memory.c 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  349. {
  350. pgtable_t new = pte_alloc_one(mm, address);
  351. if (!new)
  352. return -ENOMEM;
  353. /*
  354. * Ensure all pte setup (eg. pte page lock and page clearing) are
  355. * visible before the pte is made visible to other CPUs by being
  356. * put into page tables.
  357. *
  358. * The other side of the story is the pointer chasing in the page
  359. * table walking code (when walking the page table without locking;
  360. * ie. most of the time). Fortunately, these data accesses consist
  361. * of a chain of data-dependent loads, meaning most CPUs (alpha
  362. * being the notable exception) will already guarantee loads are
  363. * seen in-order. See the alpha page table accessors for the
  364. * smp_read_barrier_depends() barriers in page table walking code.
  365. */
  366. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  367. spin_lock(&mm->page_table_lock);
  368. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  369. mm->nr_ptes++;
  370. pmd_populate(mm, pmd, new);
  371. new = NULL;
  372. }
  373. spin_unlock(&mm->page_table_lock);
  374. if (new)
  375. pte_free(mm, new);
  376. return 0;
  377. }
  378. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  379. {
  380. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  381. if (!new)
  382. return -ENOMEM;
  383. smp_wmb(); /* See comment in __pte_alloc */
  384. spin_lock(&init_mm.page_table_lock);
  385. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  386. pmd_populate_kernel(&init_mm, pmd, new);
  387. new = NULL;
  388. }
  389. spin_unlock(&init_mm.page_table_lock);
  390. if (new)
  391. pte_free_kernel(&init_mm, new);
  392. return 0;
  393. }
  394. static inline void init_rss_vec(int *rss)
  395. {
  396. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  397. }
  398. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  399. {
  400. int i;
  401. if (current->mm == mm)
  402. sync_mm_rss(current, mm);
  403. for (i = 0; i < NR_MM_COUNTERS; i++)
  404. if (rss[i])
  405. add_mm_counter(mm, i, rss[i]);
  406. }
  407. /*
  408. * This function is called to print an error when a bad pte
  409. * is found. For example, we might have a PFN-mapped pte in
  410. * a region that doesn't allow it.
  411. *
  412. * The calling function must still handle the error.
  413. */
  414. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  415. pte_t pte, struct page *page)
  416. {
  417. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  418. pud_t *pud = pud_offset(pgd, addr);
  419. pmd_t *pmd = pmd_offset(pud, addr);
  420. struct address_space *mapping;
  421. pgoff_t index;
  422. static unsigned long resume;
  423. static unsigned long nr_shown;
  424. static unsigned long nr_unshown;
  425. /*
  426. * Allow a burst of 60 reports, then keep quiet for that minute;
  427. * or allow a steady drip of one report per second.
  428. */
  429. if (nr_shown == 60) {
  430. if (time_before(jiffies, resume)) {
  431. nr_unshown++;
  432. return;
  433. }
  434. if (nr_unshown) {
  435. printk(KERN_ALERT
  436. "BUG: Bad page map: %lu messages suppressed\n",
  437. nr_unshown);
  438. nr_unshown = 0;
  439. }
  440. nr_shown = 0;
  441. }
  442. if (nr_shown++ == 0)
  443. resume = jiffies + 60 * HZ;
  444. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  445. index = linear_page_index(vma, addr);
  446. printk(KERN_ALERT
  447. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  448. current->comm,
  449. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  450. if (page)
  451. dump_page(page);
  452. printk(KERN_ALERT
  453. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  454. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  455. /*
  456. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  457. */
  458. if (vma->vm_ops)
  459. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  460. (unsigned long)vma->vm_ops->fault);
  461. if (vma->vm_file && vma->vm_file->f_op)
  462. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  463. (unsigned long)vma->vm_file->f_op->mmap);
  464. dump_stack();
  465. add_taint(TAINT_BAD_PAGE);
  466. }
  467. static inline int is_cow_mapping(unsigned int flags)
  468. {
  469. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  470. }
  471. #ifndef is_zero_pfn
  472. static inline int is_zero_pfn(unsigned long pfn)
  473. {
  474. return pfn == zero_pfn;
  475. }
  476. #endif
  477. #ifndef my_zero_pfn
  478. static inline unsigned long my_zero_pfn(unsigned long addr)
  479. {
  480. return zero_pfn;
  481. }
  482. #endif
  483. /*
  484. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  485. *
  486. * "Special" mappings do not wish to be associated with a "struct page" (either
  487. * it doesn't exist, or it exists but they don't want to touch it). In this
  488. * case, NULL is returned here. "Normal" mappings do have a struct page.
  489. *
  490. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  491. * pte bit, in which case this function is trivial. Secondly, an architecture
  492. * may not have a spare pte bit, which requires a more complicated scheme,
  493. * described below.
  494. *
  495. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  496. * special mapping (even if there are underlying and valid "struct pages").
  497. * COWed pages of a VM_PFNMAP are always normal.
  498. *
  499. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  500. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  501. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  502. * mapping will always honor the rule
  503. *
  504. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  505. *
  506. * And for normal mappings this is false.
  507. *
  508. * This restricts such mappings to be a linear translation from virtual address
  509. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  510. * as the vma is not a COW mapping; in that case, we know that all ptes are
  511. * special (because none can have been COWed).
  512. *
  513. *
  514. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  515. *
  516. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  517. * page" backing, however the difference is that _all_ pages with a struct
  518. * page (that is, those where pfn_valid is true) are refcounted and considered
  519. * normal pages by the VM. The disadvantage is that pages are refcounted
  520. * (which can be slower and simply not an option for some PFNMAP users). The
  521. * advantage is that we don't have to follow the strict linearity rule of
  522. * PFNMAP mappings in order to support COWable mappings.
  523. *
  524. */
  525. #ifdef __HAVE_ARCH_PTE_SPECIAL
  526. # define HAVE_PTE_SPECIAL 1
  527. #else
  528. # define HAVE_PTE_SPECIAL 0
  529. #endif
  530. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  531. pte_t pte)
  532. {
  533. unsigned long pfn = pte_pfn(pte);
  534. if (HAVE_PTE_SPECIAL) {
  535. if (likely(!pte_special(pte)))
  536. goto check_pfn;
  537. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  538. return NULL;
  539. if (!is_zero_pfn(pfn))
  540. print_bad_pte(vma, addr, pte, NULL);
  541. return NULL;
  542. }
  543. /* !HAVE_PTE_SPECIAL case follows: */
  544. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  545. if (vma->vm_flags & VM_MIXEDMAP) {
  546. if (!pfn_valid(pfn))
  547. return NULL;
  548. goto out;
  549. } else {
  550. unsigned long off;
  551. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  552. if (pfn == vma->vm_pgoff + off)
  553. return NULL;
  554. if (!is_cow_mapping(vma->vm_flags))
  555. return NULL;
  556. }
  557. }
  558. if (is_zero_pfn(pfn))
  559. return NULL;
  560. check_pfn:
  561. if (unlikely(pfn > highest_memmap_pfn)) {
  562. print_bad_pte(vma, addr, pte, NULL);
  563. return NULL;
  564. }
  565. /*
  566. * NOTE! We still have PageReserved() pages in the page tables.
  567. * eg. VDSO mappings can cause them to exist.
  568. */
  569. out:
  570. return pfn_to_page(pfn);
  571. }
  572. /*
  573. * copy one vm_area from one task to the other. Assumes the page tables
  574. * already present in the new task to be cleared in the whole range
  575. * covered by this vma.
  576. */
  577. static inline unsigned long
  578. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  580. unsigned long addr, int *rss)
  581. {
  582. unsigned long vm_flags = vma->vm_flags;
  583. pte_t pte = *src_pte;
  584. struct page *page;
  585. /* pte contains position in swap or file, so copy. */
  586. if (unlikely(!pte_present(pte))) {
  587. if (!pte_file(pte)) {
  588. swp_entry_t entry = pte_to_swp_entry(pte);
  589. if (swap_duplicate(entry) < 0)
  590. return entry.val;
  591. /* make sure dst_mm is on swapoff's mmlist. */
  592. if (unlikely(list_empty(&dst_mm->mmlist))) {
  593. spin_lock(&mmlist_lock);
  594. if (list_empty(&dst_mm->mmlist))
  595. list_add(&dst_mm->mmlist,
  596. &src_mm->mmlist);
  597. spin_unlock(&mmlist_lock);
  598. }
  599. if (likely(!non_swap_entry(entry)))
  600. rss[MM_SWAPENTS]++;
  601. else if (is_write_migration_entry(entry) &&
  602. is_cow_mapping(vm_flags)) {
  603. /*
  604. * COW mappings require pages in both parent
  605. * and child to be set to read.
  606. */
  607. make_migration_entry_read(&entry);
  608. pte = swp_entry_to_pte(entry);
  609. set_pte_at(src_mm, addr, src_pte, pte);
  610. }
  611. }
  612. goto out_set_pte;
  613. }
  614. /*
  615. * If it's a COW mapping, write protect it both
  616. * in the parent and the child
  617. */
  618. if (is_cow_mapping(vm_flags)) {
  619. ptep_set_wrprotect(src_mm, addr, src_pte);
  620. pte = pte_wrprotect(pte);
  621. }
  622. /*
  623. * If it's a shared mapping, mark it clean in
  624. * the child
  625. */
  626. if (vm_flags & VM_SHARED)
  627. pte = pte_mkclean(pte);
  628. pte = pte_mkold(pte);
  629. page = vm_normal_page(vma, addr, pte);
  630. if (page) {
  631. get_page(page);
  632. page_dup_rmap(page);
  633. if (PageAnon(page))
  634. rss[MM_ANONPAGES]++;
  635. else
  636. rss[MM_FILEPAGES]++;
  637. }
  638. out_set_pte:
  639. set_pte_at(dst_mm, addr, dst_pte, pte);
  640. return 0;
  641. }
  642. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  643. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  644. unsigned long addr, unsigned long end)
  645. {
  646. pte_t *orig_src_pte, *orig_dst_pte;
  647. pte_t *src_pte, *dst_pte;
  648. spinlock_t *src_ptl, *dst_ptl;
  649. int progress = 0;
  650. int rss[NR_MM_COUNTERS];
  651. swp_entry_t entry = (swp_entry_t){0};
  652. again:
  653. init_rss_vec(rss);
  654. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  655. if (!dst_pte)
  656. return -ENOMEM;
  657. src_pte = pte_offset_map(src_pmd, addr);
  658. src_ptl = pte_lockptr(src_mm, src_pmd);
  659. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  660. orig_src_pte = src_pte;
  661. orig_dst_pte = dst_pte;
  662. arch_enter_lazy_mmu_mode();
  663. do {
  664. /*
  665. * We are holding two locks at this point - either of them
  666. * could generate latencies in another task on another CPU.
  667. */
  668. if (progress >= 32) {
  669. progress = 0;
  670. if (need_resched() ||
  671. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  672. break;
  673. }
  674. if (pte_none(*src_pte)) {
  675. progress++;
  676. continue;
  677. }
  678. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  679. vma, addr, rss);
  680. if (entry.val)
  681. break;
  682. progress += 8;
  683. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  684. arch_leave_lazy_mmu_mode();
  685. spin_unlock(src_ptl);
  686. pte_unmap(orig_src_pte);
  687. add_mm_rss_vec(dst_mm, rss);
  688. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  689. cond_resched();
  690. if (entry.val) {
  691. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  692. return -ENOMEM;
  693. progress = 0;
  694. }
  695. if (addr != end)
  696. goto again;
  697. return 0;
  698. }
  699. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  700. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  701. unsigned long addr, unsigned long end)
  702. {
  703. pmd_t *src_pmd, *dst_pmd;
  704. unsigned long next;
  705. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  706. if (!dst_pmd)
  707. return -ENOMEM;
  708. src_pmd = pmd_offset(src_pud, addr);
  709. do {
  710. next = pmd_addr_end(addr, end);
  711. if (pmd_none_or_clear_bad(src_pmd))
  712. continue;
  713. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  714. vma, addr, next))
  715. return -ENOMEM;
  716. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  717. return 0;
  718. }
  719. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  720. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  721. unsigned long addr, unsigned long end)
  722. {
  723. pud_t *src_pud, *dst_pud;
  724. unsigned long next;
  725. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  726. if (!dst_pud)
  727. return -ENOMEM;
  728. src_pud = pud_offset(src_pgd, addr);
  729. do {
  730. next = pud_addr_end(addr, end);
  731. if (pud_none_or_clear_bad(src_pud))
  732. continue;
  733. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  734. vma, addr, next))
  735. return -ENOMEM;
  736. } while (dst_pud++, src_pud++, addr = next, addr != end);
  737. return 0;
  738. }
  739. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  740. struct vm_area_struct *vma)
  741. {
  742. pgd_t *src_pgd, *dst_pgd;
  743. unsigned long next;
  744. unsigned long addr = vma->vm_start;
  745. unsigned long end = vma->vm_end;
  746. int ret;
  747. /*
  748. * Don't copy ptes where a page fault will fill them correctly.
