blk-settings.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. /*
  2. * Functions related to setting various queue properties from drivers
  3. */
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/bio.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  10. #include <linux/gcd.h>
  11. #include <linux/lcm.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/gfp.h>
  14. #include "blk.h"
  15. unsigned long blk_max_low_pfn;
  16. EXPORT_SYMBOL(blk_max_low_pfn);
  17. unsigned long blk_max_pfn;
  18. /**
  19. * blk_queue_prep_rq - set a prepare_request function for queue
  20. * @q: queue
  21. * @pfn: prepare_request function
  22. *
  23. * It's possible for a queue to register a prepare_request callback which
  24. * is invoked before the request is handed to the request_fn. The goal of
  25. * the function is to prepare a request for I/O, it can be used to build a
  26. * cdb from the request data for instance.
  27. *
  28. */
  29. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  30. {
  31. q->prep_rq_fn = pfn;
  32. }
  33. EXPORT_SYMBOL(blk_queue_prep_rq);
  34. /**
  35. * blk_queue_unprep_rq - set an unprepare_request function for queue
  36. * @q: queue
  37. * @ufn: unprepare_request function
  38. *
  39. * It's possible for a queue to register an unprepare_request callback
  40. * which is invoked before the request is finally completed. The goal
  41. * of the function is to deallocate any data that was allocated in the
  42. * prepare_request callback.
  43. *
  44. */
  45. void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
  46. {
  47. q->unprep_rq_fn = ufn;
  48. }
  49. EXPORT_SYMBOL(blk_queue_unprep_rq);
  50. /**
  51. * blk_queue_merge_bvec - set a merge_bvec function for queue
  52. * @q: queue
  53. * @mbfn: merge_bvec_fn
  54. *
  55. * Usually queues have static limitations on the max sectors or segments that
  56. * we can put in a request. Stacking drivers may have some settings that
  57. * are dynamic, and thus we have to query the queue whether it is ok to
  58. * add a new bio_vec to a bio at a given offset or not. If the block device
  59. * has such limitations, it needs to register a merge_bvec_fn to control
  60. * the size of bio's sent to it. Note that a block device *must* allow a
  61. * single page to be added to an empty bio. The block device driver may want
  62. * to use the bio_split() function to deal with these bio's. By default
  63. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  64. * honored.
  65. */
  66. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  67. {
  68. q->merge_bvec_fn = mbfn;
  69. }
  70. EXPORT_SYMBOL(blk_queue_merge_bvec);
  71. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  72. {
  73. q->softirq_done_fn = fn;
  74. }
  75. EXPORT_SYMBOL(blk_queue_softirq_done);
  76. void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  77. {
  78. q->rq_timeout = timeout;
  79. }
  80. EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  81. void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  82. {
  83. q->rq_timed_out_fn = fn;
  84. }
  85. EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  86. void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
  87. {
  88. q->lld_busy_fn = fn;
  89. }
  90. EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
  91. /**
  92. * blk_set_default_limits - reset limits to default values
  93. * @lim: the queue_limits structure to reset
  94. *
  95. * Description:
  96. * Returns a queue_limit struct to its default state. Can be used by
  97. * stacking drivers like DM that stage table swaps and reuse an
  98. * existing device queue.
