swim3.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211
  1. /*
  2. * Driver for the SWIM3 (Super Woz Integrated Machine 3)
  3. * floppy controller found on Power Macintoshes.
  4. *
  5. * Copyright (C) 1996 Paul Mackerras.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * TODO:
  14. * handle 2 drives
  15. * handle GCR disks
  16. */
  17. #include <linux/stddef.h>
  18. #include <linux/kernel.h>
  19. #include <linux/sched.h>
  20. #include <linux/timer.h>
  21. #include <linux/delay.h>
  22. #include <linux/fd.h>
  23. #include <linux/ioctl.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/mutex.h>
  27. #include <linux/module.h>
  28. #include <linux/spinlock.h>
  29. #include <asm/io.h>
  30. #include <asm/dbdma.h>
  31. #include <asm/prom.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/mediabay.h>
  34. #include <asm/machdep.h>
  35. #include <asm/pmac_feature.h>
  36. static DEFINE_MUTEX(swim3_mutex);
  37. static struct request_queue *swim3_queue;
  38. static struct gendisk *disks[2];
  39. static struct request *fd_req;
  40. #define MAX_FLOPPIES 2
  41. enum swim_state {
  42. idle,
  43. locating,
  44. seeking,
  45. settling,
  46. do_transfer,
  47. jogging,
  48. available,
  49. revalidating,
  50. ejecting
  51. };
  52. #define REG(x) unsigned char x; char x ## _pad[15];
  53. /*
  54. * The names for these registers mostly represent speculation on my part.
  55. * It will be interesting to see how close they are to the names Apple uses.
  56. */
  57. struct swim3 {
  58. REG(data);
  59. REG(timer); /* counts down at 1MHz */
  60. REG(error);
  61. REG(mode);
  62. REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */
  63. REG(setup);
  64. REG(control); /* writing bits clears them */
  65. REG(status); /* writing bits sets them in control */
  66. REG(intr);
  67. REG(nseek); /* # tracks to seek */
  68. REG(ctrack); /* current track number */
  69. REG(csect); /* current sector number */
  70. REG(gap3); /* size of gap 3 in track format */
  71. REG(sector); /* sector # to read or write */
  72. REG(nsect); /* # sectors to read or write */
  73. REG(intr_enable);
  74. };
  75. #define control_bic control
  76. #define control_bis status
  77. /* Bits in select register */
  78. #define CA_MASK 7
  79. #define LSTRB 8
  80. /* Bits in control register */
  81. #define DO_SEEK 0x80
  82. #define FORMAT 0x40
  83. #define SELECT 0x20
  84. #define WRITE_SECTORS 0x10
  85. #define DO_ACTION 0x08
  86. #define DRIVE2_ENABLE 0x04
  87. #define DRIVE_ENABLE 0x02
  88. #define INTR_ENABLE 0x01
  89. /* Bits in status register */
  90. #define FIFO_1BYTE 0x80
  91. #define FIFO_2BYTE 0x40
  92. #define ERROR 0x20
  93. #define DATA 0x08
  94. #define RDDATA 0x04
  95. #define INTR_PENDING 0x02
  96. #define MARK_BYTE 0x01
  97. /* Bits in intr and intr_enable registers */
  98. #define ERROR_INTR 0x20
  99. #define DATA_CHANGED 0x10
  100. #define TRANSFER_DONE 0x08
  101. #define SEEN_SECTOR 0x04
  102. #define SEEK_DONE 0x02
  103. #define TIMER_DONE 0x01
  104. /* Bits in error register */
  105. #define ERR_DATA_CRC 0x80
  106. #define ERR_ADDR_CRC 0x40
  107. #define ERR_OVERRUN 0x04
  108. #define ERR_UNDERRUN 0x01
  109. /* Bits in setup register */
  110. #define S_SW_RESET 0x80
  111. #define S_GCR_WRITE 0x40
  112. #define S_IBM_DRIVE 0x20
  113. #define S_TEST_MODE 0x10
  114. #define S_FCLK_DIV2 0x08
  115. #define S_GCR 0x04
  116. #define S_COPY_PROT 0x02
  117. #define S_INV_WDATA 0x01
  118. /* Select values for swim3_action */
  119. #define SEEK_POSITIVE 0
  120. #define SEEK_NEGATIVE 4
  121. #define STEP 1
  122. #define MOTOR_ON 2
  123. #define MOTOR_OFF 6
  124. #define INDEX 3
  125. #define EJECT 7
  126. #define SETMFM 9
  127. #define SETGCR 13
  128. /* Select values for swim3_select and swim3_readbit */
  129. #define STEP_DIR 0
  130. #define STEPPING 1
  131. #define MOTOR_ON 2
  132. #define RELAX 3 /* also eject in progress */
  133. #define READ_DATA_0 4
  134. #define TWOMEG_DRIVE 5
  135. #define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */
  136. #define DRIVE_PRESENT 7
  137. #define DISK_IN 8
  138. #define WRITE_PROT 9
  139. #define TRACK_ZERO 10
  140. #define TACHO 11
  141. #define READ_DATA_1 12
  142. #define MFM_MODE 13
  143. #define SEEK_COMPLETE 14
  144. #define ONEMEG_MEDIA 15