  749. * Fork becomes much lighter when there are big shared or private
  750. * readonly mappings. The tradeoff is that copy_page_range is more
  751. * efficient than faulting.
  752. */
  753. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  754. if (!vma->anon_vma)
  755. return 0;
  756. }
  757. if (is_vm_hugetlb_page(vma))
  758. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  759. if (unlikely(is_pfn_mapping(vma))) {
  760. /*
  761. * We do not free on error cases below as remove_vma
  762. * gets called on error from higher level routine
  763. */
  764. ret = track_pfn_vma_copy(vma);
  765. if (ret)
  766. return ret;
  767. }
  768. /*
  769. * We need to invalidate the secondary MMU mappings only when
  770. * there could be a permission downgrade on the ptes of the
  771. * parent mm. And a permission downgrade will only happen if
  772. * is_cow_mapping() returns true.
  773. */
  774. if (is_cow_mapping(vma->vm_flags))
  775. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  776. ret = 0;
  777. dst_pgd = pgd_offset(dst_mm, addr);
  778. src_pgd = pgd_offset(src_mm, addr);
  779. do {
  780. next = pgd_addr_end(addr, end);
  781. if (pgd_none_or_clear_bad(src_pgd))
  782. continue;
  783. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  784. vma, addr, next))) {
  785. ret = -ENOMEM;
  786. break;
  787. }
  788. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  789. if (is_cow_mapping(vma->vm_flags))
  790. mmu_notifier_invalidate_range_end(src_mm,
  791. vma->vm_start, end);
  792. return ret;
  793. }
  794. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  795. struct vm_area_struct *vma, pmd_t *pmd,
  796. unsigned long addr, unsigned long end,
  797. long *zap_work, struct zap_details *details)
  798. {
  799. struct mm_struct *mm = tlb->mm;
  800. pte_t *pte;
  801. spinlock_t *ptl;
  802. int rss[NR_MM_COUNTERS];
  803. init_rss_vec(rss);
  804. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  805. arch_enter_lazy_mmu_mode();
  806. do {
  807. pte_t ptent = *pte;
  808. if (pte_none(ptent)) {
  809. (*zap_work)--;
  810. continue;
  811. }
  812. (*zap_work) -= PAGE_SIZE;
  813. if (pte_present(ptent)) {
  814. struct page *page;
  815. page = vm_normal_page(vma, addr, ptent);
  816. if (unlikely(details) && page) {
  817. /*
  818. * unmap_shared_mapping_pages() wants to
  819. * invalidate cache without truncating:
  820. * unmap shared but keep private pages.
  821. */
  822. if (details->check_mapping &&
  823. details->check_mapping != page->mapping)
  824. continue;
  825. /*
  826. * Each page->index must be checked when
  827. * invalidating or truncating nonlinear.
  828. */
  829. if (details->nonlinear_vma &&
  830. (page->index < details->first_index ||
  831. page->index > details->last_index))
  832. continue;
  833. }
  834. ptent = ptep_get_and_clear_full(mm, addr, pte,
  835. tlb->fullmm);
  836. tlb_remove_tlb_entry(tlb, pte, addr);
  837. if (unlikely(!page))
  838. continue;
  839. if (unlikely(details) && details->nonlinear_vma
  840. && linear_page_index(details->nonlinear_vma,
  841. addr) != page->index)
  842. set_pte_at(mm, addr, pte,
  843. pgoff_to_pte(page->index));
  844. if (PageAnon(page))
  845. rss[MM_ANONPAGES]--;
  846. else {
  847. if (pte_dirty(ptent))
  848. set_page_dirty(page);
  849. if (pte_young(ptent) &&
  850. likely(!VM_SequentialReadHint(vma)))
  851. mark_page_accessed(page);
  852. rss[MM_FILEPAGES]--;
  853. }
  854. page_remove_rmap(page);
  855. if (unlikely(page_mapcount(page) < 0))
  856. print_bad_pte(vma, addr, ptent, page);
  857. tlb_remove_page(tlb, page);
  858. continue;
  859. }
  860. /*
  861. * If details->check_mapping, we leave swap entries;
  862. * if details->nonlinear_vma, we leave file entries.
  863. */
  864. if (unlikely(details))
  865. continue;
  866. if (pte_file(ptent)) {
  867. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  868. print_bad_pte(vma, addr, ptent, NULL);
  869. } else {
  870. swp_entry_t entry = pte_to_swp_entry(ptent);
  871. if (!non_swap_entry(entry))
  872. rss[MM_SWAPENTS]--;
  873. if (unlikely(!free_swap_and_cache(entry)))
  874. print_bad_pte(vma, addr, ptent, NULL);
  875. }
  876. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  877. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  878. add_mm_rss_vec(mm, rss);
  879. arch_leave_lazy_mmu_mode();
  880. pte_unmap_unlock(pte - 1, ptl);
  881. return addr;
  882. }
  883. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  884. struct vm_area_struct *vma, pud_t *pud,
  885. unsigned long addr, unsigned long end,
  886. long *zap_work, struct zap_details *details)
  887. {
  888. pmd_t *pmd;
  889. unsigned long next;
  890. pmd = pmd_offset(pud, addr);
  891. do {
  892. next = pmd_addr_end(addr, end);
  893. if (pmd_none_or_clear_bad(pmd)) {
  894. (*zap_work)--;
  895. continue;
  896. }
  897. next = zap_pte_range(tlb, vma, pmd, addr, next,
  898. zap_work, details);
  899. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  900. return addr;
  901. }
  902. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  903. struct vm_area_struct *vma, pgd_t *pgd,
  904. unsigned long addr, unsigned long end,
  905. long *zap_work, struct zap_details *details)
  906. {
  907. pud_t *pud;
  908. unsigned long next;
  909. pud = pud_offset(pgd, addr);
  910. do {
  911. next = pud_addr_end(addr, end);
  912. if (pud_none_or_clear_bad(pud)) {
  913. (*zap_work)--;
  914. continue;
  915. }
  916. next = zap_pmd_range(tlb, vma, pud, addr, next,
  917. zap_work, details);
  918. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  919. return addr;
  920. }
  921. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  922. struct vm_area_struct *vma,
  923. unsigned long addr, unsigned long end,
  924. long *zap_work, struct zap_details *details)
  925. {
  926. pgd_t *pgd;
  927. unsigned long next;
  928. if (details && !details->check_mapping && !details->nonlinear_vma)
  929. details = NULL;
  930. BUG_ON(addr >= end);
  931. mem_cgroup_uncharge_start();
  932. tlb_start_vma(tlb, vma);
  933. pgd = pgd_offset(vma->vm_mm, addr);
  934. do {
  935. next = pgd_addr_end(addr, end);
  936. if (pgd_none_or_clear_bad(pgd)) {
  937. (*zap_work)--;
  938. continue;
  939. }
  940. next = zap_pud_range(tlb, vma, pgd, addr, next,
  941. zap_work, details);
  942. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  943. tlb_end_vma(tlb, vma);
  944. mem_cgroup_uncharge_end();
  945. return addr;
  946. }
  947. #ifdef CONFIG_PREEMPT
  948. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  949. #else
  950. /* No preempt: go for improved straight-line efficiency */
  951. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  952. #endif
  953. /**
  954. * unmap_vmas - unmap a range of memory covered by a list of vma's
  955. * @tlbp: address of the caller's struct mmu_gather
  956. * @vma: the starting vma
  957. * @start_addr: virtual address at which to start unmapping
  958. * @end_addr: virtual address at which to end unmapping
  959. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  960. * @details: details of nonlinear truncation or shared cache invalidation
  961. *
  962. * Returns the end address of the unmapping (restart addr if interrupted).
  963. *
  964. * Unmap all pages in the vma list.
  965. *
  966. * We aim to not hold locks for too long (for scheduling latency reasons).
  967. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  968. * return the ending mmu_gather to the caller.
  969. *
  970. * Only addresses between `start' and `end' will be unmapped.
  971. *
  972. * The VMA list must be sorted in ascending virtual address order.
  973. *
  974. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  975. * range after unmap_vmas() returns. So the only responsibility here is to
  976. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  977. * drops the lock and schedules.
  978. */
  979. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  980. struct vm_area_struct *vma, unsigned long start_addr,
  981. unsigned long end_addr, unsigned long *nr_accounted,
  982. struct zap_details *details)
  983. {
  984. long zap_work = ZAP_BLOCK_SIZE;
  985. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  986. int tlb_start_valid = 0;
  987. unsigned long start = start_addr;
  988. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  989. int fullmm = (*tlbp)->fullmm;
  990. struct mm_struct *mm = vma->vm_mm;
  991. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  992. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  993. unsigned long end;
  994. start = max(vma->vm_start, start_addr);
  995. if (start >= vma->vm_end)
  996. continue;
  997. end = min(vma->vm_end, end_addr);
  998. if (end <= vma->vm_start)
  999. continue;
  1000. if (vma->vm_flags & VM_ACCOUNT)
  1001. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1002. if (unlikely(is_pfn_mapping(vma)))
  1003. untrack_pfn_vma(vma, 0, 0);
  1004. while (start != end) {
  1005. if (!tlb_start_valid) {
  1006. tlb_start = start;
  1007. tlb_start_valid = 1;
  1008. }
  1009. if (unlikely(is_vm_hugetlb_page(vma))) {
  1010. /*
  1011. * It is undesirable to test vma->vm_file as it
  1012. * should be non-null for valid hugetlb area.
  1013. * However, vm_file will be NULL in the error
  1014. * cleanup path of do_mmap_pgoff. When
  1015. * hugetlbfs ->mmap method fails,
  1016. * do_mmap_pgoff() nullifies vma->vm_file
  1017. * before calling this function to clean up.
  1018. * Since no pte has actually been setup, it is
  1019. * safe to do nothing in this case.
  1020. */
  1021. if (vma->vm_file) {
  1022. unmap_hugepage_range(vma, start, end, NULL);
  1023. zap_work -= (end - start) /
  1024. pages_per_huge_page(hstate_vma(vma));
  1025. }
  1026. start = end;
  1027. } else
  1028. start = unmap_page_range(*tlbp, vma,
  1029. start, end, &zap_work, details);
  1030. if (zap_work > 0) {
  1031. BUG_ON(start != end);
  1032. break;
  1033. }
  1034. tlb_finish_mmu(*tlbp, tlb_start, start);
  1035. if (need_resched() ||
  1036. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1037. if (i_mmap_lock) {
  1038. *tlbp = NULL;
  1039. goto out;
  1040. }
  1041. cond_resched();
  1042. }
  1043. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1044. tlb_start_valid = 0;
  1045. zap_work = ZAP_BLOCK_SIZE;
  1046. }
  1047. }
  1048. out:
  1049. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1050. return start; /* which is now the end (or restart) address */
  1051. }
  1052. /**
  1053. * zap_page_range - remove user pages in a given range
  1054. * @vma: vm_area_struct holding the applicable pages
  1055. * @address: starting address of pages to zap
  1056. * @size: number of bytes to zap
  1057. * @details: details of nonlinear truncation or shared cache invalidation
  1058. */
  1059. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1060. unsigned long size, struct zap_details *details)
  1061. {
  1062. struct mm_struct *mm = vma->vm_mm;
  1063. struct mmu_gather *tlb;
  1064. unsigned long end = address + size;
  1065. unsigned long nr_accounted = 0;
  1066. lru_add_drain();
  1067. tlb = tlb_gather_mmu(mm, 0);
  1068. update_hiwater_rss(mm);
  1069. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1070. if (tlb)
  1071. tlb_finish_mmu(tlb, address, end);
  1072. return end;
  1073. }
  1074. /**
  1075. * zap_vma_ptes - remove ptes mapping the vma
  1076. * @vma: vm_area_struct holding ptes to be zapped
  1077. * @address: starting address of pages to zap
  1078. * @size: number of bytes to zap
  1079. *
  1080. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1081. *
  1082. * The entire address range must be fully contained within the vma.
  1083. *
  1084. * Returns 0 if successful.
  1085. */
  1086. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1087. unsigned long size)
  1088. {
  1089. if (address < vma->vm_start || address + size > vma->vm_end ||
  1090. !(vma->vm_flags & VM_PFNMAP))
  1091. return -1;
  1092. zap_page_range(vma, address, size, NULL);
  1093. return 0;
  1094. }
  1095. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1096. /**
  1097. * follow_page - look up a page descriptor from a user-virtual address
  1098. * @vma: vm_area_struct mapping @address
  1099. * @address: virtual address to look up
  1100. * @flags: flags modifying lookup behaviour
  1101. *
  1102. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1103. *
  1104. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1105. * an error pointer if there is a mapping to something not represented
  1106. * by a page descriptor (see also vm_normal_page()).