  99. */
  100. void blk_set_default_limits(struct queue_limits *lim)
  101. {
  102. lim->max_segments = BLK_MAX_SEGMENTS;
  103. lim->max_integrity_segments = 0;
  104. lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  105. lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  106. lim->max_sectors = BLK_DEF_MAX_SECTORS;
  107. lim->max_hw_sectors = INT_MAX;
  108. lim->max_discard_sectors = 0;
  109. lim->discard_granularity = 0;
  110. lim->discard_alignment = 0;
  111. lim->discard_misaligned = 0;
  112. lim->discard_zeroes_data = -1;
  113. lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  114. lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
  115. lim->alignment_offset = 0;
  116. lim->io_opt = 0;
  117. lim->misaligned = 0;
  118. lim->no_cluster = 0;
  119. }
  120. EXPORT_SYMBOL(blk_set_default_limits);
  121. /**
  122. * blk_queue_make_request - define an alternate make_request function for a device
  123. * @q: the request queue for the device to be affected
  124. * @mfn: the alternate make_request function
  125. *
  126. * Description:
  127. * The normal way for &struct bios to be passed to a device
  128. * driver is for them to be collected into requests on a request
  129. * queue, and then to allow the device driver to select requests
  130. * off that queue when it is ready. This works well for many block
  131. * devices. However some block devices (typically virtual devices
  132. * such as md or lvm) do not benefit from the processing on the
  133. * request queue, and are served best by having the requests passed
  134. * directly to them. This can be achieved by providing a function
  135. * to blk_queue_make_request().
  136. *
  137. * Caveat:
  138. * The driver that does this *must* be able to deal appropriately
  139. * with buffers in "highmemory". This can be accomplished by either calling
  140. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  141. * blk_queue_bounce() to create a buffer in normal memory.
  142. **/
  143. void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
  144. {
  145. /*
  146. * set defaults
  147. */
  148. q->nr_requests = BLKDEV_MAX_RQ;
  149. q->make_request_fn = mfn;
  150. blk_queue_dma_alignment(q, 511);
  151. blk_queue_congestion_threshold(q);
  152. q->nr_batching = BLK_BATCH_REQ;
  153. q->unplug_thresh = 4; /* hmm */
  154. q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
  155. if (q->unplug_delay == 0)
  156. q->unplug_delay = 1;
  157. q->unplug_timer.function = blk_unplug_timeout;
  158. q->unplug_timer.data = (unsigned long)q;
  159. blk_set_default_limits(&q->limits);
  160. blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
  161. /*
  162. * If the caller didn't supply a lock, fall back to our embedded
  163. * per-queue locks
  164. */
  165. if (!q->queue_lock)
  166. q->queue_lock = &q->__queue_lock;
  167. /*
  168. * by default assume old behaviour and bounce for any highmem page
  169. */
  170. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  171. }
  172. EXPORT_SYMBOL(blk_queue_make_request);
  173. /**
  174. * blk_queue_bounce_limit - set bounce buffer limit for queue
  175. * @q: the request queue for the device
  176. * @dma_mask: the maximum address the device can handle
  177. *
  178. * Description:
  179. * Different hardware can have different requirements as to what pages
  180. * it can do I/O directly to. A low level driver can call
  181. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  182. * buffers for doing I/O to pages residing above @dma_mask.
  183. **/
  184. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
  185. {
  186. unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
  187. int dma = 0;
  188. q->bounce_gfp = GFP_NOIO;
  189. #if BITS_PER_LONG == 64
  190. /*
  191. * Assume anything <= 4GB can be handled by IOMMU. Actually
  192. * some IOMMUs can handle everything, but I don't know of a
  193. * way to test this here.
  194. */
  195. if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  196. dma = 1;
  197. q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
  198. #else
  199. if (b_pfn < blk_max_low_pfn)
  200. dma = 1;
  201. q->limits.bounce_pfn = b_pfn;
  202. #endif
  203. if (dma) {
  204. init_emergency_isa_pool();
  205. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  206. q->limits.bounce_pfn = b_pfn;
  207. }
  208. }
  209. EXPORT_SYMBOL(blk_queue_bounce_limit);
  210. /**
  211. * blk_queue_max_hw_sectors - set max sectors for a request for this queue
  212. * @q: the request queue for the device
  213. * @max_hw_sectors: max hardware sectors in the usual 512b unit
  214. *
  215. * Description:
  216. * Enables a low level driver to set a hard upper limit,
  217. * max_hw_sectors, on the size of requests. max_hw_sectors is set by
  218. * the device driver based upon the combined capabilities of I/O
  219. * controller and storage device.
  220. *
  221. * max_sectors is a soft limit imposed by the block layer for
  222. * filesystem type requests. This value can be overridden on a
  223. * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
  224. * The soft limit can not exceed max_hw_sectors.
