numa_64.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/memblock.h>
  11. #include <linux/mmzone.h>
  12. #include <linux/ctype.h>
  13. #include <linux/module.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/sched.h>
  16. #include <asm/e820.h>
  17. #include <asm/proto.h>
  18. #include <asm/dma.h>
  19. #include <asm/numa.h>
  20. #include <asm/acpi.h>
  21. #include <asm/amd_nb.h>
  22. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  23. EXPORT_SYMBOL(node_data);
  24. struct memnode memnode;
  25. s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  26. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  27. };
  28. int numa_off __initdata;
  29. static unsigned long __initdata nodemap_addr;
  30. static unsigned long __initdata nodemap_size;
  31. /*
  32. * Map cpu index to node index
  33. */
  34. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  35. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  36. /*
  37. * Given a shift value, try to populate memnodemap[]
  38. * Returns :
  39. * 1 if OK
  40. * 0 if memnodmap[] too small (of shift too small)
  41. * -1 if node overlap or lost ram (shift too big)
  42. */
  43. static int __init populate_memnodemap(const struct bootnode *nodes,
  44. int numnodes, int shift, int *nodeids)
  45. {
  46. unsigned long addr, end;
  47. int i, res = -1;
  48. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  49. for (i = 0; i < numnodes; i++) {
  50. addr = nodes[i].start;
  51. end = nodes[i].end;
  52. if (addr >= end)
  53. continue;
  54. if ((end >> shift) >= memnodemapsize)
  55. return 0;
  56. do {
  57. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  58. return -1;
  59. if (!nodeids)
  60. memnodemap[addr >> shift] = i;
  61. else
  62. memnodemap[addr >> shift] = nodeids[i];
  63. addr += (1UL << shift);
  64. } while (addr < end);
  65. res = 1;
  66. }
  67. return res;
  68. }
  69. static int __init allocate_cachealigned_memnodemap(void)
  70. {
  71. unsigned long addr;
  72. memnodemap = memnode.embedded_map;
  73. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  74. return 0;
  75. addr = 0x8000;
  76. nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  77. nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
  78. nodemap_size, L1_CACHE_BYTES);
  79. if (nodemap_addr == MEMBLOCK_ERROR) {
  80. printk(KERN_ERR
  81. "NUMA: Unable to allocate Memory to Node hash map\n");
  82. nodemap_addr = nodemap_size = 0;
  83. return -1;
  84. }
  85. memnodemap = phys_to_virt(nodemap_addr);
  86. memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  87. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  88. nodemap_addr, nodemap_addr + nodemap_size);
  89. return 0;
  90. }
  91. /*
  92. * The LSB of all start and end addresses in the node map is the value of the
  93. * maximum possible shift.
  94. */
  95. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  96. int numnodes)
  97. {
  98. int i, nodes_used = 0;
  99. unsigned long start, end;
  100. unsigned long bitfield = 0, memtop = 0;
  101. for (i = 0; i < numnodes; i++) {
  102. start = nodes[i].start;
  103. end = nodes[i].end;
  104. if (start >= end)
  105. continue;
  106. bitfield |= start;
  107. nodes_used++;
  108. if (end > memtop)
  109. memtop = end;
  110. }
  111. if (nodes_used <= 1)
  112. i = 63;
  113. else
  114. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  115. memnodemapsize = (memtop >> i)+1;
  116. return i;
  117. }
  118. int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
  119. int *nodeids)
  120. {
  121. int shift;
  122. shift = extract_lsb_from_nodes(nodes, numnodes);
  123. if (allocate_cachealigned_memnodemap())
  124. return -1;
  125. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  126. shift);
  127. if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
  128. printk(KERN_INFO "Your memory is not aligned you need to "
  129. "rebuild your kernel with a bigger NODEMAPSIZE "
  130. "shift=%d\n", shift);
  131. return -1;
  132. }
  133. return shift;
  134. }
  135. int __meminit __early_pfn_to_nid(unsigned long pfn)
  136. {
  137. return phys_to_nid(pfn << PAGE_SHIFT);
  138. }
  139. static void * __init early_node_mem(int nodeid, unsigned long start,
  140. unsigned long end, unsigned long size,
  141. unsigned long align)
  142. {
  143. unsigned long mem;
  144. /*