  145. /* Definitions of values used in writing and formatting */
  146. #define DATA_ESCAPE 0x99
  147. #define GCR_SYNC_EXC 0x3f
  148. #define GCR_SYNC_CONV 0x80
  149. #define GCR_FIRST_MARK 0xd5
  150. #define GCR_SECOND_MARK 0xaa
  151. #define GCR_ADDR_MARK "\xd5\xaa\x00"
  152. #define GCR_DATA_MARK "\xd5\xaa\x0b"
  153. #define GCR_SLIP_BYTE "\x27\xaa"
  154. #define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f"
  155. #define DATA_99 "\x99\x99"
  156. #define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe"
  157. #define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc"
  158. #define MFM_GAP_LEN 12
  159. struct floppy_state {
  160. enum swim_state state;
  161. spinlock_t lock;
  162. struct swim3 __iomem *swim3; /* hardware registers */
  163. struct dbdma_regs __iomem *dma; /* DMA controller registers */
  164. int swim3_intr; /* interrupt number for SWIM3 */
  165. int dma_intr; /* interrupt number for DMA channel */
  166. int cur_cyl; /* cylinder head is on, or -1 */
  167. int cur_sector; /* last sector we saw go past */
  168. int req_cyl; /* the cylinder for the current r/w request */
  169. int head; /* head number ditto */
  170. int req_sector; /* sector number ditto */
  171. int scount; /* # sectors we're transferring at present */
  172. int retries;
  173. int settle_time;
  174. int secpercyl; /* disk geometry information */
  175. int secpertrack;
  176. int total_secs;
  177. int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */
  178. struct dbdma_cmd *dma_cmd;
  179. int ref_count;
  180. int expect_cyl;
  181. struct timer_list timeout;
  182. int timeout_pending;
  183. int ejected;
  184. wait_queue_head_t wait;
  185. int wanted;
  186. struct macio_dev *mdev;
  187. char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)];
  188. };
  189. static struct floppy_state floppy_states[MAX_FLOPPIES];
  190. static int floppy_count = 0;
  191. static DEFINE_SPINLOCK(swim3_lock);
  192. static unsigned short write_preamble[] = {
  193. 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */
  194. 0, 0, 0, 0, 0, 0, /* sync field */
  195. 0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */
  196. 0x990f /* no escape for 512 bytes */
  197. };
  198. static unsigned short write_postamble[] = {
  199. 0x9904, /* insert CRC */
  200. 0x4e4e, 0x4e4e,
  201. 0x9908, /* stop writing */
  202. 0, 0, 0, 0, 0, 0
  203. };
  204. static void swim3_select(struct floppy_state *fs, int sel);
  205. static void swim3_action(struct floppy_state *fs, int action);
  206. static int swim3_readbit(struct floppy_state *fs, int bit);
  207. static void do_fd_request(struct request_queue * q);
  208. static void start_request(struct floppy_state *fs);
  209. static void set_timeout(struct floppy_state *fs, int nticks,
  210. void (*proc)(unsigned long));
  211. static void scan_track(struct floppy_state *fs);
  212. static void seek_track(struct floppy_state *fs, int n);
  213. static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count);
  214. static void setup_transfer(struct floppy_state *fs);
  215. static void act(struct floppy_state *fs);
  216. static void scan_timeout(unsigned long data);
  217. static void seek_timeout(unsigned long data);
  218. static void settle_timeout(unsigned long data);
  219. static void xfer_timeout(unsigned long data);
  220. static irqreturn_t swim3_interrupt(int irq, void *dev_id);
  221. /*static void fd_dma_interrupt(int irq, void *dev_id);*/
  222. static int grab_drive(struct floppy_state *fs, enum swim_state state,
  223. int interruptible);
  224. static void release_drive(struct floppy_state *fs);
  225. static int fd_eject(struct floppy_state *fs);
  226. static int floppy_ioctl(struct block_device *bdev, fmode_t mode,
  227. unsigned int cmd, unsigned long param);
  228. static int floppy_open(struct block_device *bdev, fmode_t mode);
  229. static int floppy_release(struct gendisk *disk, fmode_t mode);
  230. static int floppy_check_change(struct gendisk *disk);
  231. static int floppy_revalidate(struct gendisk *disk);
  232. static bool swim3_end_request(int err, unsigned int nr_bytes)
  233. {
  234. if (__blk_end_request(fd_req, err, nr_bytes))
  235. return true;
  236. fd_req = NULL;
  237. return false;
  238. }
  239. static bool swim3_end_request_cur(int err)
  240. {
  241. return swim3_end_request(err, blk_rq_cur_bytes(fd_req));