  225. **/
  226. void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
  227. {
  228. if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
  229. max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  230. printk(KERN_INFO "%s: set to minimum %d\n",
  231. __func__, max_hw_sectors);
  232. }
  233. q->limits.max_hw_sectors = max_hw_sectors;
  234. q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
  235. BLK_DEF_MAX_SECTORS);
  236. }
  237. EXPORT_SYMBOL(blk_queue_max_hw_sectors);
  238. /**
  239. * blk_queue_max_discard_sectors - set max sectors for a single discard
  240. * @q: the request queue for the device
  241. * @max_discard_sectors: maximum number of sectors to discard
  242. **/
  243. void blk_queue_max_discard_sectors(struct request_queue *q,
  244. unsigned int max_discard_sectors)
  245. {
  246. q->limits.max_discard_sectors = max_discard_sectors;
  247. }
  248. EXPORT_SYMBOL(blk_queue_max_discard_sectors);
  249. /**
  250. * blk_queue_max_segments - set max hw segments for a request for this queue
  251. * @q: the request queue for the device
  252. * @max_segments: max number of segments
  253. *
  254. * Description:
  255. * Enables a low level driver to set an upper limit on the number of
  256. * hw data segments in a request.
  257. **/
  258. void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
  259. {
  260. if (!max_segments) {
  261. max_segments = 1;
  262. printk(KERN_INFO "%s: set to minimum %d\n",
  263. __func__, max_segments);
  264. }
  265. q->limits.max_segments = max_segments;
  266. }
  267. EXPORT_SYMBOL(blk_queue_max_segments);
  268. /**
  269. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  270. * @q: the request queue for the device
  271. * @max_size: max size of segment in bytes
  272. *
  273. * Description:
  274. * Enables a low level driver to set an upper limit on the size of a
  275. * coalesced segment
  276. **/
  277. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  278. {
  279. if (max_size < PAGE_CACHE_SIZE) {
  280. max_size = PAGE_CACHE_SIZE;
  281. printk(KERN_INFO "%s: set to minimum %d\n",
  282. __func__, max_size);
  283. }
  284. q->limits.max_segment_size = max_size;
  285. }
  286. EXPORT_SYMBOL(blk_queue_max_segment_size);
  287. /**
  288. * blk_queue_logical_block_size - set logical block size for the queue
  289. * @q: the request queue for the device
  290. * @size: the logical block size, in bytes
  291. *
  292. * Description:
  293. * This should be set to the lowest possible block size that the
  294. * storage device can address. The default of 512 covers most
  295. * hardware.
  296. **/
  297. void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
  298. {
  299. q->limits.logical_block_size = size;
  300. if (q->limits.physical_block_size < size)
  301. q->limits.physical_block_size = size;
  302. if (q->limits.io_min < q->limits.physical_block_size)
  303. q->limits.io_min = q->limits.physical_block_size;
  304. }
  305. EXPORT_SYMBOL(blk_queue_logical_block_size);
  306. /**
  307. * blk_queue_physical_block_size - set physical block size for the queue
  308. * @q: the request queue for the device
  309. * @size: the physical block size, in bytes
  310. *
  311. * Description:
  312. * This should be set to the lowest possible sector size that the
  313. * hardware can operate on without reverting to read-modify-write
  314. * operations.
  315. */
  316. void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
  317. {
  318. q->limits.physical_block_size = size;
  319. if (q->limits.physical_block_size < q->limits.logical_block_size)
  320. q->limits.physical_block_size = q->limits.logical_block_size;
  321. if (q->limits.io_min < q->limits.physical_block_size)
  322. q->limits.io_min = q->limits.physical_block_size;
  323. }
  324. EXPORT_SYMBOL(blk_queue_physical_block_size);
  325. /**
  326. * blk_queue_alignment_offset - set physical block alignment offset
  327. * @q: the request queue for the device
  328. * @offset: alignment offset in bytes
  329. *
  330. * Description:
  331. * Some devices are naturally misaligned to compensate for things like
  332. * the legacy DOS partition table 63-sector offset. Low-level drivers
  333. * should call this function for devices whose first sector is not
  334. * naturally aligned.