  145. * put it on high as possible
  146. * something will go with NODE_DATA
  147. */
  148. if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
  149. start = MAX_DMA_PFN<<PAGE_SHIFT;
  150. if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
  151. end > (MAX_DMA32_PFN<<PAGE_SHIFT))
  152. start = MAX_DMA32_PFN<<PAGE_SHIFT;
  153. mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
  154. if (mem != MEMBLOCK_ERROR)
  155. return __va(mem);
  156. /* extend the search scope */
  157. end = max_pfn_mapped << PAGE_SHIFT;
  158. start = MAX_DMA_PFN << PAGE_SHIFT;
  159. mem = memblock_find_in_range(start, end, size, align);
  160. if (mem != MEMBLOCK_ERROR)
  161. return __va(mem);
  162. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  163. size, nodeid);
  164. return NULL;
  165. }
  166. /* Initialize bootmem allocator for a node */
  167. void __init
  168. setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  169. {
  170. unsigned long start_pfn, last_pfn, nodedata_phys;
  171. const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  172. int nid;
  173. if (!end)
  174. return;
  175. /*
  176. * Don't confuse VM with a node that doesn't have the
  177. * minimum amount of memory:
  178. */
  179. if (end && (end - start) < NODE_MIN_SIZE)
  180. return;
  181. start = roundup(start, ZONE_ALIGN);
  182. printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
  183. start, end);
  184. start_pfn = start >> PAGE_SHIFT;
  185. last_pfn = end >> PAGE_SHIFT;
  186. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  187. SMP_CACHE_BYTES);
  188. if (node_data[nodeid] == NULL)
  189. return;
  190. nodedata_phys = __pa(node_data[nodeid]);
  191. memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
  192. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  193. nodedata_phys + pgdat_size - 1);
  194. nid = phys_to_nid(nodedata_phys);
  195. if (nid != nodeid)
  196. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
  197. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  198. NODE_DATA(nodeid)->node_id = nodeid;
  199. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  200. NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
  201. node_set_online(nodeid);
  202. }
  203. /*
  204. * There are unfortunately some poorly designed mainboards around that
  205. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  206. * mapping. To avoid this fill in the mapping for all possible CPUs,
  207. * as the number of CPUs is not known yet. We round robin the existing
  208. * nodes.
  209. */
  210. void __init numa_init_array(void)
  211. {
  212. int rr, i;
  213. rr = first_node(node_online_map);
  214. for (i = 0; i < nr_cpu_ids; i++) {
  215. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  216. continue;
  217. numa_set_node(i, rr);
  218. rr = next_node(rr, node_online_map);
  219. if (rr == MAX_NUMNODES)
  220. rr = first_node(node_online_map);
  221. }
  222. }
  223. #ifdef CONFIG_NUMA_EMU
  224. /* Numa emulation */
  225. static struct bootnode nodes[MAX_NUMNODES] __initdata;
  226. static struct bootnode physnodes[MAX_NUMNODES] __initdata;
  227. static char *cmdline __initdata;
  228. static int __init setup_physnodes(unsigned long start, unsigned long end,
  229. int acpi, int k8)
  230. {
  231. int nr_nodes = 0;
  232. int ret = 0;
  233. int i;
  234. #ifdef CONFIG_ACPI_NUMA
  235. if (acpi)
  236. nr_nodes = acpi_get_nodes(physnodes);
  237. #endif
  238. #ifdef CONFIG_K8_NUMA
  239. if (k8)
  240. nr_nodes = k8_get_nodes(physnodes);
  241. #endif
  242. /*
  243. * Basic sanity checking on the physical node map: there may be errors
  244. * if the SRAT or K8 incorrectly reported the topology or the mem=
  245. * kernel parameter is used.
  246. */
  247. for (i = 0; i < nr_nodes; i++) {
  248. if (physnodes[i].start == physnodes[i].end)
  249. continue;
  250. if (physnodes[i].start > end) {
  251. physnodes[i].end = physnodes[i].start;
  252. continue;
  253. }
  254. if (physnodes[i].end < start) {
  255. physnodes[i].start = physnodes[i].end;
  256. continue;
  257. }
  258. if (physnodes[i].start < start)
  259. physnodes[i].start = start;
  260. if (physnodes[i].end > end)
  261. physnodes[i].end = end;
  262. }
  263. /*
  264. * Remove all nodes that have no memory or were truncated because of the
  265. * limited address range.
