page_alloc.c 152 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/oom.h>
  33. #include <linux/notifier.h>
  34. #include <linux/topology.h>
  35. #include <linux/sysctl.h>
  36. #include <linux/cpu.h>
  37. #include <linux/cpuset.h>
  38. #include <linux/memory_hotplug.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/mempolicy.h>
  42. #include <linux/stop_machine.h>
  43. #include <linux/sort.h>
  44. #include <linux/pfn.h>
  45. #include <linux/backing-dev.h>
  46. #include <linux/fault-inject.h>
  47. #include <linux/page-isolation.h>
  48. #include <linux/page_cgroup.h>
  49. #include <linux/debugobjects.h>
  50. #include <linux/kmemleak.h>
  51. #include <linux/memory.h>
  52. #include <linux/compaction.h>
  53. #include <trace/events/kmem.h>
  54. #include <linux/ftrace_event.h>
  55. #include <asm/tlbflush.h>
  56. #include <asm/div64.h>
  57. #include "internal.h"
  58. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  59. DEFINE_PER_CPU(int, numa_node);
  60. EXPORT_PER_CPU_SYMBOL(numa_node);
  61. #endif
  62. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  63. /*
  64. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  65. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  66. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  67. * defined in <linux/topology.h>.
  68. */
  69. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  70. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  71. #endif
  72. /*
  73. * Array of node states.
  74. */
  75. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  76. [N_POSSIBLE] = NODE_MASK_ALL,
  77. [N_ONLINE] = { { [0] = 1UL } },
  78. #ifndef CONFIG_NUMA
  79. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  80. #ifdef CONFIG_HIGHMEM
  81. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  82. #endif
  83. [N_CPU] = { { [0] = 1UL } },
  84. #endif /* NUMA */
  85. };
  86. EXPORT_SYMBOL(node_states);
  87. unsigned long totalram_pages __read_mostly;
  88. unsigned long totalreserve_pages __read_mostly;
  89. int percpu_pagelist_fraction;
  90. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  91. #ifdef CONFIG_PM_SLEEP
  92. /*
  93. * The following functions are used by the suspend/hibernate code to temporarily
  94. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  95. * while devices are suspended. To avoid races with the suspend/hibernate code,
  96. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  97. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  98. * guaranteed not to run in parallel with that modification).
  99. */
  100. void set_gfp_allowed_mask(gfp_t mask)
  101. {
  102. WARN_ON(!mutex_is_locked(&pm_mutex));
  103. gfp_allowed_mask = mask;
  104. }
  105. gfp_t clear_gfp_allowed_mask(gfp_t mask)
  106. {
  107. gfp_t ret = gfp_allowed_mask;
  108. WARN_ON(!mutex_is_locked(&pm_mutex));
  109. gfp_allowed_mask &= ~mask;
  110. return ret;
  111. }
  112. #endif /* CONFIG_PM_SLEEP */
  113. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  114. int pageblock_order __read_mostly;
  115. #endif
  116. static void __free_pages_ok(struct page *page, unsigned int order);
  117. /*
  118. * results with 256, 32 in the lowmem_reserve sysctl:
  119. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  120. * 1G machine -> (16M dma, 784M normal, 224M high)
  121. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  122. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  123. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  124. *
  125. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  126. * don't need any ZONE_NORMAL reservation
  127. */
  128. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  129. #ifdef CONFIG_ZONE_DMA
  130. 256,
  131. #endif
  132. #ifdef CONFIG_ZONE_DMA32
  133. 256,
  134. #endif
  135. #ifdef CONFIG_HIGHMEM
  136. 32,
  137. #endif
  138. 32,
  139. };
  140. EXPORT_SYMBOL(totalram_pages);
  141. static char * const zone_names[MAX_NR_ZONES] = {
  142. #ifdef CONFIG_ZONE_DMA
  143. "DMA",
  144. #endif
  145. #ifdef CONFIG_ZONE_DMA32
  146. "DMA32",
  147. #endif
  148. "Normal",
  149. #ifdef CONFIG_HIGHMEM
  150. "HighMem",
  151. #endif
  152. "Movable",
  153. };
  154. int min_free_kbytes = 1024;
  155. static unsigned long __meminitdata nr_kernel_pages;
  156. static unsigned long __meminitdata nr_all_pages;
  157. static unsigned long __meminitdata dma_reserve;
  158. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  159. /*
  160. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  161. * ranges of memory (RAM) that may be registered with add_active_range().
  162. * Ranges passed to add_active_range() will be merged if possible
  163. * so the number of times add_active_range() can be called is
  164. * related to the number of nodes and the number of holes
  165. */
  166. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  167. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  168. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  169. #else
  170. #if MAX_NUMNODES >= 32
  171. /* If there can be many nodes, allow up to 50 holes per node */
  172. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  173. #else
  174. /* By default, allow up to 256 distinct regions */
  175. #define MAX_ACTIVE_REGIONS 256
  176. #endif
  177. #endif
  178. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  179. static int __meminitdata nr_nodemap_entries;
  180. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  181. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __initdata required_kernelcore;
  183. static unsigned long __initdata required_movablecore;
  184. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  185. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  186. int movable_zone;
  187. EXPORT_SYMBOL(movable_zone);
  188. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  189. #if MAX_NUMNODES > 1
  190. int nr_node_ids __read_mostly = MAX_NUMNODES;
  191. int nr_online_nodes __read_mostly = 1;
  192. EXPORT_SYMBOL(nr_node_ids);
  193. EXPORT_SYMBOL(nr_online_nodes);
  194. #endif
  195. int page_group_by_mobility_disabled __read_mostly;
  196. static void set_pageblock_migratetype(struct page *page, int migratetype)
  197. {
  198. if (unlikely(page_group_by_mobility_disabled))
  199. migratetype = MIGRATE_UNMOVABLE;
  200. set_pageblock_flags_group(page, (unsigned long)migratetype,
  201. PB_migrate, PB_migrate_end);
  202. }
  203. bool oom_killer_disabled __read_mostly;
  204. #ifdef CONFIG_DEBUG_VM
  205. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  206. {
  207. int ret = 0;
  208. unsigned seq;
  209. unsigned long pfn = page_to_pfn(page);
  210. do {
  211. seq = zone_span_seqbegin(zone);
  212. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  213. ret = 1;
  214. else if (pfn < zone->zone_start_pfn)
  215. ret = 1;
  216. } while (zone_span_seqretry(zone, seq));
  217. return ret;
  218. }
  219. static int page_is_consistent(struct zone *zone, struct page *page)
  220. {
  221. if (!pfn_valid_within(page_to_pfn(page)))
  222. return 0;
  223. if (zone != page_zone(page))
  224. return 0;
  225. return 1;
  226. }
  227. /*
  228. * Temporary debugging check for pages not lying within a given zone.
  229. */
  230. static int bad_range(struct zone *zone, struct page *page)
  231. {
  232. if (page_outside_zone_boundaries(zone, page))
  233. return 1;
  234. if (!page_is_consistent(zone, page))
  235. return 1;
  236. return 0;
  237. }
  238. #else
  239. static inline int bad_range(struct zone *zone, struct page *page)
  240. {
  241. return 0;
  242. }
  243. #endif
  244. static void bad_page(struct page *page)
  245. {
  246. static unsigned long resume;
  247. static unsigned long nr_shown;
  248. static unsigned long nr_unshown;
  249. /* Don't complain about poisoned pages */
  250. if (PageHWPoison(page)) {
  251. __ClearPageBuddy(page);
  252. return;
  253. }
  254. /*
  255. * Allow a burst of 60 reports, then keep quiet for that minute;
  256. * or allow a steady drip of one report per second.
  257. */
  258. if (nr_shown == 60) {
  259. if (time_before(jiffies, resume)) {
  260. nr_unshown++;
  261. goto out;
  262. }
  263. if (nr_unshown) {
  264. printk(KERN_ALERT
  265. "BUG: Bad page state: %lu messages suppressed\n",
  266. nr_unshown);
  267. nr_unshown = 0;
  268. }
  269. nr_shown = 0;
  270. }
  271. if (nr_shown++ == 0)
  272. resume = jiffies + 60 * HZ;
  273. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  274. current->comm, page_to_pfn(page));
  275. dump_page(page);
  276. dump_stack();
  277. out:
  278. /* Leave bad fields for debug, except PageBuddy could make trouble */
  279. __ClearPageBuddy(page);
  280. add_taint(TAINT_BAD_PAGE);
  281. }
  282. /*
  283. * Higher-order pages are called "compound pages". They are structured thusly:
  284. *
  285. * The first PAGE_SIZE page is called the "head page".
  286. *
  287. * The remaining PAGE_SIZE pages are called "tail pages".
  288. *
  289. * All pages have PG_compound set. All pages have their ->private pointing at
  290. * the head page (even the head page has this).
  291. *
  292. * The first tail page's ->lru.next holds the address of the compound page's
  293. * put_page() function. Its ->lru.prev holds the order of allocation.
  294. * This usage means that zero-order pages may not be compound.
  295. */
  296. static void free_compound_page(struct page *page)
  297. {
  298. __free_pages_ok(page, compound_order(page));
  299. }
  300. void prep_compound_page(struct page *page, unsigned long order)
  301. {
  302. int i;
  303. int nr_pages = 1 << order;
  304. set_compound_page_dtor(page, free_compound_page);
  305. set_compound_order(page, order);
  306. __SetPageHead(page);
  307. for (i = 1; i < nr_pages; i++) {
  308. struct page *p = page + i;
  309. __SetPageTail(p);
  310. p->first_page = page;
  311. }
  312. }
  313. static int destroy_compound_page(struct page *page, unsigned long order)
  314. {
  315. int i;
  316. int nr_pages = 1 << order;
  317. int bad = 0;
  318. if (unlikely(compound_order(page) != order) ||
  319. unlikely(!PageHead(page))) {
  320. bad_page(page);
  321. bad++;
  322. }
  323. __ClearPageHead(page);
  324. for (i = 1; i < nr_pages; i++) {
  325. struct page *p = page + i;
  326. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  327. bad_page(page);
  328. bad++;
  329. }
  330. __ClearPageTail(p);
  331. }
  332. return bad;
  333. }
  334. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  335. {
  336. int i;
  337. /*
  338. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  339. * and __GFP_HIGHMEM from hard or soft interrupt context.
  340. */
  341. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  342. for (i = 0; i < (1 << order); i++)
  343. clear_highpage(page + i);
  344. }
  345. static inline void set_page_order(struct page *page, int order)
  346. {
  347. set_page_private(page, order);
  348. __SetPageBuddy(page);
  349. }
  350. static inline void rmv_page_order(struct page *page)
  351. {
  352. __ClearPageBuddy(page);
  353. set_page_private(page, 0);
  354. }
  355. /*
  356. * Locate the struct page for both the matching buddy in our
  357. * pair (buddy1) and the combined O(n+1) page they form (page).
  358. *
  359. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  360. * the following equation:
  361. * B2 = B1 ^ (1 << O)
  362. * For example, if the starting buddy (buddy2) is #8 its order
  363. * 1 buddy is #10:
  364. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  365. *
  366. * 2) Any buddy B will have an order O+1 parent P which
  367. * satisfies the following equation:
  368. * P = B & ~(1 << O)
  369. *
  370. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  371. */
  372. static inline struct page *
  373. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  374. {
  375. unsigned long buddy_idx = page_idx ^ (1 << order);
  376. return page + (buddy_idx - page_idx);
  377. }
  378. static inline unsigned long
  379. __find_combined_index(unsigned long page_idx, unsigned int order)
  380. {
  381. return (page_idx & ~(1 << order));
  382. }
  383. /*
  384. * This function checks whether a page is free && is the buddy
  385. * we can do coalesce a page and its buddy if
  386. * (a) the buddy is not in a hole &&
  387. * (b) the buddy is in the buddy system &&
  388. * (c) a page and its buddy have the same order &&
  389. * (d) a page and its buddy are in the same zone.
  390. *
  391. * For recording whether a page is in the buddy system, we use PG_buddy.
  392. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  393. *
  394. * For recording page's order, we use page_private(page).
  395. */
  396. static inline int page_is_buddy(struct page *page, struct page *buddy,
  397. int order)
  398. {
  399. if (!pfn_valid_within(page_to_pfn(buddy)))
  400. return 0;
  401. if (page_zone_id(page) != page_zone_id(buddy))
  402. return 0;
  403. if (PageBuddy(buddy) && page_order(buddy) == order) {
  404. VM_BUG_ON(page_count(buddy) != 0);
  405. return 1;
  406. }
  407. return 0;
  408. }
  409. /*
  410. * Freeing function for a buddy system allocator.
  411. *
  412. * The concept of a buddy system is to maintain direct-mapped table
  413. * (containing bit values) for memory blocks of various "orders".
  414. * The bottom level table contains the map for the smallest allocatable
  415. * units of memory (here, pages), and each level above it describes
  416. * pairs of units from the levels below, hence, "buddies".
  417. * At a high level, all that happens here is marking the table entry
  418. * at the bottom level available, and propagating the changes upward
  419. * as necessary, plus some accounting needed to play nicely with other
  420. * parts of the VM system.
  421. * At each level, we keep a list of pages, which are heads of continuous
  422. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  423. * order is recorded in page_private(page) field.
  424. * So when we are allocating or freeing one, we can derive the state of the
  425. * other. That is, if we allocate a small block, and both were
  426. * free, the remainder of the region must be split into blocks.
  427. * If a block is freed, and its buddy is also free, then this
  428. * triggers coalescing into a block of larger size.
  429. *
  430. * -- wli
  431. */
  432. static inline void __free_one_page(struct page *page,
  433. struct zone *zone, unsigned int order,
  434. int migratetype)
  435. {
  436. unsigned long page_idx;
  437. unsigned long combined_idx;
  438. struct page *buddy;
  439. if (unlikely(PageCompound(page)))
  440. if (unlikely(destroy_compound_page(page, order)))
  441. return;
  442. VM_BUG_ON(migratetype == -1);
  443. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  444. VM_BUG_ON(page_idx & ((1 << order) - 1));
  445. VM_BUG_ON(bad_range(zone, page));
  446. while (order < MAX_ORDER-1) {
  447. buddy = __page_find_buddy(page, page_idx, order);
  448. if (!page_is_buddy(page, buddy, order))
  449. break;
  450. /* Our buddy is free, merge with it and move up one order. */
  451. list_del(&buddy->lru);
  452. zone->free_area[order].nr_free--;
  453. rmv_page_order(buddy);
  454. combined_idx = __find_combined_index(page_idx, order);
  455. page = page + (combined_idx - page_idx);
  456. page_idx = combined_idx;
  457. order++;
  458. }
  459. set_page_order(page, order);
  460. /*
  461. * If this is not the largest possible page, check if the buddy
  462. * of the next-highest order is free. If it is, it's possible
  463. * that pages are being freed that will coalesce soon. In case,
  464. * that is happening, add the free page to the tail of the list
  465. * so it's less likely to be used soon and more likely to be merged
  466. * as a higher order page
  467. */
  468. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  469. struct page *higher_page, *higher_buddy;
  470. combined_idx = __find_combined_index(page_idx, order);
  471. higher_page = page + combined_idx - page_idx;
  472. higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
  473. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  474. list_add_tail(&page->lru,
  475. &zone->free_area[order].free_list[migratetype]);
  476. goto out;
  477. }
  478. }
  479. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  480. out:
  481. zone->free_area[order].nr_free++;
  482. }
  483. /*
  484. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  485. * Page should not be on lru, so no need to fix that up.
  486. * free_pages_check() will verify...
  487. */
  488. static inline void free_page_mlock(struct page *page)
  489. {
  490. __dec_zone_page_state(page, NR_MLOCK);
  491. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  492. }
  493. static inline int free_pages_check(struct page *page)
  494. {
  495. if (unlikely(page_mapcount(page) |
  496. (page->mapping != NULL) |
  497. (atomic_read(&page->_count) != 0) |
  498. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  499. bad_page(page);
  500. return 1;
  501. }
  502. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  503. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  504. return 0;
  505. }
  506. /*
  507. * Frees a number of pages from the PCP lists
  508. * Assumes all pages on list are in same zone, and of same order.
  509. * count is the number of pages to free.
  510. *
  511. * If the zone was previously in an "all pages pinned" state then look to
  512. * see if this freeing clears that state.
  513. *
  514. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  515. * pinned" detection logic.
  516. */
  517. static void free_pcppages_bulk(struct zone *zone, int count,
  518. struct per_cpu_pages *pcp)
  519. {
  520. int migratetype = 0;
  521. int batch_free = 0;
  522. int to_free = count;
  523. spin_lock(&zone->lock);
  524. zone->all_unreclaimable = 0;
  525. zone->pages_scanned = 0;
  526. while (to_free) {
  527. struct page *page;
  528. struct list_head *list;
  529. /*
  530. * Remove pages from lists in a round-robin fashion. A
  531. * batch_free count is maintained that is incremented when an
  532. * empty list is encountered. This is so more pages are freed
  533. * off fuller lists instead of spinning excessively around empty
  534. * lists
  535. */
  536. do {
  537. batch_free++;
  538. if (++migratetype == MIGRATE_PCPTYPES)
  539. migratetype = 0;
  540. list = &pcp->lists[migratetype];
  541. } while (list_empty(list));
  542. do {
  543. page = list_entry(list->prev, struct page, lru);
  544. /* must delete as __free_one_page list manipulates */
  545. list_del(&page->lru);
  546. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  547. __free_one_page(page, zone, 0, page_private(page));
  548. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  549. } while (--to_free && --batch_free && !list_empty(list));
  550. }
  551. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  552. spin_unlock(&zone->lock);
  553. }
  554. static void free_one_page(struct zone *zone, struct page *page, int order,
  555. int migratetype)
  556. {
  557. spin_lock(&zone->lock);
  558. zone->all_unreclaimable = 0;
  559. zone->pages_scanned = 0;
  560. __free_one_page(page, zone, order, migratetype);
  561. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  562. spin_unlock(&zone->lock);
  563. }
  564. static bool free_pages_prepare(struct page *page, unsigned int order)
  565. {
  566. int i;
  567. int bad = 0;
  568. trace_mm_page_free_direct(page, order);
  569. kmemcheck_free_shadow(page, order);
  570. for (i = 0; i < (1 << order); i++) {
  571. struct page *pg = page + i;
  572. if (PageAnon(pg))
  573. pg->mapping = NULL;
  574. bad += free_pages_check(pg);
  575. }
  576. if (bad)
  577. return false;
  578. if (!PageHighMem(page)) {
  579. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  580. debug_check_no_obj_freed(page_address(page),
  581. PAGE_SIZE << order);
  582. }
  583. arch_free_page(page, order);
  584. kernel_map_pages(page, 1 << order, 0);
  585. return true;
  586. }
  587. static void __free_pages_ok(struct page *page, unsigned int order)
  588. {
  589. unsigned long flags;
  590. int wasMlocked = __TestClearPageMlocked(page);
  591. if (!free_pages_prepare(page, order))
  592. return;
  593. local_irq_save(flags);
  594. if (unlikely(wasMlocked))
  595. free_page_mlock(page);
  596. __count_vm_events(PGFREE, 1 << order);
  597. free_one_page(page_zone(page), page, order,
  598. get_pageblock_migratetype(page));
  599. local_irq_restore(flags);
  600. }
  601. /*
  602. * permit the bootmem allocator to evade page validation on high-order frees
  603. */
  604. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  605. {
  606. if (order == 0) {
  607. __ClearPageReserved(page);
  608. set_page_count(page, 0);
  609. set_page_refcounted(page);
  610. __free_page(page);
  611. } else {
  612. int loop;
  613. prefetchw(page);
  614. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  615. struct page *p = &page[loop];
  616. if (loop + 1 < BITS_PER_LONG)
  617. prefetchw(p + 1);
  618. __ClearPageReserved(p);
  619. set_page_count(p, 0);
  620. }
  621. set_page_refcounted(page);
  622. __free_pages(page, order);
  623. }
  624. }
  625. /*
  626. * The order of subdivision here is critical for the IO subsystem.
  627. * Please do not alter this order without good reasons and regression
  628. * testing. Specifically, as large blocks of memory are subdivided,
  629. * the order in which smaller blocks are delivered depends on the order
  630. * they're subdivided in this function. This is the primary factor
  631. * influencing the order in which pages are delivered to the IO
  632. * subsystem according to empirical testing, and this is also justified
  633. * by considering the behavior of a buddy system containing a single
  634. * large block of memory acted on by a series of small allocations.
  635. * This behavior is a critical factor in sglist merging's success.
