brec.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. /*
  2. * linux/fs/hfsplus/brec.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle individual btree records
  9. */
  10. #include "hfsplus_fs.h"
  11. #include "hfsplus_raw.h"
  12. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd);
  13. static int hfs_brec_update_parent(struct hfs_find_data *fd);
  14. static int hfs_btree_inc_height(struct hfs_btree *);
  15. /* Get the length and offset of the given record in the given node */
  16. u16 hfs_brec_lenoff(struct hfs_bnode *node, u16 rec, u16 *off)
  17. {
  18. __be16 retval[2];
  19. u16 dataoff;
  20. dataoff = node->tree->node_size - (rec + 2) * 2;
  21. hfs_bnode_read(node, retval, dataoff, 4);
  22. *off = be16_to_cpu(retval[1]);
  23. return be16_to_cpu(retval[0]) - *off;
  24. }
  25. /* Get the length of the key from a keyed record */
  26. u16 hfs_brec_keylen(struct hfs_bnode *node, u16 rec)
  27. {
  28. u16 retval, recoff;
  29. if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF)
  30. return 0;
  31. if ((node->type == HFS_NODE_INDEX) &&
  32. !(node->tree->attributes & HFS_TREE_VARIDXKEYS)) {
  33. retval = node->tree->max_key_len + 2;
  34. } else {
  35. recoff = hfs_bnode_read_u16(node, node->tree->node_size - (rec + 1) * 2);
  36. if (!recoff)
  37. return 0;
  38. retval = hfs_bnode_read_u16(node, recoff) + 2;
  39. if (retval > node->tree->max_key_len + 2) {
  40. printk(KERN_ERR "hfs: keylen %d too large\n",
  41. retval);
  42. retval = 0;
  43. }
  44. }
  45. return retval;
  46. }
  47. int hfs_brec_insert(struct hfs_find_data *fd, void *entry, int entry_len)
  48. {
  49. struct hfs_btree *tree;
  50. struct hfs_bnode *node, *new_node;
  51. int size, key_len, rec;
  52. int data_off, end_off;
  53. int idx_rec_off, data_rec_off, end_rec_off;
  54. __be32 cnid;
  55. tree = fd->tree;
  56. if (!fd->bnode) {
  57. if (!tree->root)
  58. hfs_btree_inc_height(tree);
  59. fd->bnode = hfs_bnode_find(tree, tree->leaf_head);
  60. if (IS_ERR(fd->bnode))
  61. return PTR_ERR(fd->bnode);
  62. fd->record = -1;
  63. }
  64. new_node = NULL;
  65. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  66. again:
  67. /* new record idx and complete record size */
  68. rec = fd->record + 1;
  69. size = key_len + entry_len;
  70. node = fd->bnode;
  71. hfs_bnode_dump(node);
  72. /* get last offset */
  73. end_rec_off = tree->node_size - (node->num_recs + 1) * 2;
  74. end_off = hfs_bnode_read_u16(node, end_rec_off);
  75. end_rec_off -= 2;
  76. dprint(DBG_BNODE_MOD, "insert_rec: %d, %d, %d, %d\n", rec, size, end_off, end_rec_off);
  77. if (size > end_rec_off - end_off) {
  78. if (new_node)
  79. panic("not enough room!\n");
  80. new_node = hfs_bnode_split(fd);
  81. if (IS_ERR(new_node))
  82. return PTR_ERR(new_node);
  83. goto again;
  84. }
  85. if (node->type == HFS_NODE_LEAF) {
  86. tree->leaf_count++;
  87. mark_inode_dirty(tree->inode);
  88. }
  89. node->num_recs++;
  90. /* write new last offset */
  91. hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs);
  92. hfs_bnode_write_u16(node, end_rec_off, end_off + size);
  93. data_off = end_off;
  94. data_rec_off = end_rec_off + 2;
  95. idx_rec_off = tree->node_size - (rec + 1) * 2;
  96. if (idx_rec_off == data_rec_off)
  97. goto skip;
  98. /* move all following entries */
  99. do {
  100. data_off = hfs_bnode_read_u16(node, data_rec_off + 2);
  101. hfs_bnode_write_u16(node, data_rec_off, data_off + size);
  102. data_rec_off += 2;
  103. } while (data_rec_off < idx_rec_off);
  104. /* move data away */
  105. hfs_bnode_move(node, data_off + size, data_off,
  106. end_off - data_off);
  107. skip:
  108. hfs_bnode_write(node, fd->search_key, data_off, key_len);
  109. hfs_bnode_write(node, entry, data_off + key_len, entry_len);
  110. hfs_bnode_dump(node);
  111. if (new_node) {