  266. */
  267. for (i = 0; i < nr_nodes; i++) {
  268. if (physnodes[i].start == physnodes[i].end)
  269. continue;
  270. physnodes[ret].start = physnodes[i].start;
  271. physnodes[ret].end = physnodes[i].end;
  272. ret++;
  273. }
  274. /*
  275. * If no physical topology was detected, a single node is faked to cover
  276. * the entire address space.
  277. */
  278. if (!ret) {
  279. physnodes[ret].start = start;
  280. physnodes[ret].end = end;
  281. ret = 1;
  282. }
  283. return ret;
  284. }
  285. /*
  286. * Setups up nid to range from addr to addr + size. If the end
  287. * boundary is greater than max_addr, then max_addr is used instead.
  288. * The return value is 0 if there is additional memory left for
  289. * allocation past addr and -1 otherwise. addr is adjusted to be at
  290. * the end of the node.
  291. */
  292. static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
  293. {
  294. int ret = 0;
  295. nodes[nid].start = *addr;
  296. *addr += size;
  297. if (*addr >= max_addr) {
  298. *addr = max_addr;
  299. ret = -1;
  300. }
  301. nodes[nid].end = *addr;
  302. node_set(nid, node_possible_map);
  303. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  304. nodes[nid].start, nodes[nid].end,
  305. (nodes[nid].end - nodes[nid].start) >> 20);
  306. return ret;
  307. }
  308. /*
  309. * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
  310. * to max_addr. The return value is the number of nodes allocated.
  311. */
  312. static int __init split_nodes_interleave(u64 addr, u64 max_addr,
  313. int nr_phys_nodes, int nr_nodes)
  314. {
  315. nodemask_t physnode_mask = NODE_MASK_NONE;
  316. u64 size;
  317. int big;
  318. int ret = 0;
  319. int i;
  320. if (nr_nodes <= 0)
  321. return -1;
  322. if (nr_nodes > MAX_NUMNODES) {
  323. pr_info("numa=fake=%d too large, reducing to %d\n",
  324. nr_nodes, MAX_NUMNODES);
  325. nr_nodes = MAX_NUMNODES;
  326. }
  327. size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
  328. /*
  329. * Calculate the number of big nodes that can be allocated as a result
  330. * of consolidating the remainder.
  331. */
  332. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
  333. FAKE_NODE_MIN_SIZE;
  334. size &= FAKE_NODE_MIN_HASH_MASK;
  335. if (!size) {
  336. pr_err("Not enough memory for each node. "
  337. "NUMA emulation disabled.\n");
  338. return -1;
  339. }
  340. for (i = 0; i < nr_phys_nodes; i++)
  341. if (physnodes[i].start != physnodes[i].end)
  342. node_set(i, physnode_mask);
  343. /*
  344. * Continue to fill physical nodes with fake nodes until there is no
  345. * memory left on any of them.
  346. */
  347. while (nodes_weight(physnode_mask)) {
  348. for_each_node_mask(i, physnode_mask) {
  349. u64 end = physnodes[i].start + size;
  350. u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
  351. if (ret < big)
  352. end += FAKE_NODE_MIN_SIZE;
  353. /*
  354. * Continue to add memory to this fake node if its
  355. * non-reserved memory is less than the per-node size.
  356. */
  357. while (end - physnodes[i].start -
  358. memblock_x86_hole_size(physnodes[i].start, end) < size) {
  359. end += FAKE_NODE_MIN_SIZE;
  360. if (end > physnodes[i].end) {
  361. end = physnodes[i].end;
  362. break;
  363. }
  364. }
  365. /*
  366. * If there won't be at least FAKE_NODE_MIN_SIZE of
  367. * non-reserved memory in ZONE_DMA32 for the next node,
  368. * this one must extend to the boundary.
  369. */
  370. if (end < dma32_end && dma32_end - end -
  371. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  372. end = dma32_end;
  373. /*
  374. * If there won't be enough non-reserved memory for the
  375. * next node, this one must extend to the end of the
  376. * physical node.
