btree.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * linux/fs/hfsplus/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/log2.h>
  13. #include "hfsplus_fs.h"
  14. #include "hfsplus_raw.h"
  15. /* Get a reference to a B*Tree and do some initial checks */
  16. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
  17. {
  18. struct hfs_btree *tree;
  19. struct hfs_btree_header_rec *head;
  20. struct address_space *mapping;
  21. struct inode *inode;
  22. struct page *page;
  23. unsigned int size;
  24. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  25. if (!tree)
  26. return NULL;
  27. mutex_init(&tree->tree_lock);
  28. spin_lock_init(&tree->hash_lock);
  29. tree->sb = sb;
  30. tree->cnid = id;
  31. inode = hfsplus_iget(sb, id);
  32. if (IS_ERR(inode))
  33. goto free_tree;
  34. tree->inode = inode;
  35. if (!HFSPLUS_I(tree->inode)->first_blocks) {
  36. printk(KERN_ERR
  37. "hfs: invalid btree extent records (0 size).\n");
  38. goto free_inode;
  39. }
  40. mapping = tree->inode->i_mapping;
  41. page = read_mapping_page(mapping, 0, NULL);
  42. if (IS_ERR(page))
  43. goto free_inode;
  44. /* Load the header */
  45. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  46. tree->root = be32_to_cpu(head->root);
  47. tree->leaf_count = be32_to_cpu(head->leaf_count);
  48. tree->leaf_head = be32_to_cpu(head->leaf_head);
  49. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  50. tree->node_count = be32_to_cpu(head->node_count);
  51. tree->free_nodes = be32_to_cpu(head->free_nodes);
  52. tree->attributes = be32_to_cpu(head->attributes);
  53. tree->node_size = be16_to_cpu(head->node_size);
  54. tree->max_key_len = be16_to_cpu(head->max_key_len);
  55. tree->depth = be16_to_cpu(head->depth);
  56. /* Verify the tree and set the correct compare function */
  57. switch (id) {
  58. case HFSPLUS_EXT_CNID:
  59. if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
  60. printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
  61. tree->max_key_len);
  62. goto fail_page;
  63. }
  64. if (tree->attributes & HFS_TREE_VARIDXKEYS) {
  65. printk(KERN_ERR "hfs: invalid extent btree flag\n");
  66. goto fail_page;
  67. }
  68. tree->keycmp = hfsplus_ext_cmp_key;
  69. break;
  70. case HFSPLUS_CAT_CNID:
  71. if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
  72. printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
  73. tree->max_key_len);
  74. goto fail_page;
  75. }
  76. if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
  77. printk(KERN_ERR "hfs: invalid catalog btree flag\n");
  78. goto fail_page;
  79. }
  80. if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
  81. (head->key_type == HFSPLUS_KEY_BINARY))
  82. tree->keycmp = hfsplus_cat_bin_cmp_key;
  83. else {
  84. tree->keycmp = hfsplus_cat_case_cmp_key;
  85. set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
  86. }
  87. break;
  88. default:
  89. printk(KERN_ERR "hfs: unknown B*Tree requested\n");
  90. goto fail_page;
  91. }
  92. if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
  93. printk(KERN_ERR "hfs: invalid btree flag\n");
  94. goto fail_page;
  95. }
  96. size = tree->node_size;
  97. if (!is_power_of_2(size))
  98. goto fail_page;
  99. if (!tree->node_count)
  100. goto fail_page;
  101. tree->node_size_shift = ffs(size) - 1;
  102. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  103. kunmap(page);
  104. page_cache_release(page);
  105. return tree;
  106. fail_page:
  107. page_cache_release(page);
  108. free_inode:
  109. tree->inode->i_mapping->a_ops = &hfsplus_aops;
  110. iput(tree->inode);
  111. free_tree:
  112. kfree(tree);
  113. return NULL;
  114. }
  115. /* Release resources used by a btree */
  116. void hfs_btree_close(struct hfs_btree *tree)
  117. {
  118. struct hfs_bnode *node;
  119. int i;
  120. if (!tree)
  121. return;
  122. for (i = 0; i < NODE_HASH_SIZE; i++) {
  123. while ((node = tree->node_hash[i])) {
  124. tree->node_hash[i] = node->next_hash;
  125. if (atomic_read(&node->refcnt))
  126. printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n",
  127. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  128. hfs_bnode_free(node);
  129. tree->node_hash_cnt--;
  130. }
  131. }
  132. iput(tree->inode);
  133. kfree(tree);
  134. }
  135. void hfs_btree_write(struct hfs_btree *tree)
  136. {
  137. struct hfs_btree_header_rec *head;
  138. struct hfs_bnode *node;
  139. struct page *page;
  140. node = hfs_bnode_find(tree, 0);
  141. if (IS_ERR(node))
  142. /* panic? */
  143. return;
  144. /* Load the header */
  145. page = node->page[0];
  146. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  147. head->root = cpu_to_be32(tree->root);
  148. head->leaf_count = cpu_to_be32(tree->leaf_count);
  149. head->leaf_head = cpu_to_be32(tree->leaf_head);
  150. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  151. head->node_count = cpu_to_be32(tree->node_count);
  152. head->free_nodes = cpu_to_be32(tree->free_nodes);
  153. head->attributes = cpu_to_be32(tree->attributes);
