svm.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  8. *
  9. * Authors:
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. * Avi Kivity <avi@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include <linux/kvm_host.h>
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include "x86.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/desc.h>
  31. #include <asm/virtext.h>
  32. #include "trace.h"
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. #define IOPM_ALLOC_ORDER 2
  37. #define MSRPM_ALLOC_ORDER 1
  38. #define SEG_TYPE_LDT 2
  39. #define SEG_TYPE_BUSY_TSS16 3
  40. #define SVM_FEATURE_NPT (1 << 0)
  41. #define SVM_FEATURE_LBRV (1 << 1)
  42. #define SVM_FEATURE_SVML (1 << 2)
  43. #define SVM_FEATURE_NRIP (1 << 3)
  44. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  45. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  46. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  47. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  48. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  49. static bool erratum_383_found __read_mostly;
  50. static const u32 host_save_user_msrs[] = {
  51. #ifdef CONFIG_X86_64
  52. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  53. MSR_FS_BASE,
  54. #endif
  55. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  56. };
  57. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  58. struct kvm_vcpu;
  59. struct nested_state {
  60. struct vmcb *hsave;
  61. u64 hsave_msr;
  62. u64 vm_cr_msr;
  63. u64 vmcb;
  64. /* These are the merged vectors */
  65. u32 *msrpm;
  66. /* gpa pointers to the real vectors */
  67. u64 vmcb_msrpm;
  68. u64 vmcb_iopm;
  69. /* A VMEXIT is required but not yet emulated */
  70. bool exit_required;
  71. /*
  72. * If we vmexit during an instruction emulation we need this to restore
  73. * the l1 guest rip after the emulation
  74. */
  75. unsigned long vmexit_rip;
  76. unsigned long vmexit_rsp;
  77. unsigned long vmexit_rax;
  78. /* cache for intercepts of the guest */
  79. u16 intercept_cr_read;
  80. u16 intercept_cr_write;
  81. u16 intercept_dr_read;
  82. u16 intercept_dr_write;
  83. u32 intercept_exceptions;
  84. u64 intercept;
  85. /* Nested Paging related state */
  86. u64 nested_cr3;
  87. };
  88. #define MSRPM_OFFSETS 16
  89. static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  90. struct vcpu_svm {
  91. struct kvm_vcpu vcpu;
  92. struct vmcb *vmcb;
  93. unsigned long vmcb_pa;
  94. struct svm_cpu_data *svm_data;
  95. uint64_t asid_generation;
  96. uint64_t sysenter_esp;
  97. uint64_t sysenter_eip;
  98. u64 next_rip;
  99. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  100. u64 host_gs_base;
  101. u32 *msrpm;
  102. struct nested_state nested;
  103. bool nmi_singlestep;
  104. unsigned int3_injected;
  105. unsigned long int3_rip;
  106. };
  107. #define MSR_INVALID 0xffffffffU
  108. static struct svm_direct_access_msrs {
  109. u32 index; /* Index of the MSR */
  110. bool always; /* True if intercept is always on */
  111. } direct_access_msrs[] = {
  112. { .index = MSR_STAR, .always = true },
  113. { .index = MSR_IA32_SYSENTER_CS, .always = true },
  114. #ifdef CONFIG_X86_64
  115. { .index = MSR_GS_BASE, .always = true },
  116. { .index = MSR_FS_BASE, .always = true },
  117. { .index = MSR_KERNEL_GS_BASE, .always = true },
  118. { .index = MSR_LSTAR, .always = true },
  119. { .index = MSR_CSTAR, .always = true },
  120. { .index = MSR_SYSCALL_MASK, .always = true },
  121. #endif
  122. { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
  123. { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
  124. { .index = MSR_IA32_LASTINTFROMIP, .always = false },
  125. { .index = MSR_IA32_LASTINTTOIP, .always = false },
  126. { .index = MSR_INVALID, .always = false },
  127. };
  128. /* enable NPT for AMD64 and X86 with PAE */
  129. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  130. static bool npt_enabled = true;
  131. #else
  132. static bool npt_enabled;
  133. #endif
  134. static int npt = 1;
  135. module_param(npt, int, S_IRUGO);
  136. static int nested = 1;
  137. module_param(nested, int, S_IRUGO);
  138. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  139. static void svm_complete_interrupts(struct vcpu_svm *svm);
  140. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  141. static int nested_svm_intercept(struct vcpu_svm *svm);
  142. static int nested_svm_vmexit(struct vcpu_svm *svm);
  143. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  144. bool has_error_code, u32 error_code);
  145. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  146. {
  147. return container_of(vcpu, struct vcpu_svm, vcpu);
  148. }
  149. static inline bool is_nested(struct vcpu_svm *svm)
  150. {
  151. return svm->nested.vmcb;
  152. }
  153. static inline void enable_gif(struct vcpu_svm *svm)
  154. {
  155. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  156. }