  636. *
  637. * -- wli
  638. */
  639. static inline void expand(struct zone *zone, struct page *page,
  640. int low, int high, struct free_area *area,
  641. int migratetype)
  642. {
  643. unsigned long size = 1 << high;
  644. while (high > low) {
  645. area--;
  646. high--;
  647. size >>= 1;
  648. VM_BUG_ON(bad_range(zone, &page[size]));
  649. list_add(&page[size].lru, &area->free_list[migratetype]);
  650. area->nr_free++;
  651. set_page_order(&page[size], high);
  652. }
  653. }
  654. /*
  655. * This page is about to be returned from the page allocator
  656. */
  657. static inline int check_new_page(struct page *page)
  658. {
  659. if (unlikely(page_mapcount(page) |
  660. (page->mapping != NULL) |
  661. (atomic_read(&page->_count) != 0) |
  662. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  663. bad_page(page);
  664. return 1;
  665. }
  666. return 0;
  667. }
  668. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  669. {
  670. int i;
  671. for (i = 0; i < (1 << order); i++) {
  672. struct page *p = page + i;
  673. if (unlikely(check_new_page(p)))
  674. return 1;
  675. }
  676. set_page_private(page, 0);
  677. set_page_refcounted(page);
  678. arch_alloc_page(page, order);
  679. kernel_map_pages(page, 1 << order, 1);
  680. if (gfp_flags & __GFP_ZERO)
  681. prep_zero_page(page, order, gfp_flags);
  682. if (order && (gfp_flags & __GFP_COMP))
  683. prep_compound_page(page, order);
  684. return 0;
  685. }
  686. /*
  687. * Go through the free lists for the given migratetype and remove
  688. * the smallest available page from the freelists
  689. */
  690. static inline
  691. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  692. int migratetype)
  693. {
  694. unsigned int current_order;
  695. struct free_area * area;
  696. struct page *page;
  697. /* Find a page of the appropriate size in the preferred list */
  698. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  699. area = &(zone->free_area[current_order]);
  700. if (list_empty(&area->free_list[migratetype]))
  701. continue;
  702. page = list_entry(area->free_list[migratetype].next,
  703. struct page, lru);
  704. list_del(&page->lru);
  705. rmv_page_order(page);
  706. area->nr_free--;
  707. expand(zone, page, order, current_order, area, migratetype);
  708. return page;
  709. }
  710. return NULL;
  711. }
  712. /*
  713. * This array describes the order lists are fallen back to when
  714. * the free lists for the desirable migrate type are depleted
  715. */
  716. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  717. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  718. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  719. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  720. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  721. };
  722. /*
  723. * Move the free pages in a range to the free lists of the requested type.
  724. * Note that start_page and end_pages are not aligned on a pageblock
  725. * boundary. If alignment is required, use move_freepages_block()
  726. */
  727. static int move_freepages(struct zone *zone,
  728. struct page *start_page, struct page *end_page,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. unsigned long order;
  733. int pages_moved = 0;
  734. #ifndef CONFIG_HOLES_IN_ZONE
  735. /*
  736. * page_zone is not safe to call in this context when
  737. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  738. * anyway as we check zone boundaries in move_freepages_block().
  739. * Remove at a later date when no bug reports exist related to
  740. * grouping pages by mobility
  741. */
  742. BUG_ON(page_zone(start_page) != page_zone(end_page));
  743. #endif
  744. for (page = start_page; page <= end_page;) {
  745. /* Make sure we are not inadvertently changing nodes */
  746. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  747. if (!pfn_valid_within(page_to_pfn(page))) {
  748. page++;
  749. continue;
  750. }
  751. if (!PageBuddy(page)) {
  752. page++;
  753. continue;
  754. }
  755. order = page_order(page);
  756. list_del(&page->lru);
  757. list_add(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. page += 1 << order;
  760. pages_moved += 1 << order;
  761. }
  762. return pages_moved;
  763. }
  764. static int move_freepages_block(struct zone *zone, struct page *page,
  765. int migratetype)
  766. {
  767. unsigned long start_pfn, end_pfn;
  768. struct page *start_page, *end_page;
  769. start_pfn = page_to_pfn(page);
  770. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  771. start_page = pfn_to_page(start_pfn);
  772. end_page = start_page + pageblock_nr_pages - 1;
  773. end_pfn = start_pfn + pageblock_nr_pages - 1;
  774. /* Do not cross zone boundaries */
  775. if (start_pfn < zone->zone_start_pfn)
  776. start_page = page;
  777. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  778. return 0;
  779. return move_freepages(zone, start_page, end_page, migratetype);
  780. }
  781. static void change_pageblock_range(struct page *pageblock_page,
  782. int start_order, int migratetype)
  783. {
  784. int nr_pageblocks = 1 << (start_order - pageblock_order);
  785. while (nr_pageblocks--) {
  786. set_pageblock_migratetype(pageblock_page, migratetype);
  787. pageblock_page += pageblock_nr_pages;
  788. }
  789. }
  790. /* Remove an element from the buddy allocator from the fallback list */
  791. static inline struct page *
  792. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  793. {
  794. struct free_area * area;
  795. int current_order;
  796. struct page *page;
  797. int migratetype, i;
  798. /* Find the largest possible block of pages in the other list */
  799. for (current_order = MAX_ORDER-1; current_order >= order;
  800. --current_order) {
  801. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  802. migratetype = fallbacks[start_migratetype][i];
  803. /* MIGRATE_RESERVE handled later if necessary */
  804. if (migratetype == MIGRATE_RESERVE)
  805. continue;
  806. area = &(zone->free_area[current_order]);
  807. if (list_empty(&area->free_list[migratetype]))
  808. continue;
  809. page = list_entry(area->free_list[migratetype].next,
  810. struct page, lru);
  811. area->nr_free--;
  812. /*
  813. * If breaking a large block of pages, move all free
  814. * pages to the preferred allocation list. If falling
  815. * back for a reclaimable kernel allocation, be more
  816. * agressive about taking ownership of free pages
  817. */
  818. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  819. start_migratetype == MIGRATE_RECLAIMABLE ||
  820. page_group_by_mobility_disabled) {
  821. unsigned long pages;
  822. pages = move_freepages_block(zone, page,
  823. start_migratetype);
  824. /* Claim the whole block if over half of it is free */
  825. if (pages >= (1 << (pageblock_order-1)) ||
  826. page_group_by_mobility_disabled)
  827. set_pageblock_migratetype(page,
  828. start_migratetype);
  829. migratetype = start_migratetype;
  830. }
  831. /* Remove the page from the freelists */
  832. list_del(&page->lru);
  833. rmv_page_order(page);
  834. /* Take ownership for orders >= pageblock_order */
  835. if (current_order >= pageblock_order)
  836. change_pageblock_range(page, current_order,
  837. start_migratetype);
  838. expand(zone, page, order, current_order, area, migratetype);
  839. trace_mm_page_alloc_extfrag(page, order, current_order,
  840. start_migratetype, migratetype);
  841. return page;
  842. }
  843. }
  844. return NULL;
  845. }
  846. /*
  847. * Do the hard work of removing an element from the buddy allocator.
  848. * Call me with the zone->lock already held.
  849. */
  850. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  851. int migratetype)
  852. {
  853. struct page *page;
  854. retry_reserve:
  855. page = __rmqueue_smallest(zone, order, migratetype);
  856. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  857. page = __rmqueue_fallback(zone, order, migratetype);
  858. /*
  859. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  860. * is used because __rmqueue_smallest is an inline function
  861. * and we want just one call site
  862. */
  863. if (!page) {
  864. migratetype = MIGRATE_RESERVE;
  865. goto retry_reserve;
  866. }
  867. }
  868. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  869. return page;
  870. }
  871. /*
  872. * Obtain a specified number of elements from the buddy allocator, all under
  873. * a single hold of the lock, for efficiency. Add them to the supplied list.
  874. * Returns the number of new pages which were placed at *list.
  875. */
  876. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  877. unsigned long count, struct list_head *list,
  878. int migratetype, int cold)
  879. {
  880. int i;
  881. spin_lock(&zone->lock);
  882. for (i = 0; i < count; ++i) {
  883. struct page *page = __rmqueue(zone, order, migratetype);
  884. if (unlikely(page == NULL))
  885. break;
  886. /*
  887. * Split buddy pages returned by expand() are received here
  888. * in physical page order. The page is added to the callers and
  889. * list and the list head then moves forward. From the callers
  890. * perspective, the linked list is ordered by page number in
  891. * some conditions. This is useful for IO devices that can
  892. * merge IO requests if the physical pages are ordered
  893. * properly.
  894. */
  895. if (likely(cold == 0))
  896. list_add(&page->lru, list);
  897. else
  898. list_add_tail(&page->lru, list);
  899. set_page_private(page, migratetype);
  900. list = &page->lru;
  901. }
  902. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  903. spin_unlock(&zone->lock);
  904. return i;
  905. }
  906. #ifdef CONFIG_NUMA
  907. /*
  908. * Called from the vmstat counter updater to drain pagesets of this
  909. * currently executing processor on remote nodes after they have
  910. * expired.
  911. *
  912. * Note that this function must be called with the thread pinned to
  913. * a single processor.
  914. */
  915. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  916. {
  917. unsigned long flags;
  918. int to_drain;
  919. local_irq_save(flags);
  920. if (pcp->count >= pcp->batch)
  921. to_drain = pcp->batch;
  922. else
  923. to_drain = pcp->count;
  924. free_pcppages_bulk(zone, to_drain, pcp);
  925. pcp->count -= to_drain;
  926. local_irq_restore(flags);
  927. }
  928. #endif
  929. /*
  930. * Drain pages of the indicated processor.
  931. *
  932. * The processor must either be the current processor and the
  933. * thread pinned to the current processor or a processor that
  934. * is not online.
  935. */
  936. static void drain_pages(unsigned int cpu)
  937. {
  938. unsigned long flags;
  939. struct zone *zone;
  940. for_each_populated_zone(zone) {
  941. struct per_cpu_pageset *pset;
  942. struct per_cpu_pages *pcp;
  943. local_irq_save(flags);
  944. pset = per_cpu_ptr(zone->pageset, cpu);
  945. pcp = &pset->pcp;
  946. free_pcppages_bulk(zone, pcp->count, pcp);
  947. pcp->count = 0;
  948. local_irq_restore(flags);
  949. }
  950. }
  951. /*
  952. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  953. */
  954. void drain_local_pages(void *arg)
  955. {
  956. drain_pages(smp_processor_id());
  957. }
  958. /*
  959. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  960. */
  961. void drain_all_pages(void)
  962. {
  963. on_each_cpu(drain_local_pages, NULL, 1);
  964. }
  965. #ifdef CONFIG_HIBERNATION
  966. void mark_free_pages(struct zone *zone)
  967. {
  968. unsigned long pfn, max_zone_pfn;
  969. unsigned long flags;
  970. int order, t;
  971. struct list_head *curr;
  972. if (!zone->spanned_pages)
  973. return;
  974. spin_lock_irqsave(&zone->lock, flags);
  975. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  976. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  977. if (pfn_valid(pfn)) {
  978. struct page *page = pfn_to_page(pfn);
  979. if (!swsusp_page_is_forbidden(page))
  980. swsusp_unset_page_free(page);
  981. }
  982. for_each_migratetype_order(order, t) {
  983. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  984. unsigned long i;
  985. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  986. for (i = 0; i < (1UL << order); i++)
  987. swsusp_set_page_free(pfn_to_page(pfn + i));
  988. }
  989. }
  990. spin_unlock_irqrestore(&zone->lock, flags);
  991. }
  992. #endif /* CONFIG_PM */
  993. /*
  994. * Free a 0-order page
  995. * cold == 1 ? free a cold page : free a hot page
  996. */
  997. void free_hot_cold_page(struct page *page, int cold)
  998. {
  999. struct zone *zone = page_zone(page);
  1000. struct per_cpu_pages *pcp;
  1001. unsigned long flags;
  1002. int migratetype;
  1003. int wasMlocked = __TestClearPageMlocked(page);
  1004. if (!free_pages_prepare(page, 0))
  1005. return;
  1006. migratetype = get_pageblock_migratetype(page);
  1007. set_page_private(page, migratetype);
  1008. local_irq_save(flags);
  1009. if (unlikely(wasMlocked))
  1010. free_page_mlock(page);
  1011. __count_vm_event(PGFREE);
  1012. /*
  1013. * We only track unmovable, reclaimable and movable on pcp lists.
  1014. * Free ISOLATE pages back to the allocator because they are being
  1015. * offlined but treat RESERVE as movable pages so we can get those
  1016. * areas back if necessary. Otherwise, we may have to free
  1017. * excessively into the page allocator
  1018. */
  1019. if (migratetype >= MIGRATE_PCPTYPES) {
  1020. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1021. free_one_page(zone, page, 0, migratetype);
  1022. goto out;
  1023. }
  1024. migratetype = MIGRATE_MOVABLE;
  1025. }
  1026. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1027. if (cold)
  1028. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1029. else
  1030. list_add(&page->lru, &pcp->lists[migratetype]);
  1031. pcp->count++;
  1032. if (pcp->count >= pcp->high) {
  1033. free_pcppages_bulk(zone, pcp->batch, pcp);
  1034. pcp->count -= pcp->batch;
  1035. }
  1036. out:
  1037. local_irq_restore(flags);
  1038. }
  1039. /*
  1040. * split_page takes a non-compound higher-order page, and splits it into
  1041. * n (1<<order) sub-pages: page[0..n]
  1042. * Each sub-page must be freed individually.
  1043. *
  1044. * Note: this is probably too low level an operation for use in drivers.
  1045. * Please consult with lkml before using this in your driver.
  1046. */
  1047. void split_page(struct page *page, unsigned int order)
  1048. {
  1049. int i;
  1050. VM_BUG_ON(PageCompound(page));
  1051. VM_BUG_ON(!page_count(page));
  1052. #ifdef CONFIG_KMEMCHECK
  1053. /*
  1054. * Split shadow pages too, because free(page[0]) would
  1055. * otherwise free the whole shadow.
  1056. */
  1057. if (kmemcheck_page_is_tracked(page))
  1058. split_page(virt_to_page(page[0].shadow), order);
  1059. #endif
  1060. for (i = 1; i < (1 << order); i++)
  1061. set_page_refcounted(page + i);
  1062. }
  1063. /*
  1064. * Similar to split_page except the page is already free. As this is only
  1065. * being used for migration, the migratetype of the block also changes.
  1066. * As this is called with interrupts disabled, the caller is responsible
  1067. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1068. * are enabled.
  1069. *
  1070. * Note: this is probably too low level an operation for use in drivers.
  1071. * Please consult with lkml before using this in your driver.
  1072. */
  1073. int split_free_page(struct page *page)
  1074. {
  1075. unsigned int order;
  1076. unsigned long watermark;
  1077. struct zone *zone;
  1078. BUG_ON(!PageBuddy(page));
  1079. zone = page_zone(page);
  1080. order = page_order(page);
  1081. /* Obey watermarks as if the page was being allocated */
  1082. watermark = low_wmark_pages(zone) + (1 << order);
  1083. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1084. return 0;
  1085. /* Remove page from free list */
  1086. list_del(&page->lru);
  1087. zone->free_area[order].nr_free--;
  1088. rmv_page_order(page);
  1089. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1090. /* Split into individual pages */
  1091. set_page_refcounted(page);
  1092. split_page(page, order);
  1093. if (order >= pageblock_order - 1) {
  1094. struct page *endpage = page + (1 << order) - 1;
  1095. for (; page < endpage; page += pageblock_nr_pages)
  1096. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1097. }
  1098. return 1 << order;
  1099. }
  1100. /*
  1101. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1102. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1103. * or two.
  1104. */
  1105. static inline
  1106. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1107. struct zone *zone, int order, gfp_t gfp_flags,
  1108. int migratetype)
  1109. {
  1110. unsigned long flags;
  1111. struct page *page;
  1112. int cold = !!(gfp_flags & __GFP_COLD);
  1113. again:
  1114. if (likely(order == 0)) {
  1115. struct per_cpu_pages *pcp;
  1116. struct list_head *list;
  1117. local_irq_save(flags);
  1118. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1119. list = &pcp->lists[migratetype];
  1120. if (list_empty(list)) {
  1121. pcp->count += rmqueue_bulk(zone, 0,
  1122. pcp->batch, list,
  1123. migratetype, cold);
  1124. if (unlikely(list_empty(list)))
  1125. goto failed;
  1126. }
  1127. if (cold)
  1128. page = list_entry(list->prev, struct page, lru);
  1129. else
  1130. page = list_entry(list->next, struct page, lru);
  1131. list_del(&page->lru);
  1132. pcp->count--;
  1133. } else {
  1134. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1135. /*
  1136. * __GFP_NOFAIL is not to be used in new code.
  1137. *
  1138. * All __GFP_NOFAIL callers should be fixed so that they
  1139. * properly detect and handle allocation failures.
  1140. *
  1141. * We most definitely don't want callers attempting to
  1142. * allocate greater than order-1 page units with
  1143. * __GFP_NOFAIL.
  1144. */
  1145. WARN_ON_ONCE(order > 1);
  1146. }
  1147. spin_lock_irqsave(&zone->lock, flags);
  1148. page = __rmqueue(zone, order, migratetype);
  1149. spin_unlock(&zone->lock);
  1150. if (!page)
  1151. goto failed;
  1152. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1153. }
  1154. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1155. zone_statistics(preferred_zone, zone);
  1156. local_irq_restore(flags);
  1157. VM_BUG_ON(bad_range(zone, page));
  1158. if (prep_new_page(page, order, gfp_flags))
  1159. goto again;
  1160. return page;
  1161. failed:
  1162. local_irq_restore(flags);
  1163. return NULL;
  1164. }
  1165. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1166. #define ALLOC_WMARK_MIN WMARK_MIN
  1167. #define ALLOC_WMARK_LOW WMARK_LOW
  1168. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1169. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1170. /* Mask to get the watermark bits */
  1171. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1172. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1173. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1174. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1175. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1176. static struct fail_page_alloc_attr {
  1177. struct fault_attr attr;
  1178. u32 ignore_gfp_highmem;
  1179. u32 ignore_gfp_wait;
  1180. u32 min_order;
  1181. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1182. struct dentry *ignore_gfp_highmem_file;
  1183. struct dentry *ignore_gfp_wait_file;
  1184. struct dentry *min_order_file;
  1185. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1186. } fail_page_alloc = {
  1187. .attr = FAULT_ATTR_INITIALIZER,
  1188. .ignore_gfp_wait = 1,
  1189. .ignore_gfp_highmem = 1,
  1190. .min_order = 1,
  1191. };
  1192. static int __init setup_fail_page_alloc(char *str)
  1193. {
  1194. return setup_fault_attr(&fail_page_alloc.attr, str);
  1195. }
  1196. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1197. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1198. {
  1199. if (order < fail_page_alloc.min_order)
  1200. return 0;
  1201. if (gfp_mask & __GFP_NOFAIL)
  1202. return 0;
  1203. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1204. return 0;
  1205. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1206. return 0;
  1207. return should_fail(&fail_page_alloc.attr, 1 << order);
  1208. }
  1209. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1210. static int __init fail_page_alloc_debugfs(void)
  1211. {
  1212. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1213. struct dentry *dir;
  1214. int err;
  1215. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1216. "fail_page_alloc");
  1217. if (err)
  1218. return err;
  1219. dir = fail_page_alloc.attr.dentries.dir;
  1220. fail_page_alloc.ignore_gfp_wait_file =
  1221. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1222. &fail_page_alloc.ignore_gfp_wait);
  1223. fail_page_alloc.ignore_gfp_highmem_file =
  1224. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1225. &fail_page_alloc.ignore_gfp_highmem);
  1226. fail_page_alloc.min_order_file =
  1227. debugfs_create_u32("min-order", mode, dir,
  1228. &fail_page_alloc.min_order);
  1229. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1230. !fail_page_alloc.ignore_gfp_highmem_file ||
  1231. !fail_page_alloc.min_order_file) {
  1232. err = -ENOMEM;
  1233. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1234. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1235. debugfs_remove(fail_page_alloc.min_order_file);
  1236. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1237. }
  1238. return err;
  1239. }
  1240. late_initcall(fail_page_alloc_debugfs);
  1241. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1242. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1243. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1248. /*
  1249. * Return 1 if free pages are above 'mark'. This takes into account the order
  1250. * of the allocation.
  1251. */
  1252. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1253. int classzone_idx, int alloc_flags)
  1254. {
  1255. /* free_pages my go negative - that's OK */
  1256. long min = mark;
  1257. long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
  1258. int o;
  1259. if (alloc_flags & ALLOC_HIGH)
  1260. min -= min / 2;
  1261. if (alloc_flags & ALLOC_HARDER)
  1262. min -= min / 4;
  1263. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1264. return 0;
  1265. for (o = 0; o < order; o++) {
  1266. /* At the next order, this order's pages become unavailable */
  1267. free_pages -= z->free_area[o].nr_free << o;
  1268. /* Require fewer higher order pages to be free */
  1269. min >>= 1;
  1270. if (free_pages <= min)
  1271. return 0;
  1272. }
  1273. return 1;
  1274. }
  1275. #ifdef CONFIG_NUMA
  1276. /*
  1277. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1278. * skip over zones that are not allowed by the cpuset, or that have
  1279. * been recently (in last second) found to be nearly full. See further
  1280. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1281. * that have to skip over a lot of full or unallowed zones.
  1282. *
  1283. * If the zonelist cache is present in the passed in zonelist, then
  1284. * returns a pointer to the allowed node mask (either the current
  1285. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1286. *
  1287. * If the zonelist cache is not available for this zonelist, does
  1288. * nothing and returns NULL.