  1107. */
  1108. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1109. unsigned int flags)
  1110. {
  1111. pgd_t *pgd;
  1112. pud_t *pud;
  1113. pmd_t *pmd;
  1114. pte_t *ptep, pte;
  1115. spinlock_t *ptl;
  1116. struct page *page;
  1117. struct mm_struct *mm = vma->vm_mm;
  1118. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1119. if (!IS_ERR(page)) {
  1120. BUG_ON(flags & FOLL_GET);
  1121. goto out;
  1122. }
  1123. page = NULL;
  1124. pgd = pgd_offset(mm, address);
  1125. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1126. goto no_page_table;
  1127. pud = pud_offset(pgd, address);
  1128. if (pud_none(*pud))
  1129. goto no_page_table;
  1130. if (pud_huge(*pud)) {
  1131. BUG_ON(flags & FOLL_GET);
  1132. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1133. goto out;
  1134. }
  1135. if (unlikely(pud_bad(*pud)))
  1136. goto no_page_table;
  1137. pmd = pmd_offset(pud, address);
  1138. if (pmd_none(*pmd))
  1139. goto no_page_table;
  1140. if (pmd_huge(*pmd)) {
  1141. BUG_ON(flags & FOLL_GET);
  1142. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1143. goto out;
  1144. }
  1145. if (unlikely(pmd_bad(*pmd)))
  1146. goto no_page_table;
  1147. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1148. pte = *ptep;
  1149. if (!pte_present(pte))
  1150. goto no_page;
  1151. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1152. goto unlock;
  1153. page = vm_normal_page(vma, address, pte);
  1154. if (unlikely(!page)) {
  1155. if ((flags & FOLL_DUMP) ||
  1156. !is_zero_pfn(pte_pfn(pte)))
  1157. goto bad_page;
  1158. page = pte_page(pte);
  1159. }
  1160. if (flags & FOLL_GET)
  1161. get_page(page);
  1162. if (flags & FOLL_TOUCH) {
  1163. if ((flags & FOLL_WRITE) &&
  1164. !pte_dirty(pte) && !PageDirty(page))
  1165. set_page_dirty(page);
  1166. /*
  1167. * pte_mkyoung() would be more correct here, but atomic care
  1168. * is needed to avoid losing the dirty bit: it is easier to use
  1169. * mark_page_accessed().
  1170. */
  1171. mark_page_accessed(page);
  1172. }
  1173. unlock:
  1174. pte_unmap_unlock(ptep, ptl);
  1175. out:
  1176. return page;
  1177. bad_page:
  1178. pte_unmap_unlock(ptep, ptl);
  1179. return ERR_PTR(-EFAULT);
  1180. no_page:
  1181. pte_unmap_unlock(ptep, ptl);
  1182. if (!pte_none(pte))
  1183. return page;
  1184. no_page_table:
  1185. /*
  1186. * When core dumping an enormous anonymous area that nobody
  1187. * has touched so far, we don't want to allocate unnecessary pages or
  1188. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1189. * then get_dump_page() will return NULL to leave a hole in the dump.
  1190. * But we can only make this optimization where a hole would surely
  1191. * be zero-filled if handle_mm_fault() actually did handle it.
  1192. */
  1193. if ((flags & FOLL_DUMP) &&
  1194. (!vma->vm_ops || !vma->vm_ops->fault))
  1195. return ERR_PTR(-EFAULT);
  1196. return page;
  1197. }
  1198. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1199. unsigned long start, int nr_pages, unsigned int gup_flags,
  1200. struct page **pages, struct vm_area_struct **vmas)
  1201. {
  1202. int i;
  1203. unsigned long vm_flags;
  1204. if (nr_pages <= 0)
  1205. return 0;
  1206. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1207. /*
  1208. * Require read or write permissions.
  1209. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1210. */
  1211. vm_flags = (gup_flags & FOLL_WRITE) ?
  1212. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1213. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1214. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1215. i = 0;
  1216. do {
  1217. struct vm_area_struct *vma;
  1218. vma = find_extend_vma(mm, start);
  1219. if (!vma && in_gate_area(tsk, start)) {
  1220. unsigned long pg = start & PAGE_MASK;
  1221. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1222. pgd_t *pgd;
  1223. pud_t *pud;
  1224. pmd_t *pmd;
  1225. pte_t *pte;
  1226. /* user gate pages are read-only */
  1227. if (gup_flags & FOLL_WRITE)
  1228. return i ? : -EFAULT;
  1229. if (pg > TASK_SIZE)
  1230. pgd = pgd_offset_k(pg);
  1231. else
  1232. pgd = pgd_offset_gate(mm, pg);
  1233. BUG_ON(pgd_none(*pgd));
  1234. pud = pud_offset(pgd, pg);
  1235. BUG_ON(pud_none(*pud));
  1236. pmd = pmd_offset(pud, pg);
  1237. if (pmd_none(*pmd))
  1238. return i ? : -EFAULT;
  1239. pte = pte_offset_map(pmd, pg);
  1240. if (pte_none(*pte)) {
  1241. pte_unmap(pte);
  1242. return i ? : -EFAULT;
  1243. }
  1244. if (pages) {
  1245. struct page *page;
  1246. page = vm_normal_page(gate_vma, start, *pte);
  1247. if (!page) {
  1248. if (!(gup_flags & FOLL_DUMP) &&
  1249. is_zero_pfn(pte_pfn(*pte)))
  1250. page = pte_page(*pte);
  1251. else {
  1252. pte_unmap(pte);
  1253. return i ? : -EFAULT;
  1254. }
  1255. }
  1256. pages[i] = page;
  1257. get_page(page);
  1258. }
  1259. pte_unmap(pte);
  1260. if (vmas)
  1261. vmas[i] = gate_vma;
  1262. i++;
  1263. start += PAGE_SIZE;
  1264. nr_pages--;
  1265. continue;
  1266. }
  1267. if (!vma ||
  1268. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1269. !(vm_flags & vma->vm_flags))
  1270. return i ? : -EFAULT;
  1271. if (is_vm_hugetlb_page(vma)) {
  1272. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1273. &start, &nr_pages, i, gup_flags);
  1274. continue;
  1275. }
  1276. do {
  1277. struct page *page;
  1278. unsigned int foll_flags = gup_flags;
  1279. /*
  1280. * If we have a pending SIGKILL, don't keep faulting
  1281. * pages and potentially allocating memory.
  1282. */
  1283. if (unlikely(fatal_signal_pending(current)))
  1284. return i ? i : -ERESTARTSYS;
  1285. cond_resched();
  1286. while (!(page = follow_page(vma, start, foll_flags))) {
  1287. int ret;
  1288. ret = handle_mm_fault(mm, vma, start,
  1289. (foll_flags & FOLL_WRITE) ?
  1290. FAULT_FLAG_WRITE : 0);
  1291. if (ret & VM_FAULT_ERROR) {
  1292. if (ret & VM_FAULT_OOM)
  1293. return i ? i : -ENOMEM;
  1294. if (ret &
  1295. (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
  1296. VM_FAULT_SIGBUS))
  1297. return i ? i : -EFAULT;
  1298. BUG();
  1299. }
  1300. if (ret & VM_FAULT_MAJOR)
  1301. tsk->maj_flt++;
  1302. else
  1303. tsk->min_flt++;
  1304. /*
  1305. * The VM_FAULT_WRITE bit tells us that
  1306. * do_wp_page has broken COW when necessary,
  1307. * even if maybe_mkwrite decided not to set
  1308. * pte_write. We can thus safely do subsequent
  1309. * page lookups as if they were reads. But only
  1310. * do so when looping for pte_write is futile:
  1311. * in some cases userspace may also be wanting
  1312. * to write to the gotten user page, which a
  1313. * read fault here might prevent (a readonly
  1314. * page might get reCOWed by userspace write).
  1315. */
  1316. if ((ret & VM_FAULT_WRITE) &&
  1317. !(vma->vm_flags & VM_WRITE))
  1318. foll_flags &= ~FOLL_WRITE;
  1319. cond_resched();
  1320. }
  1321. if (IS_ERR(page))
  1322. return i ? i : PTR_ERR(page);
  1323. if (pages) {
  1324. pages[i] = page;
  1325. flush_anon_page(vma, page, start);
  1326. flush_dcache_page(page);
  1327. }
  1328. if (vmas)
  1329. vmas[i] = vma;
  1330. i++;
  1331. start += PAGE_SIZE;
  1332. nr_pages--;
  1333. } while (nr_pages && start < vma->vm_end);
  1334. } while (nr_pages);
  1335. return i;
  1336. }
  1337. /**
  1338. * get_user_pages() - pin user pages in memory
  1339. * @tsk: task_struct of target task
  1340. * @mm: mm_struct of target mm
  1341. * @start: starting user address
  1342. * @nr_pages: number of pages from start to pin
  1343. * @write: whether pages will be written to by the caller
  1344. * @force: whether to force write access even if user mapping is
  1345. * readonly. This will result in the page being COWed even
  1346. * in MAP_SHARED mappings. You do not want this.
  1347. * @pages: array that receives pointers to the pages pinned.
  1348. * Should be at least nr_pages long. Or NULL, if caller
  1349. * only intends to ensure the pages are faulted in.
  1350. * @vmas: array of pointers to vmas corresponding to each page.
  1351. * Or NULL if the caller does not require them.
  1352. *
  1353. * Returns number of pages pinned. This may be fewer than the number
  1354. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1355. * were pinned, returns -errno. Each page returned must be released
  1356. * with a put_page() call when it is finished with. vmas will only
  1357. * remain valid while mmap_sem is held.
  1358. *
  1359. * Must be called with mmap_sem held for read or write.
  1360. *
  1361. * get_user_pages walks a process's page tables and takes a reference to
  1362. * each struct page that each user address corresponds to at a given
  1363. * instant. That is, it takes the page that would be accessed if a user
  1364. * thread accesses the given user virtual address at that instant.
  1365. *
  1366. * This does not guarantee that the page exists in the user mappings when
  1367. * get_user_pages returns, and there may even be a completely different
  1368. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1369. * and subsequently re faulted). However it does guarantee that the page
  1370. * won't be freed completely. And mostly callers simply care that the page
  1371. * contains data that was valid *at some point in time*. Typically, an IO
  1372. * or similar operation cannot guarantee anything stronger anyway because
  1373. * locks can't be held over the syscall boundary.
  1374. *
  1375. * If write=0, the page must not be written to. If the page is written to,
  1376. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1377. * after the page is finished with, and before put_page is called.
  1378. *
  1379. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1380. * handle on the memory by some means other than accesses via the user virtual
  1381. * addresses. The pages may be submitted for DMA to devices or accessed via
  1382. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1383. * use the correct cache flushing APIs.
  1384. *
  1385. * See also get_user_pages_fast, for performance critical applications.
  1386. */
  1387. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1388. unsigned long start, int nr_pages, int write, int force,
  1389. struct page **pages, struct vm_area_struct **vmas)
  1390. {
  1391. int flags = FOLL_TOUCH;
  1392. if (pages)
  1393. flags |= FOLL_GET;
  1394. if (write)
  1395. flags |= FOLL_WRITE;
  1396. if (force)
  1397. flags |= FOLL_FORCE;
  1398. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1399. }
  1400. EXPORT_SYMBOL(get_user_pages);
  1401. /**
  1402. * get_dump_page() - pin user page in memory while writing it to core dump
  1403. * @addr: user address
  1404. *
  1405. * Returns struct page pointer of user page pinned for dump,
  1406. * to be freed afterwards by page_cache_release() or put_page().
  1407. *
  1408. * Returns NULL on any kind of failure - a hole must then be inserted into
  1409. * the corefile, to preserve alignment with its headers; and also returns
  1410. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1411. * allowing a hole to be left in the corefile to save diskspace.
  1412. *
  1413. * Called without mmap_sem, but after all other threads have been killed.
  1414. */
  1415. #ifdef CONFIG_ELF_CORE
  1416. struct page *get_dump_page(unsigned long addr)
  1417. {
  1418. struct vm_area_struct *vma;
  1419. struct page *page;
  1420. if (__get_user_pages(current, current->mm, addr, 1,
  1421. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1422. return NULL;
  1423. flush_cache_page(vma, addr, page_to_pfn(page));
  1424. return page;
  1425. }
  1426. #endif /* CONFIG_ELF_CORE */
  1427. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1428. spinlock_t **ptl)
  1429. {
  1430. pgd_t * pgd = pgd_offset(mm, addr);
  1431. pud_t * pud = pud_alloc(mm, pgd, addr);
  1432. if (pud) {
  1433. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1434. if (pmd)
  1435. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1436. }
  1437. return NULL;
  1438. }
  1439. /*
  1440. * This is the old fallback for page remapping.