  335. */
  336. void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
  337. {
  338. q->limits.alignment_offset =
  339. offset & (q->limits.physical_block_size - 1);
  340. q->limits.misaligned = 0;
  341. }
  342. EXPORT_SYMBOL(blk_queue_alignment_offset);
  343. /**
  344. * blk_limits_io_min - set minimum request size for a device
  345. * @limits: the queue limits
  346. * @min: smallest I/O size in bytes
  347. *
  348. * Description:
  349. * Some devices have an internal block size bigger than the reported
  350. * hardware sector size. This function can be used to signal the
  351. * smallest I/O the device can perform without incurring a performance
  352. * penalty.
  353. */
  354. void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
  355. {
  356. limits->io_min = min;
  357. if (limits->io_min < limits->logical_block_size)
  358. limits->io_min = limits->logical_block_size;
  359. if (limits->io_min < limits->physical_block_size)
  360. limits->io_min = limits->physical_block_size;
  361. }
  362. EXPORT_SYMBOL(blk_limits_io_min);
  363. /**
  364. * blk_queue_io_min - set minimum request size for the queue
  365. * @q: the request queue for the device
  366. * @min: smallest I/O size in bytes
  367. *
  368. * Description:
  369. * Storage devices may report a granularity or preferred minimum I/O
  370. * size which is the smallest request the device can perform without
  371. * incurring a performance penalty. For disk drives this is often the
  372. * physical block size. For RAID arrays it is often the stripe chunk
  373. * size. A properly aligned multiple of minimum_io_size is the
  374. * preferred request size for workloads where a high number of I/O
  375. * operations is desired.
  376. */
  377. void blk_queue_io_min(struct request_queue *q, unsigned int min)
  378. {
  379. blk_limits_io_min(&q->limits, min);
  380. }
  381. EXPORT_SYMBOL(blk_queue_io_min);
  382. /**
  383. * blk_limits_io_opt - set optimal request size for a device
  384. * @limits: the queue limits
  385. * @opt: smallest I/O size in bytes
  386. *
  387. * Description:
  388. * Storage devices may report an optimal I/O size, which is the
  389. * device's preferred unit for sustained I/O. This is rarely reported
  390. * for disk drives. For RAID arrays it is usually the stripe width or
  391. * the internal track size. A properly aligned multiple of
  392. * optimal_io_size is the preferred request size for workloads where
  393. * sustained throughput is desired.
  394. */
  395. void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
  396. {
  397. limits->io_opt = opt;
  398. }
  399. EXPORT_SYMBOL(blk_limits_io_opt);
  400. /**
  401. * blk_queue_io_opt - set optimal request size for the queue
  402. * @q: the request queue for the device
  403. * @opt: optimal request size in bytes
  404. *
  405. * Description:
  406. * Storage devices may report an optimal I/O size, which is the
  407. * device's preferred unit for sustained I/O. This is rarely reported
  408. * for disk drives. For RAID arrays it is usually the stripe width or
  409. * the internal track size. A properly aligned multiple of
  410. * optimal_io_size is the preferred request size for workloads where
  411. * sustained throughput is desired.