  1289. *
  1290. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1291. * a second since last zap'd) then we zap it out (clear its bits.)
  1292. *
  1293. * We hold off even calling zlc_setup, until after we've checked the
  1294. * first zone in the zonelist, on the theory that most allocations will
  1295. * be satisfied from that first zone, so best to examine that zone as
  1296. * quickly as we can.
  1297. */
  1298. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1299. {
  1300. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1301. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1302. zlc = zonelist->zlcache_ptr;
  1303. if (!zlc)
  1304. return NULL;
  1305. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1306. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1307. zlc->last_full_zap = jiffies;
  1308. }
  1309. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1310. &cpuset_current_mems_allowed :
  1311. &node_states[N_HIGH_MEMORY];
  1312. return allowednodes;
  1313. }
  1314. /*
  1315. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1316. * if it is worth looking at further for free memory:
  1317. * 1) Check that the zone isn't thought to be full (doesn't have its
  1318. * bit set in the zonelist_cache fullzones BITMAP).
  1319. * 2) Check that the zones node (obtained from the zonelist_cache
  1320. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1321. * Return true (non-zero) if zone is worth looking at further, or
  1322. * else return false (zero) if it is not.
  1323. *
  1324. * This check -ignores- the distinction between various watermarks,
  1325. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1326. * found to be full for any variation of these watermarks, it will
  1327. * be considered full for up to one second by all requests, unless
  1328. * we are so low on memory on all allowed nodes that we are forced
  1329. * into the second scan of the zonelist.
  1330. *
  1331. * In the second scan we ignore this zonelist cache and exactly
  1332. * apply the watermarks to all zones, even it is slower to do so.
  1333. * We are low on memory in the second scan, and should leave no stone
  1334. * unturned looking for a free page.
  1335. */
  1336. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1337. nodemask_t *allowednodes)
  1338. {
  1339. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1340. int i; /* index of *z in zonelist zones */
  1341. int n; /* node that zone *z is on */
  1342. zlc = zonelist->zlcache_ptr;
  1343. if (!zlc)
  1344. return 1;
  1345. i = z - zonelist->_zonerefs;
  1346. n = zlc->z_to_n[i];
  1347. /* This zone is worth trying if it is allowed but not full */
  1348. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1349. }
  1350. /*
  1351. * Given 'z' scanning a zonelist, set the corresponding bit in
  1352. * zlc->fullzones, so that subsequent attempts to allocate a page
  1353. * from that zone don't waste time re-examining it.
  1354. */
  1355. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1356. {
  1357. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1358. int i; /* index of *z in zonelist zones */
  1359. zlc = zonelist->zlcache_ptr;
  1360. if (!zlc)
  1361. return;
  1362. i = z - zonelist->_zonerefs;
  1363. set_bit(i, zlc->fullzones);
  1364. }
  1365. #else /* CONFIG_NUMA */
  1366. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1367. {
  1368. return NULL;
  1369. }
  1370. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1371. nodemask_t *allowednodes)
  1372. {
  1373. return 1;
  1374. }
  1375. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1376. {
  1377. }
  1378. #endif /* CONFIG_NUMA */
  1379. /*
  1380. * get_page_from_freelist goes through the zonelist trying to allocate
  1381. * a page.
  1382. */
  1383. static struct page *
  1384. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1385. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1386. struct zone *preferred_zone, int migratetype)
  1387. {
  1388. struct zoneref *z;
  1389. struct page *page = NULL;
  1390. int classzone_idx;
  1391. struct zone *zone;
  1392. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1393. int zlc_active = 0; /* set if using zonelist_cache */
  1394. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1395. classzone_idx = zone_idx(preferred_zone);
  1396. zonelist_scan:
  1397. /*
  1398. * Scan zonelist, looking for a zone with enough free.
  1399. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1400. */
  1401. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1402. high_zoneidx, nodemask) {
  1403. if (NUMA_BUILD && zlc_active &&
  1404. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1405. continue;
  1406. if ((alloc_flags & ALLOC_CPUSET) &&
  1407. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1408. goto try_next_zone;
  1409. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1410. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1411. unsigned long mark;
  1412. int ret;
  1413. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1414. if (zone_watermark_ok(zone, order, mark,
  1415. classzone_idx, alloc_flags))
  1416. goto try_this_zone;
  1417. if (zone_reclaim_mode == 0)
  1418. goto this_zone_full;
  1419. ret = zone_reclaim(zone, gfp_mask, order);
  1420. switch (ret) {
  1421. case ZONE_RECLAIM_NOSCAN:
  1422. /* did not scan */
  1423. goto try_next_zone;
  1424. case ZONE_RECLAIM_FULL:
  1425. /* scanned but unreclaimable */
  1426. goto this_zone_full;
  1427. default:
  1428. /* did we reclaim enough */
  1429. if (!zone_watermark_ok(zone, order, mark,
  1430. classzone_idx, alloc_flags))
  1431. goto this_zone_full;
  1432. }
  1433. }
  1434. try_this_zone:
  1435. page = buffered_rmqueue(preferred_zone, zone, order,
  1436. gfp_mask, migratetype);
  1437. if (page)
  1438. break;
  1439. this_zone_full:
  1440. if (NUMA_BUILD)
  1441. zlc_mark_zone_full(zonelist, z);
  1442. try_next_zone:
  1443. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1444. /*
  1445. * we do zlc_setup after the first zone is tried but only
  1446. * if there are multiple nodes make it worthwhile
  1447. */
  1448. allowednodes = zlc_setup(zonelist, alloc_flags);
  1449. zlc_active = 1;
  1450. did_zlc_setup = 1;
  1451. }
  1452. }
  1453. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1454. /* Disable zlc cache for second zonelist scan */
  1455. zlc_active = 0;
  1456. goto zonelist_scan;
  1457. }
  1458. return page;
  1459. }
  1460. static inline int
  1461. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1462. unsigned long pages_reclaimed)
  1463. {
  1464. /* Do not loop if specifically requested */
  1465. if (gfp_mask & __GFP_NORETRY)
  1466. return 0;
  1467. /*
  1468. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1469. * means __GFP_NOFAIL, but that may not be true in other
  1470. * implementations.
  1471. */
  1472. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1473. return 1;
  1474. /*
  1475. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1476. * specified, then we retry until we no longer reclaim any pages
  1477. * (above), or we've reclaimed an order of pages at least as
  1478. * large as the allocation's order. In both cases, if the
  1479. * allocation still fails, we stop retrying.
  1480. */
  1481. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1482. return 1;
  1483. /*
  1484. * Don't let big-order allocations loop unless the caller
  1485. * explicitly requests that.
  1486. */
  1487. if (gfp_mask & __GFP_NOFAIL)
  1488. return 1;
  1489. return 0;
  1490. }
  1491. static inline struct page *
  1492. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1493. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1494. nodemask_t *nodemask, struct zone *preferred_zone,
  1495. int migratetype)
  1496. {
  1497. struct page *page;
  1498. /* Acquire the OOM killer lock for the zones in zonelist */
  1499. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1500. schedule_timeout_uninterruptible(1);
  1501. return NULL;
  1502. }
  1503. /*
  1504. * Go through the zonelist yet one more time, keep very high watermark
  1505. * here, this is only to catch a parallel oom killing, we must fail if
  1506. * we're still under heavy pressure.
  1507. */
  1508. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1509. order, zonelist, high_zoneidx,
  1510. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1511. preferred_zone, migratetype);
  1512. if (page)
  1513. goto out;
  1514. if (!(gfp_mask & __GFP_NOFAIL)) {
  1515. /* The OOM killer will not help higher order allocs */
  1516. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1517. goto out;
  1518. /* The OOM killer does not needlessly kill tasks for lowmem */
  1519. if (high_zoneidx < ZONE_NORMAL)
  1520. goto out;
  1521. /*
  1522. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1523. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1524. * The caller should handle page allocation failure by itself if
  1525. * it specifies __GFP_THISNODE.
  1526. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1527. */
  1528. if (gfp_mask & __GFP_THISNODE)
  1529. goto out;
  1530. }
  1531. /* Exhausted what can be done so it's blamo time */
  1532. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1533. out:
  1534. clear_zonelist_oom(zonelist, gfp_mask);
  1535. return page;
  1536. }
  1537. #ifdef CONFIG_COMPACTION
  1538. /* Try memory compaction for high-order allocations before reclaim */
  1539. static struct page *
  1540. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1541. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1542. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1543. int migratetype, unsigned long *did_some_progress)
  1544. {
  1545. struct page *page;
  1546. if (!order || compaction_deferred(preferred_zone))
  1547. return NULL;
  1548. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1549. nodemask);
  1550. if (*did_some_progress != COMPACT_SKIPPED) {
  1551. /* Page migration frees to the PCP lists but we want merging */
  1552. drain_pages(get_cpu());
  1553. put_cpu();
  1554. page = get_page_from_freelist(gfp_mask, nodemask,
  1555. order, zonelist, high_zoneidx,
  1556. alloc_flags, preferred_zone,
  1557. migratetype);
  1558. if (page) {
  1559. preferred_zone->compact_considered = 0;
  1560. preferred_zone->compact_defer_shift = 0;
  1561. count_vm_event(COMPACTSUCCESS);
  1562. return page;
  1563. }
  1564. /*
  1565. * It's bad if compaction run occurs and fails.
  1566. * The most likely reason is that pages exist,
  1567. * but not enough to satisfy watermarks.
  1568. */
  1569. count_vm_event(COMPACTFAIL);
  1570. defer_compaction(preferred_zone);
  1571. cond_resched();
  1572. }
  1573. return NULL;
  1574. }
  1575. #else
  1576. static inline struct page *
  1577. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1578. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1579. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1580. int migratetype, unsigned long *did_some_progress)
  1581. {
  1582. return NULL;
  1583. }
  1584. #endif /* CONFIG_COMPACTION */
  1585. /* The really slow allocator path where we enter direct reclaim */
  1586. static inline struct page *
  1587. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1588. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1589. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1590. int migratetype, unsigned long *did_some_progress)
  1591. {
  1592. struct page *page = NULL;
  1593. struct reclaim_state reclaim_state;
  1594. struct task_struct *p = current;
  1595. bool drained = false;
  1596. cond_resched();
  1597. /* We now go into synchronous reclaim */
  1598. cpuset_memory_pressure_bump();
  1599. p->flags |= PF_MEMALLOC;
  1600. lockdep_set_current_reclaim_state(gfp_mask);
  1601. reclaim_state.reclaimed_slab = 0;
  1602. p->reclaim_state = &reclaim_state;
  1603. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1604. p->reclaim_state = NULL;
  1605. lockdep_clear_current_reclaim_state();
  1606. p->flags &= ~PF_MEMALLOC;
  1607. cond_resched();
  1608. if (unlikely(!(*did_some_progress)))
  1609. return NULL;
  1610. retry:
  1611. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1612. zonelist, high_zoneidx,
  1613. alloc_flags, preferred_zone,
  1614. migratetype);
  1615. /*
  1616. * If an allocation failed after direct reclaim, it could be because
  1617. * pages are pinned on the per-cpu lists. Drain them and try again
  1618. */
  1619. if (!page && !drained) {
  1620. drain_all_pages();
  1621. drained = true;
  1622. goto retry;
  1623. }
  1624. return page;
  1625. }
  1626. /*
  1627. * This is called in the allocator slow-path if the allocation request is of
  1628. * sufficient urgency to ignore watermarks and take other desperate measures
  1629. */
  1630. static inline struct page *
  1631. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1632. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1633. nodemask_t *nodemask, struct zone *preferred_zone,
  1634. int migratetype)
  1635. {
  1636. struct page *page;
  1637. do {
  1638. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1639. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1640. preferred_zone, migratetype);
  1641. if (!page && gfp_mask & __GFP_NOFAIL)
  1642. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1643. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1644. return page;
  1645. }
  1646. static inline
  1647. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1648. enum zone_type high_zoneidx)
  1649. {
  1650. struct zoneref *z;
  1651. struct zone *zone;
  1652. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1653. wakeup_kswapd(zone, order);
  1654. }
  1655. static inline int
  1656. gfp_to_alloc_flags(gfp_t gfp_mask)
  1657. {
  1658. struct task_struct *p = current;
  1659. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1660. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1661. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1662. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1663. /*
  1664. * The caller may dip into page reserves a bit more if the caller
  1665. * cannot run direct reclaim, or if the caller has realtime scheduling
  1666. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1667. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1668. */
  1669. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1670. if (!wait) {
  1671. alloc_flags |= ALLOC_HARDER;
  1672. /*
  1673. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1674. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1675. */
  1676. alloc_flags &= ~ALLOC_CPUSET;
  1677. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1678. alloc_flags |= ALLOC_HARDER;
  1679. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1680. if (!in_interrupt() &&
  1681. ((p->flags & PF_MEMALLOC) ||
  1682. unlikely(test_thread_flag(TIF_MEMDIE))))
  1683. alloc_flags |= ALLOC_NO_WATERMARKS;
  1684. }
  1685. return alloc_flags;
  1686. }
  1687. static inline struct page *
  1688. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1689. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1690. nodemask_t *nodemask, struct zone *preferred_zone,
  1691. int migratetype)
  1692. {
  1693. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1694. struct page *page = NULL;
  1695. int alloc_flags;
  1696. unsigned long pages_reclaimed = 0;
  1697. unsigned long did_some_progress;
  1698. struct task_struct *p = current;
  1699. /*
  1700. * In the slowpath, we sanity check order to avoid ever trying to
  1701. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1702. * be using allocators in order of preference for an area that is
  1703. * too large.
  1704. */
  1705. if (order >= MAX_ORDER) {
  1706. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1707. return NULL;
  1708. }
  1709. /*
  1710. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1711. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1712. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1713. * using a larger set of nodes after it has established that the
  1714. * allowed per node queues are empty and that nodes are
  1715. * over allocated.
  1716. */
  1717. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1718. goto nopage;
  1719. restart:
  1720. wake_all_kswapd(order, zonelist, high_zoneidx);
  1721. /*
  1722. * OK, we're below the kswapd watermark and have kicked background
  1723. * reclaim. Now things get more complex, so set up alloc_flags according
  1724. * to how we want to proceed.
  1725. */
  1726. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1727. /* This is the last chance, in general, before the goto nopage. */
  1728. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1729. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1730. preferred_zone, migratetype);
  1731. if (page)
  1732. goto got_pg;
  1733. rebalance:
  1734. /* Allocate without watermarks if the context allows */
  1735. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1736. page = __alloc_pages_high_priority(gfp_mask, order,
  1737. zonelist, high_zoneidx, nodemask,
  1738. preferred_zone, migratetype);
  1739. if (page)
  1740. goto got_pg;
  1741. }
  1742. /* Atomic allocations - we can't balance anything */
  1743. if (!wait)
  1744. goto nopage;
  1745. /* Avoid recursion of direct reclaim */
  1746. if (p->flags & PF_MEMALLOC)
  1747. goto nopage;
  1748. /* Avoid allocations with no watermarks from looping endlessly */
  1749. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1750. goto nopage;
  1751. /* Try direct compaction */
  1752. page = __alloc_pages_direct_compact(gfp_mask, order,
  1753. zonelist, high_zoneidx,
  1754. nodemask,
  1755. alloc_flags, preferred_zone,
  1756. migratetype, &did_some_progress);
  1757. if (page)
  1758. goto got_pg;
  1759. /* Try direct reclaim and then allocating */
  1760. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1761. zonelist, high_zoneidx,
  1762. nodemask,
  1763. alloc_flags, preferred_zone,
  1764. migratetype, &did_some_progress);
  1765. if (page)
  1766. goto got_pg;
  1767. /*
  1768. * If we failed to make any progress reclaiming, then we are
  1769. * running out of options and have to consider going OOM
  1770. */
  1771. if (!did_some_progress) {
  1772. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1773. if (oom_killer_disabled)
  1774. goto nopage;
  1775. page = __alloc_pages_may_oom(gfp_mask, order,
  1776. zonelist, high_zoneidx,
  1777. nodemask, preferred_zone,
  1778. migratetype);
  1779. if (page)
  1780. goto got_pg;
  1781. if (!(gfp_mask & __GFP_NOFAIL)) {
  1782. /*
  1783. * The oom killer is not called for high-order
  1784. * allocations that may fail, so if no progress
  1785. * is being made, there are no other options and
  1786. * retrying is unlikely to help.
  1787. */
  1788. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1789. goto nopage;
  1790. /*
  1791. * The oom killer is not called for lowmem
  1792. * allocations to prevent needlessly killing
  1793. * innocent tasks.
  1794. */
  1795. if (high_zoneidx < ZONE_NORMAL)
  1796. goto nopage;
  1797. }
  1798. goto restart;
  1799. }
  1800. }
  1801. /* Check if we should retry the allocation */
  1802. pages_reclaimed += did_some_progress;
  1803. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1804. /* Wait for some write requests to complete then retry */
  1805. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1806. goto rebalance;
  1807. }
  1808. nopage:
  1809. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1810. printk(KERN_WARNING "%s: page allocation failure."
  1811. " order:%d, mode:0x%x\n",
  1812. p->comm, order, gfp_mask);
  1813. dump_stack();
  1814. show_mem();
  1815. }
  1816. return page;
  1817. got_pg:
  1818. if (kmemcheck_enabled)
  1819. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1820. return page;
  1821. }
  1822. /*
  1823. * This is the 'heart' of the zoned buddy allocator.
  1824. */
  1825. struct page *
  1826. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1827. struct zonelist *zonelist, nodemask_t *nodemask)
  1828. {
  1829. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1830. struct zone *preferred_zone;
  1831. struct page *page;
  1832. int migratetype = allocflags_to_migratetype(gfp_mask);
  1833. gfp_mask &= gfp_allowed_mask;
  1834. lockdep_trace_alloc(gfp_mask);
  1835. might_sleep_if(gfp_mask & __GFP_WAIT);
  1836. if (should_fail_alloc_page(gfp_mask, order))
  1837. return NULL;
  1838. /*
  1839. * Check the zones suitable for the gfp_mask contain at least one
  1840. * valid zone. It's possible to have an empty zonelist as a result
  1841. * of GFP_THISNODE and a memoryless node
  1842. */
  1843. if (unlikely(!zonelist->_zonerefs->zone))
  1844. return NULL;
  1845. get_mems_allowed();
  1846. /* The preferred zone is used for statistics later */
  1847. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1848. if (!preferred_zone) {
  1849. put_mems_allowed();
  1850. return NULL;
  1851. }
  1852. /* First allocation attempt */
  1853. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1854. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1855. preferred_zone, migratetype);
  1856. if (unlikely(!page))
  1857. page = __alloc_pages_slowpath(gfp_mask, order,
  1858. zonelist, high_zoneidx, nodemask,
  1859. preferred_zone, migratetype);
  1860. put_mems_allowed();
  1861. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1862. return page;
  1863. }
  1864. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1865. /*
  1866. * Common helper functions.
  1867. */
  1868. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1869. {
  1870. struct page *page;
  1871. /*
  1872. * __get_free_pages() returns a 32-bit address, which cannot represent
  1873. * a highmem page
  1874. */
  1875. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1876. page = alloc_pages(gfp_mask, order);
  1877. if (!page)
  1878. return 0;
  1879. return (unsigned long) page_address(page);
  1880. }
  1881. EXPORT_SYMBOL(__get_free_pages);
  1882. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1883. {
  1884. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1885. }
  1886. EXPORT_SYMBOL(get_zeroed_page);
  1887. void __pagevec_free(struct pagevec *pvec)
  1888. {
  1889. int i = pagevec_count(pvec);
  1890. while (--i >= 0) {
  1891. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1892. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1893. }
  1894. }
  1895. void __free_pages(struct page *page, unsigned int order)
  1896. {
  1897. if (put_page_testzero(page)) {
  1898. if (order == 0)
  1899. free_hot_cold_page(page, 0);
  1900. else
  1901. __free_pages_ok(page, order);
  1902. }
  1903. }
  1904. EXPORT_SYMBOL(__free_pages);
  1905. void free_pages(unsigned long addr, unsigned int order)
  1906. {
  1907. if (addr != 0) {
  1908. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1909. __free_pages(virt_to_page((void *)addr), order);
  1910. }
  1911. }
  1912. EXPORT_SYMBOL(free_pages);
  1913. /**
  1914. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1915. * @size: the number of bytes to allocate
  1916. * @gfp_mask: GFP flags for the allocation
  1917. *
  1918. * This function is similar to alloc_pages(), except that it allocates the
  1919. * minimum number of pages to satisfy the request. alloc_pages() can only
  1920. * allocate memory in power-of-two pages.
  1921. *
  1922. * This function is also limited by MAX_ORDER.
  1923. *
  1924. * Memory allocated by this function must be released by free_pages_exact().