  242. }
  243. static void swim3_select(struct floppy_state *fs, int sel)
  244. {
  245. struct swim3 __iomem *sw = fs->swim3;
  246. out_8(&sw->select, RELAX);
  247. if (sel & 8)
  248. out_8(&sw->control_bis, SELECT);
  249. else
  250. out_8(&sw->control_bic, SELECT);
  251. out_8(&sw->select, sel & CA_MASK);
  252. }
  253. static void swim3_action(struct floppy_state *fs, int action)
  254. {
  255. struct swim3 __iomem *sw = fs->swim3;
  256. swim3_select(fs, action);
  257. udelay(1);
  258. out_8(&sw->select, sw->select | LSTRB);
  259. udelay(2);
  260. out_8(&sw->select, sw->select & ~LSTRB);
  261. udelay(1);
  262. }
  263. static int swim3_readbit(struct floppy_state *fs, int bit)
  264. {
  265. struct swim3 __iomem *sw = fs->swim3;
  266. int stat;
  267. swim3_select(fs, bit);
  268. udelay(1);
  269. stat = in_8(&sw->status);
  270. return (stat & DATA) == 0;
  271. }
  272. static void do_fd_request(struct request_queue * q)
  273. {
  274. int i;
  275. for(i=0; i<floppy_count; i++) {
  276. struct floppy_state *fs = &floppy_states[i];
  277. if (fs->mdev->media_bay &&
  278. check_media_bay(fs->mdev->media_bay) != MB_FD)
  279. continue;
  280. start_request(fs);
  281. }
  282. }
  283. static void start_request(struct floppy_state *fs)
  284. {
  285. struct request *req;
  286. unsigned long x;
  287. if (fs->state == idle && fs->wanted) {
  288. fs->state = available;
  289. wake_up(&fs->wait);
  290. return;
  291. }
  292. while (fs->state == idle) {
  293. if (!fd_req) {
  294. fd_req = blk_fetch_request(swim3_queue);
  295. if (!fd_req)
  296. break;
  297. }
  298. req = fd_req;
  299. #if 0
  300. printk("do_fd_req: dev=%s cmd=%d sec=%ld nr_sec=%u buf=%p\n",
  301. req->rq_disk->disk_name, req->cmd,
  302. (long)blk_rq_pos(req), blk_rq_sectors(req), req->buffer);
  303. printk(" errors=%d current_nr_sectors=%u\n",
  304. req->errors, blk_rq_cur_sectors(req));
  305. #endif
  306. if (blk_rq_pos(req) >= fs->total_secs) {
  307. swim3_end_request_cur(-EIO);
  308. continue;
  309. }
  310. if (fs->ejected) {
  311. swim3_end_request_cur(-EIO);
  312. continue;
  313. }
  314. if (rq_data_dir(req) == WRITE) {
  315. if (fs->write_prot < 0)
  316. fs->write_prot = swim3_readbit(fs, WRITE_PROT);
  317. if (fs->write_prot) {
  318. swim3_end_request_cur(-EIO);
  319. continue;
  320. }
  321. }
  322. /* Do not remove the cast. blk_rq_pos(req) is now a
  323. * sector_t and can be 64 bits, but it will never go
  324. * past 32 bits for this driver anyway, so we can
  325. * safely cast it down and not have to do a 64/32
  326. * division
  327. */
  328. fs->req_cyl = ((long)blk_rq_pos(req)) / fs->secpercyl;
  329. x = ((long)blk_rq_pos(req)) % fs->secpercyl;
  330. fs->head = x / fs->secpertrack;
  331. fs->req_sector = x % fs->secpertrack + 1;
  332. fd_req = req;
  333. fs->state = do_transfer;
  334. fs->retries = 0;
  335. act(fs);
  336. }
  337. }
  338. static void set_timeout(struct floppy_state *fs, int nticks,
  339. void (*proc)(unsigned long))
  340. {
  341. unsigned long flags;
  342. spin_lock_irqsave(&fs->lock, flags);
  343. if (fs->timeout_pending)
  344. del_timer(&fs->timeout);
  345. fs->timeout.expires = jiffies + nticks;
  346. fs->timeout.function = proc;
  347. fs->timeout.data = (unsigned long) fs;
  348. add_timer(&fs->timeout);
  349. fs->timeout_pending = 1;
  350. spin_unlock_irqrestore(&fs->lock, flags);
  351. }
  352. static inline void scan_track(struct floppy_state *fs)
  353. {
  354. struct swim3 __iomem *sw = fs->swim3;
  355. swim3_select(fs, READ_DATA_0);
  356. in_8(&sw->intr); /* clear SEEN_SECTOR bit */
  357. in_8(&sw->error);
  358. out_8(&sw->intr_enable, SEEN_SECTOR);
  359. out_8(&sw->control_bis, DO_ACTION);
  360. /* enable intr when track found */
  361. set_timeout(fs, HZ, scan_timeout); /* enable timeout */
  362. }
  363. static inline void seek_track(struct floppy_state *fs, int n)
  364. {
  365. struct swim3 __iomem *sw = fs->swim3;
  366. if (n >= 0) {
  367. swim3_action(fs, SEEK_POSITIVE);
  368. sw->nseek = n;
  369. } else {
  370. swim3_action(fs, SEEK_NEGATIVE);
  371. sw->nseek = -n;
  372. }
  373. fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1;
  374. swim3_select(fs, STEP);
  375. in_8(&sw->error);
  376. /* enable intr when seek finished */
  377. out_8(&sw->intr_enable, SEEK_DONE);