  412. */
  413. void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
  414. {
  415. blk_limits_io_opt(&q->limits, opt);
  416. }
  417. EXPORT_SYMBOL(blk_queue_io_opt);
  418. /**
  419. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  420. * @t: the stacking driver (top)
  421. * @b: the underlying device (bottom)
  422. **/
  423. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  424. {
  425. blk_stack_limits(&t->limits, &b->limits, 0);
  426. if (!t->queue_lock)
  427. WARN_ON_ONCE(1);
  428. else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
  429. unsigned long flags;
  430. spin_lock_irqsave(t->queue_lock, flags);
  431. queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
  432. spin_unlock_irqrestore(t->queue_lock, flags);
  433. }
  434. }
  435. EXPORT_SYMBOL(blk_queue_stack_limits);
  436. /**
  437. * blk_stack_limits - adjust queue_limits for stacked devices
  438. * @t: the stacking driver limits (top device)
  439. * @b: the underlying queue limits (bottom, component device)
  440. * @start: first data sector within component device
  441. *
  442. * Description:
  443. * This function is used by stacking drivers like MD and DM to ensure
  444. * that all component devices have compatible block sizes and
  445. * alignments. The stacking driver must provide a queue_limits
  446. * struct (top) and then iteratively call the stacking function for
  447. * all component (bottom) devices. The stacking function will
  448. * attempt to combine the values and ensure proper alignment.
  449. *
  450. * Returns 0 if the top and bottom queue_limits are compatible. The
  451. * top device's block sizes and alignment offsets may be adjusted to
  452. * ensure alignment with the bottom device. If no compatible sizes
  453. * and alignments exist, -1 is returned and the resulting top
  454. * queue_limits will have the misaligned flag set to indicate that
  455. * the alignment_offset is undefined.
  456. */
  457. int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
  458. sector_t start)
  459. {
  460. unsigned int top, bottom, alignment, ret = 0;
  461. t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
  462. t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
  463. t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
  464. t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
  465. b->seg_boundary_mask);
  466. t->max_segments = min_not_zero(t->max_segments, b->max_segments);
  467. t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
  468. b->max_integrity_segments);
  469. t->max_segment_size = min_not_zero(t->max_segment_size,
  470. b->max_segment_size);
  471. t->misaligned |= b->misaligned;
  472. alignment = queue_limit_alignment_offset(b, start);
  473. /* Bottom device has different alignment. Check that it is
  474. * compatible with the current top alignment.
  475. */
  476. if (t->alignment_offset != alignment) {
  477. top = max(t->physical_block_size, t->io_min)
  478. + t->alignment_offset;
  479. bottom = max(b->physical_block_size, b->io_min) + alignment;
  480. /* Verify that top and bottom intervals line up */
  481. if (max(top, bottom) & (min(top, bottom) - 1)) {
  482. t->misaligned = 1;
  483. ret = -1;
  484. }
  485. }
  486. t->logical_block_size = max(t->logical_block_size,
  487. b->logical_block_size);
  488. t->physical_block_size = max(t->physical_block_size,
  489. b->physical_block_size);
  490. t->io_min = max(t->io_min, b->io_min);
  491. t->io_opt = lcm(t->io_opt, b->io_opt);
  492. t->no_cluster |= b->no_cluster;
  493. t->discard_zeroes_data &= b->discard_zeroes_data;
  494. /* Physical block size a multiple of the logical block size? */
  495. if (t->physical_block_size & (t->logical_block_size - 1)) {
  496. t->physical_block_size = t->logical_block_size;
  497. t->misaligned = 1;
  498. ret = -1;
  499. }
  500. /* Minimum I/O a multiple of the physical block size? */
  501. if (t->io_min & (t->physical_block_size - 1)) {
  502. t->io_min = t->physical_block_size;
  503. t->misaligned = 1;
  504. ret = -1;
  505. }
  506. /* Optimal I/O a multiple of the physical block size? */
  507. if (t->io_opt & (t->physical_block_size - 1)) {
  508. t->io_opt = 0;
  509. t->misaligned = 1;
  510. ret = -1;
  511. }
  512. /* Find lowest common alignment_offset */
  513. t->alignment_offset = lcm(t->alignment_offset, alignment)
  514. & (max(t->physical_block_size, t->io_min) - 1);
  515. /* Verify that new alignment_offset is on a logical block boundary */
  516. if (t->alignment_offset & (t->logical_block_size - 1)) {
  517. t->misaligned = 1;
  518. ret = -1;
  519. }
  520. /* Discard alignment and granularity */
  521. if (b->discard_granularity) {
  522. alignment = queue_limit_discard_alignment(b, start);
  523. if (t->discard_granularity != 0 &&
  524. t->discard_alignment != alignment) {
  525. top = t->discard_granularity + t->discard_alignment;
  526. bottom = b->discard_granularity + alignment;
  527. /* Verify that top and bottom intervals line up */
  528. if (max(top, bottom) & (min(top, bottom) - 1))
  529. t->discard_misaligned = 1;
  530. }
  531. t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
  532. b->max_discard_sectors);
  533. t->discard_granularity = max(t->discard_granularity,
  534. b->discard_granularity);
  535. t->discard_alignment = lcm(t->discard_alignment, alignment) &
  536. (t->discard_granularity - 1);
  537. }
  538. return ret;
  539. }
  540. EXPORT_SYMBOL(blk_stack_limits);
  541. /**
  542. * bdev_stack_limits - adjust queue limits for stacked drivers
  543. * @t: the stacking driver limits (top device)
  544. * @bdev: the component block_device (bottom)
  545. * @start: first data sector within component device
  546. *
  547. * Description:
  548. * Merges queue limits for a top device and a block_device. Returns
  549. * 0 if alignment didn't change. Returns -1 if adding the bottom
  550. * device caused misalignment.