  1925. */
  1926. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1927. {
  1928. unsigned int order = get_order(size);
  1929. unsigned long addr;
  1930. addr = __get_free_pages(gfp_mask, order);
  1931. if (addr) {
  1932. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1933. unsigned long used = addr + PAGE_ALIGN(size);
  1934. split_page(virt_to_page((void *)addr), order);
  1935. while (used < alloc_end) {
  1936. free_page(used);
  1937. used += PAGE_SIZE;
  1938. }
  1939. }
  1940. return (void *)addr;
  1941. }
  1942. EXPORT_SYMBOL(alloc_pages_exact);
  1943. /**
  1944. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1945. * @virt: the value returned by alloc_pages_exact.
  1946. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1947. *
  1948. * Release the memory allocated by a previous call to alloc_pages_exact.
  1949. */
  1950. void free_pages_exact(void *virt, size_t size)
  1951. {
  1952. unsigned long addr = (unsigned long)virt;
  1953. unsigned long end = addr + PAGE_ALIGN(size);
  1954. while (addr < end) {
  1955. free_page(addr);
  1956. addr += PAGE_SIZE;
  1957. }
  1958. }
  1959. EXPORT_SYMBOL(free_pages_exact);
  1960. static unsigned int nr_free_zone_pages(int offset)
  1961. {
  1962. struct zoneref *z;
  1963. struct zone *zone;
  1964. /* Just pick one node, since fallback list is circular */
  1965. unsigned int sum = 0;
  1966. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1967. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1968. unsigned long size = zone->present_pages;
  1969. unsigned long high = high_wmark_pages(zone);
  1970. if (size > high)
  1971. sum += size - high;
  1972. }
  1973. return sum;
  1974. }
  1975. /*
  1976. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1977. */
  1978. unsigned int nr_free_buffer_pages(void)
  1979. {
  1980. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1981. }
  1982. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1983. /*
  1984. * Amount of free RAM allocatable within all zones
  1985. */
  1986. unsigned int nr_free_pagecache_pages(void)
  1987. {
  1988. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1989. }
  1990. static inline void show_node(struct zone *zone)
  1991. {
  1992. if (NUMA_BUILD)
  1993. printk("Node %d ", zone_to_nid(zone));
  1994. }
  1995. void si_meminfo(struct sysinfo *val)
  1996. {
  1997. val->totalram = totalram_pages;
  1998. val->sharedram = 0;
  1999. val->freeram = global_page_state(NR_FREE_PAGES);
  2000. val->bufferram = nr_blockdev_pages();
  2001. val->totalhigh = totalhigh_pages;
  2002. val->freehigh = nr_free_highpages();
  2003. val->mem_unit = PAGE_SIZE;
  2004. }
  2005. EXPORT_SYMBOL(si_meminfo);
  2006. #ifdef CONFIG_NUMA
  2007. void si_meminfo_node(struct sysinfo *val, int nid)
  2008. {
  2009. pg_data_t *pgdat = NODE_DATA(nid);
  2010. val->totalram = pgdat->node_present_pages;
  2011. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2012. #ifdef CONFIG_HIGHMEM
  2013. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2014. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2015. NR_FREE_PAGES);
  2016. #else
  2017. val->totalhigh = 0;
  2018. val->freehigh = 0;
  2019. #endif
  2020. val->mem_unit = PAGE_SIZE;
  2021. }
  2022. #endif
  2023. #define K(x) ((x) << (PAGE_SHIFT-10))
  2024. /*
  2025. * Show free area list (used inside shift_scroll-lock stuff)
  2026. * We also calculate the percentage fragmentation. We do this by counting the
  2027. * memory on each free list with the exception of the first item on the list.
  2028. */
  2029. void show_free_areas(void)
  2030. {
  2031. int cpu;
  2032. struct zone *zone;
  2033. for_each_populated_zone(zone) {
  2034. show_node(zone);
  2035. printk("%s per-cpu:\n", zone->name);
  2036. for_each_online_cpu(cpu) {
  2037. struct per_cpu_pageset *pageset;
  2038. pageset = per_cpu_ptr(zone->pageset, cpu);
  2039. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2040. cpu, pageset->pcp.high,
  2041. pageset->pcp.batch, pageset->pcp.count);
  2042. }
  2043. }
  2044. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2045. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2046. " unevictable:%lu"
  2047. " dirty:%lu writeback:%lu unstable:%lu\n"
  2048. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2049. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2050. global_page_state(NR_ACTIVE_ANON),
  2051. global_page_state(NR_INACTIVE_ANON),
  2052. global_page_state(NR_ISOLATED_ANON),
  2053. global_page_state(NR_ACTIVE_FILE),
  2054. global_page_state(NR_INACTIVE_FILE),
  2055. global_page_state(NR_ISOLATED_FILE),
  2056. global_page_state(NR_UNEVICTABLE),
  2057. global_page_state(NR_FILE_DIRTY),
  2058. global_page_state(NR_WRITEBACK),
  2059. global_page_state(NR_UNSTABLE_NFS),
  2060. global_page_state(NR_FREE_PAGES),
  2061. global_page_state(NR_SLAB_RECLAIMABLE),
  2062. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2063. global_page_state(NR_FILE_MAPPED),
  2064. global_page_state(NR_SHMEM),
  2065. global_page_state(NR_PAGETABLE),
  2066. global_page_state(NR_BOUNCE));
  2067. for_each_populated_zone(zone) {
  2068. int i;
  2069. show_node(zone);
  2070. printk("%s"
  2071. " free:%lukB"
  2072. " min:%lukB"
  2073. " low:%lukB"
  2074. " high:%lukB"
  2075. " active_anon:%lukB"
  2076. " inactive_anon:%lukB"
  2077. " active_file:%lukB"
  2078. " inactive_file:%lukB"
  2079. " unevictable:%lukB"
  2080. " isolated(anon):%lukB"
  2081. " isolated(file):%lukB"
  2082. " present:%lukB"
  2083. " mlocked:%lukB"
  2084. " dirty:%lukB"
  2085. " writeback:%lukB"
  2086. " mapped:%lukB"
  2087. " shmem:%lukB"
  2088. " slab_reclaimable:%lukB"
  2089. " slab_unreclaimable:%lukB"
  2090. " kernel_stack:%lukB"
  2091. " pagetables:%lukB"
  2092. " unstable:%lukB"
  2093. " bounce:%lukB"
  2094. " writeback_tmp:%lukB"
  2095. " pages_scanned:%lu"
  2096. " all_unreclaimable? %s"
  2097. "\n",
  2098. zone->name,
  2099. K(zone_nr_free_pages(zone)),
  2100. K(min_wmark_pages(zone)),
  2101. K(low_wmark_pages(zone)),
  2102. K(high_wmark_pages(zone)),
  2103. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2104. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2105. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2106. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2107. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2108. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2109. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2110. K(zone->present_pages),
  2111. K(zone_page_state(zone, NR_MLOCK)),
  2112. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2113. K(zone_page_state(zone, NR_WRITEBACK)),
  2114. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2115. K(zone_page_state(zone, NR_SHMEM)),
  2116. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2117. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2118. zone_page_state(zone, NR_KERNEL_STACK) *
  2119. THREAD_SIZE / 1024,
  2120. K(zone_page_state(zone, NR_PAGETABLE)),
  2121. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2122. K(zone_page_state(zone, NR_BOUNCE)),
  2123. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2124. zone->pages_scanned,
  2125. (zone->all_unreclaimable ? "yes" : "no")
  2126. );
  2127. printk("lowmem_reserve[]:");
  2128. for (i = 0; i < MAX_NR_ZONES; i++)
  2129. printk(" %lu", zone->lowmem_reserve[i]);
  2130. printk("\n");
  2131. }
  2132. for_each_populated_zone(zone) {
  2133. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2134. show_node(zone);
  2135. printk("%s: ", zone->name);
  2136. spin_lock_irqsave(&zone->lock, flags);
  2137. for (order = 0; order < MAX_ORDER; order++) {
  2138. nr[order] = zone->free_area[order].nr_free;
  2139. total += nr[order] << order;
  2140. }
  2141. spin_unlock_irqrestore(&zone->lock, flags);
  2142. for (order = 0; order < MAX_ORDER; order++)
  2143. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2144. printk("= %lukB\n", K(total));
  2145. }
  2146. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2147. show_swap_cache_info();
  2148. }
  2149. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2150. {
  2151. zoneref->zone = zone;
  2152. zoneref->zone_idx = zone_idx(zone);
  2153. }
  2154. /*
  2155. * Builds allocation fallback zone lists.
  2156. *
  2157. * Add all populated zones of a node to the zonelist.
  2158. */
  2159. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2160. int nr_zones, enum zone_type zone_type)
  2161. {
  2162. struct zone *zone;
  2163. BUG_ON(zone_type >= MAX_NR_ZONES);
  2164. zone_type++;
  2165. do {
  2166. zone_type--;
  2167. zone = pgdat->node_zones + zone_type;
  2168. if (populated_zone(zone)) {
  2169. zoneref_set_zone(zone,
  2170. &zonelist->_zonerefs[nr_zones++]);
  2171. check_highest_zone(zone_type);
  2172. }
  2173. } while (zone_type);
  2174. return nr_zones;
  2175. }
  2176. /*
  2177. * zonelist_order:
  2178. * 0 = automatic detection of better ordering.
  2179. * 1 = order by ([node] distance, -zonetype)
  2180. * 2 = order by (-zonetype, [node] distance)
  2181. *
  2182. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2183. * the same zonelist. So only NUMA can configure this param.
  2184. */
  2185. #define ZONELIST_ORDER_DEFAULT 0
  2186. #define ZONELIST_ORDER_NODE 1
  2187. #define ZONELIST_ORDER_ZONE 2
  2188. /* zonelist order in the kernel.
  2189. * set_zonelist_order() will set this to NODE or ZONE.
  2190. */
  2191. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2192. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2193. #ifdef CONFIG_NUMA
  2194. /* The value user specified ....changed by config */
  2195. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2196. /* string for sysctl */
  2197. #define NUMA_ZONELIST_ORDER_LEN 16
  2198. char numa_zonelist_order[16] = "default";
  2199. /*
  2200. * interface for configure zonelist ordering.
  2201. * command line option "numa_zonelist_order"
  2202. * = "[dD]efault - default, automatic configuration.
  2203. * = "[nN]ode - order by node locality, then by zone within node
  2204. * = "[zZ]one - order by zone, then by locality within zone
  2205. */
  2206. static int __parse_numa_zonelist_order(char *s)
  2207. {
  2208. if (*s == 'd' || *s == 'D') {
  2209. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2210. } else if (*s == 'n' || *s == 'N') {
  2211. user_zonelist_order = ZONELIST_ORDER_NODE;
  2212. } else if (*s == 'z' || *s == 'Z') {
  2213. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2214. } else {
  2215. printk(KERN_WARNING
  2216. "Ignoring invalid numa_zonelist_order value: "
  2217. "%s\n", s);
  2218. return -EINVAL;
  2219. }
  2220. return 0;
  2221. }
  2222. static __init int setup_numa_zonelist_order(char *s)
  2223. {
  2224. if (s)
  2225. return __parse_numa_zonelist_order(s);
  2226. return 0;
  2227. }
  2228. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2229. /*
  2230. * sysctl handler for numa_zonelist_order
  2231. */
  2232. int numa_zonelist_order_handler(ctl_table *table, int write,
  2233. void __user *buffer, size_t *length,
  2234. loff_t *ppos)
  2235. {
  2236. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2237. int ret;
  2238. static DEFINE_MUTEX(zl_order_mutex);
  2239. mutex_lock(&zl_order_mutex);
  2240. if (write)
  2241. strcpy(saved_string, (char*)table->data);
  2242. ret = proc_dostring(table, write, buffer, length, ppos);
  2243. if (ret)
  2244. goto out;
  2245. if (write) {
  2246. int oldval = user_zonelist_order;
  2247. if (__parse_numa_zonelist_order((char*)table->data)) {
  2248. /*
  2249. * bogus value. restore saved string
  2250. */
  2251. strncpy((char*)table->data, saved_string,
  2252. NUMA_ZONELIST_ORDER_LEN);
  2253. user_zonelist_order = oldval;
  2254. } else if (oldval != user_zonelist_order) {
  2255. mutex_lock(&zonelists_mutex);
  2256. build_all_zonelists(NULL);
  2257. mutex_unlock(&zonelists_mutex);
  2258. }
  2259. }
  2260. out:
  2261. mutex_unlock(&zl_order_mutex);
  2262. return ret;
  2263. }
  2264. #define MAX_NODE_LOAD (nr_online_nodes)
  2265. static int node_load[MAX_NUMNODES];
  2266. /**
  2267. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2268. * @node: node whose fallback list we're appending
  2269. * @used_node_mask: nodemask_t of already used nodes
  2270. *
  2271. * We use a number of factors to determine which is the next node that should
  2272. * appear on a given node's fallback list. The node should not have appeared
  2273. * already in @node's fallback list, and it should be the next closest node
  2274. * according to the distance array (which contains arbitrary distance values
  2275. * from each node to each node in the system), and should also prefer nodes
  2276. * with no CPUs, since presumably they'll have very little allocation pressure
  2277. * on them otherwise.
  2278. * It returns -1 if no node is found.
  2279. */
  2280. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2281. {
  2282. int n, val;
  2283. int min_val = INT_MAX;
  2284. int best_node = -1;
  2285. const struct cpumask *tmp = cpumask_of_node(0);
  2286. /* Use the local node if we haven't already */
  2287. if (!node_isset(node, *used_node_mask)) {
  2288. node_set(node, *used_node_mask);
  2289. return node;
  2290. }
  2291. for_each_node_state(n, N_HIGH_MEMORY) {
  2292. /* Don't want a node to appear more than once */
  2293. if (node_isset(n, *used_node_mask))
  2294. continue;
  2295. /* Use the distance array to find the distance */
  2296. val = node_distance(node, n);
  2297. /* Penalize nodes under us ("prefer the next node") */
  2298. val += (n < node);
  2299. /* Give preference to headless and unused nodes */
  2300. tmp = cpumask_of_node(n);
  2301. if (!cpumask_empty(tmp))
  2302. val += PENALTY_FOR_NODE_WITH_CPUS;
  2303. /* Slight preference for less loaded node */
  2304. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2305. val += node_load[n];
  2306. if (val < min_val) {
  2307. min_val = val;
  2308. best_node = n;
  2309. }
  2310. }
  2311. if (best_node >= 0)
  2312. node_set(best_node, *used_node_mask);
  2313. return best_node;
  2314. }
  2315. /*
  2316. * Build zonelists ordered by node and zones within node.
  2317. * This results in maximum locality--normal zone overflows into local
  2318. * DMA zone, if any--but risks exhausting DMA zone.
  2319. */
  2320. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2321. {
  2322. int j;
  2323. struct zonelist *zonelist;
  2324. zonelist = &pgdat->node_zonelists[0];
  2325. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2326. ;
  2327. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2328. MAX_NR_ZONES - 1);
  2329. zonelist->_zonerefs[j].zone = NULL;
  2330. zonelist->_zonerefs[j].zone_idx = 0;
  2331. }
  2332. /*
  2333. * Build gfp_thisnode zonelists
  2334. */
  2335. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2336. {
  2337. int j;
  2338. struct zonelist *zonelist;
  2339. zonelist = &pgdat->node_zonelists[1];
  2340. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2341. zonelist->_zonerefs[j].zone = NULL;
  2342. zonelist->_zonerefs[j].zone_idx = 0;
  2343. }
  2344. /*
  2345. * Build zonelists ordered by zone and nodes within zones.
  2346. * This results in conserving DMA zone[s] until all Normal memory is
  2347. * exhausted, but results in overflowing to remote node while memory
  2348. * may still exist in local DMA zone.
  2349. */
  2350. static int node_order[MAX_NUMNODES];
  2351. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2352. {
  2353. int pos, j, node;
  2354. int zone_type; /* needs to be signed */
  2355. struct zone *z;
  2356. struct zonelist *zonelist;
  2357. zonelist = &pgdat->node_zonelists[0];
  2358. pos = 0;
  2359. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2360. for (j = 0; j < nr_nodes; j++) {
  2361. node = node_order[j];
  2362. z = &NODE_DATA(node)->node_zones[zone_type];
  2363. if (populated_zone(z)) {
  2364. zoneref_set_zone(z,
  2365. &zonelist->_zonerefs[pos++]);
  2366. check_highest_zone(zone_type);
  2367. }
  2368. }
  2369. }
  2370. zonelist->_zonerefs[pos].zone = NULL;
  2371. zonelist->_zonerefs[pos].zone_idx = 0;
  2372. }
  2373. static int default_zonelist_order(void)
  2374. {
  2375. int nid, zone_type;
  2376. unsigned long low_kmem_size,total_size;
  2377. struct zone *z;
  2378. int average_size;
  2379. /*
  2380. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2381. * If they are really small and used heavily, the system can fall
  2382. * into OOM very easily.
  2383. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2384. */
  2385. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2386. low_kmem_size = 0;
  2387. total_size = 0;
  2388. for_each_online_node(nid) {
  2389. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2390. z = &NODE_DATA(nid)->node_zones[zone_type];
  2391. if (populated_zone(z)) {
  2392. if (zone_type < ZONE_NORMAL)
  2393. low_kmem_size += z->present_pages;
  2394. total_size += z->present_pages;
  2395. } else if (zone_type == ZONE_NORMAL) {
  2396. /*
  2397. * If any node has only lowmem, then node order
  2398. * is preferred to allow kernel allocations
  2399. * locally; otherwise, they can easily infringe
  2400. * on other nodes when there is an abundance of
  2401. * lowmem available to allocate from.
  2402. */
  2403. return ZONELIST_ORDER_NODE;
  2404. }
  2405. }
  2406. }
  2407. if (!low_kmem_size || /* there are no DMA area. */
  2408. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2409. return ZONELIST_ORDER_NODE;
  2410. /*
  2411. * look into each node's config.
  2412. * If there is a node whose DMA/DMA32 memory is very big area on
  2413. * local memory, NODE_ORDER may be suitable.
  2414. */
  2415. average_size = total_size /
  2416. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2417. for_each_online_node(nid) {
  2418. low_kmem_size = 0;
  2419. total_size = 0;
  2420. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2421. z = &NODE_DATA(nid)->node_zones[zone_type];
  2422. if (populated_zone(z)) {
  2423. if (zone_type < ZONE_NORMAL)
  2424. low_kmem_size += z->present_pages;
  2425. total_size += z->present_pages;
  2426. }
  2427. }
  2428. if (low_kmem_size &&
  2429. total_size > average_size && /* ignore small node */
  2430. low_kmem_size > total_size * 70/100)
  2431. return ZONELIST_ORDER_NODE;
  2432. }
  2433. return ZONELIST_ORDER_ZONE;
  2434. }
  2435. static void set_zonelist_order(void)
  2436. {
  2437. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2438. current_zonelist_order = default_zonelist_order();
  2439. else
  2440. current_zonelist_order = user_zonelist_order;
  2441. }
  2442. static void build_zonelists(pg_data_t *pgdat)
  2443. {
  2444. int j, node, load;
  2445. enum zone_type i;
  2446. nodemask_t used_mask;
  2447. int local_node, prev_node;
  2448. struct zonelist *zonelist;
  2449. int order = current_zonelist_order;
  2450. /* initialize zonelists */
  2451. for (i = 0; i < MAX_ZONELISTS; i++) {
  2452. zonelist = pgdat->node_zonelists + i;
  2453. zonelist->_zonerefs[0].zone = NULL;
  2454. zonelist->_zonerefs[0].zone_idx = 0;
  2455. }
  2456. /* NUMA-aware ordering of nodes */
  2457. local_node = pgdat->node_id;
  2458. load = nr_online_nodes;
  2459. prev_node = local_node;
  2460. nodes_clear(used_mask);
  2461. memset(node_order, 0, sizeof(node_order));
  2462. j = 0;
  2463. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2464. int distance = node_distance(local_node, node);
  2465. /*
  2466. * If another node is sufficiently far away then it is better
  2467. * to reclaim pages in a zone before going off node.
  2468. */
  2469. if (distance > RECLAIM_DISTANCE)
  2470. zone_reclaim_mode = 1;
  2471. /*
  2472. * We don't want to pressure a particular node.
  2473. * So adding penalty to the first node in same
  2474. * distance group to make it round-robin.
  2475. */
  2476. if (distance != node_distance(local_node, prev_node))
  2477. node_load[node] = load;
  2478. prev_node = node;
  2479. load--;
  2480. if (order == ZONELIST_ORDER_NODE)
  2481. build_zonelists_in_node_order(pgdat, node);
  2482. else
  2483. node_order[j++] = node; /* remember order */
  2484. }
  2485. if (order == ZONELIST_ORDER_ZONE) {
  2486. /* calculate node order -- i.e., DMA last! */
  2487. build_zonelists_in_zone_order(pgdat, j);
  2488. }
  2489. build_thisnode_zonelists(pgdat);
  2490. }
  2491. /* Construct the zonelist performance cache - see further mmzone.h */
  2492. static void build_zonelist_cache(pg_data_t *pgdat)
  2493. {
  2494. struct zonelist *zonelist;
  2495. struct zonelist_cache *zlc;
  2496. struct zoneref *z;
  2497. zonelist = &pgdat->node_zonelists[0];
  2498. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2499. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2500. for (z = zonelist->_zonerefs; z->zone; z++)
  2501. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2502. }
  2503. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2504. /*
  2505. * Return node id of node used for "local" allocations.