  112. /* update parent key if we inserted a key
  113. * at the start of the first node
  114. */
  115. if (!rec && new_node != node)
  116. hfs_brec_update_parent(fd);
  117. hfs_bnode_put(fd->bnode);
  118. if (!new_node->parent) {
  119. hfs_btree_inc_height(tree);
  120. new_node->parent = tree->root;
  121. }
  122. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  123. /* create index data entry */
  124. cnid = cpu_to_be32(new_node->this);
  125. entry = &cnid;
  126. entry_len = sizeof(cnid);
  127. /* get index key */
  128. hfs_bnode_read_key(new_node, fd->search_key, 14);
  129. __hfs_brec_find(fd->bnode, fd);
  130. hfs_bnode_put(new_node);
  131. new_node = NULL;
  132. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  133. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  134. else {
  135. fd->search_key->key_len = cpu_to_be16(tree->max_key_len);
  136. key_len = tree->max_key_len + 2;
  137. }
  138. goto again;
  139. }
  140. if (!rec)
  141. hfs_brec_update_parent(fd);
  142. return 0;
  143. }
  144. int hfs_brec_remove(struct hfs_find_data *fd)
  145. {
  146. struct hfs_btree *tree;
  147. struct hfs_bnode *node, *parent;
  148. int end_off, rec_off, data_off, size;
  149. tree = fd->tree;
  150. node = fd->bnode;
  151. again:
  152. rec_off = tree->node_size - (fd->record + 2) * 2;
  153. end_off = tree->node_size - (node->num_recs + 1) * 2;
  154. if (node->type == HFS_NODE_LEAF) {
  155. tree->leaf_count--;
  156. mark_inode_dirty(tree->inode);
  157. }
  158. hfs_bnode_dump(node);
  159. dprint(DBG_BNODE_MOD, "remove_rec: %d, %d\n", fd->record, fd->keylength + fd->entrylength);
  160. if (!--node->num_recs) {
  161. hfs_bnode_unlink(node);
  162. if (!node->parent)
  163. return 0;
  164. parent = hfs_bnode_find(tree, node->parent);
  165. if (IS_ERR(parent))
  166. return PTR_ERR(parent);
  167. hfs_bnode_put(node);
  168. node = fd->bnode = parent;
  169. __hfs_brec_find(node, fd);
  170. goto again;
  171. }
  172. hfs_bnode_write_u16(node, offsetof(struct hfs_bnode_desc, num_recs), node->num_recs);
  173. if (rec_off == end_off)
  174. goto skip;
  175. size = fd->keylength + fd->entrylength;
  176. do {
  177. data_off = hfs_bnode_read_u16(node, rec_off);
  178. hfs_bnode_write_u16(node, rec_off + 2, data_off - size);
  179. rec_off -= 2;
  180. } while (rec_off >= end_off);
  181. /* fill hole */
  182. hfs_bnode_move(node, fd->keyoffset, fd->keyoffset + size,
  183. data_off - fd->keyoffset - size);
  184. skip:
  185. hfs_bnode_dump(node);
  186. if (!fd->record)
  187. hfs_brec_update_parent(fd);
  188. return 0;
  189. }
  190. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd)
  191. {
  192. struct hfs_btree *tree;
  193. struct hfs_bnode *node, *new_node, *next_node;
  194. struct hfs_bnode_desc node_desc;
  195. int num_recs, new_rec_off, new_off, old_rec_off;
  196. int data_start, data_end, size;
  197. tree = fd->tree;
  198. node = fd->bnode;
  199. new_node = hfs_bmap_alloc(tree);
  200. if (IS_ERR(new_node))
  201. return new_node;
  202. hfs_bnode_get(node);
  203. dprint(DBG_BNODE_MOD, "split_nodes: %d - %d - %d\n",
  204. node->this, new_node->this, node->next);
  205. new_node->next = node->next;
  206. new_node->prev = node->this;
  207. new_node->parent = node->parent;
  208. new_node->type = node->type;
  209. new_node->height = node->height;
  210. if (node->next)
  211. next_node = hfs_bnode_find(tree, node->next);
  212. else
  213. next_node = NULL;
  214. if (IS_ERR(next_node)) {
  215. hfs_bnode_put(node);
  216. hfs_bnode_put(new_node);
  217. return next_node;
  218. }
  219. size = tree->node_size / 2 - node->num_recs * 2 - 14;
  220. old_rec_off = tree->node_size - 4;
  221. num_recs = 1;
  222. for (;;) {
  223. data_start = hfs_bnode_read_u16(node, old_rec_off);
  224. if (data_start > size)
  225. break;
  226. old_rec_off -= 2;