  551. */
  552. int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
  553. sector_t start)
  554. {
  555. struct request_queue *bq = bdev_get_queue(bdev);
  556. start += get_start_sect(bdev);
  557. return blk_stack_limits(t, &bq->limits, start);
  558. }
  559. EXPORT_SYMBOL(bdev_stack_limits);
  560. /**
  561. * disk_stack_limits - adjust queue limits for stacked drivers
  562. * @disk: MD/DM gendisk (top)
  563. * @bdev: the underlying block device (bottom)
  564. * @offset: offset to beginning of data within component device
  565. *
  566. * Description:
  567. * Merges the limits for a top level gendisk and a bottom level
  568. * block_device.
  569. */
  570. void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
  571. sector_t offset)
  572. {
  573. struct request_queue *t = disk->queue;
  574. struct request_queue *b = bdev_get_queue(bdev);
  575. if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
  576. char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
  577. disk_name(disk, 0, top);
  578. bdevname(bdev, bottom);
  579. printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
  580. top, bottom);
  581. }
  582. if (!t->queue_lock)
  583. WARN_ON_ONCE(1);
  584. else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
  585. unsigned long flags;
  586. spin_lock_irqsave(t->queue_lock, flags);
  587. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  588. queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
  589. spin_unlock_irqrestore(t->queue_lock, flags);
  590. }
  591. }
  592. EXPORT_SYMBOL(disk_stack_limits);
  593. /**
  594. * blk_queue_dma_pad - set pad mask
  595. * @q: the request queue for the device
  596. * @mask: pad mask
  597. *
  598. * Set dma pad mask.
  599. *
  600. * Appending pad buffer to a request modifies the last entry of a
  601. * scatter list such that it includes the pad buffer.
  602. **/
  603. void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
  604. {
  605. q->dma_pad_mask = mask;
  606. }
  607. EXPORT_SYMBOL(blk_queue_dma_pad);
  608. /**
  609. * blk_queue_update_dma_pad - update pad mask
  610. * @q: the request queue for the device
  611. * @mask: pad mask
  612. *
  613. * Update dma pad mask.
  614. *
  615. * Appending pad buffer to a request modifies the last entry of a
  616. * scatter list such that it includes the pad buffer.
  617. **/
  618. void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
  619. {
  620. if (mask > q->dma_pad_mask)
  621. q->dma_pad_mask = mask;
  622. }
  623. EXPORT_SYMBOL(blk_queue_update_dma_pad);
  624. /**
  625. * blk_queue_dma_drain - Set up a drain buffer for excess dma.