  157. static inline void disable_gif(struct vcpu_svm *svm)
  158. {
  159. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  160. }
  161. static inline bool gif_set(struct vcpu_svm *svm)
  162. {
  163. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  164. }
  165. static unsigned long iopm_base;
  166. struct kvm_ldttss_desc {
  167. u16 limit0;
  168. u16 base0;
  169. unsigned base1:8, type:5, dpl:2, p:1;
  170. unsigned limit1:4, zero0:3, g:1, base2:8;
  171. u32 base3;
  172. u32 zero1;
  173. } __attribute__((packed));
  174. struct svm_cpu_data {
  175. int cpu;
  176. u64 asid_generation;
  177. u32 max_asid;
  178. u32 next_asid;
  179. struct kvm_ldttss_desc *tss_desc;
  180. struct page *save_area;
  181. };
  182. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  183. static uint32_t svm_features;
  184. struct svm_init_data {
  185. int cpu;
  186. int r;
  187. };
  188. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  189. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  190. #define MSRS_RANGE_SIZE 2048
  191. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  192. static u32 svm_msrpm_offset(u32 msr)
  193. {
  194. u32 offset;
  195. int i;
  196. for (i = 0; i < NUM_MSR_MAPS; i++) {
  197. if (msr < msrpm_ranges[i] ||
  198. msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
  199. continue;
  200. offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
  201. offset += (i * MSRS_RANGE_SIZE); /* add range offset */
  202. /* Now we have the u8 offset - but need the u32 offset */
  203. return offset / 4;
  204. }
  205. /* MSR not in any range */
  206. return MSR_INVALID;
  207. }
  208. #define MAX_INST_SIZE 15
  209. static inline u32 svm_has(u32 feat)
  210. {
  211. return svm_features & feat;
  212. }
  213. static inline void clgi(void)
  214. {
  215. asm volatile (__ex(SVM_CLGI));
  216. }
  217. static inline void stgi(void)
  218. {
  219. asm volatile (__ex(SVM_STGI));
  220. }
  221. static inline void invlpga(unsigned long addr, u32 asid)
  222. {
  223. asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
  224. }
  225. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  226. {
  227. to_svm(vcpu)->asid_generation--;
  228. }
  229. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  230. {
  231. force_new_asid(vcpu);
  232. }
  233. static int get_npt_level(void)
  234. {
  235. #ifdef CONFIG_X86_64
  236. return PT64_ROOT_LEVEL;
  237. #else
  238. return PT32E_ROOT_LEVEL;
  239. #endif
  240. }
  241. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  242. {
  243. vcpu->arch.efer = efer;
  244. if (!npt_enabled && !(efer & EFER_LMA))
  245. efer &= ~EFER_LME;
  246. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  247. }
  248. static int is_external_interrupt(u32 info)
  249. {
  250. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  251. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  252. }
  253. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  254. {
  255. struct vcpu_svm *svm = to_svm(vcpu);
  256. u32 ret = 0;
  257. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  258. ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
  259. return ret & mask;
  260. }
  261. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  262. {
  263. struct vcpu_svm *svm = to_svm(vcpu);
  264. if (mask == 0)
  265. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  266. else
  267. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  268. }
  269. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  270. {
  271. struct vcpu_svm *svm = to_svm(vcpu);
  272. if (svm->vmcb->control.next_rip != 0)
  273. svm->next_rip = svm->vmcb->control.next_rip;
  274. if (!svm->next_rip) {
  275. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  276. EMULATE_DONE)
  277. printk(KERN_DEBUG "%s: NOP\n", __func__);
  278. return;
  279. }
  280. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  281. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  282. __func__, kvm_rip_read(vcpu), svm->next_rip);
  283. kvm_rip_write(vcpu, svm->next_rip);
  284. svm_set_interrupt_shadow(vcpu, 0);
  285. }
  286. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  287. bool has_error_code, u32 error_code,
  288. bool reinject)
  289. {
  290. struct vcpu_svm *svm = to_svm(vcpu);
  291. /*
  292. * If we are within a nested VM we'd better #VMEXIT and let the guest
  293. * handle the exception
  294. */
  295. if (!reinject &&
  296. nested_svm_check_exception(svm, nr, has_error_code, error_code))
  297. return;
  298. if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
  299. unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
  300. /*
  301. * For guest debugging where we have to reinject #BP if some
  302. * INT3 is guest-owned:
  303. * Emulate nRIP by moving RIP forward. Will fail if injection
  304. * raises a fault that is not intercepted. Still better than
  305. * failing in all cases.