  154. head->depth = cpu_to_be16(tree->depth);
  155. kunmap(page);
  156. set_page_dirty(page);
  157. hfs_bnode_put(node);
  158. }
  159. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  160. {
  161. struct hfs_btree *tree = prev->tree;
  162. struct hfs_bnode *node;
  163. struct hfs_bnode_desc desc;
  164. __be32 cnid;
  165. node = hfs_bnode_create(tree, idx);
  166. if (IS_ERR(node))
  167. return node;
  168. tree->free_nodes--;
  169. prev->next = idx;
  170. cnid = cpu_to_be32(idx);
  171. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  172. node->type = HFS_NODE_MAP;
  173. node->num_recs = 1;
  174. hfs_bnode_clear(node, 0, tree->node_size);
  175. desc.next = 0;
  176. desc.prev = 0;
  177. desc.type = HFS_NODE_MAP;
  178. desc.height = 0;
  179. desc.num_recs = cpu_to_be16(1);
  180. desc.reserved = 0;
  181. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  182. hfs_bnode_write_u16(node, 14, 0x8000);
  183. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  184. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  185. return node;
  186. }
  187. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  188. {
  189. struct hfs_bnode *node, *next_node;
  190. struct page **pagep;
  191. u32 nidx, idx;
  192. unsigned off;
  193. u16 off16;
  194. u16 len;
  195. u8 *data, byte, m;
  196. int i;
  197. while (!tree->free_nodes) {
  198. struct inode *inode = tree->inode;
  199. struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
  200. u32 count;
  201. int res;
  202. res = hfsplus_file_extend(inode);
  203. if (res)
  204. return ERR_PTR(res);
  205. hip->phys_size = inode->i_size =
  206. (loff_t)hip->alloc_blocks <<
  207. HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
  208. hip->fs_blocks =
  209. hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
  210. inode_set_bytes(inode, inode->i_size);
  211. count = inode->i_size >> tree->node_size_shift;
  212. tree->free_nodes = count - tree->node_count;
  213. tree->node_count = count;
  214. }
  215. nidx = 0;
  216. node = hfs_bnode_find(tree, nidx);
  217. if (IS_ERR(node))
  218. return node;
  219. len = hfs_brec_lenoff(node, 2, &off16);
  220. off = off16;
  221. off += node->page_offset;
  222. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  223. data = kmap(*pagep);
  224. off &= ~PAGE_CACHE_MASK;
  225. idx = 0;
  226. for (;;) {
  227. while (len) {
  228. byte = data[off];
  229. if (byte != 0xff) {
  230. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  231. if (!(byte & m)) {
  232. idx += i;
  233. data[off] |= m;
  234. set_page_dirty(*pagep);
  235. kunmap(*pagep);
  236. tree->free_nodes--;
  237. mark_inode_dirty(tree->inode);
  238. hfs_bnode_put(node);
  239. return hfs_bnode_create(tree, idx);
  240. }
  241. }
  242. }
  243. if (++off >= PAGE_CACHE_SIZE) {
  244. kunmap(*pagep);
  245. data = kmap(*++pagep);
  246. off = 0;
  247. }
  248. idx += 8;
  249. len--;
  250. }
  251. kunmap(*pagep);
  252. nidx = node->next;
  253. if (!nidx) {
  254. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  255. next_node = hfs_bmap_new_bmap(node, idx);
  256. } else
  257. next_node = hfs_bnode_find(tree, nidx);
  258. hfs_bnode_put(node);
  259. if (IS_ERR(next_node))
  260. return next_node;
  261. node = next_node;
  262. len = hfs_brec_lenoff(node, 0, &off16);
  263. off = off16;
  264. off += node->page_offset;
  265. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  266. data = kmap(*pagep);
  267. off &= ~PAGE_CACHE_MASK;
  268. }
  269. }
  270. void hfs_bmap_free(struct hfs_bnode *node)
  271. {
  272. struct hfs_btree *tree;
  273. struct page *page;
  274. u16 off, len;
  275. u32 nidx;
  276. u8 *data, byte, m;
  277. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  278. BUG_ON(!node->this);
  279. tree = node->tree;
  280. nidx = node->this;
  281. node = hfs_bnode_find(tree, 0);
  282. if (IS_ERR(node))
  283. return;
  284. len = hfs_brec_lenoff(node, 2, &off);
  285. while (nidx >= len * 8) {
  286. u32 i;
  287. nidx -= len * 8;
  288. i = node->next;
  289. hfs_bnode_put(node);
  290. if (!i) {
  291. /* panic */;
  292. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  293. return;
  294. }
  295. node = hfs_bnode_find(tree, i);
  296. if (IS_ERR(node))
  297. return;
  298. if (node->type != HFS_NODE_MAP) {
  299. /* panic */;
  300. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  301. hfs_bnode_put(node);
  302. return;
  303. }
  304. len = hfs_brec_lenoff(node, 0, &off);
  305. }
  306. off += node->page_offset + nidx / 8;
  307. page = node->page[off >> PAGE_CACHE_SHIFT];
  308. data = kmap(page);
  309. off &= ~PAGE_CACHE_MASK;
  310. m = 1 << (~nidx & 7);
  311. byte = data[off];
  312. if (!(byte & m)) {
  313. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  314. kunmap(page);
  315. hfs_bnode_put(node);
  316. return;
  317. }
  318. data[off] = byte & ~m;
  319. set_page_dirty(page);
  320. kunmap(page);
  321. hfs_bnode_put(node);
  322. tree->free_nodes++;
  323. mark_inode_dirty(tree->inode);
  324. }