapping;
  1350. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1351. struct vm_area_struct *vma;
  1352. struct prio_tree_iter iter;
  1353. int ret = SWAP_AGAIN;
  1354. if (!mapping)
  1355. return ret;
  1356. spin_lock(&mapping->i_mmap_lock);
  1357. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1358. unsigned long address = vma_address(page, vma);
  1359. if (address == -EFAULT)
  1360. continue;
  1361. ret = rmap_one(page, vma, address, arg);
  1362. if (ret != SWAP_AGAIN)
  1363. break;
  1364. }
  1365. /*
  1366. * No nonlinear handling: being always shared, nonlinear vmas
  1367. * never contain migration ptes. Decide what to do about this
  1368. * limitation to linear when we need rmap_walk() on nonlinear.
  1369. */
  1370. spin_unlock(&mapping->i_mmap_lock);
  1371. return ret;
  1372. }
  1373. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1374. struct vm_area_struct *, unsigned long, void *), void *arg)
  1375. {
  1376. VM_BUG_ON(!PageLocked(page));
  1377. if (unlikely(PageKsm(page)))
  1378. return rmap_walk_ksm(page, rmap_one, arg);
  1379. else if (PageAnon(page))
  1380. return rmap_walk_anon(page, rmap_one, arg);
  1381. else
  1382. return rmap_walk_file(page, rmap_one, arg);
  1383. }
  1384. #endif /* CONFIG_MIGRATION */
  1385. #ifdef CONFIG_HUGETLB_PAGE
  1386. /*
  1387. * The following three functions are for anonymous (private mapped) hugepages.
  1388. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1389. * and no lru code, because we handle hugepages differently from common pages.
  1390. */
  1391. static void __hugepage_set_anon_rmap(struct page *page,
  1392. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1393. {
  1394. struct anon_vma *anon_vma = vma->anon_vma;
  1395. BUG_ON(!anon_vma);
  1396. if (PageAnon(page))
  1397. return;
  1398. if (!exclusive)
  1399. anon_vma = anon_vma->root;
  1400. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1401. page->mapping = (struct address_space *) anon_vma;
  1402. page->index = linear_page_index(vma, address);
  1403. }
  1404. void hugepage_add_anon_rmap(struct page *page,
  1405. struct vm_area_struct *vma, unsigned long address)
  1406. {
  1407. struct anon_vma *anon_vma = vma->anon_vma;
  1408. int first;
  1409. BUG_ON(!PageLocked(page));
  1410. BUG_ON(!anon_vma);
  1411. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1412. first = atomic_inc_and_test(&page->_mapcount);
  1413. if (first)
  1414. __hugepage_set_anon_rmap(page, vma, address, 0);
  1415. }
  1416. void hugepage_add_new_anon_rmap(struct page *page,
  1417. struct vm_area_struct *vma, unsigned long address)
  1418. {
  1419. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1420. atomic_set(&page->_mapcount, 0);
  1421. __hugepage_set_anon_rmap(page, vma, address, 1);
  1422. }
  1423. #endif /* CONFIG_HUGETLB_PAGE */