  306. */
  307. skip_emulated_instruction(&svm->vcpu);
  308. rip = kvm_rip_read(&svm->vcpu);
  309. svm->int3_rip = rip + svm->vmcb->save.cs.base;
  310. svm->int3_injected = rip - old_rip;
  311. }
  312. svm->vmcb->control.event_inj = nr
  313. | SVM_EVTINJ_VALID
  314. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  315. | SVM_EVTINJ_TYPE_EXEPT;
  316. svm->vmcb->control.event_inj_err = error_code;
  317. }
  318. static void svm_init_erratum_383(void)
  319. {
  320. u32 low, high;
  321. int err;
  322. u64 val;
  323. if (!cpu_has_amd_erratum(amd_erratum_383))
  324. return;
  325. /* Use _safe variants to not break nested virtualization */
  326. val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
  327. if (err)
  328. return;
  329. val |= (1ULL << 47);
  330. low = lower_32_bits(val);
  331. high = upper_32_bits(val);
  332. native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
  333. erratum_383_found = true;
  334. }
  335. static int has_svm(void)
  336. {
  337. const char *msg;
  338. if (!cpu_has_svm(&msg)) {
  339. printk(KERN_INFO "has_svm: %s\n", msg);
  340. return 0;
  341. }
  342. return 1;
  343. }
  344. static void svm_hardware_disable(void *garbage)
  345. {
  346. cpu_svm_disable();
  347. }
  348. static int svm_hardware_enable(void *garbage)
  349. {
  350. struct svm_cpu_data *sd;
  351. uint64_t efer;
  352. struct desc_ptr gdt_descr;
  353. struct desc_struct *gdt;
  354. int me = raw_smp_processor_id();
  355. rdmsrl(MSR_EFER, efer);
  356. if (efer & EFER_SVME)
  357. return -EBUSY;
  358. if (!has_svm()) {
  359. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  360. me);
  361. return -EINVAL;
  362. }
  363. sd = per_cpu(svm_data, me);
  364. if (!sd) {
  365. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  366. me);
  367. return -EINVAL;
  368. }
  369. sd->asid_generation = 1;
  370. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  371. sd->next_asid = sd->max_asid + 1;
  372. native_store_gdt(&gdt_descr);
  373. gdt = (struct desc_struct *)gdt_descr.address;
  374. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  375. wrmsrl(MSR_EFER, efer | EFER_SVME);
  376. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  377. svm_init_erratum_383();
  378. return 0;
  379. }
  380. static void svm_cpu_uninit(int cpu)
  381. {
  382. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  383. if (!sd)
  384. return;
  385. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  386. __free_page(sd->save_area);
  387. kfree(sd);
  388. }
  389. static int svm_cpu_init(int cpu)
  390. {
  391. struct svm_cpu_data *sd;
  392. int r;
  393. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  394. if (!sd)
  395. return -ENOMEM;
  396. sd->cpu = cpu;
  397. sd->save_area = alloc_page(GFP_KERNEL);
  398. r = -ENOMEM;
  399. if (!sd->save_area)
  400. goto err_1;
  401. per_cpu(svm_data, cpu) = sd;
  402. return 0;
  403. err_1:
  404. kfree(sd);
  405. return r;
  406. }
  407. static bool valid_msr_intercept(u32 index)
  408. {
  409. int i;
  410. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
  411. if (direct_access_msrs[i].index == index)
  412. return true;
  413. return false;
  414. }
  415. static void set_msr_interception(u32 *msrpm, unsigned msr,
  416. int read, int write)
  417. {
  418. u8 bit_read, bit_write;
  419. unsigned long tmp;
  420. u32 offset;
  421. /*
  422. * If this warning triggers extend the direct_access_msrs list at the
  423. * beginning of the file
  424. */
  425. WARN_ON(!valid_msr_intercept(msr));
  426. offset = svm_msrpm_offset(msr);
  427. bit_read = 2 * (msr & 0x0f);
  428. bit_write = 2 * (msr & 0x0f) + 1;
  429. tmp = msrpm[offset];
  430. BUG_ON(offset == MSR_INVALID);
  431. read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
  432. write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
  433. msrpm[offset] = tmp;
  434. }
  435. static void svm_vcpu_init_msrpm(u32 *msrpm)
  436. {
  437. int i;
  438. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  439. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  440. if (!direct_access_msrs[i].always)
  441. continue;
  442. set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
  443. }
  444. }
  445. static void add_msr_offset(u32 offset)
  446. {
  447. int i;
  448. for (i = 0; i < MSRPM_OFFSETS; ++i) {
  449. /* Offset already in list? */
  450. if (msrpm_offsets[i] == offset)
  451. return;
  452. /* Slot used by another offset? */
  453. if (msrpm_offsets[i] != MSR_INVALID)
  454. continue;
  455. /* Add offset to list */
  456. msrpm_offsets[i] = offset;
  457. return;
  458. }
  459. /*
  460. * If this BUG triggers the msrpm_offsets table has an overflow. Just
  461. * increase MSRPM_OFFSETS in this case.