  227. if (++num_recs < node->num_recs)
  228. continue;
  229. /* panic? */
  230. hfs_bnode_put(node);
  231. hfs_bnode_put(new_node);
  232. if (next_node)
  233. hfs_bnode_put(next_node);
  234. return ERR_PTR(-ENOSPC);
  235. }
  236. if (fd->record + 1 < num_recs) {
  237. /* new record is in the lower half,
  238. * so leave some more space there
  239. */
  240. old_rec_off += 2;
  241. num_recs--;
  242. data_start = hfs_bnode_read_u16(node, old_rec_off);
  243. } else {
  244. hfs_bnode_put(node);
  245. hfs_bnode_get(new_node);
  246. fd->bnode = new_node;
  247. fd->record -= num_recs;
  248. fd->keyoffset -= data_start - 14;
  249. fd->entryoffset -= data_start - 14;
  250. }
  251. new_node->num_recs = node->num_recs - num_recs;
  252. node->num_recs = num_recs;
  253. new_rec_off = tree->node_size - 2;
  254. new_off = 14;
  255. size = data_start - new_off;
  256. num_recs = new_node->num_recs;
  257. data_end = data_start;
  258. while (num_recs) {
  259. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  260. old_rec_off -= 2;
  261. new_rec_off -= 2;
  262. data_end = hfs_bnode_read_u16(node, old_rec_off);
  263. new_off = data_end - size;
  264. num_recs--;
  265. }
  266. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  267. hfs_bnode_copy(new_node, 14, node, data_start, data_end - data_start);
  268. /* update new bnode header */
  269. node_desc.next = cpu_to_be32(new_node->next);
  270. node_desc.prev = cpu_to_be32(new_node->prev);
  271. node_desc.type = new_node->type;
  272. node_desc.height = new_node->height;
  273. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  274. node_desc.reserved = 0;
  275. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  276. /* update previous bnode header */
  277. node->next = new_node->this;
  278. hfs_bnode_read(node, &node_desc, 0, sizeof(node_desc));
  279. node_desc.next = cpu_to_be32(node->next);
  280. node_desc.num_recs = cpu_to_be16(node->num_recs);
  281. hfs_bnode_write(node, &node_desc, 0, sizeof(node_desc));
  282. /* update next bnode header */
  283. if (next_node) {
  284. next_node->prev = new_node->this;
  285. hfs_bnode_read(next_node, &node_desc, 0, sizeof(node_desc));
  286. node_desc.prev = cpu_to_be32(next_node->prev);
  287. hfs_bnode_write(next_node, &node_desc, 0, sizeof(node_desc));
  288. hfs_bnode_put(next_node);
  289. } else if (node->this == tree->leaf_tail) {
  290. /* if there is no next node, this might be the new tail */
  291. tree->leaf_tail = new_node->this;
  292. mark_inode_dirty(tree->inode);
  293. }
  294. hfs_bnode_dump(node);
  295. hfs_bnode_dump(new_node);
  296. hfs_bnode_put(node);
  297. return new_node;
  298. }
  299. static int hfs_brec_update_parent(struct hfs_find_data *fd)
  300. {
  301. struct hfs_btree *tree;
  302. struct hfs_bnode *node, *new_node, *parent;
  303. int newkeylen, diff;
  304. int rec, rec_off, end_rec_off;
  305. int start_off, end_off;
  306. tree = fd->tree;
  307. node = fd->bnode;
  308. new_node = NULL;
  309. if (!node->parent)
  310. return 0;
  311. again:
  312. parent = hfs_bnode_find(tree, node->parent);
  313. if (IS_ERR(parent))
  314. return PTR_ERR(parent);
  315. __hfs_brec_find(parent, fd);
  316. hfs_bnode_dump(parent);
  317. rec = fd->record;
  318. /* size difference between old and new key */
  319. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  320. newkeylen = hfs_bnode_read_u16(node, 14) + 2;
  321. else
  322. fd->keylength = newkeylen = tree->max_key_len + 2;
  323. dprint(DBG_BNODE_MOD, "update_rec: %d, %d, %d\n", rec, fd->keylength, newkeylen);
  324. rec_off = tree->node_size - (rec + 2) * 2;
  325. end_rec_off = tree->node_size - (parent->num_recs + 1) * 2;
  326. diff = newkeylen - fd->keylength;
  327. if (!diff)
  328. goto skip;
  329. if (diff > 0) {
  330. end_off = hfs_bnode_read_u16(parent, end_rec_off);
  331. if (end_rec_off - end_off < diff) {
  332. printk(KERN_DEBUG "hfs: splitting index node...\n");
  333. fd->bnode = parent;
  334. new_node = hfs_bnode_split(fd);
  335. if (IS_ERR(new_node))
  336. return PTR_ERR(new_node);
  337. parent = fd->bnode;
  338. rec = fd->record;
  339. rec_off = tree->node_size - (rec + 2) * 2;
  340. end_rec_off = tree->node_size - (parent->num_recs + 1) * 2;
  341. }
  342. }
  343. end_off = start_off = hfs_bnode_read_u16(parent, rec_off);
  344. hfs_bnode_write_u16(parent, rec_off, start_off + diff);
  345. start_off -= 4; /* move previous cnid too */
  346. while (rec_off > end_rec_off) {
  347. rec_off -= 2;
  348. end_off = hfs_bnode_read_u16(parent, rec_off);
  349. hfs_bnode_write_u16(parent, rec_off, end_off + diff);
  350. }
  351. hfs_bnode_move(parent, start_off + diff, start_off,
  352. end_off - start_off);
  353. skip:
  354. hfs_bnode_copy(parent, fd->keyoffset, node, 14, newkeylen);
  355. hfs_bnode_dump(parent);
  356. hfs_bnode_put(node);
  357. node = parent;
  358. if (new_node) {
  359. __be32 cnid;
  360. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  361. /* create index key and entry */
  362. hfs_bnode_read_key(new_node, fd->search_key, 14);
  363. cnid = cpu_to_be32(new_node->this);
  364. __hfs_brec_find(fd->bnode, fd);
  365. hfs_brec_insert(fd, &cnid, sizeof(cnid));
  366. hfs_bnode_put(fd->bnode);
  367. hfs_bnode_put(new_node);
  368. if (!rec) {
  369. if (new_node == node)
  370. goto out;
  371. /* restore search_key */
  372. hfs_bnode_read_key(node, fd->search_key, 14);
  373. }
  374. }
  375. if (!rec && node->parent)
  376. goto again;
  377. out:
  378. fd->bnode = node;
  379. return 0;
  380. }
  381. static int hfs_btree_inc_height(struct hfs_btree *tree)
  382. {
  383. struct hfs_bnode *node, *new_node;
  384. struct hfs_bnode_desc node_desc;
  385. int key_size, rec;
  386. __be32 cnid;
  387. node = NULL;
  388. if (tree->root) {
  389. node = hfs_bnode_find(tree, tree->root);
  390. if (IS_ERR(node))
  391. return PTR_ERR(node);
  392. }
  393. new_node = hfs_bmap_alloc(tree);
  394. if (IS_ERR(new_node)) {
  395. hfs_bnode_put(node);
  396. return PTR_ERR(new_node);
  397. }
  398. tree->root = new_node->this;
  399. if (!tree->depth) {
  400. tree->leaf_head = tree->leaf_tail = new_node->this;
  401. new_node->type = HFS_NODE_LEAF;
  402. new_node->num_recs = 0;
  403. } else {
  404. new_node->type = HFS_NODE_INDEX;
  405. new_node->num_recs = 1;
  406. }
  407. new_node->parent = 0;
  408. new_node->next = 0;
  409. new_node->prev = 0;
  410. new_node->height = ++tree->depth;
  411. node_desc.next = cpu_to_be32(new_node->next);
  412. node_desc.prev = cpu_to_be32(new_node->prev);
  413. node_desc.type = new_node->type;
  414. node_desc.height = new_node->height;
  415. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  416. node_desc.reserved = 0;
  417. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  418. rec = tree->node_size - 2;
  419. hfs_bnode_write_u16(new_node, rec, 14);
  420. if (node) {
  421. /* insert old root idx into new root */
  422. node->parent = tree->root;
  423. if (node->type == HFS_NODE_LEAF ||
  424. tree->attributes & HFS_TREE_VARIDXKEYS)
  425. key_size = hfs_bnode_read_u16(node, 14) + 2;
  426. else
  427. key_size = tree->max_key_len + 2;
  428. hfs_bnode_copy(new_node, 14, node, 14, key_size);
  429. if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
  430. key_size = tree->max_key_len + 2;
  431. hfs_bnode_write_u16(new_node, 14, tree->max_key_len);
  432. }
  433. cnid = cpu_to_be32(node->this);
  434. hfs_bnode_write(new_node, &cnid, 14 + key_size, 4);
  435. rec -= 2;
  436. hfs_bnode_write_u16(new_node, rec, 14 + key_size + 4);
  437. hfs_bnode_put(node);
  438. }
  439. hfs_bnode_put(new_node);
  440. mark_inode_dirty(tree->inode);
  441. return 0;
  442. }