  377. */
  378. if (physnodes[i].end - end -
  379. memblock_x86_hole_size(end, physnodes[i].end) < size)
  380. end = physnodes[i].end;
  381. /*
  382. * Avoid allocating more nodes than requested, which can
  383. * happen as a result of rounding down each node's size
  384. * to FAKE_NODE_MIN_SIZE.
  385. */
  386. if (nodes_weight(physnode_mask) + ret >= nr_nodes)
  387. end = physnodes[i].end;
  388. if (setup_node_range(ret++, &physnodes[i].start,
  389. end - physnodes[i].start,
  390. physnodes[i].end) < 0)
  391. node_clear(i, physnode_mask);
  392. }
  393. }
  394. return ret;
  395. }
  396. /*
  397. * Returns the end address of a node so that there is at least `size' amount of
  398. * non-reserved memory or `max_addr' is reached.
  399. */
  400. static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
  401. {
  402. u64 end = start + size;
  403. while (end - start - memblock_x86_hole_size(start, end) < size) {
  404. end += FAKE_NODE_MIN_SIZE;
  405. if (end > max_addr) {
  406. end = max_addr;
  407. break;
  408. }
  409. }
  410. return end;
  411. }
  412. /*
  413. * Sets up fake nodes of `size' interleaved over physical nodes ranging from
  414. * `addr' to `max_addr'. The return value is the number of nodes allocated.
  415. */
  416. static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
  417. {
  418. nodemask_t physnode_mask = NODE_MASK_NONE;
  419. u64 min_size;
  420. int ret = 0;
  421. int i;
  422. if (!size)
  423. return -1;
  424. /*
  425. * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
  426. * increased accordingly if the requested size is too small. This
  427. * creates a uniform distribution of node sizes across the entire
  428. * machine (but not necessarily over physical nodes).
  429. */
  430. min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
  431. MAX_NUMNODES;
  432. min_size = max(min_size, FAKE_NODE_MIN_SIZE);
  433. if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
  434. min_size = (min_size + FAKE_NODE_MIN_SIZE) &
  435. FAKE_NODE_MIN_HASH_MASK;
  436. if (size < min_size) {
  437. pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
  438. size >> 20, min_size >> 20);
  439. size = min_size;
  440. }
  441. size &= FAKE_NODE_MIN_HASH_MASK;
  442. for (i = 0; i < MAX_NUMNODES; i++)
  443. if (physnodes[i].start != physnodes[i].end)
  444. node_set(i, physnode_mask);
  445. /*
  446. * Fill physical nodes with fake nodes of size until there is no memory
  447. * left on any of them.
  448. */
  449. while (nodes_weight(physnode_mask)) {
  450. for_each_node_mask(i, physnode_mask) {
  451. u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
  452. u64 end;
  453. end = find_end_of_node(physnodes[i].start,
  454. physnodes[i].end, size);
  455. /*
  456. * If there won't be at least FAKE_NODE_MIN_SIZE of
  457. * non-reserved memory in ZONE_DMA32 for the next node,
  458. * this one must extend to the boundary.
  459. */
  460. if (end < dma32_end && dma32_end - end -
  461. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  462. end = dma32_end;
  463. /*
  464. * If there won't be enough non-reserved memory for the
  465. * next node, this one must extend to the end of the
  466. * physical node.
  467. */
  468. if (physnodes[i].end - end -
  469. memblock_x86_hole_size(end, physnodes[i].end) < size)
  470. end = physnodes[i].end;
  471. /*
  472. * Setup the fake node that will be allocated as bootmem
  473. * later. If setup_node_range() returns non-zero, there
  474. * is no more memory available on this physical node.
  475. */
  476. if (setup_node_range(ret++, &physnodes[i].start,
  477. end - physnodes[i].start,
  478. physnodes[i].end) < 0)
  479. node_clear(i, physnode_mask);
  480. }
  481. }
  482. return ret;
  483. }
  484. /*
  485. * Sets up the system RAM area from start_pfn to last_pfn according to the
  486. * numa=fake command-line option.