  462. */
  463. BUG();
  464. }
  465. static void init_msrpm_offsets(void)
  466. {
  467. int i;
  468. memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
  469. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  470. u32 offset;
  471. offset = svm_msrpm_offset(direct_access_msrs[i].index);
  472. BUG_ON(offset == MSR_INVALID);
  473. add_msr_offset(offset);
  474. }
  475. }
  476. static void svm_enable_lbrv(struct vcpu_svm *svm)
  477. {
  478. u32 *msrpm = svm->msrpm;
  479. svm->vmcb->control.lbr_ctl = 1;
  480. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  481. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  482. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  483. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  484. }
  485. static void svm_disable_lbrv(struct vcpu_svm *svm)
  486. {
  487. u32 *msrpm = svm->msrpm;
  488. svm->vmcb->control.lbr_ctl = 0;
  489. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  490. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  491. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  492. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  493. }
  494. static __init int svm_hardware_setup(void)
  495. {
  496. int cpu;
  497. struct page *iopm_pages;
  498. void *iopm_va;
  499. int r;
  500. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  501. if (!iopm_pages)
  502. return -ENOMEM;
  503. iopm_va = page_address(iopm_pages);
  504. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  505. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  506. init_msrpm_offsets();
  507. if (boot_cpu_has(X86_FEATURE_NX))
  508. kvm_enable_efer_bits(EFER_NX);
  509. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  510. kvm_enable_efer_bits(EFER_FFXSR);
  511. if (nested) {
  512. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  513. kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
  514. }
  515. for_each_possible_cpu(cpu) {
  516. r = svm_cpu_init(cpu);
  517. if (r)
  518. goto err;
  519. }
  520. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  521. if (!svm_has(SVM_FEATURE_NPT))
  522. npt_enabled = false;
  523. if (npt_enabled && !npt) {
  524. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  525. npt_enabled = false;
  526. }
  527. if (npt_enabled) {
  528. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  529. kvm_enable_tdp();
  530. } else
  531. kvm_disable_tdp();
  532. return 0;
  533. err:
  534. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  535. iopm_base = 0;
  536. return r;
  537. }
  538. static __exit void svm_hardware_unsetup(void)
  539. {
  540. int cpu;
  541. for_each_possible_cpu(cpu)
  542. svm_cpu_uninit(cpu);
  543. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  544. iopm_base = 0;
  545. }
  546. static void init_seg(struct vmcb_seg *seg)
  547. {
  548. seg->selector = 0;
  549. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  550. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  551. seg->limit = 0xffff;
  552. seg->base = 0;
  553. }
  554. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  555. {
  556. seg->selector = 0;
  557. seg->attrib = SVM_SELECTOR_P_MASK | type;
  558. seg->limit = 0xffff;
  559. seg->base = 0;
  560. }
  561. static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  562. {
  563. struct vcpu_svm *svm = to_svm(vcpu);
  564. u64 g_tsc_offset = 0;
  565. if (is_nested(svm)) {
  566. g_tsc_offset = svm->vmcb->control.tsc_offset -
  567. svm->nested.hsave->control.tsc_offset;
  568. svm->nested.hsave->control.tsc_offset = offset;
  569. }
  570. svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
  571. }
  572. static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  573. {
  574. struct vcpu_svm *svm = to_svm(vcpu);
  575. svm->vmcb->control.tsc_offset += adjustment;
  576. if (is_nested(svm))