  1441. *
  1442. * For historical reasons, it only allows reserved pages. Only
  1443. * old drivers should use this, and they needed to mark their
  1444. * pages reserved for the old functions anyway.
  1445. */
  1446. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1447. struct page *page, pgprot_t prot)
  1448. {
  1449. struct mm_struct *mm = vma->vm_mm;
  1450. int retval;
  1451. pte_t *pte;
  1452. spinlock_t *ptl;
  1453. retval = -EINVAL;
  1454. if (PageAnon(page))
  1455. goto out;
  1456. retval = -ENOMEM;
  1457. flush_dcache_page(page);
  1458. pte = get_locked_pte(mm, addr, &ptl);
  1459. if (!pte)
  1460. goto out;
  1461. retval = -EBUSY;
  1462. if (!pte_none(*pte))
  1463. goto out_unlock;
  1464. /* Ok, finally just insert the thing.. */
  1465. get_page(page);
  1466. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1467. page_add_file_rmap(page);
  1468. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1469. retval = 0;
  1470. pte_unmap_unlock(pte, ptl);
  1471. return retval;
  1472. out_unlock:
  1473. pte_unmap_unlock(pte, ptl);
  1474. out:
  1475. return retval;
  1476. }
  1477. /**
  1478. * vm_insert_page - insert single page into user vma
  1479. * @vma: user vma to map to
  1480. * @addr: target user address of this page
  1481. * @page: source kernel page
  1482. *
  1483. * This allows drivers to insert individual pages they've allocated
  1484. * into a user vma.
  1485. *
  1486. * The page has to be a nice clean _individual_ kernel allocation.
  1487. * If you allocate a compound page, you need to have marked it as
  1488. * such (__GFP_COMP), or manually just split the page up yourself
  1489. * (see split_page()).
  1490. *
  1491. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1492. * took an arbitrary page protection parameter. This doesn't allow
  1493. * that. Your vma protection will have to be set up correctly, which
  1494. * means that if you want a shared writable mapping, you'd better
  1495. * ask for a shared writable mapping!
  1496. *
  1497. * The page does not need to be reserved.
  1498. */
  1499. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1500. struct page *page)
  1501. {
  1502. if (addr < vma->vm_start || addr >= vma->vm_end)
  1503. return -EFAULT;
  1504. if (!page_count(page))
  1505. return -EINVAL;
  1506. vma->vm_flags |= VM_INSERTPAGE;
  1507. return insert_page(vma, addr, page, vma->vm_page_prot);
  1508. }
  1509. EXPORT_SYMBOL(vm_insert_page);
  1510. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1511. unsigned long pfn, pgprot_t prot)
  1512. {
  1513. struct mm_struct *mm = vma->vm_mm;
  1514. int retval;
  1515. pte_t *pte, entry;
  1516. spinlock_t *ptl;
  1517. retval = -ENOMEM;
  1518. pte = get_locked_pte(mm, addr, &ptl);
  1519. if (!pte)
  1520. goto out;
  1521. retval = -EBUSY;
  1522. if (!pte_none(*pte))
  1523. goto out_unlock;
  1524. /* Ok, finally just insert the thing.. */
  1525. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1526. set_pte_at(mm, addr, pte, entry);
  1527. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1528. retval = 0;
  1529. out_unlock:
  1530. pte_unmap_unlock(pte, ptl);
  1531. out:
  1532. return retval;
  1533. }
  1534. /**
  1535. * vm_insert_pfn - insert single pfn into user vma
  1536. * @vma: user vma to map to
  1537. * @addr: target user address of this page
  1538. * @pfn: source kernel pfn
  1539. *
  1540. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1541. * they've allocated into a user vma. Same comments apply.
  1542. *
  1543. * This function should only be called from a vm_ops->fault handler, and
  1544. * in that case the handler should return NULL.
  1545. *
  1546. * vma cannot be a COW mapping.
  1547. *
  1548. * As this is called only for pages that do not currently exist, we
  1549. * do not need to flush old virtual caches or the TLB.
  1550. */
  1551. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1552. unsigned long pfn)
  1553. {
  1554. int ret;
  1555. pgprot_t pgprot = vma->vm_page_prot;
  1556. /*
  1557. * Technically, architectures with pte_special can avoid all these
  1558. * restrictions (same for remap_pfn_range). However we would like
  1559. * consistency in testing and feature parity among all, so we should
  1560. * try to keep these invariants in place for everybody.
  1561. */
  1562. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1563. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1564. (VM_PFNMAP|VM_MIXEDMAP));
  1565. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1566. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1567. if (addr < vma->vm_start || addr >= vma->vm_end)
  1568. return -EFAULT;
  1569. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1570. return -EINVAL;
  1571. ret = insert_pfn(vma, addr, pfn, pgprot);
  1572. if (ret)
  1573. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1574. return ret;
  1575. }
  1576. EXPORT_SYMBOL(vm_insert_pfn);
  1577. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1578. unsigned long pfn)
  1579. {
  1580. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1581. if (addr < vma->vm_start || addr >= vma->vm_end)
  1582. return -EFAULT;
  1583. /*
  1584. * If we don't have pte special, then we have to use the pfn_valid()
  1585. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1586. * refcount the page if pfn_valid is true (hence insert_page rather
  1587. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1588. * without pte special, it would there be refcounted as a normal page.
  1589. */
  1590. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1591. struct page *page;
  1592. page = pfn_to_page(pfn);
  1593. return insert_page(vma, addr, page, vma->vm_page_prot);
  1594. }
  1595. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1596. }
  1597. EXPORT_SYMBOL(vm_insert_mixed);
  1598. /*
  1599. * maps a range of physical memory into the requested pages. the old
  1600. * mappings are removed. any references to nonexistent pages results
  1601. * in null mappings (currently treated as "copy-on-access")
  1602. */
  1603. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1604. unsigned long addr, unsigned long end,
  1605. unsigned long pfn, pgprot_t prot)
  1606. {
  1607. pte_t *pte;
  1608. spinlock_t *ptl;
  1609. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1610. if (!pte)
  1611. return -ENOMEM;
  1612. arch_enter_lazy_mmu_mode();
  1613. do {
  1614. BUG_ON(!pte_none(*pte));
  1615. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1616. pfn++;
  1617. } while (pte++, addr += PAGE_SIZE, addr != end);
  1618. arch_leave_lazy_mmu_mode();
  1619. pte_unmap_unlock(pte - 1, ptl);
  1620. return 0;
  1621. }
  1622. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1623. unsigned long addr, unsigned long end,
  1624. unsigned long pfn, pgprot_t prot)
  1625. {
  1626. pmd_t *pmd;
  1627. unsigned long next;
  1628. pfn -= addr >> PAGE_SHIFT;
  1629. pmd = pmd_alloc(mm, pud, addr);
  1630. if (!pmd)
  1631. return -ENOMEM;
  1632. do {
  1633. next = pmd_addr_end(addr, end);
  1634. if (remap_pte_range(mm, pmd, addr, next,
  1635. pfn + (addr >> PAGE_SHIFT), prot))
  1636. return -ENOMEM;
  1637. } while (pmd++, addr = next, addr != end);
  1638. return 0;
  1639. }
  1640. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1641. unsigned long addr, unsigned long end,
  1642. unsigned long pfn, pgprot_t prot)
  1643. {
  1644. pud_t *pud;
  1645. unsigned long next;
  1646. pfn -= addr >> PAGE_SHIFT;
  1647. pud = pud_alloc(mm, pgd, addr);
  1648. if (!pud)
  1649. return -ENOMEM;
  1650. do {
  1651. next = pud_addr_end(addr, end);
  1652. if (remap_pmd_range(mm, pud, addr, next,
  1653. pfn + (addr >> PAGE_SHIFT), prot))
  1654. return -ENOMEM;
  1655. } while (pud++, addr = next, addr != end);
  1656. return 0;
  1657. }
  1658. /**
  1659. * remap_pfn_range - remap kernel memory to userspace
  1660. * @vma: user vma to map to
  1661. * @addr: target user address to start at
  1662. * @pfn: physical address of kernel memory
  1663. * @size: size of map area
  1664. * @prot: page protection flags for this mapping
  1665. *
  1666. * Note: this is only safe if the mm semaphore is held when called.
  1667. */
  1668. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1669. unsigned long pfn, unsigned long size, pgprot_t prot)
  1670. {
  1671. pgd_t *pgd;
  1672. unsigned long next;
  1673. unsigned long end = addr + PAGE_ALIGN(size);
  1674. struct mm_struct *mm = vma->vm_mm;
  1675. int err;
  1676. /*
  1677. * Physically remapped pages are special. Tell the
  1678. * rest of the world about it:
  1679. * VM_IO tells people not to look at these pages
  1680. * (accesses can have side effects).
  1681. * VM_RESERVED is specified all over the place, because
  1682. * in 2.4 it kept swapout's vma scan off this vma; but
  1683. * in 2.6 the LRU scan won't even find its pages, so this
  1684. * flag means no more than count its pages in reserved_vm,
  1685. * and omit it from core dump, even when VM_IO turned off.
  1686. * VM_PFNMAP tells the core MM that the base pages are just
  1687. * raw PFN mappings, and do not have a "struct page" associated
  1688. * with them.
  1689. *
  1690. * There's a horrible special case to handle copy-on-write
  1691. * behaviour that some programs depend on. We mark the "original"
  1692. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1693. */
  1694. if (addr == vma->vm_start && end == vma->vm_end) {
  1695. vma->vm_pgoff = pfn;
  1696. vma->vm_flags |= VM_PFN_AT_MMAP;
  1697. } else if (is_cow_mapping(vma->vm_flags))
  1698. return -EINVAL;
  1699. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1700. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1701. if (err) {
  1702. /*
  1703. * To indicate that track_pfn related cleanup is not
  1704. * needed from higher level routine calling unmap_vmas
  1705. */
  1706. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1707. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1708. return -EINVAL;
  1709. }
  1710. BUG_ON(addr >= end);
  1711. pfn -= addr >> PAGE_SHIFT;
  1712. pgd = pgd_offset(mm, addr);
  1713. flush_cache_range(vma, addr, end);
  1714. do {
  1715. next = pgd_addr_end(addr, end);
  1716. err = remap_pud_range(mm, pgd, addr, next,
  1717. pfn + (addr >> PAGE_SHIFT), prot);
  1718. if (err)
  1719. break;
  1720. } while (pgd++, addr = next, addr != end);
  1721. if (err)
  1722. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1723. return err;
  1724. }
  1725. EXPORT_SYMBOL(remap_pfn_range);
  1726. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1727. unsigned long addr, unsigned long end,
  1728. pte_fn_t fn, void *data)
  1729. {
  1730. pte_t *pte;
  1731. int err;
  1732. pgtable_t token;
  1733. spinlock_t *uninitialized_var(ptl);
  1734. pte = (mm == &init_mm) ?
  1735. pte_alloc_kernel(pmd, addr) :
  1736. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1737. if (!pte)
  1738. return -ENOMEM;
  1739. BUG_ON(pmd_huge(*pmd));
  1740. arch_enter_lazy_mmu_mode();
  1741. token = pmd_pgtable(*pmd);
  1742. do {
  1743. err = fn(pte++, token, addr, data);
  1744. if (err)
  1745. break;
  1746. } while (addr += PAGE_SIZE, addr != end);
  1747. arch_leave_lazy_mmu_mode();
  1748. if (mm != &init_mm)
  1749. pte_unmap_unlock(pte-1, ptl);
  1750. return err;
  1751. }
  1752. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1753. unsigned long addr, unsigned long end,
  1754. pte_fn_t fn, void *data)
  1755. {
  1756. pmd_t *pmd;
  1757. unsigned long next;
  1758. int err;
  1759. BUG_ON(pud_huge(*pud));
  1760. pmd = pmd_alloc(mm, pud, addr);
  1761. if (!pmd)
  1762. return -ENOMEM;
  1763. do {
  1764. next = pmd_addr_end(addr, end);
  1765. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1766. if (err)
  1767. break;
  1768. } while (pmd++, addr = next, addr != end);
  1769. return err;
  1770. }
  1771. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1772. unsigned long addr, unsigned long end,
  1773. pte_fn_t fn, void *data)
  1774. {
  1775. pud_t *pud;
  1776. unsigned long next;
  1777. int err;
  1778. pud = pud_alloc(mm, pgd, addr);
  1779. if (!pud)
  1780. return -ENOMEM;
  1781. do {
  1782. next = pud_addr_end(addr, end);
  1783. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1784. if (err)
  1785. break;
  1786. } while (pud++, addr = next, addr != end);
  1787. return err;
  1788. }
  1789. /*
  1790. * Scan a region of virtual memory, filling in page tables as necessary
  1791. * and calling a provided function on each leaf page table.