  487. */
  488. static int __init numa_emulation(unsigned long start_pfn,
  489. unsigned long last_pfn, int acpi, int k8)
  490. {
  491. u64 addr = start_pfn << PAGE_SHIFT;
  492. u64 max_addr = last_pfn << PAGE_SHIFT;
  493. int num_phys_nodes;
  494. int num_nodes;
  495. int i;
  496. num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
  497. /*
  498. * If the numa=fake command-line contains a 'M' or 'G', it represents
  499. * the fixed node size. Otherwise, if it is just a single number N,
  500. * split the system RAM into N fake nodes.
  501. */
  502. if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
  503. u64 size;
  504. size = memparse(cmdline, &cmdline);
  505. num_nodes = split_nodes_size_interleave(addr, max_addr, size);
  506. } else {
  507. unsigned long n;
  508. n = simple_strtoul(cmdline, NULL, 0);
  509. num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
  510. }
  511. if (num_nodes < 0)
  512. return num_nodes;
  513. memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
  514. if (memnode_shift < 0) {
  515. memnode_shift = 0;
  516. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  517. "disabled.\n");
  518. return -1;
  519. }
  520. /*
  521. * We need to vacate all active ranges that may have been registered for
  522. * the e820 memory map.
  523. */
  524. remove_all_active_ranges();
  525. for_each_node_mask(i, node_possible_map) {
  526. memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  527. nodes[i].end >> PAGE_SHIFT);
  528. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  529. }
  530. acpi_fake_nodes(nodes, num_nodes);
  531. numa_init_array();
  532. return 0;
  533. }
  534. #endif /* CONFIG_NUMA_EMU */
  535. void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
  536. int acpi, int k8)
  537. {
  538. int i;
  539. nodes_clear(node_possible_map);
  540. nodes_clear(node_online_map);
  541. #ifdef CONFIG_NUMA_EMU
  542. if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
  543. return;
  544. nodes_clear(node_possible_map);
  545. nodes_clear(node_online_map);
  546. #endif
  547. #ifdef CONFIG_ACPI_NUMA
  548. if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  549. last_pfn << PAGE_SHIFT))
  550. return;
  551. nodes_clear(node_possible_map);
  552. nodes_clear(node_online_map);
  553. #endif
  554. #ifdef CONFIG_K8_NUMA
  555. if (!numa_off && k8 && !k8_scan_nodes())
  556. return;
  557. nodes_clear(node_possible_map);
  558. nodes_clear(node_online_map);
  559. #endif
  560. printk(KERN_INFO "%s\n",
  561. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  562. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  563. start_pfn << PAGE_SHIFT,
  564. last_pfn << PAGE_SHIFT);
  565. /* setup dummy node covering all memory */
  566. memnode_shift = 63;
  567. memnodemap = memnode.embedded_map;
  568. memnodemap[0] = 0;
  569. node_set_online(0);
  570. node_set(0, node_possible_map);
  571. for (i = 0; i < nr_cpu_ids; i++)
  572. numa_set_node(i, 0);
  573. memblock_x86_register_active_regions(0, start_pfn, last_pfn);
  574. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
  575. }
  576. unsigned long __init numa_free_all_bootmem(void)
  577. {
  578. unsigned long pages = 0;
  579. int i;
  580. for_each_online_node(i)
  581. pages += free_all_bootmem_node(NODE_DATA(i));
  582. pages += free_all_memory_core_early(MAX_NUMNODES);
  583. return pages;
  584. }
  585. static __init int numa_setup(char *opt)
  586. {
  587. if (!opt)
  588. return -EINVAL;
  589. if (!strncmp(opt, "off", 3))
  590. numa_off = 1;
  591. #ifdef CONFIG_NUMA_EMU
  592. if (!strncmp(opt, "fake=", 5))
  593. cmdline = opt + 5;
  594. #endif
  595. #ifdef CONFIG_ACPI_NUMA
  596. if (!strncmp(opt, "noacpi", 6))
  597. acpi_numa = -1;
  598. #endif
  599. return 0;
  600. }
  601. early_param("numa", numa_setup);
  602. #ifdef CONFIG_NUMA
  603. static __init int find_near_online_node(int node)
  604. {
  605. int n, val;
  606. int min_val = INT_MAX;
  607. int best_node = -1;
  608. for_each_online_node(n) {
  609. val = node_distance(node, n);
  610. if (val < min_val) {
  611. min_val = val;
  612. best_node = n;
  613. }
  614. }
  615. return best_node;
  616. }
  617. /*
  618. * Setup early cpu_to_node.