  378. out_8(&sw->control_bis, DO_SEEK);
  379. set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */
  380. fs->settle_time = 0;
  381. }
  382. static inline void init_dma(struct dbdma_cmd *cp, int cmd,
  383. void *buf, int count)
  384. {
  385. st_le16(&cp->req_count, count);
  386. st_le16(&cp->command, cmd);
  387. st_le32(&cp->phy_addr, virt_to_bus(buf));
  388. cp->xfer_status = 0;
  389. }
  390. static inline void setup_transfer(struct floppy_state *fs)
  391. {
  392. int n;
  393. struct swim3 __iomem *sw = fs->swim3;
  394. struct dbdma_cmd *cp = fs->dma_cmd;
  395. struct dbdma_regs __iomem *dr = fs->dma;
  396. if (blk_rq_cur_sectors(fd_req) <= 0) {
  397. printk(KERN_ERR "swim3: transfer 0 sectors?\n");
  398. return;
  399. }
  400. if (rq_data_dir(fd_req) == WRITE)
  401. n = 1;
  402. else {
  403. n = fs->secpertrack - fs->req_sector + 1;
  404. if (n > blk_rq_cur_sectors(fd_req))
  405. n = blk_rq_cur_sectors(fd_req);
  406. }
  407. fs->scount = n;
  408. swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0);
  409. out_8(&sw->sector, fs->req_sector);
  410. out_8(&sw->nsect, n);
  411. out_8(&sw->gap3, 0);
  412. out_le32(&dr->cmdptr, virt_to_bus(cp));
  413. if (rq_data_dir(fd_req) == WRITE) {
  414. /* Set up 3 dma commands: write preamble, data, postamble */
  415. init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble));
  416. ++cp;
  417. init_dma(cp, OUTPUT_MORE, fd_req->buffer, 512);
  418. ++cp;
  419. init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble));
  420. } else {
  421. init_dma(cp, INPUT_LAST, fd_req->buffer, n * 512);
  422. }
  423. ++cp;
  424. out_le16(&cp->command, DBDMA_STOP);
  425. out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
  426. in_8(&sw->error);
  427. out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
  428. if (rq_data_dir(fd_req) == WRITE)
  429. out_8(&sw->control_bis, WRITE_SECTORS);
  430. in_8(&sw->intr);
  431. out_le32(&dr->control, (RUN << 16) | RUN);
  432. /* enable intr when transfer complete */
  433. out_8(&sw->intr_enable, TRANSFER_DONE);
  434. out_8(&sw->control_bis, DO_ACTION);
  435. set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */
  436. }
  437. static void act(struct floppy_state *fs)
  438. {
  439. for (;;) {
  440. switch (fs->state) {
  441. case idle:
  442. return; /* XXX shouldn't get here */
  443. case locating:
  444. if (swim3_readbit(fs, TRACK_ZERO)) {
  445. fs->cur_cyl = 0;
  446. if (fs->req_cyl == 0)
  447. fs->state = do_transfer;
  448. else
  449. fs->state = seeking;
  450. break;
  451. }
  452. scan_track(fs);
  453. return;
  454. case seeking:
  455. if (fs->cur_cyl < 0) {
  456. fs->expect_cyl = -1;
  457. fs->state = locating;
  458. break;
  459. }
  460. if (fs->req_cyl == fs->cur_cyl) {
  461. printk("whoops, seeking 0\n");
  462. fs->state = do_transfer;
  463. break;
  464. }
  465. seek_track(fs, fs->req_cyl - fs->cur_cyl);
  466. return;
  467. case settling:
  468. /* check for SEEK_COMPLETE after 30ms */
  469. fs->settle_time = (HZ + 32) / 33;
  470. set_timeout(fs, fs->settle_time, settle_timeout);
  471. return;
  472. case do_transfer:
  473. if (fs->cur_cyl != fs->req_cyl) {
  474. if (fs->retries > 5) {
  475. swim3_end_request_cur(-EIO);
  476. fs->state = idle;
  477. return;
  478. }
  479. fs->state = seeking;
  480. break;
  481. }
  482. setup_transfer(fs);
  483. return;
  484. case jogging:
  485. seek_track(fs, -5);
  486. return;
  487. default:
  488. printk(KERN_ERR"swim3: unknown state %d\n", fs->state);
  489. return;
  490. }
  491. }
  492. }
  493. static void scan_timeout(unsigned long data)
  494. {
  495. struct floppy_state *fs = (struct floppy_state *) data;
  496. struct swim3 __iomem *sw = fs->swim3;
  497. fs->timeout_pending = 0;
  498. out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
  499. out_8(&sw->select, RELAX);
  500. out_8(&sw->intr_enable, 0);
  501. fs->cur_cyl = -1;
  502. if (fs->retries > 5) {
  503. swim3_end_request_cur(-EIO);
  504. fs->state = idle;
  505. start_request(fs);
  506. } else {
  507. fs->state = jogging;
  508. act(fs);
  509. }
  510. }
  511. static void seek_timeout(unsigned long data)
  512. {
  513. struct floppy_state *fs = (struct floppy_state *) data;
  514. struct swim3 __iomem *sw = fs->swim3;
  515. fs->timeout_pending = 0;
  516. out_8(&sw->control_bic, DO_SEEK);
  517. out_8(&sw->select, RELAX);
  518. out_8(&sw->intr_enable, 0);
  519. printk(KERN_ERR "swim3: seek timeout\n");
  520. swim3_end_request_cur(-EIO);
  521. fs->state = idle;
  522. start_request(fs);
  523. }
  524. static void settle_timeout(unsigned long data)
  525. {
  526. struct floppy_state *fs = (struct floppy_state *) data;
  527. struct swim3 __iomem *sw = fs->swim3;
  528. fs->timeout_pending = 0;
  529. if (swim3_readbit(fs, SEEK_COMPLETE)) {
  530. out_8(&sw->select, RELAX);
  531. fs->state = locating;
  532. act(fs);
  533. return;
  534. }
  535. out_8(&sw->select, RELAX);
  536. if (fs->settle_time < 2*HZ) {
  537. ++fs->settle_time;
  538. set_timeout(fs, 1, settle_timeout);
  539. return;
  540. }
  541. printk(KERN_ERR "swim3: seek settle timeout\n");
  542. swim3_end_request_cur(-EIO);
  543. fs->state = idle;
  544. start_request(fs);
  545. }
  546. static void xfer_timeout(unsigned long data)
  547. {
  548. struct floppy_state *fs = (struct floppy_state *) data;
  549. struct swim3 __iomem *sw = fs->swim3;
  550. struct dbdma_regs __iomem *dr = fs->dma;
  551. int n;
  552. fs->timeout_pending = 0;
  553. out_le32(&dr->control, RUN << 16);
  554. /* We must wait a bit for dbdma to stop */
  555. for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++)
  556. udelay(1);
  557. out_8(&sw->intr_enable, 0);
  558. out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
  559. out_8(&sw->select, RELAX);
  560. printk(KERN_ERR "swim3: timeout %sing sector %ld\n",
  561. (rq_data_dir(fd_req)==WRITE? "writ": "read"),
  562. (long)blk_rq_pos(fd_req));
  563. swim3_end_request_cur(-EIO);
  564. fs->state = idle;
  565. start_request(fs);
  566. }
  567. static irqreturn_t swim3_interrupt(int irq, void *dev_id)
  568. {
  569. struct floppy_state *fs = (struct floppy_state *) dev_id;
  570. struct swim3 __iomem *sw = fs->swim3;
  571. int intr, err, n;
  572. int stat, resid;
  573. struct dbdma_regs __iomem *dr;
  574. struct dbdma_cmd *cp;
  575. intr = in_8(&sw->intr);
  576. err = (intr & ERROR_INTR)? in_8(&sw->error): 0;
  577. if ((intr & ERROR_INTR) && fs->state != do_transfer)
  578. printk(KERN_ERR "swim3_interrupt, state=%d, dir=%x, intr=%x, err=%x\n",
  579. fs->state, rq_data_dir(fd_req), intr, err);
  580. switch (fs->state) {
  581. case locating:
  582. if (intr & SEEN_SECTOR) {
  583. out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
  584. out_8(&sw->select, RELAX);
  585. out_8(&sw->intr_enable, 0);
  586. del_timer(&fs->timeout);
  587. fs->timeout_pending = 0;
  588. if (sw->ctrack == 0xff) {
  589. printk(KERN_ERR "swim3: seen sector but cyl=ff?\n");
  590. fs->cur_cyl = -1;
  591. if (fs->retries > 5) {
  592. swim3_end_request_cur(-EIO);
  593. fs->state = idle;
  594. start_request(fs);
  595. } else {
  596. fs->state = jogging;
  597. act(fs);
  598. }
  599. break;
  600. }
  601. fs->cur_cyl = sw->ctrack;
  602. fs->cur_sector = sw->csect;
  603. if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl)
  604. printk(KERN_ERR "swim3: expected cyl %d, got %d\n",
  605. fs->expect_cyl, fs->cur_cyl);
  606. fs->state = do_transfer;
  607. act(fs);
  608. }
  609. break;
  610. case seeking:
  611. case jogging:
  612. if (sw->nseek == 0) {
  613. out_8(&sw->control_bic, DO_SEEK);
  614. out_8(&sw->select, RELAX);
  615. out_8(&sw->intr_enable, 0);
  616. del_timer(&fs->timeout);
  617. fs->timeout_pending = 0;
  618. if (fs->state == seeking)
  619. ++fs->retries;
  620. fs->state = settling;
  621. act(fs);
  622. }
  623. break;
  624. case settling:
  625. out_8(&sw->intr_enable, 0);
  626. del_timer(&fs->timeout);
  627. fs->timeout_pending = 0;
  628. act(fs);
  629. break;
  630. case do_transfer:
  631. if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0)
  632. break;
  633. out_8(&sw->intr_enable, 0);
  634. out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
  635. out_8(&sw->select, RELAX);
  636. del_timer(&fs->timeout);
  637. fs->timeout_pending = 0;
  638. dr = fs->dma;
  639. cp = fs->dma_cmd;
  640. if (rq_data_dir(fd_req) == WRITE)
  641. ++cp;
  642. /*
  643. * Check that the main data transfer has finished.
  644. * On writing, the swim3 sometimes doesn't use
  645. * up all the bytes of the postamble, so we can still
  646. * see DMA active here. That doesn't matter as long
  647. * as all the sector data has been transferred.
  648. */
  649. if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) {
  650. /* wait a little while for DMA to complete */
  651. for (n = 0; n < 100; ++n) {
  652. if (cp->xfer_status != 0)
  653. break;
  654. udelay(1);
  655. barrier();
  656. }
  657. }
  658. /* turn off DMA */
  659. out_le32(&dr->control, (RUN | PAUSE) << 16);
  660. stat = ld_le16(&cp->xfer_status);
  661. resid = ld_le16(&cp->res_count);
  662. if (intr & ERROR_INTR) {
  663. n = fs->scount - 1 - resid / 512;
  664. if (n > 0) {
  665. blk_update_request(fd_req, 0, n << 9);
  666. fs->req_sector += n;
  667. }
  668. if (fs->retries < 5) {
  669. ++fs->retries;
  670. act(fs);
  671. } else {
  672. printk("swim3: error %sing block %ld (err=%x)\n",
  673. rq_data_dir(fd_req) == WRITE? "writ": "read",
  674. (long)blk_rq_pos(fd_req), err);
  675. swim3_end_request_cur(-EIO);
  676. fs->state = idle;
  677. }
  678. } else {
  679. if ((stat & ACTIVE) == 0 || resid != 0) {
  680. /* musta been an error */
  681. printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid);
  682. printk(KERN_ERR " state=%d, dir=%x, intr=%x, err=%x\n",
  683. fs->state, rq_data_dir(fd_req), intr, err);
  684. swim3_end_request_cur(-EIO);
  685. fs->state = idle;
  686. start_request(fs);
  687. break;
  688. }
  689. if (swim3_end_request(0, fs->scount << 9)) {
  690. fs->req_sector += fs->scount;
  691. if (fs->req_sector > fs->secpertrack) {
  692. fs->req_sector -= fs->secpertrack;
  693. if (++fs->head > 1) {
  694. fs->head = 0;
  695. ++fs->req_cyl;
  696. }
  697. }
  698. act(fs);
  699. } else
  700. fs->state = idle;
  701. }
  702. if (fs->state == idle)
  703. start_request(fs);
  704. break;
  705. default:
  706. printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state);
  707. }
  708. return IRQ_HANDLED;
  709. }
  710. /*
  711. static void fd_dma_interrupt(int irq, void *dev_id)
  712. {
  713. }
  714. */
  715. static int grab_drive(struct floppy_state *fs, enum swim_state state,
  716. int interruptible)
  717. {
  718. unsigned long flags;
  719. spin_lock_irqsave(&fs->lock, flags);
  720. if (fs->state != idle) {
  721. ++fs->wanted;
  722. while (fs->state != available) {
  723. if (interruptible && signal_pending(current)) {
  724. --fs->wanted;
  725. spin_unlock_irqrestore(&fs->lock, flags);
  726. return -EINTR;
  727. }
  728. interruptible_sleep_on(&fs->wait);
  729. }
  730. --fs->wanted;
  731. }
  732. fs->state = state;
  733. spin_unlock_irqrestore(&fs->lock, flags);
  734. return 0;
  735. }
  736. static void release_drive(struct floppy_state *fs)
  737. {
  738. unsigned long flags;
  739. spin_lock_irqsave(&fs->lock, flags);
  740. fs->state = idle;
  741. start_request(fs);
  742. spin_unlock_irqrestore(&fs->lock, flags);
  743. }
  744. static int fd_eject(struct floppy_state *fs)
  745. {
  746. int err, n;
  747. err = grab_drive(fs, ejecting, 1);
  748. if (err)
  749. return err;
  750. swim3_action(fs, EJECT);
  751. for (n = 20; n > 0; --n) {
  752. if (signal_pending(current)) {
  753. err = -EINTR;
  754. break;
  755. }
  756. swim3_select(fs, RELAX);
  757. schedule_timeout_interruptible(1);
  758. if (swim3_readbit(fs, DISK_IN) == 0)
  759. break;
  760. }
  761. swim3_select(fs, RELAX);
  762. udelay(150);
  763. fs->ejected = 1;
  764. release_drive(fs);
  765. return err;
  766. }
  767. static struct floppy_struct floppy_type =
  768. { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */
  769. static int floppy_locked_ioctl(struct block_device *bdev, fmode_t mode,
  770. unsigned int cmd, unsigned long param)
  771. {
  772. struct floppy_state *fs = bdev->bd_disk->private_data;
  773. int err;
  774. if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))
  775. return -EPERM;
  776. if (fs->mdev->media_bay &&
  777. check_media_bay(fs->mdev->media_bay) != MB_FD)
  778. return -ENXIO;
  779. switch (cmd) {
  780. case FDEJECT:
  781. if (fs->ref_count != 1)
  782. return -EBUSY;
  783. err = fd_eject(fs);
  784. return err;
  785. case FDGETPRM:
  786. if (copy_to_user((void __user *) param, &floppy_type,
  787. sizeof(struct floppy_struct)))
  788. return -EFAULT;
  789. return 0;
  790. }
  791. return -ENOTTY;
  792. }
  793. static int floppy_ioctl(struct block_device *bdev, fmode_t mode,
  794. unsigned int cmd, unsigned long param)
  795. {
  796. int ret;
  797. mutex_lock(&swim3_mutex);
  798. ret = floppy_locked_ioctl(bdev, mode, cmd, param);
  799. mutex_unlock(&swim3_mutex);
  800. return ret;
  801. }
  802. static int floppy_open(struct block_device *bdev, fmode_t mode)
  803. {
  804. struct floppy_state *fs = bdev->bd_disk->private_data;
  805. struct swim3 __iomem *sw = fs->swim3;
  806. int n, err = 0;
  807. if (fs->ref_count == 0) {
  808. if (fs->mdev->media_bay &&
  809. check_media_bay(fs->mdev->media_bay) != MB_FD)
  810. return -ENXIO;
  811. out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2);
  812. out_8(&sw->control_bic, 0xff);
  813. out_8(&sw->mode, 0x95);
  814. udelay(10);
  815. out_8(&sw->intr_enable, 0);
  816. out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
  817. swim3_action(fs, MOTOR_ON);
  818. fs->write_prot = -1;
  819. fs->cur_cyl = -1;
  820. for (n = 0; n < 2 * HZ; ++n) {
  821. if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE))
  822. break;
  823. if (signal_pending(current)) {
  824. err = -EINTR;
  825. break;
  826. }
  827. swim3_select(fs, RELAX);
  828. schedule_timeout_interruptible(1);
  829. }
  830. if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0
  831. || swim3_readbit(fs, DISK_IN) == 0))
  832. err = -ENXIO;
  833. swim3_action(fs, SETMFM);
  834. swim3_select(fs, RELAX);
  835. } else if (fs->ref_count == -1 || mode & FMODE_EXCL)
  836. return -EBUSY;
  837. if (err == 0 && (mode & FMODE_NDELAY) == 0
  838. && (mode & (FMODE_READ|FMODE_WRITE))) {
  839. check_disk_change(bdev);
  840. if (fs->ejected)
  841. err = -ENXIO;
  842. }
  843. if (err == 0 && (mode & FMODE_WRITE)) {
  844. if (fs->write_prot < 0)
  845. fs->write_prot = swim3_readbit(fs, WRITE_PROT);
  846. if (fs->write_prot)
  847. err = -EROFS;
  848. }
  849. if (err) {
  850. if (fs->ref_count == 0) {
  851. swim3_action(fs, MOTOR_OFF);
  852. out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE);
  853. swim3_select(fs, RELAX);
  854. }
  855. return err;
  856. }
  857. if (mode & FMODE_EXCL)
  858. fs->ref_count = -1;
  859. else
  860. ++fs->ref_count;
  861. return 0;
  862. }
  863. static int floppy_unlocked_open(struct block_device *bdev, fmode_t mode)
  864. {
  865. int ret;
  866. mutex_lock(&swim3_mutex);
  867. ret = floppy_open(bdev, mode);
  868. mutex_unlock(&swim3_mutex);
  869. return ret;
  870. }
  871. static int floppy_release(struct gendisk *disk, fmode_t mode)
  872. {
  873. struct floppy_state *fs = disk->private_data;
  874. struct swim3 __iomem *sw = fs->swim3;
  875. mutex_lock(&swim3_mutex);
  876. if (fs->ref_count > 0 && --fs->ref_count == 0) {
  877. swim3_action(fs, MOTOR_OFF);
  878. out_8(&sw->control_bic, 0xff);
  879. swim3_select(fs, RELAX);
  880. }
  881. mutex_unlock(&swim3_mutex);
  882. return 0;
  883. }
  884. static int floppy_check_change(struct gendisk *disk)
  885. {
  886. struct floppy_state *fs = disk->private_data;
  887. return fs->ejected;
  888. }
  889. static int floppy_revalidate(struct gendisk *disk)
  890. {
  891. struct floppy_state *fs = disk->private_data;
  892. struct swim3 __iomem *sw;
  893. int ret, n;
  894. if (fs->mdev->media_bay &&
  895. check_media_bay(fs->mdev->media_bay) != MB_FD)
  896. return -ENXIO;
  897. sw = fs->swim3;
  898. grab_drive(fs, revalidating, 0);
  899. out_8(&sw->intr_enable, 0);
  900. out_8(&sw->control_bis, DRIVE_ENABLE);
  901. swim3_action(fs, MOTOR_ON); /* necessary? */
  902. fs->write_prot = -1;
  903. fs->cur_cyl = -1;
  904. mdelay(1);
  905. for (n = HZ; n > 0; --n) {
  906. if (swim3_readbit(fs, SEEK_COMPLETE))
  907. break;
  908. if (signal_pending(current))
  909. break;
  910. swim3_select(fs, RELAX);
  911. schedule_timeout_interruptible(1);
  912. }
  913. ret = swim3_readbit(fs, SEEK_COMPLETE) == 0
  914. || swim3_readbit(fs, DISK_IN) == 0;
  915. if (ret)
  916. swim3_action(fs, MOTOR_OFF);
  917. else {
  918. fs->ejected = 0;
  919. swim3_action(fs, SETMFM);
  920. }
  921. swim3_select(fs, RELAX);
  922. release_drive(fs);
  923. return ret;
  924. }
  925. static const struct block_device_operations floppy_fops = {
  926. .open = floppy_unlocked_open,
  927. .release = floppy_release,
  928. .ioctl = floppy_ioctl,
  929. .media_changed = floppy_check_change,
  930. .revalidate_disk= floppy_revalidate,
  931. };
  932. static int swim3_add_device(struct macio_dev *mdev, int index)
  933. {
  934. struct device_node *swim = mdev->ofdev.dev.of_node;
  935. struct floppy_state *fs = &floppy_states[index];
  936. int rc = -EBUSY;
  937. /* Check & Request resources */
  938. if (macio_resource_count(mdev) < 2) {
  939. printk(KERN_WARNING "ifd%d: no address for %s\n",
  940. index, swim->full_name);
  941. return -ENXIO;
  942. }
  943. if (macio_irq_count(mdev) < 2) {
  944. printk(KERN_WARNING "fd%d: no intrs for device %s\n",
  945. index, swim->full_name);
  946. }
  947. if (macio_request_resource(mdev, 0, "swim3 (mmio)")) {