  1792. */
  1793. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1794. unsigned long size, pte_fn_t fn, void *data)
  1795. {
  1796. pgd_t *pgd;
  1797. unsigned long next;
  1798. unsigned long end = addr + size;
  1799. int err;
  1800. BUG_ON(addr >= end);
  1801. pgd = pgd_offset(mm, addr);
  1802. do {
  1803. next = pgd_addr_end(addr, end);
  1804. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1805. if (err)
  1806. break;
  1807. } while (pgd++, addr = next, addr != end);
  1808. return err;
  1809. }
  1810. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1811. /*
  1812. * handle_pte_fault chooses page fault handler according to an entry
  1813. * which was read non-atomically. Before making any commitment, on
  1814. * those architectures or configurations (e.g. i386 with PAE) which
  1815. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1816. * must check under lock before unmapping the pte and proceeding
  1817. * (but do_wp_page is only called after already making such a check;
  1818. * and do_anonymous_page and do_no_page can safely check later on).
  1819. */
  1820. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1821. pte_t *page_table, pte_t orig_pte)
  1822. {
  1823. int same = 1;
  1824. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1825. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1826. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1827. spin_lock(ptl);
  1828. same = pte_same(*page_table, orig_pte);
  1829. spin_unlock(ptl);
  1830. }
  1831. #endif
  1832. pte_unmap(page_table);
  1833. return same;
  1834. }
  1835. /*
  1836. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1837. * servicing faults for write access. In the normal case, do always want
  1838. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1839. * that do not have writing enabled, when used by access_process_vm.
  1840. */
  1841. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1842. {
  1843. if (likely(vma->vm_flags & VM_WRITE))
  1844. pte = pte_mkwrite(pte);
  1845. return pte;
  1846. }
  1847. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1848. {
  1849. /*
  1850. * If the source page was a PFN mapping, we don't have
  1851. * a "struct page" for it. We do a best-effort copy by
  1852. * just copying from the original user address. If that
  1853. * fails, we just zero-fill it. Live with it.
  1854. */
  1855. if (unlikely(!src)) {
  1856. void *kaddr = kmap_atomic(dst, KM_USER0);
  1857. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1858. /*
  1859. * This really shouldn't fail, because the page is there
  1860. * in the page tables. But it might just be unreadable,
  1861. * in which case we just give up and fill the result with
  1862. * zeroes.
  1863. */
  1864. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1865. clear_page(kaddr);
  1866. kunmap_atomic(kaddr, KM_USER0);
  1867. flush_dcache_page(dst);
  1868. } else
  1869. copy_user_highpage(dst, src, va, vma);
  1870. }
  1871. /*
  1872. * This routine handles present pages, when users try to write
  1873. * to a shared page. It is done by copying the page to a new address
  1874. * and decrementing the shared-page counter for the old page.
  1875. *
  1876. * Note that this routine assumes that the protection checks have been
  1877. * done by the caller (the low-level page fault routine in most cases).
  1878. * Thus we can safely just mark it writable once we've done any necessary
  1879. * COW.
  1880. *
  1881. * We also mark the page dirty at this point even though the page will
  1882. * change only once the write actually happens. This avoids a few races,
  1883. * and potentially makes it more efficient.
  1884. *
  1885. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1886. * but allow concurrent faults), with pte both mapped and locked.
  1887. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1888. */
  1889. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1890. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1891. spinlock_t *ptl, pte_t orig_pte)
  1892. __releases(ptl)
  1893. {
  1894. struct page *old_page, *new_page;
  1895. pte_t entry;
  1896. int reuse = 0, ret = 0;
  1897. int page_mkwrite = 0;
  1898. struct page *dirty_page = NULL;
  1899. old_page = vm_normal_page(vma, address, orig_pte);
  1900. if (!old_page) {
  1901. /*
  1902. * VM_MIXEDMAP !pfn_valid() case
  1903. *
  1904. * We should not cow pages in a shared writeable mapping.
  1905. * Just mark the pages writable as we can't do any dirty
  1906. * accounting on raw pfn maps.
  1907. */
  1908. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1909. (VM_WRITE|VM_SHARED))
  1910. goto reuse;
  1911. goto gotten;
  1912. }
  1913. /*
  1914. * Take out anonymous pages first, anonymous shared vmas are
  1915. * not dirty accountable.
  1916. */
  1917. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1918. if (!trylock_page(old_page)) {
  1919. page_cache_get(old_page);
  1920. pte_unmap_unlock(page_table, ptl);
  1921. lock_page(old_page);
  1922. page_table = pte_offset_map_lock(mm, pmd, address,
  1923. &ptl);
  1924. if (!pte_same(*page_table, orig_pte)) {
  1925. unlock_page(old_page);
  1926. page_cache_release(old_page);
  1927. goto unlock;
  1928. }
  1929. page_cache_release(old_page);
  1930. }
  1931. reuse = reuse_swap_page(old_page);
  1932. if (reuse)
  1933. /*
  1934. * The page is all ours. Move it to our anon_vma so
  1935. * the rmap code will not search our parent or siblings.
  1936. * Protected against the rmap code by the page lock.
  1937. */
  1938. page_move_anon_rmap(old_page, vma, address);
  1939. unlock_page(old_page);
  1940. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1941. (VM_WRITE|VM_SHARED))) {
  1942. /*
  1943. * Only catch write-faults on shared writable pages,
  1944. * read-only shared pages can get COWed by
  1945. * get_user_pages(.write=1, .force=1).
  1946. */
  1947. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1948. struct vm_fault vmf;
  1949. int tmp;
  1950. vmf.virtual_address = (void __user *)(address &
  1951. PAGE_MASK);
  1952. vmf.pgoff = old_page->index;
  1953. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1954. vmf.page = old_page;
  1955. /*
  1956. * Notify the address space that the page is about to
  1957. * become writable so that it can prohibit this or wait
  1958. * for the page to get into an appropriate state.
  1959. *
  1960. * We do this without the lock held, so that it can
  1961. * sleep if it needs to.
  1962. */
  1963. page_cache_get(old_page);
  1964. pte_unmap_unlock(page_table, ptl);
  1965. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1966. if (unlikely(tmp &
  1967. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1968. ret = tmp;
  1969. goto unwritable_page;
  1970. }
  1971. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1972. lock_page(old_page);
  1973. if (!old_page->mapping) {
  1974. ret = 0; /* retry the fault */
  1975. unlock_page(old_page);
  1976. goto unwritable_page;
  1977. }
  1978. } else
  1979. VM_BUG_ON(!PageLocked(old_page));
  1980. /*
  1981. * Since we dropped the lock we need to revalidate
  1982. * the PTE as someone else may have changed it. If
  1983. * they did, we just return, as we can count on the
  1984. * MMU to tell us if they didn't also make it writable.
  1985. */
  1986. page_table = pte_offset_map_lock(mm, pmd, address,
  1987. &ptl);
  1988. if (!pte_same(*page_table, orig_pte)) {
  1989. unlock_page(old_page);
  1990. page_cache_release(old_page);
  1991. goto unlock;
  1992. }
  1993. page_mkwrite = 1;
  1994. }
  1995. dirty_page = old_page;
  1996. get_page(dirty_page);
  1997. reuse = 1;
  1998. }
  1999. if (reuse) {
  2000. reuse:
  2001. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2002. entry = pte_mkyoung(orig_pte);
  2003. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2004. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2005. update_mmu_cache(vma, address, page_table);
  2006. ret |= VM_FAULT_WRITE;
  2007. goto unlock;
  2008. }
  2009. /*
  2010. * Ok, we need to copy. Oh, well..
  2011. */
  2012. page_cache_get(old_page);
  2013. gotten:
  2014. pte_unmap_unlock(page_table, ptl);
  2015. if (unlikely(anon_vma_prepare(vma)))
  2016. goto oom;
  2017. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2018. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2019. if (!new_page)
  2020. goto oom;
  2021. } else {
  2022. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2023. if (!new_page)
  2024. goto oom;
  2025. cow_user_page(new_page, old_page, address, vma);
  2026. }
  2027. __SetPageUptodate(new_page);
  2028. /*
  2029. * Don't let another task, with possibly unlocked vma,
  2030. * keep the mlocked page.
  2031. */
  2032. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2033. lock_page(old_page); /* for LRU manipulation */
  2034. clear_page_mlock(old_page);
  2035. unlock_page(old_page);
  2036. }
  2037. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2038. goto oom_free_new;
  2039. /*
  2040. * Re-check the pte - we dropped the lock
  2041. */
  2042. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2043. if (likely(pte_same(*page_table, orig_pte))) {
  2044. if (old_page) {
  2045. if (!PageAnon(old_page)) {
  2046. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2047. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2048. }
  2049. } else
  2050. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2051. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2052. entry = mk_pte(new_page, vma->vm_page_prot);
  2053. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2054. /*
  2055. * Clear the pte entry and flush it first, before updating the
  2056. * pte with the new entry. This will avoid a race condition
  2057. * seen in the presence of one thread doing SMC and another
  2058. * thread doing COW.
  2059. */
  2060. ptep_clear_flush(vma, address, page_table);
  2061. page_add_new_anon_rmap(new_page, vma, address);
  2062. /*
  2063. * We call the notify macro here because, when using secondary
  2064. * mmu page tables (such as kvm shadow page tables), we want the
  2065. * new page to be mapped directly into the secondary page table.
  2066. */
  2067. set_pte_at_notify(mm, address, page_table, entry);
  2068. update_mmu_cache(vma, address, page_table);
  2069. if (old_page) {
  2070. /*
  2071. * Only after switching the pte to the new page may
  2072. * we remove the mapcount here. Otherwise another
  2073. * process may come and find the rmap count decremented
  2074. * before the pte is switched to the new page, and
  2075. * "reuse" the old page writing into it while our pte
  2076. * here still points into it and can be read by other
  2077. * threads.
  2078. *
  2079. * The critical issue is to order this
  2080. * page_remove_rmap with the ptp_clear_flush above.
  2081. * Those stores are ordered by (if nothing else,)
  2082. * the barrier present in the atomic_add_negative
  2083. * in page_remove_rmap.
  2084. *
  2085. * Then the TLB flush in ptep_clear_flush ensures that
  2086. * no process can access the old page before the
  2087. * decremented mapcount is visible. And the old page
  2088. * cannot be reused until after the decremented
  2089. * mapcount is visible. So transitively, TLBs to
  2090. * old page will be flushed before it can be reused.
  2091. */
  2092. page_remove_rmap(old_page);
  2093. }
  2094. /* Free the old page.. */
  2095. new_page = old_page;
  2096. ret |= VM_FAULT_WRITE;
  2097. } else
  2098. mem_cgroup_uncharge_page(new_page);
  2099. if (new_page)
  2100. page_cache_release(new_page);
  2101. if (old_page)
  2102. page_cache_release(old_page);
  2103. unlock:
  2104. pte_unmap_unlock(page_table, ptl);
  2105. if (dirty_page) {
  2106. /*
  2107. * Yes, Virginia, this is actually required to prevent a race
  2108. * with clear_page_dirty_for_io() from clearing the page dirty
  2109. * bit after it clear all dirty ptes, but before a racing
  2110. * do_wp_page installs a dirty pte.
  2111. *
  2112. * do_no_page is protected similarly.
  2113. */
  2114. if (!page_mkwrite) {
  2115. wait_on_page_locked(dirty_page);
  2116. set_page_dirty_balance(dirty_page, page_mkwrite);
  2117. }
  2118. put_page(dirty_page);
  2119. if (page_mkwrite) {
  2120. struct address_space *mapping = dirty_page->mapping;
  2121. set_page_dirty(dirty_page);
  2122. unlock_page(dirty_page);
  2123. page_cache_release(dirty_page);
  2124. if (mapping) {
  2125. /*
  2126. * Some device drivers do not set page.mapping
  2127. * but still dirty their pages
  2128. */
  2129. balance_dirty_pages_ratelimited(mapping);
  2130. }
  2131. }
  2132. /* file_update_time outside page_lock */
  2133. if (vma->vm_file)
  2134. file_update_time(vma->vm_file);
  2135. }
  2136. return ret;
  2137. oom_free_new:
  2138. page_cache_release(new_page);
  2139. oom:
  2140. if (old_page) {
  2141. if (page_mkwrite) {
  2142. unlock_page(old_page);
  2143. page_cache_release(old_page);
  2144. }
  2145. page_cache_release(old_page);
  2146. }
  2147. return VM_FAULT_OOM;
  2148. unwritable_page:
  2149. page_cache_release(old_page);
  2150. return ret;
  2151. }
  2152. /*
  2153. * Helper functions for unmap_mapping_range().