  619. *
  620. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  621. * and apicid_to_node[] tables have valid entries for a CPU.
  622. * This means we skip cpu_to_node[] initialisation for NUMA
  623. * emulation and faking node case (when running a kernel compiled
  624. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  625. * is already initialized in a round robin manner at numa_init_array,
  626. * prior to this call, and this initialization is good enough
  627. * for the fake NUMA cases.
  628. *
  629. * Called before the per_cpu areas are setup.
  630. */
  631. void __init init_cpu_to_node(void)
  632. {
  633. int cpu;
  634. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  635. BUG_ON(cpu_to_apicid == NULL);
  636. for_each_possible_cpu(cpu) {
  637. int node;
  638. u16 apicid = cpu_to_apicid[cpu];
  639. if (apicid == BAD_APICID)
  640. continue;
  641. node = apicid_to_node[apicid];
  642. if (node == NUMA_NO_NODE)
  643. continue;
  644. if (!node_online(node))
  645. node = find_near_online_node(node);
  646. numa_set_node(cpu, node);
  647. }
  648. }
  649. #endif
  650. void __cpuinit numa_set_node(int cpu, int node)
  651. {
  652. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  653. /* early setting, no percpu area yet */
  654. if (cpu_to_node_map) {
  655. cpu_to_node_map[cpu] = node;
  656. return;
  657. }
  658. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  659. if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  660. printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  661. dump_stack();
  662. return;
  663. }
  664. #endif
  665. per_cpu(x86_cpu_to_node_map, cpu) = node;
  666. if (node != NUMA_NO_NODE)
  667. set_cpu_numa_node(cpu, node);
  668. }
  669. void __cpuinit numa_clear_node(int cpu)
  670. {
  671. numa_set_node(cpu, NUMA_NO_NODE);
  672. }
  673. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  674. void __cpuinit numa_add_cpu(int cpu)
  675. {
  676. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  677. }
  678. void __cpuinit numa_remove_cpu(int cpu)
  679. {
  680. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  681. }
  682. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  683. /*
  684. * --------- debug versions of the numa functions ---------
  685. */
  686. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  687. {
  688. int node = early_cpu_to_node(cpu);
  689. struct cpumask *mask;
  690. char buf[64];
  691. mask = node_to_cpumask_map[node];
  692. if (mask == NULL) {
  693. printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
  694. dump_stack();
  695. return;
  696. }
  697. if (enable)
  698. cpumask_set_cpu(cpu, mask);
  699. else
  700. cpumask_clear_cpu(cpu, mask);
  701. cpulist_scnprintf(buf, sizeof(buf), mask);
  702. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  703. enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
  704. }
  705. void __cpuinit numa_add_cpu(int cpu)
  706. {
  707. numa_set_cpumask(cpu, 1);
  708. }
  709. void __cpuinit numa_remove_cpu(int cpu)
  710. {
  711. numa_set_cpumask(cpu, 0);
  712. }
  713. int __cpu_to_node(int cpu)
  714. {
  715. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  716. printk(KERN_WARNING
  717. "cpu_to_node(%d): usage too early!\n", cpu);
  718. dump_stack();
  719. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  720. }
  721. return per_cpu(x86_cpu_to_node_map, cpu);
  722. }
  723. EXPORT_SYMBOL(__cpu_to_node);
  724. /*
  725. * Same function as cpu_to_node() but used if called before the
  726. * per_cpu areas are setup.
  727. */
  728. int early_cpu_to_node(int cpu)
  729. {
  730. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  731. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  732. if (!cpu_possible(cpu)) {
  733. printk(KERN_WARNING
  734. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  735. dump_stack();
  736. return NUMA_NO_NODE;
  737. }
  738. return per_cpu(x86_cpu_to_node_map, cpu);
  739. }
  740. /*
  741. * --------- end of debug versions of the numa functions ---------
  742. */
  743. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */