exec.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/swap.h>
  30. #include <linux/string.h>
  31. #include <linux/init.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/perf_event.h>
  34. #include <linux/highmem.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/key.h>
  37. #include <linux/personality.h>
  38. #include <linux/binfmts.h>
  39. #include <linux/utsname.h>
  40. #include <linux/pid_namespace.h>
  41. #include <linux/module.h>
  42. #include <linux/namei.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/mount.h>
  45. #include <linux/security.h>
  46. #include <linux/syscalls.h>
  47. #include <linux/tsacct_kern.h>
  48. #include <linux/cn_proc.h>
  49. #include <linux/audit.h>
  50. #include <linux/tracehook.h>
  51. #include <linux/kmod.h>
  52. #include <linux/fsnotify.h>
  53. #include <linux/fs_struct.h>
  54. #include <linux/pipe_fs_i.h>
  55. #include <linux/oom.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/tlb.h>
  59. #include "internal.h"
  60. int core_uses_pid;
  61. char core_pattern[CORENAME_MAX_SIZE] = "core";
  62. unsigned int core_pipe_limit;
  63. int suid_dumpable = 0;
  64. struct core_name {
  65. char *corename;
  66. int used, size;
  67. };
  68. static atomic_t call_count = ATOMIC_INIT(1);
  69. /* The maximal length of core_pattern is also specified in sysctl.c */
  70. static LIST_HEAD(formats);
  71. static DEFINE_RWLOCK(binfmt_lock);
  72. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  73. {
  74. if (!fmt)
  75. return -EINVAL;
  76. write_lock(&binfmt_lock);
  77. insert ? list_add(&fmt->lh, &formats) :
  78. list_add_tail(&fmt->lh, &formats);
  79. write_unlock(&binfmt_lock);
  80. return 0;
  81. }
  82. EXPORT_SYMBOL(__register_binfmt);
  83. void unregister_binfmt(struct linux_binfmt * fmt)
  84. {
  85. write_lock(&binfmt_lock);
  86. list_del(&fmt->lh);
  87. write_unlock(&binfmt_lock);
  88. }
  89. EXPORT_SYMBOL(unregister_binfmt);
  90. static inline void put_binfmt(struct linux_binfmt * fmt)
  91. {
  92. module_put(fmt->module);
  93. }
  94. /*
  95. * Note that a shared library must be both readable and executable due to
  96. * security reasons.
  97. *
  98. * Also note that we take the address to load from from the file itself.
  99. */
  100. SYSCALL_DEFINE1(uselib, const char __user *, library)
  101. {
  102. struct file *file;
  103. char *tmp = getname(library);
  104. int error = PTR_ERR(tmp);
  105. if (IS_ERR(tmp))
  106. goto out;
  107. file = do_filp_open(AT_FDCWD, tmp,
  108. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  109. MAY_READ | MAY_EXEC | MAY_OPEN);
  110. putname(tmp);
  111. error = PTR_ERR(file);
  112. if (IS_ERR(file))
  113. goto out;
  114. error = -EINVAL;
  115. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  116. goto exit;
  117. error = -EACCES;
  118. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  119. goto exit;
  120. fsnotify_open(file);
  121. error = -ENOEXEC;
  122. if(file->f_op) {
  123. struct linux_binfmt * fmt;
  124. read_lock(&binfmt_lock);
  125. list_for_each_entry(fmt, &formats, lh) {
  126. if (!fmt->load_shlib)
  127. continue;
  128. if (!try_module_get(fmt->module))
  129. continue;
  130. read_unlock(&binfmt_lock);
  131. error = fmt->load_shlib(file);
  132. read_lock(&binfmt_lock);
  133. put_binfmt(fmt);
  134. if (error != -ENOEXEC)
  135. break;
  136. }
  137. read_unlock(&binfmt_lock);
  138. }
  139. exit:
  140. fput(file);
  141. out:
  142. return error;
  143. }
  144. #ifdef CONFIG_MMU
  145. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  146. int write)
  147. {
  148. struct page *page;
  149. int ret;
  150. #ifdef CONFIG_STACK_GROWSUP
  151. if (write) {
  152. ret = expand_stack_downwards(bprm->vma, pos);
  153. if (ret < 0)
  154. return NULL;
  155. }
  156. #endif
  157. ret = get_user_pages(current, bprm->mm, pos,
  158. 1, write, 1, &page, NULL);
  159. if (ret <= 0)
  160. return NULL;
  161. if (write) {
  162. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  163. struct rlimit *rlim;
  164. /*
  165. * We've historically supported up to 32 pages (ARG_MAX)
  166. * of argument strings even with small stacks
  167. */
  168. if (size <= ARG_MAX)
  169. return page;
  170. /*
  171. * Limit to 1/4-th the stack size for the argv+env strings.
  172. * This ensures that:
  173. * - the remaining binfmt code will not run out of stack space,
  174. * - the program will have a reasonable amount of stack left
  175. * to work from.
  176. */
  177. rlim = current->signal->rlim;
  178. if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
  179. put_page(page);
  180. return NULL;
  181. }
  182. }
  183. return page;
  184. }
  185. static void put_arg_page(struct page *page)
  186. {
  187. put_page(page);
  188. }
  189. static void free_arg_page(struct linux_binprm *bprm, int i)
  190. {
  191. }
  192. static void free_arg_pages(struct linux_binprm *bprm)
  193. {
  194. }
  195. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  196. struct page *page)
  197. {
  198. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  199. }
  200. static int __bprm_mm_init(struct linux_binprm *bprm)
  201. {
  202. int err;
  203. struct vm_area_struct *vma = NULL;
  204. struct mm_struct *mm = bprm->mm;
  205. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  206. if (!vma)
  207. return -ENOMEM;
  208. down_write(&mm->mmap_sem);
  209. vma->vm_mm = mm;
  210. /*
  211. * Place the stack at the largest stack address the architecture
  212. * supports. Later, we'll move this to an appropriate place. We don't
  213. * use STACK_TOP because that can depend on attributes which aren't
  214. * configured yet.
  215. */
  216. BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
  217. vma->vm_end = STACK_TOP_MAX;
  218. vma->vm_start = vma->vm_end - PAGE_SIZE;
  219. vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
  220. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  221. INIT_LIST_HEAD(&vma->anon_vma_chain);
  222. err = insert_vm_struct(mm, vma);
  223. if (err)
  224. goto err;
  225. mm->stack_vm = mm->total_vm = 1;
  226. up_write(&mm->mmap_sem);
  227. bprm->p = vma->vm_end - sizeof(void *);
  228. return 0;
  229. err:
  230. up_write(&mm->mmap_sem);
  231. bprm->vma = NULL;
  232. kmem_cache_free(vm_area_cachep, vma);
  233. return err;
  234. }
  235. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  236. {
  237. return len <= MAX_ARG_STRLEN;
  238. }
  239. #else
  240. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  241. int write)
  242. {
  243. struct page *page;
  244. page = bprm->page[pos / PAGE_SIZE];
  245. if (!page && write) {
  246. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  247. if (!page)
  248. return NULL;
  249. bprm->page[pos / PAGE_SIZE] = page;
  250. }
  251. return page;
  252. }
  253. static void put_arg_page(struct page *page)
  254. {
  255. }
  256. static void free_arg_page(struct linux_binprm *bprm, int i)
  257. {
  258. if (bprm->page[i]) {
  259. __free_page(bprm->page[i]);
  260. bprm->page[i] = NULL;
  261. }
  262. }
  263. static void free_arg_pages(struct linux_binprm *bprm)
  264. {
  265. int i;
  266. for (i = 0; i < MAX_ARG_PAGES; i++)
  267. free_arg_page(bprm, i);
  268. }
  269. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  270. struct page *page)
  271. {
  272. }
  273. static int __bprm_mm_init(struct linux_binprm *bprm)
  274. {
  275. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  276. return 0;
  277. }
  278. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  279. {
  280. return len <= bprm->p;
  281. }
  282. #endif /* CONFIG_MMU */
  283. /*
  284. * Create a new mm_struct and populate it with a temporary stack
  285. * vm_area_struct. We don't have enough context at this point to set the stack
  286. * flags, permissions, and offset, so we use temporary values. We'll update
  287. * them later in setup_arg_pages().
  288. */
  289. int bprm_mm_init(struct linux_binprm *bprm)
  290. {
  291. int err;
  292. struct mm_struct *mm = NULL;
  293. bprm->mm = mm = mm_alloc();
  294. err = -ENOMEM;
  295. if (!mm)
  296. goto err;
  297. err = init_new_context(current, mm);
  298. if (err)
  299. goto err;
  300. err = __bprm_mm_init(bprm);
  301. if (err)
  302. goto err;
  303. return 0;
  304. err:
  305. if (mm) {
  306. bprm->mm = NULL;
  307. mmdrop(mm);
  308. }
  309. return err;
  310. }
  311. /*
  312. * count() counts the number of strings in array ARGV.
  313. */
  314. static int count(const char __user * const __user * argv, int max)
  315. {
  316. int i = 0;
  317. if (argv != NULL) {
  318. for (;;) {
  319. const char __user * p;
  320. if (get_user(p, argv))
  321. return -EFAULT;
  322. if (!p)
  323. break;
  324. argv++;
  325. if (i++ >= max)
  326. return -E2BIG;
  327. if (fatal_signal_pending(current))
  328. return -ERESTARTNOHAND;
  329. cond_resched();
  330. }
  331. }
  332. return i;
  333. }
  334. /*
  335. * 'copy_strings()' copies argument/environment strings from the old
  336. * processes's memory to the new process's stack. The call to get_user_pages()
  337. * ensures the destination page is created and not swapped out.
  338. */
  339. static int copy_strings(int argc, const char __user *const __user *argv,
  340. struct linux_binprm *bprm)
  341. {
  342. struct page *kmapped_page = NULL;
  343. char *kaddr = NULL;
  344. unsigned long kpos = 0;
  345. int ret;
  346. while (argc-- > 0) {
  347. const char __user *str;
  348. int len;
  349. unsigned long pos;
  350. if (get_user(str, argv+argc) ||
  351. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  352. ret = -EFAULT;
  353. goto out;
  354. }
  355. if (!valid_arg_len(bprm, len)) {
  356. ret = -E2BIG;
  357. goto out;
  358. }
  359. /* We're going to work our way backwords. */
  360. pos = bprm->p;
  361. str += len;
  362. bprm->p -= len;
  363. while (len > 0) {
  364. int offset, bytes_to_copy;
  365. if (fatal_signal_pending(current)) {
  366. ret = -ERESTARTNOHAND;
  367. goto out;
  368. }
  369. cond_resched();
  370. offset = pos % PAGE_SIZE;
  371. if (offset == 0)
  372. offset = PAGE_SIZE;
  373. bytes_to_copy = offset;
  374. if (bytes_to_copy > len)
  375. bytes_to_copy = len;
  376. offset -= bytes_to_copy;
  377. pos -= bytes_to_copy;
  378. str -= bytes_to_copy;
  379. len -= bytes_to_copy;
  380. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  381. struct page *page;
  382. page = get_arg_page(bprm, pos, 1);
  383. if (!page) {
  384. ret = -E2BIG;
  385. goto out;
  386. }
  387. if (kmapped_page) {
  388. flush_kernel_dcache_page(kmapped_page);
  389. kunmap(kmapped_page);
  390. put_arg_page(kmapped_page);
  391. }
  392. kmapped_page = page;
  393. kaddr = kmap(kmapped_page);
  394. kpos = pos & PAGE_MASK;
  395. flush_arg_page(bprm, kpos, kmapped_page);
  396. }
  397. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  398. ret = -EFAULT;
  399. goto out;
  400. }
  401. }
  402. }
  403. ret = 0;
  404. out:
  405. if (kmapped_page) {
  406. flush_kernel_dcache_page(kmapped_page);
  407. kunmap(kmapped_page);
  408. put_arg_page(kmapped_page);
  409. }
  410. return ret;
  411. }
  412. /*
  413. * Like copy_strings, but get argv and its values from kernel memory.
  414. */
  415. int copy_strings_kernel(int argc, const char *const *argv,
  416. struct linux_binprm *bprm)
  417. {
  418. int r;
  419. mm_segment_t oldfs = get_fs();
  420. set_fs(KERNEL_DS);
  421. r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
  422. set_fs(oldfs);
  423. return r;
  424. }
  425. EXPORT_SYMBOL(copy_strings_kernel);
  426. #ifdef CONFIG_MMU
  427. /*
  428. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  429. * the binfmt code determines where the new stack should reside, we shift it to
  430. * its final location. The process proceeds as follows:
  431. *
  432. * 1) Use shift to calculate the new vma endpoints.
  433. * 2) Extend vma to cover both the old and new ranges. This ensures the
  434. * arguments passed to subsequent functions are consistent.
  435. * 3) Move vma's page tables to the new range.
  436. * 4) Free up any cleared pgd range.
  437. * 5) Shrink the vma to cover only the new range.
  438. */
  439. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  440. {
  441. struct mm_struct *mm = vma->vm_mm;
  442. unsigned long old_start = vma->vm_start;
  443. unsigned long old_end = vma->vm_end;
  444. unsigned long length = old_end - old_start;
  445. unsigned long new_start = old_start - shift;
  446. unsigned long new_end = old_end - shift;
  447. struct mmu_gather *tlb;
  448. BUG_ON(new_start > new_end);
  449. /*
  450. * ensure there are no vmas between where we want to go
  451. * and where we are
  452. */
  453. if (vma != find_vma(mm, new_start))
  454. return -EFAULT;
  455. /*
  456. * cover the whole range: [new_start, old_end)
  457. */
  458. if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
  459. return -ENOMEM;
  460. /*
  461. * move the page tables downwards, on failure we rely on
  462. * process cleanup to remove whatever mess we made.
  463. */
  464. if (length != move_page_tables(vma, old_start,
  465. vma, new_start, length))
  466. return -ENOMEM;
  467. lru_add_drain();
  468. tlb = tlb_gather_mmu(mm, 0);
  469. if (new_end > old_start) {
  470. /*
  471. * when the old and new regions overlap clear from new_end.
  472. */
  473. free_pgd_range(tlb, new_end, old_end, new_end,
  474. vma->vm_next ? vma->vm_next->vm_start : 0);
  475. } else {
  476. /*
  477. * otherwise, clean from old_start; this is done to not touch
  478. * the address space in [new_end, old_start) some architectures
  479. * have constraints on va-space that make this illegal (IA64) -
  480. * for the others its just a little faster.
  481. */
  482. free_pgd_range(tlb, old_start, old_end, new_end,
  483. vma->vm_next ? vma->vm_next->vm_start : 0);
  484. }
  485. tlb_finish_mmu(tlb, new_end, old_end);
  486. /*
  487. * Shrink the vma to just the new range. Always succeeds.
  488. */
  489. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  490. return 0;
  491. }
  492. /*
  493. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  494. * the stack is optionally relocated, and some extra space is added.
  495. */
  496. int setup_arg_pages(struct linux_binprm *bprm,
  497. unsigned long stack_top,
  498. int executable_stack)
  499. {
  500. unsigned long ret;
  501. unsigned long stack_shift;
  502. struct mm_struct *mm = current->mm;
  503. struct vm_area_struct *vma = bprm->vma;
  504. struct vm_area_struct *prev = NULL;
  505. unsigned long vm_flags;
  506. unsigned long stack_base;
  507. unsigned long stack_size;
  508. unsigned long stack_expand;
  509. unsigned long rlim_stack;
  510. #ifdef CONFIG_STACK_GROWSUP
  511. /* Limit stack size to 1GB */
  512. stack_base = rlimit_max(RLIMIT_STACK);
  513. if (stack_base > (1 << 30))
  514. stack_base = 1 << 30;
  515. /* Make sure we didn't let the argument array grow too large. */
  516. if (vma->vm_end - vma->vm_start > stack_base)
  517. return -ENOMEM;
  518. stack_base = PAGE_ALIGN(stack_top - stack_base);
  519. stack_shift = vma->vm_start - stack_base;
  520. mm->arg_start = bprm->p - stack_shift;
  521. bprm->p = vma->vm_end - stack_shift;
  522. #else
  523. stack_top = arch_align_stack(stack_top);
  524. stack_top = PAGE_ALIGN(stack_top);
  525. if (unlikely(stack_top < mmap_min_addr) ||
  526. unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
  527. return -ENOMEM;
  528. stack_shift = vma->vm_end - stack_top;
  529. bprm->p -= stack_shift;
  530. mm->arg_start = bprm->p;
  531. #endif
  532. if (bprm->loader)
  533. bprm->loader -= stack_shift;
  534. bprm->exec -= stack_shift;
  535. down_write(&mm->mmap_sem);
  536. vm_flags = VM_STACK_FLAGS;
  537. /*
  538. * Adjust stack execute permissions; explicitly enable for
  539. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  540. * (arch default) otherwise.
  541. */
  542. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  543. vm_flags |= VM_EXEC;
  544. else if (executable_stack == EXSTACK_DISABLE_X)
  545. vm_flags &= ~VM_EXEC;
  546. vm_flags |= mm->def_flags;
  547. vm_flags |= VM_STACK_INCOMPLETE_SETUP;
  548. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  549. vm_flags);
  550. if (ret)
  551. goto out_unlock;
  552. BUG_ON(prev != vma);
  553. /* Move stack pages down in memory. */
  554. if (stack_shift) {
  555. ret = shift_arg_pages(vma, stack_shift);
  556. if (ret)
  557. goto out_unlock;
  558. }
  559. /* mprotect_fixup is overkill to remove the temporary stack flags */
  560. vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
  561. stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
  562. stack_size = vma->vm_end - vma->vm_start;
  563. /*
  564. * Align this down to a page boundary as expand_stack
  565. * will align it up.
  566. */
  567. rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
  568. #ifdef CONFIG_STACK_GROWSUP
  569. if (stack_size + stack_expand > rlim_stack)
  570. stack_base = vma->vm_start + rlim_stack;
  571. else
  572. stack_base = vma->vm_end + stack_expand;
  573. #else
  574. if (stack_size + stack_expand > rlim_stack)
  575. stack_base = vma->vm_end - rlim_stack;
  576. else
  577. stack_base = vma->vm_start - stack_expand;
  578. #endif
  579. current->mm->start_stack = bprm->p;
  580. ret = expand_stack(vma, stack_base);
  581. if (ret)
  582. ret = -EFAULT;
  583. out_unlock:
  584. up_write(&mm->mmap_sem);
  585. return ret;
  586. }
  587. EXPORT_SYMBOL(setup_arg_pages);
  588. #endif /* CONFIG_MMU */
  589. struct file *open_exec(const char *name)
  590. {
  591. struct file *file;
  592. int err;
  593. file = do_filp_open(AT_FDCWD, name,
  594. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  595. MAY_EXEC | MAY_OPEN);
  596. if (IS_ERR(file))
  597. goto out;
  598. err = -EACCES;
  599. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  600. goto exit;
  601. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  602. goto exit;
  603. fsnotify_open(file);
  604. err = deny_write_access(file);
  605. if (err)
  606. goto exit;
  607. out:
  608. return file;
  609. exit:
  610. fput(file);
  611. return ERR_PTR(err);
  612. }
  613. EXPORT_SYMBOL(open_exec);
  614. int kernel_read(struct file *file, loff_t offset,
  615. char *addr, unsigned long count)
  616. {
  617. mm_segment_t old_fs;
  618. loff_t pos = offset;
  619. int result;
  620. old_fs = get_fs();
  621. set_fs(get_ds());
  622. /* The cast to a user pointer is valid due to the set_fs() */
  623. result = vfs_read(file, (void __user *)addr, count, &pos);
  624. set_fs(old_fs);
  625. return result;
  626. }
  627. EXPORT_SYMBOL(kernel_read);
  628. static int exec_mmap(struct mm_struct *mm)
  629. {
  630. struct task_struct *tsk;
  631. struct mm_struct * old_mm, *active_mm;
  632. /* Notify parent that we're no longer interested in the old VM */
  633. tsk = current;
  634. old_mm = current->mm;
  635. sync_mm_rss(tsk, old_mm);
  636. mm_release(tsk, old_mm);
  637. if (old_mm) {
  638. /*
  639. * Make sure that if there is a core dump in progress
  640. * for the old mm, we get out and die instead of going
  641. * through with the exec. We must hold mmap_sem around
  642. * checking core_state and changing tsk->mm.
  643. */
  644. down_read(&old_mm->mmap_sem);
  645. if (unlikely(old_mm->core_state)) {
  646. up_read(&old_mm->mmap_sem);
  647. return -EINTR;
  648. }
  649. }
  650. task_lock(tsk);
  651. active_mm = tsk->active_mm;
  652. tsk->mm = mm;
  653. tsk->active_mm = mm;
  654. activate_mm(active_mm, mm);
  655. if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
  656. atomic_dec(&old_mm->oom_disable_count);
  657. atomic_inc(&tsk->mm->oom_disable_count);
  658. }
  659. task_unlock(tsk);
  660. arch_pick_mmap_layout(mm);
  661. if (old_mm) {
  662. up_read(&old_mm->mmap_sem);
  663. BUG_ON(active_mm != old_mm);
  664. mm_update_next_owner(old_mm);
  665. mmput(old_mm);
  666. return 0;
  667. }
  668. mmdrop(active_mm);
  669. return 0;
  670. }
  671. /*
  672. * This function makes sure the current process has its own signal table,
  673. * so that flush_signal_handlers can later reset the handlers without
  674. * disturbing other processes. (Other processes might share the signal
  675. * table via the CLONE_SIGHAND option to clone().)
  676. */
  677. static int de_thread(struct task_struct *tsk)
  678. {
  679. struct signal_struct *sig = tsk->signal;
  680. struct sighand_struct *oldsighand = tsk->sighand;
  681. spinlock_t *lock = &oldsighand->siglock;
  682. if (thread_group_empty(tsk))
  683. goto no_thread_group;
  684. /*
  685. * Kill all other threads in the thread group.
  686. */
  687. spin_lock_irq(lock);
  688. if (signal_group_exit(sig)) {
  689. /*
  690. * Another group action in progress, just
  691. * return so that the signal is processed.
  692. */
  693. spin_unlock_irq(lock);
  694. return -EAGAIN;
  695. }
  696. sig->group_exit_task = tsk;
  697. sig->notify_count = zap_other_threads(tsk);
  698. if (!thread_group_leader(tsk))
  699. sig->notify_count--;
  700. while (sig->notify_count) {
  701. __set_current_state(TASK_UNINTERRUPTIBLE);
  702. spin_unlock_irq(lock);
  703. schedule();
  704. spin_lock_irq(lock);
  705. }
  706. spin_unlock_irq(lock);
  707. /*
  708. * At this point all other threads have exited, all we have to
  709. * do is to wait for the thread group leader to become inactive,
  710. * and to assume its PID:
  711. */
  712. if (!thread_group_leader(tsk)) {
  713. struct task_struct *leader = tsk->group_leader;
  714. sig->notify_count = -1; /* for exit_notify() */
  715. for (;;) {
  716. write_lock_irq(&tasklist_lock);
  717. if (likely(leader->exit_state))
  718. break;
  719. __set_current_state(TASK_UNINTERRUPTIBLE);
  720. write_unlock_irq(&tasklist_lock);
  721. schedule();
  722. }
  723. /*
  724. * The only record we have of the real-time age of a
  725. * process, regardless of execs it's done, is start_time.
  726. * All the past CPU time is accumulated in signal_struct
  727. * from sister threads now dead. But in this non-leader
  728. * exec, nothing survives from the original leader thread,
  729. * whose birth marks the true age of this process now.
  730. * When we take on its identity by switching to its PID, we
  731. * also take its birthdate (always earlier than our own).
  732. */
  733. tsk->start_time = leader->start_time;
  734. BUG_ON(!same_thread_group(leader, tsk));
  735. BUG_ON(has_group_leader_pid(tsk));
  736. /*
  737. * An exec() starts a new thread group with the
  738. * TGID of the previous thread group. Rehash the
  739. * two threads with a switched PID, and release
  740. * the former thread group leader:
  741. */
  742. /* Become a process group leader with the old leader's pid.
  743. * The old leader becomes a thread of the this thread group.
  744. * Note: The old leader also uses this pid until release_task
  745. * is called. Odd but simple and correct.
  746. */
  747. detach_pid(tsk, PIDTYPE_PID);
  748. tsk->pid = leader->pid;
  749. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  750. transfer_pid(leader, tsk, PIDTYPE_PGID);
  751. transfer_pid(leader, tsk, PIDTYPE_SID);
  752. list_replace_rcu(&leader->tasks, &tsk->tasks);
  753. list_replace_init(&leader->sibling, &tsk->sibling);
  754. tsk->group_leader = tsk;
  755. leader->group_leader = tsk;
  756. tsk->exit_signal = SIGCHLD;
  757. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  758. leader->exit_state = EXIT_DEAD;
  759. write_unlock_irq(&tasklist_lock);
  760. release_task(leader);
  761. }
  762. sig->group_exit_task = NULL;
  763. sig->notify_count = 0;
  764. no_thread_group:
  765. if (current->mm)
  766. setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
  767. exit_itimers(sig);
  768. flush_itimer_signals();
  769. if (atomic_read(&oldsighand->count) != 1) {
  770. struct sighand_struct *newsighand;
  771. /*
  772. * This ->sighand is shared with the CLONE_SIGHAND
  773. * but not CLONE_THREAD task, switch to the new one.
  774. */
  775. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  776. if (!newsighand)
  777. return -ENOMEM;
  778. atomic_set(&newsighand->count, 1);
  779. memcpy(newsighand->action, oldsighand->action,
  780. sizeof(newsighand->action));
  781. write_lock_irq(&tasklist_lock);
  782. spin_lock(&oldsighand->siglock);
  783. rcu_assign_pointer(tsk->sighand, newsighand);
  784. spin_unlock(&oldsighand->siglock);
  785. write_unlock_irq(&tasklist_lock);
  786. __cleanup_sighand(oldsighand);
  787. }
  788. BUG_ON(!thread_group_leader(tsk));
  789. return 0;
  790. }
  791. /*
  792. * These functions flushes out all traces of the currently running executable
  793. * so that a new one can be started
  794. */
  795. static void flush_old_files(struct files_struct * files)
  796. {
  797. long j = -1;
  798. struct fdtable *fdt;
  799. spin_lock(&files->file_lock);
  800. for (;;) {
  801. unsigned long set, i;
  802. j++;
  803. i = j * __NFDBITS;
  804. fdt = files_fdtable(files);
  805. if (i >= fdt->max_fds)
  806. break;
  807. set = fdt->close_on_exec->fds_bits[j];
  808. if (!set)
  809. continue;
  810. fdt->close_on_exec->fds_bits[j] = 0;
  811. spin_unlock(&files->file_lock);
  812. for ( ; set ; i++,set >>= 1) {
  813. if (set & 1) {
  814. sys_close(i);
  815. }
  816. }
  817. spin_lock(&files->file_lock);
  818. }
  819. spin_unlock(&files->file_lock);
  820. }
  821. char *get_task_comm(char *buf, struct task_struct *tsk)
  822. {
  823. /* buf must be at least sizeof(tsk->comm) in size */
  824. task_lock(tsk);
  825. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  826. task_unlock(tsk);
  827. return buf;
  828. }
  829. void set_task_comm(struct task_struct *tsk, char *buf)
  830. {
  831. task_lock(tsk);
  832. /*
  833. * Threads may access current->comm without holding
  834. * the task lock, so write the string carefully.
  835. * Readers without a lock may see incomplete new
  836. * names but are safe from non-terminating string reads.
  837. */
  838. memset(tsk->comm, 0, TASK_COMM_LEN);
  839. wmb();
  840. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  841. task_unlock(tsk);
  842. perf_event_comm(tsk);
  843. }
  844. int flush_old_exec(struct linux_binprm * bprm)
  845. {
  846. int retval;
  847. /*
  848. * Make sure we have a private signal table and that
  849. * we are unassociated from the previous thread group.
  850. */
  851. retval = de_thread(current);
  852. if (retval)
  853. goto out;
  854. set_mm_exe_file(bprm->mm, bprm->file);
  855. /*
  856. * Release all of the old mmap stuff
  857. */
  858. retval = exec_mmap(bprm->mm);
  859. if (retval)
  860. goto out;
  861. bprm->mm = NULL; /* We're using it now */
  862. current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
  863. flush_thread();
  864. current->personality &= ~bprm->per_clear;
  865. return 0;
  866. out:
  867. return retval;
  868. }
  869. EXPORT_SYMBOL(flush_old_exec);
  870. void setup_new_exec(struct linux_binprm * bprm)
  871. {
  872. int i, ch;
  873. const char *name;
  874. char tcomm[sizeof(current->comm)];
  875. arch_pick_mmap_layout(current->mm);
  876. /* This is the point of no return */
  877. current->sas_ss_sp = current->sas_ss_size = 0;
  878. if (current_euid() == current_uid() && current_egid() == current_gid())
  879. set_dumpable(current->mm, 1);
  880. else
  881. set_dumpable(current->mm, suid_dumpable);
  882. name = bprm->filename;
  883. /* Copies the binary name from after last slash */
  884. for (i=0; (ch = *(name++)) != '\0';) {
  885. if (ch == '/')
  886. i = 0; /* overwrite what we wrote */
  887. else
  888. if (i < (sizeof(tcomm) - 1))
  889. tcomm[i++] = ch;
  890. }
  891. tcomm[i] = '\0';
  892. set_task_comm(current, tcomm);
  893. /* Set the new mm task size. We have to do that late because it may
  894. * depend on TIF_32BIT which is only updated in flush_thread() on
  895. * some architectures like powerpc
  896. */
  897. current->mm->task_size = TASK_SIZE;
  898. /* install the new credentials */
  899. if (bprm->cred->uid != current_euid() ||
  900. bprm->cred->gid != current_egid()) {
  901. current->pdeath_signal = 0;
  902. } else if (file_permission(bprm->file, MAY_READ) ||
  903. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  904. set_dumpable(current->mm, suid_dumpable);
  905. }
  906. /*
  907. * Flush performance counters when crossing a
  908. * security domain:
  909. */
  910. if (!get_dumpable(current->mm))
  911. perf_event_exit_task(current);
  912. /* An exec changes our domain. We are no longer part of the thread
  913. group */
  914. current->self_exec_id++;
  915. flush_signal_handlers(current, 0);
  916. flush_old_files(current->files);
  917. }
  918. EXPORT_SYMBOL(setup_new_exec);
  919. /*
  920. * Prepare credentials and lock ->cred_guard_mutex.
  921. * install_exec_creds() commits the new creds and drops the lock.
  922. * Or, if exec fails before, free_bprm() should release ->cred and
  923. * and unlock.
  924. */
  925. int prepare_bprm_creds(struct linux_binprm *bprm)
  926. {
  927. if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
  928. return -ERESTARTNOINTR;
  929. bprm->cred = prepare_exec_creds();
  930. if (likely(bprm->cred))
  931. return 0;
  932. mutex_unlock(&current->signal->cred_guard_mutex);
  933. return -ENOMEM;
  934. }
  935. void free_bprm(struct linux_binprm *bprm)
  936. {
  937. free_arg_pages(bprm);
  938. if (bprm->cred) {
  939. mutex_unlock(&current->signal->cred_guard_mutex);
  940. abort_creds(bprm->cred);
  941. }
  942. kfree(bprm);
  943. }
  944. /*
  945. * install the new credentials for this executable
  946. */
  947. void install_exec_creds(struct linux_binprm *bprm)
  948. {
  949. security_bprm_committing_creds(bprm);
  950. commit_creds(bprm->cred);
  951. bprm->cred = NULL;
  952. /*
  953. * cred_guard_mutex must be held at least to this point to prevent
  954. * ptrace_attach() from altering our determination of the task's
  955. * credentials; any time after this it may be unlocked.
  956. */
  957. security_bprm_committed_creds(bprm);
  958. mutex_unlock(&current->signal->cred_guard_mutex);
  959. }
  960. EXPORT_SYMBOL(install_exec_creds);
  961. /*
  962. * determine how safe it is to execute the proposed program
  963. * - the caller must hold ->cred_guard_mutex to protect against
  964. * PTRACE_ATTACH
  965. */
  966. int check_unsafe_exec(struct linux_binprm *bprm)
  967. {
  968. struct task_struct *p = current, *t;
  969. unsigned n_fs;
  970. int res = 0;
  971. bprm->unsafe = tracehook_unsafe_exec(p);
  972. n_fs = 1;
  973. spin_lock(&p->fs->lock);
  974. rcu_read_lock();
  975. for (t = next_thread(p); t != p; t = next_thread(t)) {
  976. if (t->fs == p->fs)
  977. n_fs++;
  978. }
  979. rcu_read_unlock();
  980. if (p->fs->users > n_fs) {
  981. bprm->unsafe |= LSM_UNSAFE_SHARE;
  982. } else {
  983. res = -EAGAIN;
  984. if (!p->fs->in_exec) {
  985. p->fs->in_exec = 1;
  986. res = 1;
  987. }
  988. }
  989. spin_unlock(&p->fs->lock);
  990. return res;
  991. }
  992. /*
  993. * Fill the binprm structure from the inode.
  994. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  995. *
  996. * This may be called multiple times for binary chains (scripts for example).
  997. */
  998. int prepare_binprm(struct linux_binprm *bprm)
  999. {
  1000. umode_t mode;
  1001. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  1002. int retval;
  1003. mode = inode->i_mode;
  1004. if (bprm->file->f_op == NULL)
  1005. return -EACCES;
  1006. /* clear any previous set[ug]id data from a previous binary */
  1007. bprm->cred->euid = current_euid();
  1008. bprm->cred->egid = current_egid();
  1009. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  1010. /* Set-uid? */
  1011. if (mode & S_ISUID) {
  1012. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1013. bprm->cred->euid = inode->i_uid;
  1014. }
  1015. /* Set-gid? */
  1016. /*
  1017. * If setgid is set but no group execute bit then this
  1018. * is a candidate for mandatory locking, not a setgid
  1019. * executable.
  1020. */
  1021. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  1022. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1023. bprm->cred->egid = inode->i_gid;
  1024. }
  1025. }
  1026. /* fill in binprm security blob */
  1027. retval = security_bprm_set_creds(bprm);
  1028. if (retval)
  1029. return retval;
  1030. bprm->cred_prepared = 1;
  1031. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  1032. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  1033. }
  1034. EXPORT_SYMBOL(prepare_binprm);
  1035. /*
  1036. * Arguments are '\0' separated strings found at the location bprm->p
  1037. * points to; chop off the first by relocating brpm->p to right after
  1038. * the first '\0' encountered.
  1039. */
  1040. int remove_arg_zero(struct linux_binprm *bprm)
  1041. {
  1042. int ret = 0;
  1043. unsigned long offset;
  1044. char *kaddr;
  1045. struct page *page;
  1046. if (!bprm->argc)
  1047. return 0;
  1048. do {
  1049. offset = bprm->p & ~PAGE_MASK;
  1050. page = get_arg_page(bprm, bprm->p, 0);
  1051. if (!page) {
  1052. ret = -EFAULT;
  1053. goto out;
  1054. }
  1055. kaddr = kmap_atomic(page, KM_USER0);
  1056. for (; offset < PAGE_SIZE && kaddr[offset];
  1057. offset++, bprm->p++)
  1058. ;
  1059. kunmap_atomic(kaddr, KM_USER0);
  1060. put_arg_page(page);
  1061. if (offset == PAGE_SIZE)
  1062. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1063. } while (offset == PAGE_SIZE);
  1064. bprm->p++;
  1065. bprm->argc--;
  1066. ret = 0;
  1067. out:
  1068. return ret;
  1069. }
  1070. EXPORT_SYMBOL(remove_arg_zero);
  1071. /*
  1072. * cycle the list of binary formats handler, until one recognizes the image
  1073. */
  1074. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1075. {
  1076. unsigned int depth = bprm->recursion_depth;
  1077. int try,retval;
  1078. struct linux_binfmt *fmt;
  1079. retval = security_bprm_check(bprm);
  1080. if (retval)
  1081. return retval;
  1082. /* kernel module loader fixup */
  1083. /* so we don't try to load run modprobe in kernel space. */
  1084. set_fs(USER_DS);
  1085. retval = audit_bprm(bprm);
  1086. if (retval)
  1087. return retval;
  1088. retval = -ENOENT;
  1089. for (try=0; try<2; try++) {
  1090. read_lock(&binfmt_lock);
  1091. list_for_each_entry(fmt, &formats, lh) {
  1092. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1093. if (!fn)
  1094. continue;
  1095. if (!try_module_get(fmt->module))
  1096. continue;
  1097. read_unlock(&binfmt_lock);
  1098. retval = fn(bprm, regs);
  1099. /*
  1100. * Restore the depth counter to its starting value
  1101. * in this call, so we don't have to rely on every
  1102. * load_binary function to restore it on return.
  1103. */
  1104. bprm->recursion_depth = depth;
  1105. if (retval >= 0) {
  1106. if (depth == 0)
  1107. tracehook_report_exec(fmt, bprm, regs);
  1108. put_binfmt(fmt);
  1109. allow_write_access(bprm->file);
  1110. if (bprm->file)
  1111. fput(bprm->file);
  1112. bprm->file = NULL;
  1113. current->did_exec = 1;
  1114. proc_exec_connector(current);
  1115. return retval;
  1116. }
  1117. read_lock(&binfmt_lock);
  1118. put_binfmt(fmt);
  1119. if (retval != -ENOEXEC || bprm->mm == NULL)
  1120. break;
  1121. if (!bprm->file) {
  1122. read_unlock(&binfmt_lock);
  1123. return retval;
  1124. }
  1125. }
  1126. read_unlock(&binfmt_lock);
  1127. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1128. break;
  1129. #ifdef CONFIG_MODULES
  1130. } else {
  1131. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1132. if (printable(bprm->buf[0]) &&
  1133. printable(bprm->buf[1]) &&
  1134. printable(bprm->buf[2]) &&
  1135. printable(bprm->buf[3]))
  1136. break; /* -ENOEXEC */
  1137. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1138. #endif
  1139. }
  1140. }
  1141. return retval;
  1142. }
  1143. EXPORT_SYMBOL(search_binary_handler);
  1144. /*
  1145. * sys_execve() executes a new program.
  1146. */
  1147. int do_execve(const char * filename,
  1148. const char __user *const __user *argv,
  1149. const char __user *const __user *envp,
  1150. struct pt_regs * regs)
  1151. {
  1152. struct linux_binprm *bprm;
  1153. struct file *file;
  1154. struct files_struct *displaced;
  1155. bool clear_in_exec;
  1156. int retval;
  1157. retval = unshare_files(&displaced);
  1158. if (retval)
  1159. goto out_ret;
  1160. retval = -ENOMEM;
  1161. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1162. if (!bprm)
  1163. goto out_files;
  1164. retval = prepare_bprm_creds(bprm);
  1165. if (retval)
  1166. goto out_free;
  1167. retval = check_unsafe_exec(bprm);
  1168. if (retval < 0)
  1169. goto out_free;
  1170. clear_in_exec = retval;
  1171. current->in_execve = 1;
  1172. file = open_exec(filename);
  1173. retval = PTR_ERR(file);
  1174. if (IS_ERR(file))
  1175. goto out_unmark;
  1176. sched_exec();
  1177. bprm->file = file;
  1178. bprm->filename = filename;
  1179. bprm->interp = filename;
  1180. retval = bprm_mm_init(bprm);
  1181. if (retval)
  1182. goto out_file;
  1183. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1184. if ((retval = bprm->argc) < 0)
  1185. goto out;
  1186. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1187. if ((retval = bprm->envc) < 0)
  1188. goto out;
  1189. retval = prepare_binprm(bprm);
  1190. if (retval < 0)
  1191. goto out;
  1192. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1193. if (retval < 0)
  1194. goto out;
  1195. bprm->exec = bprm->p;
  1196. retval = copy_strings(bprm->envc, envp, bprm);
  1197. if (retval < 0)
  1198. goto out;
  1199. retval = copy_strings(bprm->argc, argv, bprm);
  1200. if (retval < 0)
  1201. goto out;
  1202. retval = search_binary_handler(bprm,regs);
  1203. if (retval < 0)
  1204. goto out;
  1205. /* execve succeeded */
  1206. current->fs->in_exec = 0;
  1207. current->in_execve = 0;
  1208. acct_update_integrals(current);
  1209. free_bprm(bprm);
  1210. if (displaced)
  1211. put_files_struct(displaced);
  1212. return retval;
  1213. out:
  1214. if (bprm->mm)
  1215. mmput (bprm->mm);
  1216. out_file:
  1217. if (bprm->file) {
  1218. allow_write_access(bprm->file);
  1219. fput(bprm->file);
  1220. }
  1221. out_unmark:
  1222. if (clear_in_exec)
  1223. current->fs->in_exec = 0;
  1224. current->in_execve = 0;
  1225. out_free:
  1226. free_bprm(bprm);
  1227. out_files:
  1228. if (displaced)
  1229. reset_files_struct(displaced);
  1230. out_ret:
  1231. return retval;
  1232. }
  1233. void set_binfmt(struct linux_binfmt *new)
  1234. {
  1235. struct mm_struct *mm = current->mm;
  1236. if (mm->binfmt)
  1237. module_put(mm->binfmt->module);
  1238. mm->binfmt = new;
  1239. if (new)
  1240. __module_get(new->module);
  1241. }
  1242. EXPORT_SYMBOL(set_binfmt);
  1243. static int expand_corename(struct core_name *cn)
  1244. {
  1245. char *old_corename = cn->corename;
  1246. cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
  1247. cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
  1248. if (!cn->corename) {
  1249. kfree(old_corename);
  1250. return -ENOMEM;
  1251. }
  1252. return 0;
  1253. }
  1254. static int cn_printf(struct core_name *cn, const char *fmt, ...)
  1255. {
  1256. char *cur;
  1257. int need;
  1258. int ret;
  1259. va_list arg;
  1260. va_start(arg, fmt);
  1261. need = vsnprintf(NULL, 0, fmt, arg);
  1262. va_end(arg);
  1263. if (likely(need < cn->size - cn->used - 1))
  1264. goto out_printf;
  1265. ret = expand_corename(cn);
  1266. if (ret)
  1267. goto expand_fail;
  1268. out_printf:
  1269. cur = cn->corename + cn->used;
  1270. va_start(arg, fmt);
  1271. vsnprintf(cur, need + 1, fmt, arg);
  1272. va_end(arg);
  1273. cn->used += need;
  1274. return 0;
  1275. expand_fail:
  1276. return ret;
  1277. }
  1278. /* format_corename will inspect the pattern parameter, and output a
  1279. * name into corename, which must have space for at least
  1280. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1281. */
  1282. static int format_corename(struct core_name *cn, long signr)
  1283. {
  1284. const struct cred *cred = current_cred();
  1285. const char *pat_ptr = core_pattern;
  1286. int ispipe = (*pat_ptr == '|');
  1287. int pid_in_pattern = 0;
  1288. int err = 0;
  1289. cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
  1290. cn->corename = kmalloc(cn->size, GFP_KERNEL);
  1291. cn->used = 0;
  1292. if (!cn->corename)
  1293. return -ENOMEM;
  1294. /* Repeat as long as we have more pattern to process and more output
  1295. space */
  1296. while (*pat_ptr) {
  1297. if (*pat_ptr != '%') {
  1298. if (*pat_ptr == 0)
  1299. goto out;
  1300. err = cn_printf(cn, "%c", *pat_ptr++);
  1301. } else {
  1302. switch (*++pat_ptr) {
  1303. /* single % at the end, drop that */
  1304. case 0:
  1305. goto out;
  1306. /* Double percent, output one percent */
  1307. case '%':
  1308. err = cn_printf(cn, "%c", '%');
  1309. break;
  1310. /* pid */
  1311. case 'p':
  1312. pid_in_pattern = 1;
  1313. err = cn_printf(cn, "%d",
  1314. task_tgid_vnr(current));
  1315. break;
  1316. /* uid */
  1317. case 'u':
  1318. err = cn_printf(cn, "%d", cred->uid);
  1319. break;
  1320. /* gid */
  1321. case 'g':
  1322. err = cn_printf(cn, "%d", cred->gid);
  1323. break;
  1324. /* signal that caused the coredump */
  1325. case 's':
  1326. err = cn_printf(cn, "%ld", signr);
  1327. break;
  1328. /* UNIX time of coredump */
  1329. case 't': {
  1330. struct timeval tv;
  1331. do_gettimeofday(&tv);
  1332. err = cn_printf(cn, "%lu", tv.tv_sec);
  1333. break;
  1334. }
  1335. /* hostname */
  1336. case 'h':
  1337. down_read(&uts_sem);
  1338. err = cn_printf(cn, "%s",
  1339. utsname()->nodename);
  1340. up_read(&uts_sem);
  1341. break;
  1342. /* executable */
  1343. case 'e':
  1344. err = cn_printf(cn, "%s", current->comm);
  1345. break;
  1346. /* core limit size */
  1347. case 'c':
  1348. err = cn_printf(cn, "%lu",
  1349. rlimit(RLIMIT_CORE));
  1350. break;
  1351. default:
  1352. break;
  1353. }
  1354. ++pat_ptr;
  1355. }
  1356. if (err)
  1357. return err;
  1358. }
  1359. /* Backward compatibility with core_uses_pid:
  1360. *
  1361. * If core_pattern does not include a %p (as is the default)
  1362. * and core_uses_pid is set, then .%pid will be appended to
  1363. * the filename. Do not do this for piped commands. */
  1364. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1365. err = cn_printf(cn, ".%d", task_tgid_vnr(current));
  1366. if (err)
  1367. return err;
  1368. }
  1369. out:
  1370. return ispipe;
  1371. }
  1372. static int zap_process(struct task_struct *start, int exit_code)
  1373. {
  1374. struct task_struct *t;
  1375. int nr = 0;
  1376. start->signal->flags = SIGNAL_GROUP_EXIT;
  1377. start->signal->group_exit_code = exit_code;
  1378. start->signal->group_stop_count = 0;
  1379. t = start;
  1380. do {
  1381. if (t != current && t->mm) {
  1382. sigaddset(&t->pending.signal, SIGKILL);
  1383. signal_wake_up(t, 1);
  1384. nr++;
  1385. }
  1386. } while_each_thread(start, t);
  1387. return nr;
  1388. }
  1389. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1390. struct core_state *core_state, int exit_code)
  1391. {
  1392. struct task_struct *g, *p;
  1393. unsigned long flags;
  1394. int nr = -EAGAIN;
  1395. spin_lock_irq(&tsk->sighand->siglock);
  1396. if (!signal_group_exit(tsk->signal)) {
  1397. mm->core_state = core_state;
  1398. nr = zap_process(tsk, exit_code);
  1399. }
  1400. spin_unlock_irq(&tsk->sighand->siglock);
  1401. if (unlikely(nr < 0))
  1402. return nr;
  1403. if (atomic_read(&mm->mm_users) == nr + 1)
  1404. goto done;
  1405. /*
  1406. * We should find and kill all tasks which use this mm, and we should
  1407. * count them correctly into ->nr_threads. We don't take tasklist
  1408. * lock, but this is safe wrt:
  1409. *
  1410. * fork:
  1411. * None of sub-threads can fork after zap_process(leader). All
  1412. * processes which were created before this point should be
  1413. * visible to zap_threads() because copy_process() adds the new
  1414. * process to the tail of init_task.tasks list, and lock/unlock
  1415. * of ->siglock provides a memory barrier.
  1416. *
  1417. * do_exit:
  1418. * The caller holds mm->mmap_sem. This means that the task which
  1419. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1420. * its ->mm.
  1421. *
  1422. * de_thread:
  1423. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1424. * we must see either old or new leader, this does not matter.
  1425. * However, it can change p->sighand, so lock_task_sighand(p)
  1426. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1427. * it can't fail.
  1428. *
  1429. * Note also that "g" can be the old leader with ->mm == NULL
  1430. * and already unhashed and thus removed from ->thread_group.
  1431. * This is OK, __unhash_process()->list_del_rcu() does not
  1432. * clear the ->next pointer, we will find the new leader via
  1433. * next_thread().
  1434. */
  1435. rcu_read_lock();
  1436. for_each_process(g) {
  1437. if (g == tsk->group_leader)
  1438. continue;
  1439. if (g->flags & PF_KTHREAD)
  1440. continue;
  1441. p = g;
  1442. do {
  1443. if (p->mm) {
  1444. if (unlikely(p->mm == mm)) {
  1445. lock_task_sighand(p, &flags);
  1446. nr += zap_process(p, exit_code);
  1447. unlock_task_sighand(p, &flags);
  1448. }
  1449. break;
  1450. }
  1451. } while_each_thread(g, p);
  1452. }
  1453. rcu_read_unlock();
  1454. done:
  1455. atomic_set(&core_state->nr_threads, nr);
  1456. return nr;
  1457. }
  1458. static int coredump_wait(int exit_code, struct core_state *core_state)
  1459. {
  1460. struct task_struct *tsk = current;
  1461. struct mm_struct *mm = tsk->mm;
  1462. struct completion *vfork_done;
  1463. int core_waiters = -EBUSY;
  1464. init_completion(&core_state->startup);
  1465. core_state->dumper.task = tsk;
  1466. core_state->dumper.next = NULL;
  1467. down_write(&mm->mmap_sem);
  1468. if (!mm->core_state)
  1469. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1470. up_write(&mm->mmap_sem);
  1471. if (unlikely(core_waiters < 0))
  1472. goto fail;
  1473. /*
  1474. * Make sure nobody is waiting for us to release the VM,
  1475. * otherwise we can deadlock when we wait on each other
  1476. */
  1477. vfork_done = tsk->vfork_done;
  1478. if (vfork_done) {
  1479. tsk->vfork_done = NULL;
  1480. complete(vfork_done);
  1481. }
  1482. if (core_waiters)
  1483. wait_for_completion(&core_state->startup);
  1484. fail:
  1485. return core_waiters;
  1486. }
  1487. static void coredump_finish(struct mm_struct *mm)
  1488. {
  1489. struct core_thread *curr, *next;
  1490. struct task_struct *task;
  1491. next = mm->core_state->dumper.next;
  1492. while ((curr = next) != NULL) {
  1493. next = curr->next;
  1494. task = curr->task;
  1495. /*
  1496. * see exit_mm(), curr->task must not see
  1497. * ->task == NULL before we read ->next.
  1498. */
  1499. smp_mb();
  1500. curr->task = NULL;
  1501. wake_up_process(task);
  1502. }
  1503. mm->core_state = NULL;
  1504. }
  1505. /*
  1506. * set_dumpable converts traditional three-value dumpable to two flags and
  1507. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1508. * these bits are not changed atomically. So get_dumpable can observe the
  1509. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1510. * return either old dumpable or new one by paying attention to the order of
  1511. * modifying the bits.
  1512. *
  1513. * dumpable | mm->flags (binary)
  1514. * old new | initial interim final
  1515. * ---------+-----------------------
  1516. * 0 1 | 00 01 01
  1517. * 0 2 | 00 10(*) 11
  1518. * 1 0 | 01 00 00
  1519. * 1 2 | 01 11 11
  1520. * 2 0 | 11 10(*) 00
  1521. * 2 1 | 11 11 01
  1522. *
  1523. * (*) get_dumpable regards interim value of 10 as 11.
  1524. */
  1525. void set_dumpable(struct mm_struct *mm, int value)
  1526. {
  1527. switch (value) {
  1528. case 0:
  1529. clear_bit(MMF_DUMPABLE, &mm->flags);
  1530. smp_wmb();
  1531. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1532. break;
  1533. case 1:
  1534. set_bit(MMF_DUMPABLE, &mm->flags);
  1535. smp_wmb();
  1536. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1537. break;
  1538. case 2:
  1539. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1540. smp_wmb();
  1541. set_bit(MMF_DUMPABLE, &mm->flags);
  1542. break;
  1543. }
  1544. }
  1545. static int __get_dumpable(unsigned long mm_flags)
  1546. {
  1547. int ret;
  1548. ret = mm_flags & MMF_DUMPABLE_MASK;
  1549. return (ret >= 2) ? 2 : ret;
  1550. }
  1551. int get_dumpable(struct mm_struct *mm)
  1552. {
  1553. return __get_dumpable(mm->flags);
  1554. }
  1555. static void wait_for_dump_helpers(struct file *file)
  1556. {
  1557. struct pipe_inode_info *pipe;
  1558. pipe = file->f_path.dentry->d_inode->i_pipe;
  1559. pipe_lock(pipe);
  1560. pipe->readers++;
  1561. pipe->writers--;
  1562. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1563. wake_up_interruptible_sync(&pipe->wait);
  1564. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1565. pipe_wait(pipe);
  1566. }
  1567. pipe->readers--;
  1568. pipe->writers++;
  1569. pipe_unlock(pipe);
  1570. }
  1571. /*
  1572. * uhm_pipe_setup
  1573. * helper function to customize the process used
  1574. * to collect the core in userspace. Specifically
  1575. * it sets up a pipe and installs it as fd 0 (stdin)
  1576. * for the process. Returns 0 on success, or
  1577. * PTR_ERR on failure.
  1578. * Note that it also sets the core limit to 1. This
  1579. * is a special value that we use to trap recursive
  1580. * core dumps
  1581. */
  1582. static int umh_pipe_setup(struct subprocess_info *info)
  1583. {
  1584. struct file *rp, *wp;
  1585. struct fdtable *fdt;
  1586. struct coredump_params *cp = (struct coredump_params *)info->data;
  1587. struct files_struct *cf = current->files;
  1588. wp = create_write_pipe(0);
  1589. if (IS_ERR(wp))
  1590. return PTR_ERR(wp);
  1591. rp = create_read_pipe(wp, 0);
  1592. if (IS_ERR(rp)) {
  1593. free_write_pipe(wp);
  1594. return PTR_ERR(rp);
  1595. }
  1596. cp->file = wp;
  1597. sys_close(0);
  1598. fd_install(0, rp);
  1599. spin_lock(&cf->file_lock);
  1600. fdt = files_fdtable(cf);
  1601. FD_SET(0, fdt->open_fds);
  1602. FD_CLR(0, fdt->close_on_exec);
  1603. spin_unlock(&cf->file_lock);
  1604. /* and disallow core files too */
  1605. current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
  1606. return 0;
  1607. }
  1608. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1609. {
  1610. struct core_state core_state;
  1611. struct core_name cn;
  1612. struct mm_struct *mm = current->mm;
  1613. struct linux_binfmt * binfmt;
  1614. const struct cred *old_cred;
  1615. struct cred *cred;
  1616. int retval = 0;
  1617. int flag = 0;
  1618. int ispipe;
  1619. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1620. struct coredump_params cprm = {
  1621. .signr = signr,
  1622. .regs = regs,
  1623. .limit = rlimit(RLIMIT_CORE),
  1624. /*
  1625. * We must use the same mm->flags while dumping core to avoid
  1626. * inconsistency of bit flags, since this flag is not protected
  1627. * by any locks.
  1628. */
  1629. .mm_flags = mm->flags,
  1630. };
  1631. audit_core_dumps(signr);
  1632. binfmt = mm->binfmt;
  1633. if (!binfmt || !binfmt->core_dump)
  1634. goto fail;
  1635. if (!__get_dumpable(cprm.mm_flags))
  1636. goto fail;
  1637. cred = prepare_creds();
  1638. if (!cred)
  1639. goto fail;
  1640. /*
  1641. * We cannot trust fsuid as being the "true" uid of the
  1642. * process nor do we know its entire history. We only know it
  1643. * was tainted so we dump it as root in mode 2.
  1644. */
  1645. if (__get_dumpable(cprm.mm_flags) == 2) {
  1646. /* Setuid core dump mode */
  1647. flag = O_EXCL; /* Stop rewrite attacks */
  1648. cred->fsuid = 0; /* Dump root private */
  1649. }
  1650. retval = coredump_wait(exit_code, &core_state);
  1651. if (retval < 0)
  1652. goto fail_creds;
  1653. old_cred = override_creds(cred);
  1654. /*
  1655. * Clear any false indication of pending signals that might
  1656. * be seen by the filesystem code called to write the core file.
  1657. */
  1658. clear_thread_flag(TIF_SIGPENDING);
  1659. ispipe = format_corename(&cn, signr);
  1660. if (ispipe == -ENOMEM) {
  1661. printk(KERN_WARNING "format_corename failed\n");
  1662. printk(KERN_WARNING "Aborting core\n");
  1663. goto fail_corename;
  1664. }
  1665. if (ispipe) {
  1666. int dump_count;
  1667. char **helper_argv;
  1668. if (cprm.limit == 1) {
  1669. /*
  1670. * Normally core limits are irrelevant to pipes, since
  1671. * we're not writing to the file system, but we use
  1672. * cprm.limit of 1 here as a speacial value. Any
  1673. * non-1 limit gets set to RLIM_INFINITY below, but
  1674. * a limit of 0 skips the dump. This is a consistent
  1675. * way to catch recursive crashes. We can still crash
  1676. * if the core_pattern binary sets RLIM_CORE = !1
  1677. * but it runs as root, and can do lots of stupid things
  1678. * Note that we use task_tgid_vnr here to grab the pid
  1679. * of the process group leader. That way we get the
  1680. * right pid if a thread in a multi-threaded
  1681. * core_pattern process dies.
  1682. */
  1683. printk(KERN_WARNING
  1684. "Process %d(%s) has RLIMIT_CORE set to 1\n",
  1685. task_tgid_vnr(current), current->comm);
  1686. printk(KERN_WARNING "Aborting core\n");
  1687. goto fail_unlock;
  1688. }
  1689. cprm.limit = RLIM_INFINITY;
  1690. dump_count = atomic_inc_return(&core_dump_count);
  1691. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1692. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1693. task_tgid_vnr(current), current->comm);
  1694. printk(KERN_WARNING "Skipping core dump\n");
  1695. goto fail_dropcount;
  1696. }
  1697. helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
  1698. if (!helper_argv) {
  1699. printk(KERN_WARNING "%s failed to allocate memory\n",
  1700. __func__);
  1701. goto fail_dropcount;
  1702. }
  1703. retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
  1704. NULL, UMH_WAIT_EXEC, umh_pipe_setup,
  1705. NULL, &cprm);
  1706. argv_free(helper_argv);
  1707. if (retval) {
  1708. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1709. cn.corename);
  1710. goto close_fail;
  1711. }
  1712. } else {
  1713. struct inode *inode;
  1714. if (cprm.limit < binfmt->min_coredump)
  1715. goto fail_unlock;
  1716. cprm.file = filp_open(cn.corename,
  1717. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1718. 0600);
  1719. if (IS_ERR(cprm.file))
  1720. goto fail_unlock;
  1721. inode = cprm.file->f_path.dentry->d_inode;
  1722. if (inode->i_nlink > 1)
  1723. goto close_fail;
  1724. if (d_unhashed(cprm.file->f_path.dentry))
  1725. goto close_fail;
  1726. /*
  1727. * AK: actually i see no reason to not allow this for named
  1728. * pipes etc, but keep the previous behaviour for now.
  1729. */
  1730. if (!S_ISREG(inode->i_mode))
  1731. goto close_fail;
  1732. /*
  1733. * Dont allow local users get cute and trick others to coredump
  1734. * into their pre-created files.
  1735. */
  1736. if (inode->i_uid != current_fsuid())
  1737. goto close_fail;
  1738. if (!cprm.file->f_op || !cprm.file->f_op->write)
  1739. goto close_fail;
  1740. if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
  1741. goto close_fail;
  1742. }
  1743. retval = binfmt->core_dump(&cprm);
  1744. if (retval)
  1745. current->signal->group_exit_code |= 0x80;
  1746. if (ispipe && core_pipe_limit)
  1747. wait_for_dump_helpers(cprm.file);
  1748. close_fail:
  1749. if (cprm.file)
  1750. filp_close(cprm.file, NULL);
  1751. fail_dropcount:
  1752. if (ispipe)
  1753. atomic_dec(&core_dump_count);
  1754. fail_unlock:
  1755. kfree(cn.corename);
  1756. fail_corename:
  1757. coredump_finish(mm);
  1758. revert_creds(old_cred);
  1759. fail_creds:
  1760. put_cred(cred);
  1761. fail:
  1762. return;
  1763. }
  1764. /*
  1765. * Core dumping helper functions. These are the only things you should
  1766. * do on a core-file: use only these functions to write out all the
  1767. * necessary info.
  1768. */
  1769. int dump_write(struct file *file, const void *addr, int nr)
  1770. {
  1771. return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
  1772. }
  1773. EXPORT_SYMBOL(dump_write);
  1774. int dump_seek(struct file *file, loff_t off)
  1775. {
  1776. int ret = 1;
  1777. if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
  1778. if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
  1779. return 0;
  1780. } else {
  1781. char *buf = (char *)get_zeroed_page(GFP_KERNEL);
  1782. if (!buf)
  1783. return 0;
  1784. while (off > 0) {
  1785. unsigned long n = off;
  1786. if (n > PAGE_SIZE)
  1787. n = PAGE_SIZE;
  1788. if (!dump_write(file, buf, n)) {
  1789. ret = 0;
  1790. break;
  1791. }
  1792. off -= n;
  1793. }
  1794. free_page((unsigned long)buf);
  1795. }
  1796. return ret;
  1797. }
  1798. EXPORT_SYMBOL(dump_seek);