  2154. *
  2155. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2156. *
  2157. * We have to restart searching the prio_tree whenever we drop the lock,
  2158. * since the iterator is only valid while the lock is held, and anyway
  2159. * a later vma might be split and reinserted earlier while lock dropped.
  2160. *
  2161. * The list of nonlinear vmas could be handled more efficiently, using
  2162. * a placeholder, but handle it in the same way until a need is shown.
  2163. * It is important to search the prio_tree before nonlinear list: a vma
  2164. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2165. * while the lock is dropped; but never shifted from list to prio_tree.
  2166. *
  2167. * In order to make forward progress despite restarting the search,
  2168. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2169. * quickly skip it next time around. Since the prio_tree search only
  2170. * shows us those vmas affected by unmapping the range in question, we
  2171. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2172. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2173. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2174. * i_mmap_lock.
  2175. *
  2176. * In order to make forward progress despite repeatedly restarting some
  2177. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2178. * and restart from that address when we reach that vma again. It might
  2179. * have been split or merged, shrunk or extended, but never shifted: so
  2180. * restart_addr remains valid so long as it remains in the vma's range.
  2181. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2182. * values so we can save vma's restart_addr in its truncate_count field.
  2183. */
  2184. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2185. static void reset_vma_truncate_counts(struct address_space *mapping)
  2186. {
  2187. struct vm_area_struct *vma;
  2188. struct prio_tree_iter iter;
  2189. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2190. vma->vm_truncate_count = 0;
  2191. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2192. vma->vm_truncate_count = 0;
  2193. }
  2194. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2195. unsigned long start_addr, unsigned long end_addr,
  2196. struct zap_details *details)
  2197. {
  2198. unsigned long restart_addr;
  2199. int need_break;
  2200. /*
  2201. * files that support invalidating or truncating portions of the
  2202. * file from under mmaped areas must have their ->fault function
  2203. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2204. * This provides synchronisation against concurrent unmapping here.
  2205. */
  2206. again:
  2207. restart_addr = vma->vm_truncate_count;
  2208. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2209. start_addr = restart_addr;
  2210. if (start_addr >= end_addr) {
  2211. /* Top of vma has been split off since last time */
  2212. vma->vm_truncate_count = details->truncate_count;
  2213. return 0;
  2214. }
  2215. }
  2216. restart_addr = zap_page_range(vma, start_addr,
  2217. end_addr - start_addr, details);
  2218. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2219. if (restart_addr >= end_addr) {
  2220. /* We have now completed this vma: mark it so */
  2221. vma->vm_truncate_count = details->truncate_count;
  2222. if (!need_break)
  2223. return 0;
  2224. } else {
  2225. /* Note restart_addr in vma's truncate_count field */
  2226. vma->vm_truncate_count = restart_addr;
  2227. if (!need_break)
  2228. goto again;
  2229. }
  2230. spin_unlock(details->i_mmap_lock);
  2231. cond_resched();
  2232. spin_lock(details->i_mmap_lock);
  2233. return -EINTR;
  2234. }
  2235. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2236. struct zap_details *details)
  2237. {
  2238. struct vm_area_struct *vma;
  2239. struct prio_tree_iter iter;
  2240. pgoff_t vba, vea, zba, zea;
  2241. restart:
  2242. vma_prio_tree_foreach(vma, &iter, root,
  2243. details->first_index, details->last_index) {
  2244. /* Skip quickly over those we have already dealt with */
  2245. if (vma->vm_truncate_count == details->truncate_count)
  2246. continue;
  2247. vba = vma->vm_pgoff;
  2248. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2249. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2250. zba = details->first_index;
  2251. if (zba < vba)
  2252. zba = vba;
  2253. zea = details->last_index;
  2254. if (zea > vea)
  2255. zea = vea;
  2256. if (unmap_mapping_range_vma(vma,
  2257. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2258. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2259. details) < 0)
  2260. goto restart;
  2261. }
  2262. }
  2263. static inline void unmap_mapping_range_list(struct list_head *head,
  2264. struct zap_details *details)
  2265. {
  2266. struct vm_area_struct *vma;
  2267. /*
  2268. * In nonlinear VMAs there is no correspondence between virtual address
  2269. * offset and file offset. So we must perform an exhaustive search
  2270. * across *all* the pages in each nonlinear VMA, not just the pages
  2271. * whose virtual address lies outside the file truncation point.
  2272. */
  2273. restart:
  2274. list_for_each_entry(vma, head, shared.vm_set.list) {
  2275. /* Skip quickly over those we have already dealt with */
  2276. if (vma->vm_truncate_count == details->truncate_count)
  2277. continue;
  2278. details->nonlinear_vma = vma;
  2279. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2280. vma->vm_end, details) < 0)
  2281. goto restart;
  2282. }
  2283. }
  2284. /**
  2285. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2286. * @mapping: the address space containing mmaps to be unmapped.
  2287. * @holebegin: byte in first page to unmap, relative to the start of
  2288. * the underlying file. This will be rounded down to a PAGE_SIZE
  2289. * boundary. Note that this is different from truncate_pagecache(), which
  2290. * must keep the partial page. In contrast, we must get rid of
  2291. * partial pages.
  2292. * @holelen: size of prospective hole in bytes. This will be rounded
  2293. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2294. * end of the file.
  2295. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2296. * but 0 when invalidating pagecache, don't throw away private data.
  2297. */
  2298. void unmap_mapping_range(struct address_space *mapping,
  2299. loff_t const holebegin, loff_t const holelen, int even_cows)
  2300. {
  2301. struct zap_details details;
  2302. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2303. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2304. /* Check for overflow. */
  2305. if (sizeof(holelen) > sizeof(hlen)) {
  2306. long long holeend =
  2307. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2308. if (holeend & ~(long long)ULONG_MAX)
  2309. hlen = ULONG_MAX - hba + 1;
  2310. }
  2311. details.check_mapping = even_cows? NULL: mapping;
  2312. details.nonlinear_vma = NULL;
  2313. details.first_index = hba;
  2314. details.last_index = hba + hlen - 1;
  2315. if (details.last_index < details.first_index)
  2316. details.last_index = ULONG_MAX;
  2317. details.i_mmap_lock = &mapping->i_mmap_lock;
  2318. spin_lock(&mapping->i_mmap_lock);
  2319. /* Protect against endless unmapping loops */
  2320. mapping->truncate_count++;
  2321. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2322. if (mapping->truncate_count == 0)
  2323. reset_vma_truncate_counts(mapping);
  2324. mapping->truncate_count++;
  2325. }
  2326. details.truncate_count = mapping->truncate_count;
  2327. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2328. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2329. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2330. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2331. spin_unlock(&mapping->i_mmap_lock);
  2332. }
  2333. EXPORT_SYMBOL(unmap_mapping_range);
  2334. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2335. {
  2336. struct address_space *mapping = inode->i_mapping;
  2337. /*
  2338. * If the underlying filesystem is not going to provide
  2339. * a way to truncate a range of blocks (punch a hole) -
  2340. * we should return failure right now.
  2341. */
  2342. if (!inode->i_op->truncate_range)
  2343. return -ENOSYS;
  2344. mutex_lock(&inode->i_mutex);
  2345. down_write(&inode->i_alloc_sem);
  2346. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2347. truncate_inode_pages_range(mapping, offset, end);
  2348. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2349. inode->i_op->truncate_range(inode, offset, end);
  2350. up_write(&inode->i_alloc_sem);
  2351. mutex_unlock(&inode->i_mutex);
  2352. return 0;
  2353. }
  2354. /*
  2355. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2356. * but allow concurrent faults), and pte mapped but not yet locked.
  2357. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2358. */
  2359. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2360. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2361. unsigned int flags, pte_t orig_pte)
  2362. {
  2363. spinlock_t *ptl;
  2364. struct page *page, *swapcache = NULL;
  2365. swp_entry_t entry;
  2366. pte_t pte;
  2367. int locked;
  2368. struct mem_cgroup *ptr = NULL;
  2369. int exclusive = 0;
  2370. int ret = 0;
  2371. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2372. goto out;
  2373. entry = pte_to_swp_entry(orig_pte);
  2374. if (unlikely(non_swap_entry(entry))) {
  2375. if (is_migration_entry(entry)) {
  2376. migration_entry_wait(mm, pmd, address);
  2377. } else if (is_hwpoison_entry(entry)) {
  2378. ret = VM_FAULT_HWPOISON;
  2379. } else {
  2380. print_bad_pte(vma, address, orig_pte, NULL);
  2381. ret = VM_FAULT_SIGBUS;
  2382. }
  2383. goto out;
  2384. }
  2385. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2386. page = lookup_swap_cache(entry);
  2387. if (!page) {
  2388. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2389. page = swapin_readahead(entry,
  2390. GFP_HIGHUSER_MOVABLE, vma, address);
  2391. if (!page) {
  2392. /*
  2393. * Back out if somebody else faulted in this pte
  2394. * while we released the pte lock.
  2395. */
  2396. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2397. if (likely(pte_same(*page_table, orig_pte)))
  2398. ret = VM_FAULT_OOM;
  2399. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2400. goto unlock;
  2401. }
  2402. /* Had to read the page from swap area: Major fault */
  2403. ret = VM_FAULT_MAJOR;
  2404. count_vm_event(PGMAJFAULT);
  2405. } else if (PageHWPoison(page)) {
  2406. /*
  2407. * hwpoisoned dirty swapcache pages are kept for killing
  2408. * owner processes (which may be unknown at hwpoison time)
  2409. */
  2410. ret = VM_FAULT_HWPOISON;
  2411. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2412. goto out_release;
  2413. }
  2414. locked = lock_page_or_retry(page, mm, flags);
  2415. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2416. if (!locked) {
  2417. ret |= VM_FAULT_RETRY;
  2418. goto out_release;
  2419. }
  2420. /*
  2421. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2422. * release the swapcache from under us. The page pin, and pte_same
  2423. * test below, are not enough to exclude that. Even if it is still
  2424. * swapcache, we need to check that the page's swap has not changed.
  2425. */
  2426. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2427. goto out_page;
  2428. if (ksm_might_need_to_copy(page, vma, address)) {
  2429. swapcache = page;
  2430. page = ksm_does_need_to_copy(page, vma, address);
  2431. if (unlikely(!page)) {
  2432. ret = VM_FAULT_OOM;
  2433. page = swapcache;
  2434. swapcache = NULL;
  2435. goto out_page;
  2436. }
  2437. }
  2438. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2439. ret = VM_FAULT_OOM;
  2440. goto out_page;
  2441. }
  2442. /*
  2443. * Back out if somebody else already faulted in this pte.
  2444. */
  2445. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2446. if (unlikely(!pte_same(*page_table, orig_pte)))
  2447. goto out_nomap;
  2448. if (unlikely(!PageUptodate(page))) {
  2449. ret = VM_FAULT_SIGBUS;
  2450. goto out_nomap;
  2451. }
  2452. /*
  2453. * The page isn't present yet, go ahead with the fault.
  2454. *
  2455. * Be careful about the sequence of operations here.
  2456. * To get its accounting right, reuse_swap_page() must be called
  2457. * while the page is counted on swap but not yet in mapcount i.e.
  2458. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2459. * must be called after the swap_free(), or it will never succeed.
  2460. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2461. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2462. * in page->private. In this case, a record in swap_cgroup is silently
  2463. * discarded at swap_free().
  2464. */
  2465. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2466. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2467. pte = mk_pte(page, vma->vm_page_prot);
  2468. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2469. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2470. flags &= ~FAULT_FLAG_WRITE;
  2471. ret |= VM_FAULT_WRITE;
  2472. exclusive = 1;
  2473. }
  2474. flush_icache_page(vma, page);
  2475. set_pte_at(mm, address, page_table, pte);
  2476. do_page_add_anon_rmap(page, vma, address, exclusive);
  2477. /* It's better to call commit-charge after rmap is established */
  2478. mem_cgroup_commit_charge_swapin(page, ptr);
  2479. swap_free(entry);
  2480. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2481. try_to_free_swap(page);
  2482. unlock_page(page);
  2483. if (swapcache) {
  2484. /*
  2485. * Hold the lock to avoid the swap entry to be reused
  2486. * until we take the PT lock for the pte_same() check
  2487. * (to avoid false positives from pte_same). For
  2488. * further safety release the lock after the swap_free
  2489. * so that the swap count won't change under a
  2490. * parallel locked swapcache.
  2491. */
  2492. unlock_page(swapcache);
  2493. page_cache_release(swapcache);
  2494. }
  2495. if (flags & FAULT_FLAG_WRITE) {
  2496. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2497. if (ret & VM_FAULT_ERROR)
  2498. ret &= VM_FAULT_ERROR;
  2499. goto out;
  2500. }
  2501. /* No need to invalidate - it was non-present before */
  2502. update_mmu_cache(vma, address, page_table);
  2503. unlock:
  2504. pte_unmap_unlock(page_table, ptl);
  2505. out:
  2506. return ret;
  2507. out_nomap:
  2508. mem_cgroup_cancel_charge_swapin(ptr);
  2509. pte_unmap_unlock(page_table, ptl);
  2510. out_page:
  2511. unlock_page(page);
  2512. out_release:
  2513. page_cache_release(page);
  2514. if (swapcache) {
  2515. unlock_page(swapcache);
  2516. page_cache_release(swapcache);
  2517. }
  2518. return ret;
  2519. }
  2520. /*
  2521. * This is like a special single-page "expand_{down|up}wards()",
  2522. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2523. * doesn't hit another vma.
  2524. */
  2525. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2526. {
  2527. address &= PAGE_MASK;
  2528. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2529. struct vm_area_struct *prev = vma->vm_prev;
  2530. /*
  2531. * Is there a mapping abutting this one below?
  2532. *
  2533. * That's only ok if it's the same stack mapping
  2534. * that has gotten split..
  2535. */
  2536. if (prev && prev->vm_end == address)
  2537. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2538. expand_stack(vma, address - PAGE_SIZE);
  2539. }
  2540. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2541. struct vm_area_struct *next = vma->vm_next;
  2542. /* As VM_GROWSDOWN but s/below/above/ */
  2543. if (next && next->vm_start == address + PAGE_SIZE)
  2544. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2545. expand_upwards(vma, address + PAGE_SIZE);
  2546. }
  2547. return 0;
  2548. }
  2549. /*
  2550. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2551. * but allow concurrent faults), and pte mapped but not yet locked.
  2552. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2553. */
  2554. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2555. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2556. unsigned int flags)
  2557. {
  2558. struct page *page;
  2559. spinlock_t *ptl;
  2560. pte_t entry;
  2561. pte_unmap(page_table);
  2562. /* Check if we need to add a guard page to the stack */
  2563. if (check_stack_guard_page(vma, address) < 0)
  2564. return VM_FAULT_SIGBUS;
  2565. /* Use the zero-page for reads */
  2566. if (!(flags & FAULT_FLAG_WRITE)) {
  2567. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2568. vma->vm_page_prot));
  2569. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2570. if (!pte_none(*page_table))
  2571. goto unlock;
  2572. goto setpte;
  2573. }
  2574. /* Allocate our own private page. */
  2575. if (unlikely(anon_vma_prepare(vma)))
  2576. goto oom;
  2577. page = alloc_zeroed_user_highpage_movable(vma, address);
  2578. if (!page)
  2579. goto oom;
  2580. __SetPageUptodate(page);
  2581. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2582. goto oom_free_page;
  2583. entry = mk_pte(page, vma->vm_page_prot);
  2584. if (vma->vm_flags & VM_WRITE)
  2585. entry = pte_mkwrite(pte_mkdirty(entry));
  2586. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2587. if (!pte_none(*page_table))
  2588. goto release;
  2589. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2590. page_add_new_anon_rmap(page, vma, address);
  2591. setpte:
  2592. set_pte_at(mm, address, page_table, entry);
  2593. /* No need to invalidate - it was non-present before */
  2594. update_mmu_cache(vma, address, page_table);
  2595. unlock:
  2596. pte_unmap_unlock(page_table, ptl);
  2597. return 0;
  2598. release:
  2599. mem_cgroup_uncharge_page(page);
  2600. page_cache_release(page);
  2601. goto unlock;
  2602. oom_free_page:
  2603. page_cache_release(page);
  2604. oom:
  2605. return VM_FAULT_OOM;
  2606. }
  2607. /*
  2608. * __do_fault() tries to create a new page mapping. It aggressively
  2609. * tries to share with existing pages, but makes a separate copy if
  2610. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2611. * the next page fault.
  2612. *
  2613. * As this is called only for pages that do not currently exist, we
  2614. * do not need to flush old virtual caches or the TLB.
  2615. *
  2616. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2617. * but allow concurrent faults), and pte neither mapped nor locked.
  2618. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2619. */
  2620. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2621. unsigned long address, pmd_t *pmd,
  2622. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2623. {
  2624. pte_t *page_table;
  2625. spinlock_t *ptl;
  2626. struct page *page;
  2627. pte_t entry;
  2628. int anon = 0;
  2629. int charged = 0;
  2630. struct page *dirty_page = NULL;
  2631. struct vm_fault vmf;
  2632. int ret;
  2633. int page_mkwrite = 0;
  2634. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2635. vmf.pgoff = pgoff;
  2636. vmf.flags = flags;
  2637. vmf.page = NULL;
  2638. ret = vma->vm_ops->fault(vma, &vmf);
  2639. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2640. VM_FAULT_RETRY)))
  2641. return ret;
  2642. if (unlikely(PageHWPoison(vmf.page))) {
  2643. if (ret & VM_FAULT_LOCKED)
  2644. unlock_page(vmf.page);
  2645. return VM_FAULT_HWPOISON;
  2646. }
  2647. /*
  2648. * For consistency in subsequent calls, make the faulted page always
  2649. * locked.
  2650. */
  2651. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2652. lock_page(vmf.page);
  2653. else
  2654. VM_BUG_ON(!PageLocked(vmf.page));
  2655. /*
  2656. * Should we do an early C-O-W break?
  2657. */
  2658. page = vmf.page;
  2659. if (flags & FAULT_FLAG_WRITE) {
  2660. if (!(vma->vm_flags & VM_SHARED)) {
  2661. anon = 1;
  2662. if (unlikely(anon_vma_prepare(vma))) {
  2663. ret = VM_FAULT_OOM;
  2664. goto out;
  2665. }
  2666. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2667. vma, address);
  2668. if (!page) {
  2669. ret = VM_FAULT_OOM;
  2670. goto out;
  2671. }
  2672. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2673. ret = VM_FAULT_OOM;
  2674. page_cache_release(page);
  2675. goto out;
  2676. }
  2677. charged = 1;
  2678. /*
  2679. * Don't let another task, with possibly unlocked vma,
  2680. * keep the mlocked page.
  2681. */
  2682. if (vma->vm_flags & VM_LOCKED)
  2683. clear_page_mlock(vmf.page);
  2684. copy_user_highpage(page, vmf.page, address, vma);
  2685. __SetPageUptodate(page);
  2686. } else {
  2687. /*
  2688. * If the page will be shareable, see if the backing
  2689. * address space wants to know that the page is about
  2690. * to become writable
  2691. */
  2692. if (vma->vm_ops->page_mkwrite) {
  2693. int tmp;
  2694. unlock_page(page);
  2695. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2696. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2697. if (unlikely(tmp &
  2698. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2699. ret = tmp;
  2700. goto unwritable_page;
  2701. }
  2702. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2703. lock_page(page);
  2704. if (!page->mapping) {
  2705. ret = 0; /* retry the fault */
  2706. unlock_page(page);
  2707. goto unwritable_page;
  2708. }
  2709. } else
  2710. VM_BUG_ON(!PageLocked(page));
  2711. page_mkwrite = 1;
  2712. }
  2713. }
  2714. }
  2715. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2716. /*
  2717. * This silly early PAGE_DIRTY setting removes a race
  2718. * due to the bad i386 page protection. But it's valid
  2719. * for other architectures too.
  2720. *
  2721. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2722. * an exclusive copy of the page, or this is a shared mapping,
  2723. * so we can make it writable and dirty to avoid having to
  2724. * handle that later.
  2725. */
  2726. /* Only go through if we didn't race with anybody else... */
  2727. if (likely(pte_same(*page_table, orig_pte))) {
  2728. flush_icache_page(vma, page);
  2729. entry = mk_pte(page, vma->vm_page_prot);
  2730. if (flags & FAULT_FLAG_WRITE)
  2731. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2732. if (anon) {
  2733. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2734. page_add_new_anon_rmap(page, vma, address);
  2735. } else {
  2736. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2737. page_add_file_rmap(page);
  2738. if (flags & FAULT_FLAG_WRITE) {
  2739. dirty_page = page;
  2740. get_page(dirty_page);
  2741. }
  2742. }
  2743. set_pte_at(mm, address, page_table, entry);
  2744. /* no need to invalidate: a not-present page won't be cached */
  2745. update_mmu_cache(vma, address, page_table);
  2746. } else {
  2747. if (charged)
  2748. mem_cgroup_uncharge_page(page);
  2749. if (anon)
  2750. page_cache_release(page);
  2751. else
  2752. anon = 1; /* no anon but release faulted_page */
  2753. }
  2754. pte_unmap_unlock(page_table, ptl);
  2755. out:
  2756. if (dirty_page) {
  2757. struct address_space *mapping = page->mapping;
  2758. if (set_page_dirty(dirty_page))
  2759. page_mkwrite = 1;
  2760. unlock_page(dirty_page);
  2761. put_page(dirty_page);
  2762. if (page_mkwrite && mapping) {
  2763. /*
  2764. * Some device drivers do not set page.mapping but still
  2765. * dirty their pages
  2766. */
  2767. balance_dirty_pages_ratelimited(mapping);
  2768. }
  2769. /* file_update_time outside page_lock */
  2770. if (vma->vm_file)
  2771. file_update_time(vma->vm_file);
  2772. } else {
  2773. unlock_page(vmf.page);
  2774. if (anon)
  2775. page_cache_release(vmf.page);
  2776. }
  2777. return ret;
  2778. unwritable_page:
  2779. page_cache_release(page);
  2780. return ret;
  2781. }
  2782. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2783. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2784. unsigned int flags, pte_t orig_pte)
  2785. {
  2786. pgoff_t pgoff = (((address & PAGE_MASK)
  2787. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2788. pte_unmap(page_table);
  2789. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2790. }
  2791. /*
  2792. * Fault of a previously existing named mapping. Repopulate the pte
  2793. * from the encoded file_pte if possible. This enables swappable
  2794. * nonlinear vmas.
  2795. *
  2796. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2797. * but allow concurrent faults), and pte mapped but not yet locked.
  2798. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2799. */
  2800. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2801. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2802. unsigned int flags, pte_t orig_pte)
  2803. {
  2804. pgoff_t pgoff;
  2805. flags |= FAULT_FLAG_NONLINEAR;
  2806. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2807. return 0;
  2808. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2809. /*
  2810. * Page table corrupted: show pte and kill process.
  2811. */
  2812. print_bad_pte(vma, address, orig_pte, NULL);
  2813. return VM_FAULT_SIGBUS;
  2814. }
  2815. pgoff = pte_to_pgoff(orig_pte);
  2816. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2817. }
  2818. /*
  2819. * These routines also need to handle stuff like marking pages dirty
  2820. * and/or accessed for architectures that don't do it in hardware (most
  2821. * RISC architectures). The early dirtying is also good on the i386.
  2822. *
  2823. * There is also a hook called "update_mmu_cache()" that architectures
  2824. * with external mmu caches can use to update those (ie the Sparc or
  2825. * PowerPC hashed page tables that act as extended TLBs).
  2826. *
  2827. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2828. * but allow concurrent faults), and pte mapped but not yet locked.
  2829. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2830. */
  2831. static inline int handle_pte_fault(struct mm_struct *mm,
  2832. struct vm_area_struct *vma, unsigned long address,
  2833. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2834. {
  2835. pte_t entry;
  2836. spinlock_t *ptl;
  2837. entry = *pte;
  2838. if (!pte_present(entry)) {
  2839. if (pte_none(entry)) {
  2840. if (vma->vm_ops) {
  2841. if (likely(vma->vm_ops->fault))
  2842. return do_linear_fault(mm, vma, address,
  2843. pte, pmd, flags, entry);
  2844. }
  2845. return do_anonymous_page(mm, vma, address,
  2846. pte, pmd, flags);
  2847. }
  2848. if (pte_file(entry))
  2849. return do_nonlinear_fault(mm, vma, address,
  2850. pte, pmd, flags, entry);
  2851. return do_swap_page(mm, vma, address,
  2852. pte, pmd, flags, entry);
  2853. }
  2854. ptl = pte_lockptr(mm, pmd);
  2855. spin_lock(ptl);
  2856. if (unlikely(!pte_same(*pte, entry)))
  2857. goto unlock;
  2858. if (flags & FAULT_FLAG_WRITE) {
  2859. if (!pte_write(entry))
  2860. return do_wp_page(mm, vma, address,
  2861. pte, pmd, ptl, entry);
  2862. entry = pte_mkdirty(entry);
  2863. }
  2864. entry = pte_mkyoung(entry);
  2865. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2866. update_mmu_cache(vma, address, pte);
  2867. } else {
  2868. /*
  2869. * This is needed only for protection faults but the arch code
  2870. * is not yet telling us if this is a protection fault or not.