  626. * @q: the request queue for the device
  627. * @dma_drain_needed: fn which returns non-zero if drain is necessary
  628. * @buf: physically contiguous buffer
  629. * @size: size of the buffer in bytes
  630. *
  631. * Some devices have excess DMA problems and can't simply discard (or
  632. * zero fill) the unwanted piece of the transfer. They have to have a
  633. * real area of memory to transfer it into. The use case for this is
  634. * ATAPI devices in DMA mode. If the packet command causes a transfer
  635. * bigger than the transfer size some HBAs will lock up if there
  636. * aren't DMA elements to contain the excess transfer. What this API
  637. * does is adjust the queue so that the buf is always appended
  638. * silently to the scatterlist.
  639. *
  640. * Note: This routine adjusts max_hw_segments to make room for appending
  641. * the drain buffer. If you call blk_queue_max_segments() after calling
  642. * this routine, you must set the limit to one fewer than your device
  643. * can support otherwise there won't be room for the drain buffer.
  644. */
  645. int blk_queue_dma_drain(struct request_queue *q,
  646. dma_drain_needed_fn *dma_drain_needed,
  647. void *buf, unsigned int size)
  648. {
  649. if (queue_max_segments(q) < 2)
  650. return -EINVAL;
  651. /* make room for appending the drain */
  652. blk_queue_max_segments(q, queue_max_segments(q) - 1);
  653. q->dma_drain_needed = dma_drain_needed;
  654. q->dma_drain_buffer = buf;
  655. q->dma_drain_size = size;
  656. return 0;
  657. }
  658. EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
  659. /**
  660. * blk_queue_segment_boundary - set boundary rules for segment merging
  661. * @q: the request queue for the device
  662. * @mask: the memory boundary mask
  663. **/
  664. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  665. {
  666. if (mask < PAGE_CACHE_SIZE - 1) {
  667. mask = PAGE_CACHE_SIZE - 1;
  668. printk(KERN_INFO "%s: set to minimum %lx\n",
  669. __func__, mask);
  670. }
  671. q->limits.seg_boundary_mask = mask;
  672. }
  673. EXPORT_SYMBOL(blk_queue_segment_boundary);
  674. /**
  675. * blk_queue_dma_alignment - set dma length and memory alignment
  676. * @q: the request queue for the device
  677. * @mask: alignment mask
  678. *
  679. * description:
  680. * set required memory and length alignment for direct dma transactions.
  681. * this is used when building direct io requests for the queue.
  682. *
  683. **/
  684. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  685. {
  686. q->dma_alignment = mask;
  687. }
  688. EXPORT_SYMBOL(blk_queue_dma_alignment);
  689. /**
  690. * blk_queue_update_dma_alignment - update dma length and memory alignment
  691. * @q: the request queue for the device
  692. * @mask: alignment mask
  693. *
  694. * description:
  695. * update required memory and length alignment for direct dma transactions.
  696. * If the requested alignment is larger than the current alignment, then
  697. * the current queue alignment is updated to the new value, otherwise it
  698. * is left alone. The design of this is to allow multiple objects
  699. * (driver, device, transport etc) to set their respective
  700. * alignments without having them interfere.
  701. *
  702. **/
  703. void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  704. {
  705. BUG_ON(mask > PAGE_SIZE);
  706. if (mask > q->dma_alignment)
  707. q->dma_alignment = mask;
  708. }
  709. EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  710. /**
  711. * blk_queue_flush - configure queue's cache flush capability
  712. * @q: the request queue for the device
  713. * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
  714. *
  715. * Tell block layer cache flush capability of @q. If it supports
  716. * flushing, REQ_FLUSH should be set. If it supports bypassing
  717. * write cache for individual writes, REQ_FUA should be set.
  718. */
  719. void blk_queue_flush(struct request_queue *q, unsigned int flush)
  720. {
  721. WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
  722. if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
  723. flush &= ~REQ_FUA;
  724. q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
  725. }
  726. EXPORT_SYMBOL_GPL(blk_queue_flush);
  727. static int __init blk_settings_init(void)
  728. {
  729. blk_max_low_pfn = max_low_pfn - 1;
  730. blk_max_pfn = max_pfn - 1;
  731. return 0;
  732. }
  733. subsys_initcall(blk_settings_init);