  2506. * I.e., first node id of first zone in arg node's generic zonelist.
  2507. * Used for initializing percpu 'numa_mem', which is used primarily
  2508. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2509. */
  2510. int local_memory_node(int node)
  2511. {
  2512. struct zone *zone;
  2513. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2514. gfp_zone(GFP_KERNEL),
  2515. NULL,
  2516. &zone);
  2517. return zone->node;
  2518. }
  2519. #endif
  2520. #else /* CONFIG_NUMA */
  2521. static void set_zonelist_order(void)
  2522. {
  2523. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2524. }
  2525. static void build_zonelists(pg_data_t *pgdat)
  2526. {
  2527. int node, local_node;
  2528. enum zone_type j;
  2529. struct zonelist *zonelist;
  2530. local_node = pgdat->node_id;
  2531. zonelist = &pgdat->node_zonelists[0];
  2532. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2533. /*
  2534. * Now we build the zonelist so that it contains the zones
  2535. * of all the other nodes.
  2536. * We don't want to pressure a particular node, so when
  2537. * building the zones for node N, we make sure that the
  2538. * zones coming right after the local ones are those from
  2539. * node N+1 (modulo N)
  2540. */
  2541. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2542. if (!node_online(node))
  2543. continue;
  2544. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2545. MAX_NR_ZONES - 1);
  2546. }
  2547. for (node = 0; node < local_node; node++) {
  2548. if (!node_online(node))
  2549. continue;
  2550. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2551. MAX_NR_ZONES - 1);
  2552. }
  2553. zonelist->_zonerefs[j].zone = NULL;
  2554. zonelist->_zonerefs[j].zone_idx = 0;
  2555. }
  2556. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2557. static void build_zonelist_cache(pg_data_t *pgdat)
  2558. {
  2559. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2560. }
  2561. #endif /* CONFIG_NUMA */
  2562. /*
  2563. * Boot pageset table. One per cpu which is going to be used for all
  2564. * zones and all nodes. The parameters will be set in such a way
  2565. * that an item put on a list will immediately be handed over to
  2566. * the buddy list. This is safe since pageset manipulation is done
  2567. * with interrupts disabled.
  2568. *
  2569. * The boot_pagesets must be kept even after bootup is complete for
  2570. * unused processors and/or zones. They do play a role for bootstrapping
  2571. * hotplugged processors.
  2572. *
  2573. * zoneinfo_show() and maybe other functions do
  2574. * not check if the processor is online before following the pageset pointer.
  2575. * Other parts of the kernel may not check if the zone is available.
  2576. */
  2577. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2578. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2579. static void setup_zone_pageset(struct zone *zone);
  2580. /*
  2581. * Global mutex to protect against size modification of zonelists
  2582. * as well as to serialize pageset setup for the new populated zone.
  2583. */
  2584. DEFINE_MUTEX(zonelists_mutex);
  2585. /* return values int ....just for stop_machine() */
  2586. static __init_refok int __build_all_zonelists(void *data)
  2587. {
  2588. int nid;
  2589. int cpu;
  2590. #ifdef CONFIG_NUMA
  2591. memset(node_load, 0, sizeof(node_load));
  2592. #endif
  2593. for_each_online_node(nid) {
  2594. pg_data_t *pgdat = NODE_DATA(nid);
  2595. build_zonelists(pgdat);
  2596. build_zonelist_cache(pgdat);
  2597. }
  2598. /*
  2599. * Initialize the boot_pagesets that are going to be used
  2600. * for bootstrapping processors. The real pagesets for
  2601. * each zone will be allocated later when the per cpu
  2602. * allocator is available.
  2603. *
  2604. * boot_pagesets are used also for bootstrapping offline
  2605. * cpus if the system is already booted because the pagesets
  2606. * are needed to initialize allocators on a specific cpu too.
  2607. * F.e. the percpu allocator needs the page allocator which
  2608. * needs the percpu allocator in order to allocate its pagesets
  2609. * (a chicken-egg dilemma).
  2610. */
  2611. for_each_possible_cpu(cpu) {
  2612. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2613. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2614. /*
  2615. * We now know the "local memory node" for each node--
  2616. * i.e., the node of the first zone in the generic zonelist.
  2617. * Set up numa_mem percpu variable for on-line cpus. During
  2618. * boot, only the boot cpu should be on-line; we'll init the
  2619. * secondary cpus' numa_mem as they come on-line. During
  2620. * node/memory hotplug, we'll fixup all on-line cpus.
  2621. */
  2622. if (cpu_online(cpu))
  2623. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2624. #endif
  2625. }
  2626. return 0;
  2627. }
  2628. /*
  2629. * Called with zonelists_mutex held always
  2630. * unless system_state == SYSTEM_BOOTING.
  2631. */
  2632. void build_all_zonelists(void *data)
  2633. {
  2634. set_zonelist_order();
  2635. if (system_state == SYSTEM_BOOTING) {
  2636. __build_all_zonelists(NULL);
  2637. mminit_verify_zonelist();
  2638. cpuset_init_current_mems_allowed();
  2639. } else {
  2640. /* we have to stop all cpus to guarantee there is no user
  2641. of zonelist */
  2642. #ifdef CONFIG_MEMORY_HOTPLUG
  2643. if (data)
  2644. setup_zone_pageset((struct zone *)data);
  2645. #endif
  2646. stop_machine(__build_all_zonelists, NULL, NULL);
  2647. /* cpuset refresh routine should be here */
  2648. }
  2649. vm_total_pages = nr_free_pagecache_pages();
  2650. /*
  2651. * Disable grouping by mobility if the number of pages in the
  2652. * system is too low to allow the mechanism to work. It would be
  2653. * more accurate, but expensive to check per-zone. This check is
  2654. * made on memory-hotadd so a system can start with mobility
  2655. * disabled and enable it later
  2656. */
  2657. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2658. page_group_by_mobility_disabled = 1;
  2659. else
  2660. page_group_by_mobility_disabled = 0;
  2661. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2662. "Total pages: %ld\n",
  2663. nr_online_nodes,
  2664. zonelist_order_name[current_zonelist_order],
  2665. page_group_by_mobility_disabled ? "off" : "on",
  2666. vm_total_pages);
  2667. #ifdef CONFIG_NUMA
  2668. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2669. #endif
  2670. }
  2671. /*
  2672. * Helper functions to size the waitqueue hash table.
  2673. * Essentially these want to choose hash table sizes sufficiently
  2674. * large so that collisions trying to wait on pages are rare.
  2675. * But in fact, the number of active page waitqueues on typical
  2676. * systems is ridiculously low, less than 200. So this is even
  2677. * conservative, even though it seems large.
  2678. *
  2679. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2680. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2681. */
  2682. #define PAGES_PER_WAITQUEUE 256
  2683. #ifndef CONFIG_MEMORY_HOTPLUG
  2684. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2685. {
  2686. unsigned long size = 1;
  2687. pages /= PAGES_PER_WAITQUEUE;
  2688. while (size < pages)
  2689. size <<= 1;
  2690. /*
  2691. * Once we have dozens or even hundreds of threads sleeping
  2692. * on IO we've got bigger problems than wait queue collision.
  2693. * Limit the size of the wait table to a reasonable size.
  2694. */
  2695. size = min(size, 4096UL);
  2696. return max(size, 4UL);
  2697. }
  2698. #else
  2699. /*
  2700. * A zone's size might be changed by hot-add, so it is not possible to determine
  2701. * a suitable size for its wait_table. So we use the maximum size now.
  2702. *
  2703. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2704. *
  2705. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2706. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2707. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2708. *
  2709. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2710. * or more by the traditional way. (See above). It equals:
  2711. *
  2712. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2713. * ia64(16K page size) : = ( 8G + 4M)byte.
  2714. * powerpc (64K page size) : = (32G +16M)byte.
  2715. */
  2716. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2717. {
  2718. return 4096UL;
  2719. }
  2720. #endif
  2721. /*
  2722. * This is an integer logarithm so that shifts can be used later
  2723. * to extract the more random high bits from the multiplicative
  2724. * hash function before the remainder is taken.
  2725. */
  2726. static inline unsigned long wait_table_bits(unsigned long size)
  2727. {
  2728. return ffz(~size);
  2729. }
  2730. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2731. /*
  2732. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2733. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2734. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2735. * higher will lead to a bigger reserve which will get freed as contiguous
  2736. * blocks as reclaim kicks in
  2737. */
  2738. static void setup_zone_migrate_reserve(struct zone *zone)
  2739. {
  2740. unsigned long start_pfn, pfn, end_pfn;
  2741. struct page *page;
  2742. unsigned long block_migratetype;
  2743. int reserve;
  2744. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2745. start_pfn = zone->zone_start_pfn;
  2746. end_pfn = start_pfn + zone->spanned_pages;
  2747. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2748. pageblock_order;
  2749. /*
  2750. * Reserve blocks are generally in place to help high-order atomic
  2751. * allocations that are short-lived. A min_free_kbytes value that
  2752. * would result in more than 2 reserve blocks for atomic allocations
  2753. * is assumed to be in place to help anti-fragmentation for the
  2754. * future allocation of hugepages at runtime.
  2755. */
  2756. reserve = min(2, reserve);
  2757. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2758. if (!pfn_valid(pfn))
  2759. continue;
  2760. page = pfn_to_page(pfn);
  2761. /* Watch out for overlapping nodes */
  2762. if (page_to_nid(page) != zone_to_nid(zone))
  2763. continue;
  2764. /* Blocks with reserved pages will never free, skip them. */
  2765. if (PageReserved(page))
  2766. continue;
  2767. block_migratetype = get_pageblock_migratetype(page);
  2768. /* If this block is reserved, account for it */
  2769. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2770. reserve--;
  2771. continue;
  2772. }
  2773. /* Suitable for reserving if this block is movable */
  2774. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2775. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2776. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2777. reserve--;
  2778. continue;
  2779. }
  2780. /*
  2781. * If the reserve is met and this is a previous reserved block,
  2782. * take it back
  2783. */
  2784. if (block_migratetype == MIGRATE_RESERVE) {
  2785. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2786. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2787. }
  2788. }
  2789. }
  2790. /*
  2791. * Initially all pages are reserved - free ones are freed
  2792. * up by free_all_bootmem() once the early boot process is
  2793. * done. Non-atomic initialization, single-pass.
  2794. */
  2795. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2796. unsigned long start_pfn, enum memmap_context context)
  2797. {
  2798. struct page *page;
  2799. unsigned long end_pfn = start_pfn + size;
  2800. unsigned long pfn;
  2801. struct zone *z;
  2802. if (highest_memmap_pfn < end_pfn - 1)
  2803. highest_memmap_pfn = end_pfn - 1;
  2804. z = &NODE_DATA(nid)->node_zones[zone];
  2805. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2806. /*
  2807. * There can be holes in boot-time mem_map[]s
  2808. * handed to this function. They do not
  2809. * exist on hotplugged memory.
  2810. */
  2811. if (context == MEMMAP_EARLY) {
  2812. if (!early_pfn_valid(pfn))
  2813. continue;
  2814. if (!early_pfn_in_nid(pfn, nid))
  2815. continue;
  2816. }
  2817. page = pfn_to_page(pfn);
  2818. set_page_links(page, zone, nid, pfn);
  2819. mminit_verify_page_links(page, zone, nid, pfn);
  2820. init_page_count(page);
  2821. reset_page_mapcount(page);
  2822. SetPageReserved(page);
  2823. /*
  2824. * Mark the block movable so that blocks are reserved for
  2825. * movable at startup. This will force kernel allocations
  2826. * to reserve their blocks rather than leaking throughout
  2827. * the address space during boot when many long-lived
  2828. * kernel allocations are made. Later some blocks near
  2829. * the start are marked MIGRATE_RESERVE by
  2830. * setup_zone_migrate_reserve()
  2831. *
  2832. * bitmap is created for zone's valid pfn range. but memmap
  2833. * can be created for invalid pages (for alignment)
  2834. * check here not to call set_pageblock_migratetype() against
  2835. * pfn out of zone.
  2836. */
  2837. if ((z->zone_start_pfn <= pfn)
  2838. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2839. && !(pfn & (pageblock_nr_pages - 1)))
  2840. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2841. INIT_LIST_HEAD(&page->lru);
  2842. #ifdef WANT_PAGE_VIRTUAL
  2843. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2844. if (!is_highmem_idx(zone))
  2845. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2846. #endif
  2847. }
  2848. }
  2849. static void __meminit zone_init_free_lists(struct zone *zone)
  2850. {
  2851. int order, t;
  2852. for_each_migratetype_order(order, t) {
  2853. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2854. zone->free_area[order].nr_free = 0;
  2855. }
  2856. }
  2857. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2858. #define memmap_init(size, nid, zone, start_pfn) \
  2859. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2860. #endif
  2861. static int zone_batchsize(struct zone *zone)
  2862. {
  2863. #ifdef CONFIG_MMU
  2864. int batch;
  2865. /*
  2866. * The per-cpu-pages pools are set to around 1000th of the
  2867. * size of the zone. But no more than 1/2 of a meg.
  2868. *
  2869. * OK, so we don't know how big the cache is. So guess.
  2870. */
  2871. batch = zone->present_pages / 1024;
  2872. if (batch * PAGE_SIZE > 512 * 1024)
  2873. batch = (512 * 1024) / PAGE_SIZE;
  2874. batch /= 4; /* We effectively *= 4 below */
  2875. if (batch < 1)
  2876. batch = 1;
  2877. /*
  2878. * Clamp the batch to a 2^n - 1 value. Having a power
  2879. * of 2 value was found to be more likely to have
  2880. * suboptimal cache aliasing properties in some cases.
  2881. *
  2882. * For example if 2 tasks are alternately allocating
  2883. * batches of pages, one task can end up with a lot
  2884. * of pages of one half of the possible page colors
  2885. * and the other with pages of the other colors.
  2886. */
  2887. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2888. return batch;
  2889. #else
  2890. /* The deferral and batching of frees should be suppressed under NOMMU
  2891. * conditions.
  2892. *
  2893. * The problem is that NOMMU needs to be able to allocate large chunks
  2894. * of contiguous memory as there's no hardware page translation to
  2895. * assemble apparent contiguous memory from discontiguous pages.
  2896. *
  2897. * Queueing large contiguous runs of pages for batching, however,
  2898. * causes the pages to actually be freed in smaller chunks. As there
  2899. * can be a significant delay between the individual batches being
  2900. * recycled, this leads to the once large chunks of space being
  2901. * fragmented and becoming unavailable for high-order allocations.
  2902. */
  2903. return 0;
  2904. #endif
  2905. }
  2906. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2907. {
  2908. struct per_cpu_pages *pcp;
  2909. int migratetype;
  2910. memset(p, 0, sizeof(*p));
  2911. pcp = &p->pcp;
  2912. pcp->count = 0;
  2913. pcp->high = 6 * batch;
  2914. pcp->batch = max(1UL, 1 * batch);
  2915. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2916. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2917. }
  2918. /*
  2919. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2920. * to the value high for the pageset p.
  2921. */
  2922. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2923. unsigned long high)
  2924. {
  2925. struct per_cpu_pages *pcp;
  2926. pcp = &p->pcp;
  2927. pcp->high = high;
  2928. pcp->batch = max(1UL, high/4);
  2929. if ((high/4) > (PAGE_SHIFT * 8))
  2930. pcp->batch = PAGE_SHIFT * 8;
  2931. }
  2932. static __meminit void setup_zone_pageset(struct zone *zone)
  2933. {
  2934. int cpu;
  2935. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2936. for_each_possible_cpu(cpu) {
  2937. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2938. setup_pageset(pcp, zone_batchsize(zone));
  2939. if (percpu_pagelist_fraction)
  2940. setup_pagelist_highmark(pcp,
  2941. (zone->present_pages /
  2942. percpu_pagelist_fraction));
  2943. }
  2944. }
  2945. /*
  2946. * Allocate per cpu pagesets and initialize them.
  2947. * Before this call only boot pagesets were available.
  2948. */
  2949. void __init setup_per_cpu_pageset(void)
  2950. {
  2951. struct zone *zone;
  2952. for_each_populated_zone(zone)
  2953. setup_zone_pageset(zone);
  2954. }
  2955. static noinline __init_refok
  2956. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2957. {
  2958. int i;
  2959. struct pglist_data *pgdat = zone->zone_pgdat;
  2960. size_t alloc_size;
  2961. /*
  2962. * The per-page waitqueue mechanism uses hashed waitqueues
  2963. * per zone.
  2964. */
  2965. zone->wait_table_hash_nr_entries =
  2966. wait_table_hash_nr_entries(zone_size_pages);
  2967. zone->wait_table_bits =
  2968. wait_table_bits(zone->wait_table_hash_nr_entries);
  2969. alloc_size = zone->wait_table_hash_nr_entries
  2970. * sizeof(wait_queue_head_t);
  2971. if (!slab_is_available()) {
  2972. zone->wait_table = (wait_queue_head_t *)
  2973. alloc_bootmem_node(pgdat, alloc_size);
  2974. } else {
  2975. /*
  2976. * This case means that a zone whose size was 0 gets new memory
  2977. * via memory hot-add.
  2978. * But it may be the case that a new node was hot-added. In
  2979. * this case vmalloc() will not be able to use this new node's
  2980. * memory - this wait_table must be initialized to use this new
  2981. * node itself as well.
  2982. * To use this new node's memory, further consideration will be
  2983. * necessary.
  2984. */
  2985. zone->wait_table = vmalloc(alloc_size);
  2986. }
  2987. if (!zone->wait_table)
  2988. return -ENOMEM;
  2989. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2990. init_waitqueue_head(zone->wait_table + i);
  2991. return 0;
  2992. }
  2993. static int __zone_pcp_update(void *data)
  2994. {
  2995. struct zone *zone = data;
  2996. int cpu;
  2997. unsigned long batch = zone_batchsize(zone), flags;
  2998. for_each_possible_cpu(cpu) {
  2999. struct per_cpu_pageset *pset;
  3000. struct per_cpu_pages *pcp;
  3001. pset = per_cpu_ptr(zone->pageset, cpu);
  3002. pcp = &pset->pcp;
  3003. local_irq_save(flags);
  3004. free_pcppages_bulk(zone, pcp->count, pcp);
  3005. setup_pageset(pset, batch);
  3006. local_irq_restore(flags);
  3007. }
  3008. return 0;
  3009. }
  3010. void zone_pcp_update(struct zone *zone)
  3011. {
  3012. stop_machine(__zone_pcp_update, zone, NULL);
  3013. }
  3014. static __meminit void zone_pcp_init(struct zone *zone)
  3015. {
  3016. /*
  3017. * per cpu subsystem is not up at this point. The following code
  3018. * relies on the ability of the linker to provide the
  3019. * offset of a (static) per cpu variable into the per cpu area.
  3020. */
  3021. zone->pageset = &boot_pageset;
  3022. if (zone->present_pages)
  3023. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3024. zone->name, zone->present_pages,
  3025. zone_batchsize(zone));
  3026. }
  3027. __meminit int init_currently_empty_zone(struct zone *zone,
  3028. unsigned long zone_start_pfn,
  3029. unsigned long size,
  3030. enum memmap_context context)
  3031. {
  3032. struct pglist_data *pgdat = zone->zone_pgdat;
  3033. int ret;
  3034. ret = zone_wait_table_init(zone, size);
  3035. if (ret)
  3036. return ret;
  3037. pgdat->nr_zones = zone_idx(zone) + 1;
  3038. zone->zone_start_pfn = zone_start_pfn;
  3039. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3040. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3041. pgdat->node_id,
  3042. (unsigned long)zone_idx(zone),
  3043. zone_start_pfn, (zone_start_pfn + size));
  3044. zone_init_free_lists(zone);
  3045. return 0;
  3046. }
  3047. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3048. /*
  3049. * Basic iterator support. Return the first range of PFNs for a node
  3050. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3051. */
  3052. static int __meminit first_active_region_index_in_nid(int nid)
  3053. {
  3054. int i;
  3055. for (i = 0; i < nr_nodemap_entries; i++)
  3056. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3057. return i;
  3058. return -1;
  3059. }
  3060. /*
  3061. * Basic iterator support. Return the next active range of PFNs for a node
  3062. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3063. */
  3064. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3065. {
  3066. for (index = index + 1; index < nr_nodemap_entries; index++)
  3067. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3068. return index;
  3069. return -1;
  3070. }
  3071. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3072. /*
  3073. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3074. * Architectures may implement their own version but if add_active_range()
  3075. * was used and there are no special requirements, this is a convenient
  3076. * alternative
  3077. */
  3078. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3079. {
  3080. int i;
  3081. for (i = 0; i < nr_nodemap_entries; i++) {
  3082. unsigned long start_pfn = early_node_map[i].start_pfn;
  3083. unsigned long end_pfn = early_node_map[i].end_pfn;
  3084. if (start_pfn <= pfn && pfn < end_pfn)
  3085. return early_node_map[i].nid;
  3086. }
  3087. /* This is a memory hole */
  3088. return -1;
  3089. }
  3090. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3091. int __meminit early_pfn_to_nid(unsigned long pfn)
  3092. {
  3093. int nid;
  3094. nid = __early_pfn_to_nid(pfn);
  3095. if (nid >= 0)
  3096. return nid;
  3097. /* just returns 0 */
  3098. return 0;
  3099. }
  3100. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3101. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3102. {
  3103. int nid;
  3104. nid = __early_pfn_to_nid(pfn);
  3105. if (nid >= 0 && nid != node)
  3106. return false;
  3107. return true;
  3108. }
  3109. #endif
  3110. /* Basic iterator support to walk early_node_map[] */
  3111. #define for_each_active_range_index_in_nid(i, nid) \
  3112. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3113. i = next_active_region_index_in_nid(i, nid))
  3114. /**
  3115. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3116. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3117. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3118. *
  3119. * If an architecture guarantees that all ranges registered with
  3120. * add_active_ranges() contain no holes and may be freed, this
  3121. * this function may be used instead of calling free_bootmem() manually.