  948. printk(KERN_ERR "fd%d: can't request mmio resource for %s\n",
  949. index, swim->full_name);
  950. return -EBUSY;
  951. }
  952. if (macio_request_resource(mdev, 1, "swim3 (dma)")) {
  953. printk(KERN_ERR "fd%d: can't request dma resource for %s\n",
  954. index, swim->full_name);
  955. macio_release_resource(mdev, 0);
  956. return -EBUSY;
  957. }
  958. dev_set_drvdata(&mdev->ofdev.dev, fs);
  959. if (mdev->media_bay == NULL)
  960. pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1);
  961. memset(fs, 0, sizeof(*fs));
  962. spin_lock_init(&fs->lock);
  963. fs->state = idle;
  964. fs->swim3 = (struct swim3 __iomem *)
  965. ioremap(macio_resource_start(mdev, 0), 0x200);
  966. if (fs->swim3 == NULL) {
  967. printk("fd%d: couldn't map registers for %s\n",
  968. index, swim->full_name);
  969. rc = -ENOMEM;
  970. goto out_release;
  971. }
  972. fs->dma = (struct dbdma_regs __iomem *)
  973. ioremap(macio_resource_start(mdev, 1), 0x200);
  974. if (fs->dma == NULL) {
  975. printk("fd%d: couldn't map DMA for %s\n",
  976. index, swim->full_name);
  977. iounmap(fs->swim3);
  978. rc = -ENOMEM;
  979. goto out_release;
  980. }
  981. fs->swim3_intr = macio_irq(mdev, 0);
  982. fs->dma_intr = macio_irq(mdev, 1);
  983. fs->cur_cyl = -1;
  984. fs->cur_sector = -1;
  985. fs->secpercyl = 36;
  986. fs->secpertrack = 18;
  987. fs->total_secs = 2880;
  988. fs->mdev = mdev;
  989. init_waitqueue_head(&fs->wait);
  990. fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space);
  991. memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd));
  992. st_le16(&fs->dma_cmd[1].command, DBDMA_STOP);
  993. if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) {
  994. printk(KERN_ERR "fd%d: couldn't request irq %d for %s\n",
  995. index, fs->swim3_intr, swim->full_name);
  996. pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
  997. goto out_unmap;
  998. return -EBUSY;
  999. }
  1000. /*
  1001. if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) {
  1002. printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA",
  1003. fs->dma_intr);
  1004. return -EBUSY;
  1005. }
  1006. */
  1007. init_timer(&fs->timeout);
  1008. printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count,
  1009. mdev->media_bay ? "in media bay" : "");
  1010. return 0;
  1011. out_unmap:
  1012. iounmap(fs->dma);
  1013. iounmap(fs->swim3);
  1014. out_release:
  1015. macio_release_resource(mdev, 0);
  1016. macio_release_resource(mdev, 1);
  1017. return rc;
  1018. }
  1019. static int __devinit swim3_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1020. {
  1021. int i, rc;
  1022. struct gendisk *disk;
  1023. /* Add the drive */
  1024. rc = swim3_add_device(mdev, floppy_count);
  1025. if (rc)
  1026. return rc;
  1027. /* Now create the queue if not there yet */
  1028. if (swim3_queue == NULL) {
  1029. /* If we failed, there isn't much we can do as the driver is still
  1030. * too dumb to remove the device, just bail out
  1031. */
  1032. if (register_blkdev(FLOPPY_MAJOR, "fd"))
  1033. return 0;
  1034. swim3_queue = blk_init_queue(do_fd_request, &swim3_lock);
  1035. if (swim3_queue == NULL) {
  1036. unregister_blkdev(FLOPPY_MAJOR, "fd");
  1037. return 0;
  1038. }
  1039. }
  1040. /* Now register that disk. Same comment about failure handling */
  1041. i = floppy_count++;
  1042. disk = disks[i] = alloc_disk(1);
  1043. if (disk == NULL)
  1044. return 0;
  1045. disk->major = FLOPPY_MAJOR;
  1046. disk->first_minor = i;
  1047. disk->fops = &floppy_fops;
  1048. disk->private_data = &floppy_states[i];
  1049. disk->queue = swim3_queue;
  1050. disk->flags |= GENHD_FL_REMOVABLE;
  1051. sprintf(disk->disk_name, "fd%d", i);
  1052. set_capacity(disk, 2880);
  1053. add_disk(disk);
  1054. return 0;
  1055. }
  1056. static struct of_device_id swim3_match[] =
  1057. {
  1058. {
  1059. .name = "swim3",
  1060. },
  1061. {
  1062. .compatible = "ohare-swim3"
  1063. },
  1064. {
  1065. .compatible = "swim3"
  1066. },
  1067. };
  1068. static struct macio_driver swim3_driver =
  1069. {
  1070. .driver = {
  1071. .name = "swim3",
  1072. .of_match_table = swim3_match,
  1073. },
  1074. .probe = swim3_attach,
  1075. #if 0
  1076. .suspend = swim3_suspend,
  1077. .resume = swim3_resume,
  1078. #endif
  1079. };
  1080. int swim3_init(void)
  1081. {
  1082. macio_register_driver(&swim3_driver);
  1083. return 0;
  1084. }
  1085. module_init(swim3_init)
  1086. MODULE_LICENSE("GPL");
  1087. MODULE_AUTHOR("Paul Mackerras");
  1088. MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);