  2871. * This still avoids useless tlb flushes for .text page faults
  2872. * with threads.
  2873. */
  2874. if (flags & FAULT_FLAG_WRITE)
  2875. flush_tlb_fix_spurious_fault(vma, address);
  2876. }
  2877. unlock:
  2878. pte_unmap_unlock(pte, ptl);
  2879. return 0;
  2880. }
  2881. /*
  2882. * By the time we get here, we already hold the mm semaphore
  2883. */
  2884. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2885. unsigned long address, unsigned int flags)
  2886. {
  2887. pgd_t *pgd;
  2888. pud_t *pud;
  2889. pmd_t *pmd;
  2890. pte_t *pte;
  2891. __set_current_state(TASK_RUNNING);
  2892. count_vm_event(PGFAULT);
  2893. /* do counter updates before entering really critical section. */
  2894. check_sync_rss_stat(current);
  2895. if (unlikely(is_vm_hugetlb_page(vma)))
  2896. return hugetlb_fault(mm, vma, address, flags);
  2897. pgd = pgd_offset(mm, address);
  2898. pud = pud_alloc(mm, pgd, address);
  2899. if (!pud)
  2900. return VM_FAULT_OOM;
  2901. pmd = pmd_alloc(mm, pud, address);
  2902. if (!pmd)
  2903. return VM_FAULT_OOM;
  2904. pte = pte_alloc_map(mm, pmd, address);
  2905. if (!pte)
  2906. return VM_FAULT_OOM;
  2907. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2908. }
  2909. #ifndef __PAGETABLE_PUD_FOLDED
  2910. /*
  2911. * Allocate page upper directory.
  2912. * We've already handled the fast-path in-line.
  2913. */
  2914. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2915. {
  2916. pud_t *new = pud_alloc_one(mm, address);
  2917. if (!new)
  2918. return -ENOMEM;
  2919. smp_wmb(); /* See comment in __pte_alloc */
  2920. spin_lock(&mm->page_table_lock);
  2921. if (pgd_present(*pgd)) /* Another has populated it */
  2922. pud_free(mm, new);
  2923. else
  2924. pgd_populate(mm, pgd, new);
  2925. spin_unlock(&mm->page_table_lock);
  2926. return 0;
  2927. }
  2928. #endif /* __PAGETABLE_PUD_FOLDED */
  2929. #ifndef __PAGETABLE_PMD_FOLDED
  2930. /*
  2931. * Allocate page middle directory.
  2932. * We've already handled the fast-path in-line.
  2933. */
  2934. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2935. {
  2936. pmd_t *new = pmd_alloc_one(mm, address);
  2937. if (!new)
  2938. return -ENOMEM;
  2939. smp_wmb(); /* See comment in __pte_alloc */
  2940. spin_lock(&mm->page_table_lock);
  2941. #ifndef __ARCH_HAS_4LEVEL_HACK
  2942. if (pud_present(*pud)) /* Another has populated it */
  2943. pmd_free(mm, new);
  2944. else
  2945. pud_populate(mm, pud, new);
  2946. #else
  2947. if (pgd_present(*pud)) /* Another has populated it */
  2948. pmd_free(mm, new);
  2949. else
  2950. pgd_populate(mm, pud, new);
  2951. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2952. spin_unlock(&mm->page_table_lock);
  2953. return 0;
  2954. }
  2955. #endif /* __PAGETABLE_PMD_FOLDED */
  2956. int make_pages_present(unsigned long addr, unsigned long end)
  2957. {
  2958. int ret, len, write;
  2959. struct vm_area_struct * vma;
  2960. vma = find_vma(current->mm, addr);
  2961. if (!vma)
  2962. return -ENOMEM;
  2963. write = (vma->vm_flags & VM_WRITE) != 0;
  2964. BUG_ON(addr >= end);
  2965. BUG_ON(end > vma->vm_end);
  2966. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2967. ret = get_user_pages(current, current->mm, addr,
  2968. len, write, 0, NULL, NULL);
  2969. if (ret < 0)
  2970. return ret;
  2971. return ret == len ? 0 : -EFAULT;
  2972. }
  2973. #if !defined(__HAVE_ARCH_GATE_AREA)
  2974. #if defined(AT_SYSINFO_EHDR)
  2975. static struct vm_area_struct gate_vma;
  2976. static int __init gate_vma_init(void)
  2977. {
  2978. gate_vma.vm_mm = NULL;
  2979. gate_vma.vm_start = FIXADDR_USER_START;
  2980. gate_vma.vm_end = FIXADDR_USER_END;
  2981. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2982. gate_vma.vm_page_prot = __P101;
  2983. /*
  2984. * Make sure the vDSO gets into every core dump.
  2985. * Dumping its contents makes post-mortem fully interpretable later
  2986. * without matching up the same kernel and hardware config to see
  2987. * what PC values meant.
  2988. */
  2989. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2990. return 0;
  2991. }
  2992. __initcall(gate_vma_init);
  2993. #endif
  2994. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2995. {
  2996. #ifdef AT_SYSINFO_EHDR
  2997. return &gate_vma;
  2998. #else
  2999. return NULL;
  3000. #endif
  3001. }
  3002. int in_gate_area_no_task(unsigned long addr)
  3003. {
  3004. #ifdef AT_SYSINFO_EHDR
  3005. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3006. return 1;
  3007. #endif
  3008. return 0;
  3009. }
  3010. #endif /* __HAVE_ARCH_GATE_AREA */
  3011. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3012. pte_t **ptepp, spinlock_t **ptlp)
  3013. {
  3014. pgd_t *pgd;
  3015. pud_t *pud;
  3016. pmd_t *pmd;
  3017. pte_t *ptep;
  3018. pgd = pgd_offset(mm, address);
  3019. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3020. goto out;
  3021. pud = pud_offset(pgd, address);
  3022. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3023. goto out;
  3024. pmd = pmd_offset(pud, address);
  3025. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3026. goto out;
  3027. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3028. if (pmd_huge(*pmd))
  3029. goto out;
  3030. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3031. if (!ptep)
  3032. goto out;
  3033. if (!pte_present(*ptep))
  3034. goto unlock;
  3035. *ptepp = ptep;
  3036. return 0;
  3037. unlock:
  3038. pte_unmap_unlock(ptep, *ptlp);
  3039. out:
  3040. return -EINVAL;
  3041. }
  3042. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3043. pte_t **ptepp, spinlock_t **ptlp)
  3044. {
  3045. int res;
  3046. /* (void) is needed to make gcc happy */
  3047. (void) __cond_lock(*ptlp,
  3048. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3049. return res;
  3050. }
  3051. /**
  3052. * follow_pfn - look up PFN at a user virtual address
  3053. * @vma: memory mapping
  3054. * @address: user virtual address
  3055. * @pfn: location to store found PFN
  3056. *
  3057. * Only IO mappings and raw PFN mappings are allowed.
  3058. *
  3059. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3060. */
  3061. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3062. unsigned long *pfn)
  3063. {
  3064. int ret = -EINVAL;
  3065. spinlock_t *ptl;
  3066. pte_t *ptep;
  3067. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3068. return ret;
  3069. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3070. if (ret)
  3071. return ret;
  3072. *pfn = pte_pfn(*ptep);
  3073. pte_unmap_unlock(ptep, ptl);
  3074. return 0;
  3075. }
  3076. EXPORT_SYMBOL(follow_pfn);
  3077. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3078. int follow_phys(struct vm_area_struct *vma,
  3079. unsigned long address, unsigned int flags,
  3080. unsigned long *prot, resource_size_t *phys)
  3081. {
  3082. int ret = -EINVAL;
  3083. pte_t *ptep, pte;
  3084. spinlock_t *ptl;
  3085. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3086. goto out;
  3087. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3088. goto out;
  3089. pte = *ptep;
  3090. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3091. goto unlock;
  3092. *prot = pgprot_val(pte_pgprot(pte));
  3093. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3094. ret = 0;
  3095. unlock:
  3096. pte_unmap_unlock(ptep, ptl);
  3097. out:
  3098. return ret;
  3099. }
  3100. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3101. void *buf, int len, int write)
  3102. {
  3103. resource_size_t phys_addr;
  3104. unsigned long prot = 0;
  3105. void __iomem *maddr;
  3106. int offset = addr & (PAGE_SIZE-1);
  3107. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3108. return -EINVAL;
  3109. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3110. if (write)
  3111. memcpy_toio(maddr + offset, buf, len);
  3112. else
  3113. memcpy_fromio(buf, maddr + offset, len);
  3114. iounmap(maddr);
  3115. return len;
  3116. }
  3117. #endif
  3118. /*
  3119. * Access another process' address space.
  3120. * Source/target buffer must be kernel space,
  3121. * Do not walk the page table directly, use get_user_pages
  3122. */
  3123. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3124. {
  3125. struct mm_struct *mm;
  3126. struct vm_area_struct *vma;
  3127. void *old_buf = buf;
  3128. mm = get_task_mm(tsk);
  3129. if (!mm)
  3130. return 0;
  3131. down_read(&mm->mmap_sem);
  3132. /* ignore errors, just check how much was successfully transferred */
  3133. while (len) {
  3134. int bytes, ret, offset;
  3135. void *maddr;
  3136. struct page *page = NULL;
  3137. ret = get_user_pages(tsk, mm, addr, 1,
  3138. write, 1, &page, &vma);
  3139. if (ret <= 0) {
  3140. /*
  3141. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3142. * we can access using slightly different code.
  3143. */
  3144. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3145. vma = find_vma(mm, addr);
  3146. if (!vma)
  3147. break;
  3148. if (vma->vm_ops && vma->vm_ops->access)
  3149. ret = vma->vm_ops->access(vma, addr, buf,
  3150. len, write);
  3151. if (ret <= 0)
  3152. #endif
  3153. break;
  3154. bytes = ret;
  3155. } else {
  3156. bytes = len;
  3157. offset = addr & (PAGE_SIZE-1);
  3158. if (bytes > PAGE_SIZE-offset)
  3159. bytes = PAGE_SIZE-offset;
  3160. maddr = kmap(page);
  3161. if (write) {
  3162. copy_to_user_page(vma, page, addr,
  3163. maddr + offset, buf, bytes);
  3164. set_page_dirty_lock(page);
  3165. } else {
  3166. copy_from_user_page(vma, page, addr,
  3167. buf, maddr + offset, bytes);
  3168. }
  3169. kunmap(page);
  3170. page_cache_release(page);
  3171. }
  3172. len -= bytes;
  3173. buf += bytes;
  3174. addr += bytes;
  3175. }
  3176. up_read(&mm->mmap_sem);
  3177. mmput(mm);
  3178. return buf - old_buf;
  3179. }
  3180. /*
  3181. * Print the name of a VMA.
  3182. */
  3183. void print_vma_addr(char *prefix, unsigned long ip)
  3184. {
  3185. struct mm_struct *mm = current->mm;
  3186. struct vm_area_struct *vma;
  3187. /*
  3188. * Do not print if we are in atomic
  3189. * contexts (in exception stacks, etc.):
  3190. */
  3191. if (preempt_count())
  3192. return;
  3193. down_read(&mm->mmap_sem);
  3194. vma = find_vma(mm, ip);
  3195. if (vma && vma->vm_file) {
  3196. struct file *f = vma->vm_file;
  3197. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3198. if (buf) {
  3199. char *p, *s;
  3200. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3201. if (IS_ERR(p))
  3202. p = "?";
  3203. s = strrchr(p, '/');
  3204. if (s)
  3205. p = s+1;
  3206. printk("%s%s[%lx+%lx]", prefix, p,
  3207. vma->vm_start,
  3208. vma->vm_end - vma->vm_start);
  3209. free_page((unsigned long)buf);
  3210. }
  3211. }
  3212. up_read(&current->mm->mmap_sem);
  3213. }
  3214. #ifdef CONFIG_PROVE_LOCKING
  3215. void might_fault(void)
  3216. {
  3217. /*
  3218. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3219. * holding the mmap_sem, this is safe because kernel memory doesn't
  3220. * get paged out, therefore we'll never actually fault, and the
  3221. * below annotations will generate false positives.
  3222. */
  3223. if (segment_eq(get_fs(), KERNEL_DS))
  3224. return;
  3225. might_sleep();
  3226. /*
  3227. * it would be nicer only to annotate paths which are not under
  3228. * pagefault_disable, however that requires a larger audit and
  3229. * providing helpers like get_user_atomic.
  3230. */
  3231. if (!in_atomic() && current->mm)
  3232. might_lock_read(&current->mm->mmap_sem);
  3233. }
  3234. EXPORT_SYMBOL(might_fault);
  3235. #endif