  3122. */
  3123. void __init free_bootmem_with_active_regions(int nid,
  3124. unsigned long max_low_pfn)
  3125. {
  3126. int i;
  3127. for_each_active_range_index_in_nid(i, nid) {
  3128. unsigned long size_pages = 0;
  3129. unsigned long end_pfn = early_node_map[i].end_pfn;
  3130. if (early_node_map[i].start_pfn >= max_low_pfn)
  3131. continue;
  3132. if (end_pfn > max_low_pfn)
  3133. end_pfn = max_low_pfn;
  3134. size_pages = end_pfn - early_node_map[i].start_pfn;
  3135. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3136. PFN_PHYS(early_node_map[i].start_pfn),
  3137. size_pages << PAGE_SHIFT);
  3138. }
  3139. }
  3140. #ifdef CONFIG_HAVE_MEMBLOCK
  3141. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3142. u64 goal, u64 limit)
  3143. {
  3144. int i;
  3145. /* Need to go over early_node_map to find out good range for node */
  3146. for_each_active_range_index_in_nid(i, nid) {
  3147. u64 addr;
  3148. u64 ei_start, ei_last;
  3149. u64 final_start, final_end;
  3150. ei_last = early_node_map[i].end_pfn;
  3151. ei_last <<= PAGE_SHIFT;
  3152. ei_start = early_node_map[i].start_pfn;
  3153. ei_start <<= PAGE_SHIFT;
  3154. final_start = max(ei_start, goal);
  3155. final_end = min(ei_last, limit);
  3156. if (final_start >= final_end)
  3157. continue;
  3158. addr = memblock_find_in_range(final_start, final_end, size, align);
  3159. if (addr == MEMBLOCK_ERROR)
  3160. continue;
  3161. return addr;
  3162. }
  3163. return MEMBLOCK_ERROR;
  3164. }
  3165. #endif
  3166. int __init add_from_early_node_map(struct range *range, int az,
  3167. int nr_range, int nid)
  3168. {
  3169. int i;
  3170. u64 start, end;
  3171. /* need to go over early_node_map to find out good range for node */
  3172. for_each_active_range_index_in_nid(i, nid) {
  3173. start = early_node_map[i].start_pfn;
  3174. end = early_node_map[i].end_pfn;
  3175. nr_range = add_range(range, az, nr_range, start, end);
  3176. }
  3177. return nr_range;
  3178. }
  3179. #ifdef CONFIG_NO_BOOTMEM
  3180. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  3181. u64 goal, u64 limit)
  3182. {
  3183. void *ptr;
  3184. u64 addr;
  3185. if (limit > memblock.current_limit)
  3186. limit = memblock.current_limit;
  3187. addr = find_memory_core_early(nid, size, align, goal, limit);
  3188. if (addr == MEMBLOCK_ERROR)
  3189. return NULL;
  3190. ptr = phys_to_virt(addr);
  3191. memset(ptr, 0, size);
  3192. memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
  3193. /*
  3194. * The min_count is set to 0 so that bootmem allocated blocks
  3195. * are never reported as leaks.
  3196. */
  3197. kmemleak_alloc(ptr, size, 0, 0);
  3198. return ptr;
  3199. }
  3200. #endif
  3201. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3202. {
  3203. int i;
  3204. int ret;
  3205. for_each_active_range_index_in_nid(i, nid) {
  3206. ret = work_fn(early_node_map[i].start_pfn,
  3207. early_node_map[i].end_pfn, data);
  3208. if (ret)
  3209. break;
  3210. }
  3211. }
  3212. /**
  3213. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3214. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3215. *
  3216. * If an architecture guarantees that all ranges registered with
  3217. * add_active_ranges() contain no holes and may be freed, this
  3218. * function may be used instead of calling memory_present() manually.
  3219. */
  3220. void __init sparse_memory_present_with_active_regions(int nid)
  3221. {
  3222. int i;
  3223. for_each_active_range_index_in_nid(i, nid)
  3224. memory_present(early_node_map[i].nid,
  3225. early_node_map[i].start_pfn,
  3226. early_node_map[i].end_pfn);
  3227. }
  3228. /**
  3229. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3230. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3231. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3232. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3233. *
  3234. * It returns the start and end page frame of a node based on information
  3235. * provided by an arch calling add_active_range(). If called for a node
  3236. * with no available memory, a warning is printed and the start and end
  3237. * PFNs will be 0.
  3238. */
  3239. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3240. unsigned long *start_pfn, unsigned long *end_pfn)
  3241. {
  3242. int i;
  3243. *start_pfn = -1UL;
  3244. *end_pfn = 0;
  3245. for_each_active_range_index_in_nid(i, nid) {
  3246. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3247. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3248. }
  3249. if (*start_pfn == -1UL)
  3250. *start_pfn = 0;
  3251. }
  3252. /*
  3253. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3254. * assumption is made that zones within a node are ordered in monotonic
  3255. * increasing memory addresses so that the "highest" populated zone is used
  3256. */
  3257. static void __init find_usable_zone_for_movable(void)
  3258. {
  3259. int zone_index;
  3260. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3261. if (zone_index == ZONE_MOVABLE)
  3262. continue;
  3263. if (arch_zone_highest_possible_pfn[zone_index] >
  3264. arch_zone_lowest_possible_pfn[zone_index])
  3265. break;
  3266. }
  3267. VM_BUG_ON(zone_index == -1);
  3268. movable_zone = zone_index;
  3269. }
  3270. /*
  3271. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3272. * because it is sized independant of architecture. Unlike the other zones,
  3273. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3274. * in each node depending on the size of each node and how evenly kernelcore
  3275. * is distributed. This helper function adjusts the zone ranges
  3276. * provided by the architecture for a given node by using the end of the
  3277. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3278. * zones within a node are in order of monotonic increases memory addresses
  3279. */
  3280. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3281. unsigned long zone_type,
  3282. unsigned long node_start_pfn,
  3283. unsigned long node_end_pfn,
  3284. unsigned long *zone_start_pfn,
  3285. unsigned long *zone_end_pfn)
  3286. {
  3287. /* Only adjust if ZONE_MOVABLE is on this node */
  3288. if (zone_movable_pfn[nid]) {
  3289. /* Size ZONE_MOVABLE */
  3290. if (zone_type == ZONE_MOVABLE) {
  3291. *zone_start_pfn = zone_movable_pfn[nid];
  3292. *zone_end_pfn = min(node_end_pfn,
  3293. arch_zone_highest_possible_pfn[movable_zone]);
  3294. /* Adjust for ZONE_MOVABLE starting within this range */
  3295. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3296. *zone_end_pfn > zone_movable_pfn[nid]) {
  3297. *zone_end_pfn = zone_movable_pfn[nid];
  3298. /* Check if this whole range is within ZONE_MOVABLE */
  3299. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3300. *zone_start_pfn = *zone_end_pfn;
  3301. }
  3302. }
  3303. /*
  3304. * Return the number of pages a zone spans in a node, including holes
  3305. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3306. */
  3307. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3308. unsigned long zone_type,
  3309. unsigned long *ignored)
  3310. {
  3311. unsigned long node_start_pfn, node_end_pfn;
  3312. unsigned long zone_start_pfn, zone_end_pfn;
  3313. /* Get the start and end of the node and zone */
  3314. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3315. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3316. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3317. adjust_zone_range_for_zone_movable(nid, zone_type,
  3318. node_start_pfn, node_end_pfn,
  3319. &zone_start_pfn, &zone_end_pfn);
  3320. /* Check that this node has pages within the zone's required range */
  3321. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3322. return 0;
  3323. /* Move the zone boundaries inside the node if necessary */
  3324. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3325. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3326. /* Return the spanned pages */
  3327. return zone_end_pfn - zone_start_pfn;
  3328. }
  3329. /*
  3330. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3331. * then all holes in the requested range will be accounted for.
  3332. */
  3333. unsigned long __meminit __absent_pages_in_range(int nid,
  3334. unsigned long range_start_pfn,
  3335. unsigned long range_end_pfn)
  3336. {
  3337. int i = 0;
  3338. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3339. unsigned long start_pfn;
  3340. /* Find the end_pfn of the first active range of pfns in the node */
  3341. i = first_active_region_index_in_nid(nid);
  3342. if (i == -1)
  3343. return 0;
  3344. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3345. /* Account for ranges before physical memory on this node */
  3346. if (early_node_map[i].start_pfn > range_start_pfn)
  3347. hole_pages = prev_end_pfn - range_start_pfn;
  3348. /* Find all holes for the zone within the node */
  3349. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3350. /* No need to continue if prev_end_pfn is outside the zone */
  3351. if (prev_end_pfn >= range_end_pfn)
  3352. break;
  3353. /* Make sure the end of the zone is not within the hole */
  3354. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3355. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3356. /* Update the hole size cound and move on */
  3357. if (start_pfn > range_start_pfn) {
  3358. BUG_ON(prev_end_pfn > start_pfn);
  3359. hole_pages += start_pfn - prev_end_pfn;
  3360. }
  3361. prev_end_pfn = early_node_map[i].end_pfn;
  3362. }
  3363. /* Account for ranges past physical memory on this node */
  3364. if (range_end_pfn > prev_end_pfn)
  3365. hole_pages += range_end_pfn -
  3366. max(range_start_pfn, prev_end_pfn);
  3367. return hole_pages;
  3368. }
  3369. /**
  3370. * absent_pages_in_range - Return number of page frames in holes within a range
  3371. * @start_pfn: The start PFN to start searching for holes
  3372. * @end_pfn: The end PFN to stop searching for holes
  3373. *
  3374. * It returns the number of pages frames in memory holes within a range.
  3375. */
  3376. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3377. unsigned long end_pfn)
  3378. {
  3379. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3380. }
  3381. /* Return the number of page frames in holes in a zone on a node */
  3382. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3383. unsigned long zone_type,
  3384. unsigned long *ignored)
  3385. {
  3386. unsigned long node_start_pfn, node_end_pfn;
  3387. unsigned long zone_start_pfn, zone_end_pfn;
  3388. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3389. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3390. node_start_pfn);
  3391. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3392. node_end_pfn);
  3393. adjust_zone_range_for_zone_movable(nid, zone_type,
  3394. node_start_pfn, node_end_pfn,
  3395. &zone_start_pfn, &zone_end_pfn);
  3396. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3397. }
  3398. #else
  3399. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3400. unsigned long zone_type,
  3401. unsigned long *zones_size)
  3402. {
  3403. return zones_size[zone_type];
  3404. }
  3405. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3406. unsigned long zone_type,
  3407. unsigned long *zholes_size)
  3408. {
  3409. if (!zholes_size)
  3410. return 0;
  3411. return zholes_size[zone_type];
  3412. }
  3413. #endif
  3414. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3415. unsigned long *zones_size, unsigned long *zholes_size)
  3416. {
  3417. unsigned long realtotalpages, totalpages = 0;
  3418. enum zone_type i;
  3419. for (i = 0; i < MAX_NR_ZONES; i++)
  3420. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3421. zones_size);
  3422. pgdat->node_spanned_pages = totalpages;
  3423. realtotalpages = totalpages;
  3424. for (i = 0; i < MAX_NR_ZONES; i++)
  3425. realtotalpages -=
  3426. zone_absent_pages_in_node(pgdat->node_id, i,
  3427. zholes_size);
  3428. pgdat->node_present_pages = realtotalpages;
  3429. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3430. realtotalpages);
  3431. }
  3432. #ifndef CONFIG_SPARSEMEM
  3433. /*
  3434. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3435. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3436. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3437. * round what is now in bits to nearest long in bits, then return it in
  3438. * bytes.
  3439. */
  3440. static unsigned long __init usemap_size(unsigned long zonesize)
  3441. {
  3442. unsigned long usemapsize;
  3443. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3444. usemapsize = usemapsize >> pageblock_order;
  3445. usemapsize *= NR_PAGEBLOCK_BITS;
  3446. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3447. return usemapsize / 8;
  3448. }
  3449. static void __init setup_usemap(struct pglist_data *pgdat,
  3450. struct zone *zone, unsigned long zonesize)
  3451. {
  3452. unsigned long usemapsize = usemap_size(zonesize);
  3453. zone->pageblock_flags = NULL;
  3454. if (usemapsize)
  3455. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3456. }
  3457. #else
  3458. static void inline setup_usemap(struct pglist_data *pgdat,
  3459. struct zone *zone, unsigned long zonesize) {}
  3460. #endif /* CONFIG_SPARSEMEM */
  3461. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3462. /* Return a sensible default order for the pageblock size. */
  3463. static inline int pageblock_default_order(void)
  3464. {
  3465. if (HPAGE_SHIFT > PAGE_SHIFT)
  3466. return HUGETLB_PAGE_ORDER;
  3467. return MAX_ORDER-1;
  3468. }
  3469. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3470. static inline void __init set_pageblock_order(unsigned int order)
  3471. {
  3472. /* Check that pageblock_nr_pages has not already been setup */
  3473. if (pageblock_order)
  3474. return;
  3475. /*
  3476. * Assume the largest contiguous order of interest is a huge page.
  3477. * This value may be variable depending on boot parameters on IA64
  3478. */
  3479. pageblock_order = order;
  3480. }
  3481. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3482. /*
  3483. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3484. * and pageblock_default_order() are unused as pageblock_order is set
  3485. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3486. * pageblock_order based on the kernel config
  3487. */
  3488. static inline int pageblock_default_order(unsigned int order)
  3489. {
  3490. return MAX_ORDER-1;
  3491. }
  3492. #define set_pageblock_order(x) do {} while (0)
  3493. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3494. /*
  3495. * Set up the zone data structures:
  3496. * - mark all pages reserved
  3497. * - mark all memory queues empty
  3498. * - clear the memory bitmaps
  3499. */
  3500. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3501. unsigned long *zones_size, unsigned long *zholes_size)
  3502. {
  3503. enum zone_type j;
  3504. int nid = pgdat->node_id;
  3505. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3506. int ret;
  3507. pgdat_resize_init(pgdat);
  3508. pgdat->nr_zones = 0;
  3509. init_waitqueue_head(&pgdat->kswapd_wait);
  3510. pgdat->kswapd_max_order = 0;
  3511. pgdat_page_cgroup_init(pgdat);
  3512. for (j = 0; j < MAX_NR_ZONES; j++) {
  3513. struct zone *zone = pgdat->node_zones + j;
  3514. unsigned long size, realsize, memmap_pages;
  3515. enum lru_list l;
  3516. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3517. realsize = size - zone_absent_pages_in_node(nid, j,
  3518. zholes_size);
  3519. /*
  3520. * Adjust realsize so that it accounts for how much memory
  3521. * is used by this zone for memmap. This affects the watermark
  3522. * and per-cpu initialisations
  3523. */
  3524. memmap_pages =
  3525. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3526. if (realsize >= memmap_pages) {
  3527. realsize -= memmap_pages;
  3528. if (memmap_pages)
  3529. printk(KERN_DEBUG
  3530. " %s zone: %lu pages used for memmap\n",
  3531. zone_names[j], memmap_pages);
  3532. } else
  3533. printk(KERN_WARNING
  3534. " %s zone: %lu pages exceeds realsize %lu\n",
  3535. zone_names[j], memmap_pages, realsize);
  3536. /* Account for reserved pages */
  3537. if (j == 0 && realsize > dma_reserve) {
  3538. realsize -= dma_reserve;
  3539. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3540. zone_names[0], dma_reserve);
  3541. }
  3542. if (!is_highmem_idx(j))
  3543. nr_kernel_pages += realsize;
  3544. nr_all_pages += realsize;
  3545. zone->spanned_pages = size;
  3546. zone->present_pages = realsize;
  3547. #ifdef CONFIG_NUMA
  3548. zone->node = nid;
  3549. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3550. / 100;
  3551. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3552. #endif
  3553. zone->name = zone_names[j];
  3554. spin_lock_init(&zone->lock);
  3555. spin_lock_init(&zone->lru_lock);
  3556. zone_seqlock_init(zone);
  3557. zone->zone_pgdat = pgdat;
  3558. zone_pcp_init(zone);
  3559. for_each_lru(l) {
  3560. INIT_LIST_HEAD(&zone->lru[l].list);
  3561. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3562. }
  3563. zone->reclaim_stat.recent_rotated[0] = 0;
  3564. zone->reclaim_stat.recent_rotated[1] = 0;
  3565. zone->reclaim_stat.recent_scanned[0] = 0;
  3566. zone->reclaim_stat.recent_scanned[1] = 0;
  3567. zap_zone_vm_stats(zone);
  3568. zone->flags = 0;
  3569. if (!size)
  3570. continue;
  3571. set_pageblock_order(pageblock_default_order());
  3572. setup_usemap(pgdat, zone, size);
  3573. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3574. size, MEMMAP_EARLY);
  3575. BUG_ON(ret);
  3576. memmap_init(size, nid, j, zone_start_pfn);
  3577. zone_start_pfn += size;
  3578. }
  3579. }
  3580. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3581. {
  3582. /* Skip empty nodes */
  3583. if (!pgdat->node_spanned_pages)
  3584. return;
  3585. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3586. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3587. if (!pgdat->node_mem_map) {
  3588. unsigned long size, start, end;
  3589. struct page *map;
  3590. /*
  3591. * The zone's endpoints aren't required to be MAX_ORDER
  3592. * aligned but the node_mem_map endpoints must be in order
  3593. * for the buddy allocator to function correctly.
  3594. */
  3595. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3596. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3597. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3598. size = (end - start) * sizeof(struct page);
  3599. map = alloc_remap(pgdat->node_id, size);
  3600. if (!map)
  3601. map = alloc_bootmem_node(pgdat, size);
  3602. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3603. }
  3604. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3605. /*
  3606. * With no DISCONTIG, the global mem_map is just set as node 0's
  3607. */
  3608. if (pgdat == NODE_DATA(0)) {
  3609. mem_map = NODE_DATA(0)->node_mem_map;
  3610. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3611. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3612. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3613. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3614. }
  3615. #endif
  3616. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3617. }
  3618. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3619. unsigned long node_start_pfn, unsigned long *zholes_size)
  3620. {
  3621. pg_data_t *pgdat = NODE_DATA(nid);
  3622. pgdat->node_id = nid;
  3623. pgdat->node_start_pfn = node_start_pfn;
  3624. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3625. alloc_node_mem_map(pgdat);
  3626. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3627. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3628. nid, (unsigned long)pgdat,
  3629. (unsigned long)pgdat->node_mem_map);
  3630. #endif
  3631. free_area_init_core(pgdat, zones_size, zholes_size);
  3632. }
  3633. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3634. #if MAX_NUMNODES > 1
  3635. /*
  3636. * Figure out the number of possible node ids.
  3637. */
  3638. static void __init setup_nr_node_ids(void)
  3639. {
  3640. unsigned int node;
  3641. unsigned int highest = 0;
  3642. for_each_node_mask(node, node_possible_map)
  3643. highest = node;
  3644. nr_node_ids = highest + 1;
  3645. }
  3646. #else
  3647. static inline void setup_nr_node_ids(void)
  3648. {
  3649. }
  3650. #endif
  3651. /**
  3652. * add_active_range - Register a range of PFNs backed by physical memory
  3653. * @nid: The node ID the range resides on
  3654. * @start_pfn: The start PFN of the available physical memory
  3655. * @end_pfn: The end PFN of the available physical memory
  3656. *
  3657. * These ranges are stored in an early_node_map[] and later used by
  3658. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3659. * range spans a memory hole, it is up to the architecture to ensure
  3660. * the memory is not freed by the bootmem allocator. If possible
  3661. * the range being registered will be merged with existing ranges.
  3662. */
  3663. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3664. unsigned long end_pfn)
  3665. {
  3666. int i;
  3667. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3668. "Entering add_active_range(%d, %#lx, %#lx) "
  3669. "%d entries of %d used\n",
  3670. nid, start_pfn, end_pfn,
  3671. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3672. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3673. /* Merge with existing active regions if possible */
  3674. for (i = 0; i < nr_nodemap_entries; i++) {
  3675. if (early_node_map[i].nid != nid)
  3676. continue;
  3677. /* Skip if an existing region covers this new one */
  3678. if (start_pfn >= early_node_map[i].start_pfn &&
  3679. end_pfn <= early_node_map[i].end_pfn)
  3680. return;
  3681. /* Merge forward if suitable */
  3682. if (start_pfn <= early_node_map[i].end_pfn &&
  3683. end_pfn > early_node_map[i].end_pfn) {
  3684. early_node_map[i].end_pfn = end_pfn;
  3685. return;
  3686. }
  3687. /* Merge backward if suitable */
  3688. if (start_pfn < early_node_map[i].start_pfn &&
  3689. end_pfn >= early_node_map[i].start_pfn) {
  3690. early_node_map[i].start_pfn = start_pfn;
  3691. return;
  3692. }
  3693. }
  3694. /* Check that early_node_map is large enough */
  3695. if (i >= MAX_ACTIVE_REGIONS) {
  3696. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3697. MAX_ACTIVE_REGIONS);
  3698. return;
  3699. }
  3700. early_node_map[i].nid = nid;
  3701. early_node_map[i].start_pfn = start_pfn;
  3702. early_node_map[i].end_pfn = end_pfn;
  3703. nr_nodemap_entries = i + 1;
  3704. }
  3705. /**
  3706. * remove_active_range - Shrink an existing registered range of PFNs
  3707. * @nid: The node id the range is on that should be shrunk
  3708. * @start_pfn: The new PFN of the range
  3709. * @end_pfn: The new PFN of the range
  3710. *
  3711. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3712. * The map is kept near the end physical page range that has already been
  3713. * registered. This function allows an arch to shrink an existing registered
  3714. * range.
  3715. */
  3716. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3717. unsigned long end_pfn)
  3718. {
  3719. int i, j;
  3720. int removed = 0;
  3721. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3722. nid, start_pfn, end_pfn);
  3723. /* Find the old active region end and shrink */
  3724. for_each_active_range_index_in_nid(i, nid) {
  3725. if (early_node_map[i].start_pfn >= start_pfn &&
  3726. early_node_map[i].end_pfn <= end_pfn) {
  3727. /* clear it */
  3728. early_node_map[i].start_pfn = 0;
  3729. early_node_map[i].end_pfn = 0;
  3730. removed = 1;
  3731. continue;
  3732. }
  3733. if (early_node_map[i].start_pfn < start_pfn &&
  3734. early_node_map[i].end_pfn > start_pfn) {
  3735. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3736. early_node_map[i].end_pfn = start_pfn;
  3737. if (temp_end_pfn > end_pfn)
  3738. add_active_range(nid, end_pfn, temp_end_pfn);
  3739. continue;
  3740. }
  3741. if (early_node_map[i].start_pfn >= start_pfn &&
  3742. early_node_map[i].end_pfn > end_pfn &&
  3743. early_node_map[i].start_pfn < end_pfn) {
  3744. early_node_map[i].start_pfn = end_pfn;
  3745. continue;
  3746. }
  3747. }
  3748. if (!removed)
  3749. return;
  3750. /* remove the blank ones */
  3751. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3752. if (early_node_map[i].nid != nid)
  3753. continue;
  3754. if (early_node_map[i].end_pfn)
  3755. continue;
  3756. /* we found it, get rid of it */
  3757. for (j = i; j < nr_nodemap_entries - 1; j++)
  3758. memcpy(&early_node_map[j], &early_node_map[j+1],
  3759. sizeof(early_node_map[j]));
  3760. j = nr_nodemap_entries - 1;
  3761. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3762. nr_nodemap_entries--;
  3763. }
  3764. }
  3765. /**
  3766. * remove_all_active_ranges - Remove all currently registered regions
  3767. *
  3768. * During discovery, it may be found that a table like SRAT is invalid
  3769. * and an alternative discovery method must be used. This function removes
  3770. * all currently registered regions.
  3771. */
  3772. void __init remove_all_active_ranges(void)
  3773. {
  3774. memset(early_node_map, 0, sizeof(early_node_map));
  3775. nr_nodemap_entries = 0;
  3776. }
  3777. /* Compare two active node_active_regions */
  3778. static int __init cmp_node_active_region(const void *a, const void *b)
  3779. {
  3780. struct node_active_region *arange = (struct node_active_region *)a;
  3781. struct node_active_region *brange = (struct node_active_region *)b;
  3782. /* Done this way to avoid overflows */
  3783. if (arange->start_pfn > brange->start_pfn)
  3784. return 1;
  3785. if (arange->start_pfn < brange->start_pfn)
  3786. return -1;
  3787. return 0;
  3788. }
  3789. /* sort the node_map by start_pfn */
  3790. void __init sort_node_map(void)
  3791. {
  3792. sort(early_node_map, (size_t)nr_nodemap_entries,
  3793. sizeof(struct node_active_region),
  3794. cmp_node_active_region, NULL);
  3795. }
  3796. /* Find the lowest pfn for a node */
  3797. static unsigned long __init find_min_pfn_for_node(int nid)
  3798. {
  3799. int i;
  3800. unsigned long min_pfn = ULONG_MAX;
  3801. /* Assuming a sorted map, the first range found has the starting pfn */
  3802. for_each_active_range_index_in_nid(i, nid)
  3803. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3804. if (min_pfn == ULONG_MAX) {
  3805. printk(KERN_WARNING
  3806. "Could not find start_pfn for node %d\n", nid);
  3807. return 0;
  3808. }
  3809. return min_pfn;
  3810. }
  3811. /**
  3812. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3813. *
  3814. * It returns the minimum PFN based on information provided via
  3815. * add_active_range().
  3816. */
  3817. unsigned long __init find_min_pfn_with_active_regions(void)
  3818. {
  3819. return find_min_pfn_for_node(MAX_NUMNODES);
  3820. }
  3821. /*
  3822. * early_calculate_totalpages()
  3823. * Sum pages in active regions for movable zone.
  3824. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3825. */
  3826. static unsigned long __init early_calculate_totalpages(void)
  3827. {
  3828. int i;
  3829. unsigned long totalpages = 0;
  3830. for (i = 0; i < nr_nodemap_entries; i++) {
  3831. unsigned long pages = early_node_map[i].end_pfn -
  3832. early_node_map[i].start_pfn;
  3833. totalpages += pages;
  3834. if (pages)
  3835. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3836. }
  3837. return totalpages;
  3838. }
  3839. /*
  3840. * Find the PFN the Movable zone begins in each node. Kernel memory
  3841. * is spread evenly between nodes as long as the nodes have enough
  3842. * memory. When they don't, some nodes will have more kernelcore than
  3843. * others
  3844. */
  3845. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3846. {
  3847. int i, nid;
  3848. unsigned long usable_startpfn;
  3849. unsigned long kernelcore_node, kernelcore_remaining;
  3850. /* save the state before borrow the nodemask */
  3851. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3852. unsigned long totalpages = early_calculate_totalpages();
  3853. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3854. /*
  3855. * If movablecore was specified, calculate what size of
  3856. * kernelcore that corresponds so that memory usable for
  3857. * any allocation type is evenly spread. If both kernelcore
  3858. * and movablecore are specified, then the value of kernelcore
  3859. * will be used for required_kernelcore if it's greater than
  3860. * what movablecore would have allowed.
  3861. */
  3862. if (required_movablecore) {
  3863. unsigned long corepages;
  3864. /*
  3865. * Round-up so that ZONE_MOVABLE is at least as large as what
  3866. * was requested by the user
  3867. */
  3868. required_movablecore =
  3869. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3870. corepages = totalpages - required_movablecore;
  3871. required_kernelcore = max(required_kernelcore, corepages);
  3872. }
  3873. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3874. if (!required_kernelcore)
  3875. goto out;
  3876. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3877. find_usable_zone_for_movable();
  3878. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3879. restart:
  3880. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3881. kernelcore_node = required_kernelcore / usable_nodes;
  3882. for_each_node_state(nid, N_HIGH_MEMORY) {
  3883. /*
  3884. * Recalculate kernelcore_node if the division per node
  3885. * now exceeds what is necessary to satisfy the requested
  3886. * amount of memory for the kernel
  3887. */
  3888. if (required_kernelcore < kernelcore_node)
  3889. kernelcore_node = required_kernelcore / usable_nodes;
  3890. /*
  3891. * As the map is walked, we track how much memory is usable
  3892. * by the kernel using kernelcore_remaining. When it is
  3893. * 0, the rest of the node is usable by ZONE_MOVABLE
  3894. */
  3895. kernelcore_remaining = kernelcore_node;
  3896. /* Go through each range of PFNs within this node */
  3897. for_each_active_range_index_in_nid(i, nid) {
  3898. unsigned long start_pfn, end_pfn;
  3899. unsigned long size_pages;
  3900. start_pfn = max(early_node_map[i].start_pfn,
  3901. zone_movable_pfn[nid]);
  3902. end_pfn = early_node_map[i].end_pfn;
  3903. if (start_pfn >= end_pfn)
  3904. continue;
  3905. /* Account for what is only usable for kernelcore */
  3906. if (start_pfn < usable_startpfn) {
  3907. unsigned long kernel_pages;
  3908. kernel_pages = min(end_pfn, usable_startpfn)
  3909. - start_pfn;
  3910. kernelcore_remaining -= min(kernel_pages,
  3911. kernelcore_remaining);
  3912. required_kernelcore -= min(kernel_pages,
  3913. required_kernelcore);
  3914. /* Continue if range is now fully accounted */
  3915. if (end_pfn <= usable_startpfn) {
  3916. /*
  3917. * Push zone_movable_pfn to the end so
  3918. * that if we have to rebalance
  3919. * kernelcore across nodes, we will
  3920. * not double account here
  3921. */
  3922. zone_movable_pfn[nid] = end_pfn;
  3923. continue;
  3924. }
  3925. start_pfn = usable_startpfn;
  3926. }
  3927. /*
  3928. * The usable PFN range for ZONE_MOVABLE is from
  3929. * start_pfn->end_pfn. Calculate size_pages as the
  3930. * number of pages used as kernelcore
  3931. */
  3932. size_pages = end_pfn - start_pfn;
  3933. if (size_pages > kernelcore_remaining)
  3934. size_pages = kernelcore_remaining;
  3935. zone_movable_pfn[nid] = start_pfn + size_pages;
  3936. /*
  3937. * Some kernelcore has been met, update counts and
  3938. * break if the kernelcore for this node has been
  3939. * satisified
  3940. */
  3941. required_kernelcore -= min(required_kernelcore,
  3942. size_pages);
  3943. kernelcore_remaining -= size_pages;
  3944. if (!kernelcore_remaining)
  3945. break;
  3946. }
  3947. }
  3948. /*
  3949. * If there is still required_kernelcore, we do another pass with one
  3950. * less node in the count. This will push zone_movable_pfn[nid] further
  3951. * along on the nodes that still have memory until kernelcore is
  3952. * satisified
  3953. */
  3954. usable_nodes--;
  3955. if (usable_nodes && required_kernelcore > usable_nodes)
  3956. goto restart;
  3957. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3958. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3959. zone_movable_pfn[nid] =
  3960. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3961. out:
  3962. /* restore the node_state */
  3963. node_states[N_HIGH_MEMORY] = saved_node_state;
  3964. }
  3965. /* Any regular memory on that node ? */
  3966. static void check_for_regular_memory(pg_data_t *pgdat)
  3967. {
  3968. #ifdef CONFIG_HIGHMEM
  3969. enum zone_type zone_type;
  3970. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3971. struct zone *zone = &pgdat->node_zones[zone_type];
  3972. if (zone->present_pages)
  3973. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3974. }
  3975. #endif
  3976. }
  3977. /**
  3978. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3979. * @max_zone_pfn: an array of max PFNs for each zone
  3980. *
  3981. * This will call free_area_init_node() for each active node in the system.
  3982. * Using the page ranges provided by add_active_range(), the size of each
  3983. * zone in each node and their holes is calculated. If the maximum PFN
  3984. * between two adjacent zones match, it is assumed that the zone is empty.
  3985. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3986. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3987. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3988. * at arch_max_dma_pfn.
  3989. */
  3990. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3991. {
  3992. unsigned long nid;
  3993. int i;
  3994. /* Sort early_node_map as initialisation assumes it is sorted */
  3995. sort_node_map();
  3996. /* Record where the zone boundaries are */
  3997. memset(arch_zone_lowest_possible_pfn, 0,
  3998. sizeof(arch_zone_lowest_possible_pfn));
  3999. memset(arch_zone_highest_possible_pfn, 0,
  4000. sizeof(arch_zone_highest_possible_pfn));
  4001. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4002. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4003. for (i = 1; i < MAX_NR_ZONES; i++) {
  4004. if (i == ZONE_MOVABLE)
  4005. continue;
  4006. arch_zone_lowest_possible_pfn[i] =
  4007. arch_zone_highest_possible_pfn[i-1];
  4008. arch_zone_highest_possible_pfn[i] =
  4009. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4010. }
  4011. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4012. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4013. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4014. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4015. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4016. /* Print out the zone ranges */
  4017. printk("Zone PFN ranges:\n");
  4018. for (i = 0; i < MAX_NR_ZONES; i++) {
  4019. if (i == ZONE_MOVABLE)
  4020. continue;
  4021. printk(" %-8s ", zone_names[i]);
  4022. if (arch_zone_lowest_possible_pfn[i] ==
  4023. arch_zone_highest_possible_pfn[i])
  4024. printk("empty\n");
  4025. else
  4026. printk("%0#10lx -> %0#10lx\n",
  4027. arch_zone_lowest_possible_pfn[i],
  4028. arch_zone_highest_possible_pfn[i]);
  4029. }
  4030. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4031. printk("Movable zone start PFN for each node\n");
  4032. for (i = 0; i < MAX_NUMNODES; i++) {
  4033. if (zone_movable_pfn[i])
  4034. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4035. }
  4036. /* Print out the early_node_map[] */
  4037. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4038. for (i = 0; i < nr_nodemap_entries; i++)
  4039. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4040. early_node_map[i].start_pfn,
  4041. early_node_map[i].end_pfn);
  4042. /* Initialise every node */
  4043. mminit_verify_pageflags_layout();
  4044. setup_nr_node_ids();
  4045. for_each_online_node(nid) {
  4046. pg_data_t *pgdat = NODE_DATA(nid);
  4047. free_area_init_node(nid, NULL,
  4048. find_min_pfn_for_node(nid), NULL);
  4049. /* Any memory on that node */
  4050. if (pgdat->node_present_pages)
  4051. node_set_state(nid, N_HIGH_MEMORY);
  4052. check_for_regular_memory(pgdat);
  4053. }
  4054. }
  4055. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4056. {
  4057. unsigned long long coremem;
  4058. if (!p)
  4059. return -EINVAL;
  4060. coremem = memparse(p, &p);
  4061. *core = coremem >> PAGE_SHIFT;
  4062. /* Paranoid check that UL is enough for the coremem value */
  4063. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4064. return 0;
  4065. }
  4066. /*
  4067. * kernelcore=size sets the amount of memory for use for allocations that
  4068. * cannot be reclaimed or migrated.
  4069. */
  4070. static int __init cmdline_parse_kernelcore(char *p)
  4071. {
  4072. return cmdline_parse_core(p, &required_kernelcore);
  4073. }
  4074. /*
  4075. * movablecore=size sets the amount of memory for use for allocations that
  4076. * can be reclaimed or migrated.
  4077. */
  4078. static int __init cmdline_parse_movablecore(char *p)
  4079. {
  4080. return cmdline_parse_core(p, &required_movablecore);
  4081. }
  4082. early_param("kernelcore", cmdline_parse_kernelcore);
  4083. early_param("movablecore", cmdline_parse_movablecore);
  4084. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4085. /**
  4086. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4087. * @new_dma_reserve: The number of pages to mark reserved
  4088. *
  4089. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4090. * In the DMA zone, a significant percentage may be consumed by kernel image
  4091. * and other unfreeable allocations which can skew the watermarks badly. This
  4092. * function may optionally be used to account for unfreeable pages in the
  4093. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4094. * smaller per-cpu batchsize.
  4095. */
  4096. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4097. {
  4098. dma_reserve = new_dma_reserve;
  4099. }
  4100. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4101. struct pglist_data __refdata contig_page_data = {
  4102. #ifndef CONFIG_NO_BOOTMEM
  4103. .bdata = &bootmem_node_data[0]
  4104. #endif
  4105. };
  4106. EXPORT_SYMBOL(contig_page_data);
  4107. #endif
  4108. void __init free_area_init(unsigned long *zones_size)
  4109. {
  4110. free_area_init_node(0, zones_size,
  4111. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4112. }
  4113. static int page_alloc_cpu_notify(struct notifier_block *self,
  4114. unsigned long action, void *hcpu)
  4115. {
  4116. int cpu = (unsigned long)hcpu;
  4117. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4118. drain_pages(cpu);
  4119. /*
  4120. * Spill the event counters of the dead processor
  4121. * into the current processors event counters.
  4122. * This artificially elevates the count of the current
  4123. * processor.
  4124. */
  4125. vm_events_fold_cpu(cpu);
  4126. /*
  4127. * Zero the differential counters of the dead processor
  4128. * so that the vm statistics are consistent.
  4129. *
  4130. * This is only okay since the processor is dead and cannot
  4131. * race with what we are doing.
  4132. */
  4133. refresh_cpu_vm_stats(cpu);
  4134. }
  4135. return NOTIFY_OK;
  4136. }
  4137. void __init page_alloc_init(void)
  4138. {
  4139. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4140. }
  4141. /*
  4142. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4143. * or min_free_kbytes changes.
  4144. */
  4145. static void calculate_totalreserve_pages(void)
  4146. {
  4147. struct pglist_data *pgdat;
  4148. unsigned long reserve_pages = 0;
  4149. enum zone_type i, j;
  4150. for_each_online_pgdat(pgdat) {
  4151. for (i = 0; i < MAX_NR_ZONES; i++) {
  4152. struct zone *zone = pgdat->node_zones + i;
  4153. unsigned long max = 0;
  4154. /* Find valid and maximum lowmem_reserve in the zone */
  4155. for (j = i; j < MAX_NR_ZONES; j++) {
  4156. if (zone->lowmem_reserve[j] > max)
  4157. max = zone->lowmem_reserve[j];
  4158. }
  4159. /* we treat the high watermark as reserved pages. */
  4160. max += high_wmark_pages(zone);
  4161. if (max > zone->present_pages)
  4162. max = zone->present_pages;
  4163. reserve_pages += max;
  4164. }
  4165. }
  4166. totalreserve_pages = reserve_pages;
  4167. }
  4168. /*
  4169. * setup_per_zone_lowmem_reserve - called whenever
  4170. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4171. * has a correct pages reserved value, so an adequate number of
  4172. * pages are left in the zone after a successful __alloc_pages().
  4173. */
  4174. static void setup_per_zone_lowmem_reserve(void)
  4175. {
  4176. struct pglist_data *pgdat;
  4177. enum zone_type j, idx;
  4178. for_each_online_pgdat(pgdat) {
  4179. for (j = 0; j < MAX_NR_ZONES; j++) {
  4180. struct zone *zone = pgdat->node_zones + j;
  4181. unsigned long present_pages = zone->present_pages;
  4182. zone->lowmem_reserve[j] = 0;
  4183. idx = j;
  4184. while (idx) {
  4185. struct zone *lower_zone;
  4186. idx--;
  4187. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4188. sysctl_lowmem_reserve_ratio[idx] = 1;
  4189. lower_zone = pgdat->node_zones + idx;
  4190. lower_zone->lowmem_reserve[j] = present_pages /
  4191. sysctl_lowmem_reserve_ratio[idx];
  4192. present_pages += lower_zone->present_pages;
  4193. }
  4194. }
  4195. }
  4196. /* update totalreserve_pages */
  4197. calculate_totalreserve_pages();
  4198. }
  4199. /**
  4200. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4201. * or when memory is hot-{added|removed}
  4202. *
  4203. * Ensures that the watermark[min,low,high] values for each zone are set
  4204. * correctly with respect to min_free_kbytes.
  4205. */
  4206. void setup_per_zone_wmarks(void)
  4207. {
  4208. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4209. unsigned long lowmem_pages = 0;
  4210. struct zone *zone;
  4211. unsigned long flags;
  4212. /* Calculate total number of !ZONE_HIGHMEM pages */
  4213. for_each_zone(zone) {
  4214. if (!is_highmem(zone))
  4215. lowmem_pages += zone->present_pages;
  4216. }
  4217. for_each_zone(zone) {
  4218. u64 tmp;
  4219. spin_lock_irqsave(&zone->lock, flags);
  4220. tmp = (u64)pages_min * zone->present_pages;
  4221. do_div(tmp, lowmem_pages);
  4222. if (is_highmem(zone)) {
  4223. /*
  4224. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4225. * need highmem pages, so cap pages_min to a small
  4226. * value here.
  4227. *
  4228. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4229. * deltas controls asynch page reclaim, and so should
  4230. * not be capped for highmem.
  4231. */
  4232. int min_pages;
  4233. min_pages = zone->present_pages / 1024;
  4234. if (min_pages < SWAP_CLUSTER_MAX)
  4235. min_pages = SWAP_CLUSTER_MAX;
  4236. if (min_pages > 128)
  4237. min_pages = 128;
  4238. zone->watermark[WMARK_MIN] = min_pages;
  4239. } else {
  4240. /*
  4241. * If it's a lowmem zone, reserve a number of pages
  4242. * proportionate to the zone's size.
  4243. */
  4244. zone->watermark[WMARK_MIN] = tmp;
  4245. }
  4246. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4247. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4248. setup_zone_migrate_reserve(zone);
  4249. spin_unlock_irqrestore(&zone->lock, flags);
  4250. }
  4251. /* update totalreserve_pages */
  4252. calculate_totalreserve_pages();
  4253. }
  4254. /*
  4255. * The inactive anon list should be small enough that the VM never has to
  4256. * do too much work, but large enough that each inactive page has a chance
  4257. * to be referenced again before it is swapped out.
  4258. *
  4259. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4260. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4261. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4262. * the anonymous pages are kept on the inactive list.
  4263. *
  4264. * total target max
  4265. * memory ratio inactive anon
  4266. * -------------------------------------
  4267. * 10MB 1 5MB
  4268. * 100MB 1 50MB
  4269. * 1GB 3 250MB
  4270. * 10GB 10 0.9GB
  4271. * 100GB 31 3GB
  4272. * 1TB 101 10GB
  4273. * 10TB 320 32GB
  4274. */
  4275. void calculate_zone_inactive_ratio(struct zone *zone)
  4276. {
  4277. unsigned int gb, ratio;
  4278. /* Zone size in gigabytes */
  4279. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4280. if (gb)
  4281. ratio = int_sqrt(10 * gb);
  4282. else
  4283. ratio = 1;
  4284. zone->inactive_ratio = ratio;
  4285. }
  4286. static void __init setup_per_zone_inactive_ratio(void)
  4287. {
  4288. struct zone *zone;
  4289. for_each_zone(zone)
  4290. calculate_zone_inactive_ratio(zone);
  4291. }
  4292. /*
  4293. * Initialise min_free_kbytes.
  4294. *
  4295. * For small machines we want it small (128k min). For large machines
  4296. * we want it large (64MB max). But it is not linear, because network
  4297. * bandwidth does not increase linearly with machine size. We use
  4298. *
  4299. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4300. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4301. *
  4302. * which yields
  4303. *
  4304. * 16MB: 512k
  4305. * 32MB: 724k
  4306. * 64MB: 1024k
  4307. * 128MB: 1448k
  4308. * 256MB: 2048k
  4309. * 512MB: 2896k
  4310. * 1024MB: 4096k
  4311. * 2048MB: 5792k
  4312. * 4096MB: 8192k
  4313. * 8192MB: 11584k
  4314. * 16384MB: 16384k
  4315. */
  4316. static int __init init_per_zone_wmark_min(void)
  4317. {
  4318. unsigned long lowmem_kbytes;
  4319. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4320. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4321. if (min_free_kbytes < 128)
  4322. min_free_kbytes = 128;
  4323. if (min_free_kbytes > 65536)
  4324. min_free_kbytes = 65536;
  4325. setup_per_zone_wmarks();
  4326. setup_per_zone_lowmem_reserve();
  4327. setup_per_zone_inactive_ratio();
  4328. return 0;
  4329. }
  4330. module_init(init_per_zone_wmark_min)
  4331. /*
  4332. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4333. * that we can call two helper functions whenever min_free_kbytes
  4334. * changes.
  4335. */
  4336. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4337. void __user *buffer, size_t *length, loff_t *ppos)
  4338. {
  4339. proc_dointvec(table, write, buffer, length, ppos);
  4340. if (write)
  4341. setup_per_zone_wmarks();
  4342. return 0;
  4343. }
  4344. #ifdef CONFIG_NUMA
  4345. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4346. void __user *buffer, size_t *length, loff_t *ppos)
  4347. {
  4348. struct zone *zone;
  4349. int rc;
  4350. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4351. if (rc)
  4352. return rc;
  4353. for_each_zone(zone)
  4354. zone->min_unmapped_pages = (zone->present_pages *
  4355. sysctl_min_unmapped_ratio) / 100;
  4356. return 0;
  4357. }
  4358. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4359. void __user *buffer, size_t *length, loff_t *ppos)
  4360. {
  4361. struct zone *zone;
  4362. int rc;
  4363. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4364. if (rc)
  4365. return rc;
  4366. for_each_zone(zone)
  4367. zone->min_slab_pages = (zone->present_pages *
  4368. sysctl_min_slab_ratio) / 100;
  4369. return 0;
  4370. }
  4371. #endif
  4372. /*
  4373. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4374. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4375. * whenever sysctl_lowmem_reserve_ratio changes.
  4376. *
  4377. * The reserve ratio obviously has absolutely no relation with the
  4378. * minimum watermarks. The lowmem reserve ratio can only make sense
  4379. * if in function of the boot time zone sizes.
  4380. */
  4381. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4382. void __user *buffer, size_t *length, loff_t *ppos)
  4383. {
  4384. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4385. setup_per_zone_lowmem_reserve();
  4386. return 0;
  4387. }
  4388. /*
  4389. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4390. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4391. * can have before it gets flushed back to buddy allocator.
  4392. */
  4393. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4394. void __user *buffer, size_t *length, loff_t *ppos)
  4395. {
  4396. struct zone *zone;
  4397. unsigned int cpu;
  4398. int ret;
  4399. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4400. if (!write || (ret == -EINVAL))
  4401. return ret;
  4402. for_each_populated_zone(zone) {
  4403. for_each_possible_cpu(cpu) {
  4404. unsigned long high;
  4405. high = zone->present_pages / percpu_pagelist_fraction;
  4406. setup_pagelist_highmark(
  4407. per_cpu_ptr(zone->pageset, cpu), high);
  4408. }
  4409. }
  4410. return 0;
  4411. }
  4412. int hashdist = HASHDIST_DEFAULT;
  4413. #ifdef CONFIG_NUMA
  4414. static int __init set_hashdist(char *str)
  4415. {
  4416. if (!str)
  4417. return 0;
  4418. hashdist = simple_strtoul(str, &str, 0);
  4419. return 1;
  4420. }
  4421. __setup("hashdist=", set_hashdist);
  4422. #endif
  4423. /*
  4424. * allocate a large system hash table from bootmem
  4425. * - it is assumed that the hash table must contain an exact power-of-2
  4426. * quantity of entries
  4427. * - limit is the number of hash buckets, not the total allocation size
  4428. */
  4429. void *__init alloc_large_system_hash(const char *tablename,
  4430. unsigned long bucketsize,
  4431. unsigned long numentries,
  4432. int scale,
  4433. int flags,
  4434. unsigned int *_hash_shift,
  4435. unsigned int *_hash_mask,
  4436. unsigned long limit)
  4437. {
  4438. unsigned long long max = limit;
  4439. unsigned long log2qty, size;
  4440. void *table = NULL;
  4441. /* allow the kernel cmdline to have a say */
  4442. if (!numentries) {
  4443. /* round applicable memory size up to nearest megabyte */
  4444. numentries = nr_kernel_pages;
  4445. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4446. numentries >>= 20 - PAGE_SHIFT;
  4447. numentries <<= 20 - PAGE_SHIFT;
  4448. /* limit to 1 bucket per 2^scale bytes of low memory */
  4449. if (scale > PAGE_SHIFT)
  4450. numentries >>= (scale - PAGE_SHIFT);
  4451. else
  4452. numentries <<= (PAGE_SHIFT - scale);
  4453. /* Make sure we've got at least a 0-order allocation.. */
  4454. if (unlikely(flags & HASH_SMALL)) {
  4455. /* Makes no sense without HASH_EARLY */
  4456. WARN_ON(!(flags & HASH_EARLY));
  4457. if (!(numentries >> *_hash_shift)) {
  4458. numentries = 1UL << *_hash_shift;
  4459. BUG_ON(!numentries);
  4460. }
  4461. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4462. numentries = PAGE_SIZE / bucketsize;
  4463. }
  4464. numentries = roundup_pow_of_two(numentries);
  4465. /* limit allocation size to 1/16 total memory by default */
  4466. if (max == 0) {
  4467. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4468. do_div(max, bucketsize);
  4469. }
  4470. if (numentries > max)
  4471. numentries = max;
  4472. log2qty = ilog2(numentries);
  4473. do {
  4474. size = bucketsize << log2qty;
  4475. if (flags & HASH_EARLY)
  4476. table = alloc_bootmem_nopanic(size);
  4477. else if (hashdist)
  4478. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4479. else {
  4480. /*
  4481. * If bucketsize is not a power-of-two, we may free
  4482. * some pages at the end of hash table which
  4483. * alloc_pages_exact() automatically does
  4484. */
  4485. if (get_order(size) < MAX_ORDER) {
  4486. table = alloc_pages_exact(size, GFP_ATOMIC);
  4487. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4488. }
  4489. }
  4490. } while (!table && size > PAGE_SIZE && --log2qty);
  4491. if (!table)
  4492. panic("Failed to allocate %s hash table\n", tablename);
  4493. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4494. tablename,
  4495. (1UL << log2qty),
  4496. ilog2(size) - PAGE_SHIFT,
  4497. size);
  4498. if (_hash_shift)
  4499. *_hash_shift = log2qty;
  4500. if (_hash_mask)
  4501. *_hash_mask = (1 << log2qty) - 1;
  4502. return table;
  4503. }
  4504. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4505. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4506. unsigned long pfn)
  4507. {
  4508. #ifdef CONFIG_SPARSEMEM
  4509. return __pfn_to_section(pfn)->pageblock_flags;
  4510. #else
  4511. return zone->pageblock_flags;
  4512. #endif /* CONFIG_SPARSEMEM */
  4513. }
  4514. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4515. {
  4516. #ifdef CONFIG_SPARSEMEM
  4517. pfn &= (PAGES_PER_SECTION-1);
  4518. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4519. #else
  4520. pfn = pfn - zone->zone_start_pfn;
  4521. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4522. #endif /* CONFIG_SPARSEMEM */
  4523. }
  4524. /**
  4525. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4526. * @page: The page within the block of interest
  4527. * @start_bitidx: The first bit of interest to retrieve
  4528. * @end_bitidx: The last bit of interest
  4529. * returns pageblock_bits flags
  4530. */
  4531. unsigned long get_pageblock_flags_group(struct page *page,
  4532. int start_bitidx, int end_bitidx)
  4533. {
  4534. struct zone *zone;
  4535. unsigned long *bitmap;
  4536. unsigned long pfn, bitidx;
  4537. unsigned long flags = 0;
  4538. unsigned long value = 1;
  4539. zone = page_zone(page);
  4540. pfn = page_to_pfn(page);
  4541. bitmap = get_pageblock_bitmap(zone, pfn);
  4542. bitidx = pfn_to_bitidx(zone, pfn);
  4543. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4544. if (test_bit(bitidx + start_bitidx, bitmap))
  4545. flags |= value;
  4546. return flags;
  4547. }
  4548. /**
  4549. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4550. * @page: The page within the block of interest
  4551. * @start_bitidx: The first bit of interest
  4552. * @end_bitidx: The last bit of interest
  4553. * @flags: The flags to set
  4554. */
  4555. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4556. int start_bitidx, int end_bitidx)
  4557. {
  4558. struct zone *zone;
  4559. unsigned long *bitmap;
  4560. unsigned long pfn, bitidx;
  4561. unsigned long value = 1;
  4562. zone = page_zone(page);
  4563. pfn = page_to_pfn(page);
  4564. bitmap = get_pageblock_bitmap(zone, pfn);
  4565. bitidx = pfn_to_bitidx(zone, pfn);
  4566. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4567. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4568. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4569. if (flags & value)
  4570. __set_bit(bitidx + start_bitidx, bitmap);
  4571. else
  4572. __clear_bit(bitidx + start_bitidx, bitmap);
  4573. }
  4574. /*
  4575. * This is designed as sub function...plz see page_isolation.c also.
  4576. * set/clear page block's type to be ISOLATE.
  4577. * page allocater never alloc memory from ISOLATE block.
  4578. */
  4579. static int
  4580. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4581. {
  4582. unsigned long pfn, iter, found;
  4583. /*
  4584. * For avoiding noise data, lru_add_drain_all() should be called
  4585. * If ZONE_MOVABLE, the zone never contains immobile pages
  4586. */
  4587. if (zone_idx(zone) == ZONE_MOVABLE)
  4588. return true;
  4589. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4590. return true;
  4591. pfn = page_to_pfn(page);
  4592. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4593. unsigned long check = pfn + iter;
  4594. if (!pfn_valid_within(check)) {
  4595. iter++;
  4596. continue;
  4597. }
  4598. page = pfn_to_page(check);
  4599. if (!page_count(page)) {
  4600. if (PageBuddy(page))
  4601. iter += (1 << page_order(page)) - 1;
  4602. continue;
  4603. }
  4604. if (!PageLRU(page))
  4605. found++;
  4606. /*
  4607. * If there are RECLAIMABLE pages, we need to check it.
  4608. * But now, memory offline itself doesn't call shrink_slab()
  4609. * and it still to be fixed.
  4610. */
  4611. /*
  4612. * If the page is not RAM, page_count()should be 0.
  4613. * we don't need more check. This is an _used_ not-movable page.
  4614. *
  4615. * The problematic thing here is PG_reserved pages. PG_reserved
  4616. * is set to both of a memory hole page and a _used_ kernel
  4617. * page at boot.
  4618. */
  4619. if (found > count)
  4620. return false;
  4621. }
  4622. return true;
  4623. }
  4624. bool is_pageblock_removable_nolock(struct page *page)
  4625. {
  4626. struct zone *zone = page_zone(page);
  4627. return __count_immobile_pages(zone, page, 0);
  4628. }
  4629. int set_migratetype_isolate(struct page *page)
  4630. {
  4631. struct zone *zone;
  4632. unsigned long flags, pfn;
  4633. struct memory_isolate_notify arg;
  4634. int notifier_ret;
  4635. int ret = -EBUSY;
  4636. int zone_idx;
  4637. zone = page_zone(page);
  4638. zone_idx = zone_idx(zone);
  4639. spin_lock_irqsave(&zone->lock, flags);
  4640. pfn = page_to_pfn(page);
  4641. arg.start_pfn = pfn;
  4642. arg.nr_pages = pageblock_nr_pages;
  4643. arg.pages_found = 0;
  4644. /*
  4645. * It may be possible to isolate a pageblock even if the
  4646. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4647. * notifier chain is used by balloon drivers to return the
  4648. * number of pages in a range that are held by the balloon
  4649. * driver to shrink memory. If all the pages are accounted for
  4650. * by balloons, are free, or on the LRU, isolation can continue.
  4651. * Later, for example, when memory hotplug notifier runs, these
  4652. * pages reported as "can be isolated" should be isolated(freed)
  4653. * by the balloon driver through the memory notifier chain.
  4654. */
  4655. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4656. notifier_ret = notifier_to_errno(notifier_ret);
  4657. if (notifier_ret)
  4658. goto out;
  4659. /*
  4660. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4661. * We just check MOVABLE pages.
  4662. */
  4663. if (__count_immobile_pages(zone, page, arg.pages_found))
  4664. ret = 0;
  4665. /*
  4666. * immobile means "not-on-lru" paes. If immobile is larger than
  4667. * removable-by-driver pages reported by notifier, we'll fail.
  4668. */
  4669. out:
  4670. if (!ret) {
  4671. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4672. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4673. }
  4674. spin_unlock_irqrestore(&zone->lock, flags);
  4675. if (!ret)
  4676. drain_all_pages();
  4677. return ret;
  4678. }
  4679. void unset_migratetype_isolate(struct page *page)
  4680. {
  4681. struct zone *zone;
  4682. unsigned long flags;
  4683. zone = page_zone(page);
  4684. spin_lock_irqsave(&zone->lock, flags);
  4685. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4686. goto out;
  4687. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4688. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4689. out:
  4690. spin_unlock_irqrestore(&zone->lock, flags);
  4691. }
  4692. #ifdef CONFIG_MEMORY_HOTREMOVE
  4693. /*
  4694. * All pages in the range must be isolated before calling this.
  4695. */
  4696. void
  4697. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4698. {
  4699. struct page *page;
  4700. struct zone *zone;
  4701. int order, i;
  4702. unsigned long pfn;
  4703. unsigned long flags;
  4704. /* find the first valid pfn */
  4705. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4706. if (pfn_valid(pfn))
  4707. break;
  4708. if (pfn == end_pfn)
  4709. return;
  4710. zone = page_zone(pfn_to_page(pfn));
  4711. spin_lock_irqsave(&zone->lock, flags);
  4712. pfn = start_pfn;
  4713. while (pfn < end_pfn) {
  4714. if (!pfn_valid(pfn)) {
  4715. pfn++;
  4716. continue;
  4717. }
  4718. page = pfn_to_page(pfn);
  4719. BUG_ON(page_count(page));
  4720. BUG_ON(!PageBuddy(page));
  4721. order = page_order(page);
  4722. #ifdef CONFIG_DEBUG_VM
  4723. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4724. pfn, 1 << order, end_pfn);
  4725. #endif
  4726. list_del(&page->lru);
  4727. rmv_page_order(page);
  4728. zone->free_area[order].nr_free--;
  4729. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4730. - (1UL << order));
  4731. for (i = 0; i < (1 << order); i++)
  4732. SetPageReserved((page+i));
  4733. pfn += (1 << order);
  4734. }
  4735. spin_unlock_irqrestore(&zone->lock, flags);
  4736. }
  4737. #endif
  4738. #ifdef CONFIG_MEMORY_FAILURE
  4739. bool is_free_buddy_page(struct page *page)
  4740. {
  4741. struct zone *zone = page_zone(page);
  4742. unsigned long pfn = page_to_pfn(page);
  4743. unsigned long flags;
  4744. int order;
  4745. spin_lock_irqsave(&zone->lock, flags);
  4746. for (order = 0; order < MAX_ORDER; order++) {
  4747. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4748. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4749. break;
  4750. }
  4751. spin_unlock_irqrestore(&zone->lock, flags);
  4752. return order < MAX_ORDER;
  4753. }
  4754. #endif
  4755. static struct trace_print_flags pageflag_names[] = {
  4756. {1UL << PG_locked, "locked" },
  4757. {1UL << PG_error, "error" },
  4758. {1UL << PG_referenced, "referenced" },
  4759. {1UL << PG_uptodate, "uptodate" },
  4760. {1UL << PG_dirty, "dirty" },
  4761. {1UL << PG_lru, "lru" },
  4762. {1UL << PG_active, "active" },
  4763. {1UL << PG_slab, "slab" },
  4764. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4765. {1UL << PG_arch_1, "arch_1" },
  4766. {1UL << PG_reserved, "reserved" },
  4767. {1UL << PG_private, "private" },
  4768. {1UL << PG_private_2, "private_2" },
  4769. {1UL << PG_writeback, "writeback" },
  4770. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4771. {1UL << PG_head, "head" },
  4772. {1UL << PG_tail, "tail" },
  4773. #else
  4774. {1UL << PG_compound, "compound" },
  4775. #endif
  4776. {1UL << PG_swapcache, "swapcache" },
  4777. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4778. {1UL << PG_reclaim, "reclaim" },
  4779. {1UL << PG_buddy, "buddy" },
  4780. {1UL << PG_swapbacked, "swapbacked" },
  4781. {1UL << PG_unevictable, "unevictable" },
  4782. #ifdef CONFIG_MMU
  4783. {1UL << PG_mlocked, "mlocked" },
  4784. #endif
  4785. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4786. {1UL << PG_uncached, "uncached" },
  4787. #endif
  4788. #ifdef CONFIG_MEMORY_FAILURE
  4789. {1UL << PG_hwpoison, "hwpoison" },
  4790. #endif
  4791. {-1UL, NULL },
  4792. };
  4793. static void dump_page_flags(unsigned long flags)
  4794. {
  4795. const char *delim = "";
  4796. unsigned long mask;
  4797. int i;
  4798. printk(KERN_ALERT "page flags: %#lx(", flags);
  4799. /* remove zone id */
  4800. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4801. for (i = 0; pageflag_names[i].name && flags; i++) {
  4802. mask = pageflag_names[i].mask;
  4803. if ((flags & mask) != mask)
  4804. continue;
  4805. flags &= ~mask;
  4806. printk("%s%s", delim, pageflag_names[i].name);
  4807. delim = "|";
  4808. }
  4809. /* check for left over flags */
  4810. if (flags)
  4811. printk("%s%#lx", delim, flags);
  4812. printk(")\n");
  4813. }
  4814. void dump_page(struct page *page)
  4815. {
  4816. printk(KERN_ALERT
  4817. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4818. page, page_count(page), page_mapcount(page),
  4819. page->mapping, page->index);
  4820. dump_page_flags(page->flags);
  4821. }