  577. svm->nested.hsave->control.tsc_offset += adjustment;
  578. }
  579. static void init_vmcb(struct vcpu_svm *svm)
  580. {
  581. struct vmcb_control_area *control = &svm->vmcb->control;
  582. struct vmcb_save_area *save = &svm->vmcb->save;
  583. svm->vcpu.fpu_active = 1;
  584. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  585. INTERCEPT_CR3_MASK |
  586. INTERCEPT_CR4_MASK;
  587. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  588. INTERCEPT_CR3_MASK |
  589. INTERCEPT_CR4_MASK |
  590. INTERCEPT_CR8_MASK;
  591. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  592. INTERCEPT_DR1_MASK |
  593. INTERCEPT_DR2_MASK |
  594. INTERCEPT_DR3_MASK |
  595. INTERCEPT_DR4_MASK |
  596. INTERCEPT_DR5_MASK |
  597. INTERCEPT_DR6_MASK |
  598. INTERCEPT_DR7_MASK;
  599. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  600. INTERCEPT_DR1_MASK |
  601. INTERCEPT_DR2_MASK |
  602. INTERCEPT_DR3_MASK |
  603. INTERCEPT_DR4_MASK |
  604. INTERCEPT_DR5_MASK |
  605. INTERCEPT_DR6_MASK |
  606. INTERCEPT_DR7_MASK;
  607. control->intercept_exceptions = (1 << PF_VECTOR) |
  608. (1 << UD_VECTOR) |
  609. (1 << MC_VECTOR);
  610. control->intercept = (1ULL << INTERCEPT_INTR) |
  611. (1ULL << INTERCEPT_NMI) |
  612. (1ULL << INTERCEPT_SMI) |
  613. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  614. (1ULL << INTERCEPT_CPUID) |
  615. (1ULL << INTERCEPT_INVD) |
  616. (1ULL << INTERCEPT_HLT) |
  617. (1ULL << INTERCEPT_INVLPG) |
  618. (1ULL << INTERCEPT_INVLPGA) |
  619. (1ULL << INTERCEPT_IOIO_PROT) |
  620. (1ULL << INTERCEPT_MSR_PROT) |
  621. (1ULL << INTERCEPT_TASK_SWITCH) |
  622. (1ULL << INTERCEPT_SHUTDOWN) |
  623. (1ULL << INTERCEPT_VMRUN) |
  624. (1ULL << INTERCEPT_VMMCALL) |
  625. (1ULL << INTERCEPT_VMLOAD) |
  626. (1ULL << INTERCEPT_VMSAVE) |
  627. (1ULL << INTERCEPT_STGI) |
  628. (1ULL << INTERCEPT_CLGI) |
  629. (1ULL << INTERCEPT_SKINIT) |
  630. (1ULL << INTERCEPT_WBINVD) |
  631. (1ULL << INTERCEPT_MONITOR) |
  632. (1ULL << INTERCEPT_MWAIT);
  633. control->iopm_base_pa = iopm_base;
  634. control->msrpm_base_pa = __pa(svm->msrpm);
  635. control->int_ctl = V_INTR_MASKING_MASK;
  636. init_seg(&save->es);
  637. init_seg(&save->ss);
  638. init_seg(&save->ds);
  639. init_seg(&save->fs);
  640. init_seg(&save->gs);
  641. save->cs.selector = 0xf000;
  642. /* Executable/Readable Code Segment */
  643. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  644. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  645. save->cs.limit = 0xffff;
  646. /*
  647. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  648. * be consistent with it.
  649. *
  650. * Replace when we have real mode working for vmx.
  651. */
  652. save->cs.base = 0xf0000;
  653. save->gdtr.limit = 0xffff;
  654. save->idtr.limit = 0xffff;
  655. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  656. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  657. svm_set_efer(&svm->vcpu, 0);
  658. save->dr6 = 0xffff0ff0;
  659. save->dr7 = 0x400;
  660. save->rflags = 2;
  661. save->rip = 0x0000fff0;
  662. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  663. /*
  664. * This is the guest-visible cr0 value.
  665. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  666. */
  667. svm->vcpu.arch.cr0 = 0;
  668. (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
  669. save->cr4 = X86_CR4_PAE;
  670. /* rdx = ?? */
  671. if (npt_enabled) {
  672. /* Setup VMCB for Nested Paging */
  673. control->nested_ctl = 1;
  674. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  675. (1ULL << INTERCEPT_INVLPG));
  676. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  677. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  678. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  679. save->g_pat = 0x0007040600070406ULL;
  680. save->cr3 = 0;
  681. save->cr4 = 0;
  682. }
  683. force_new_asid(&svm->vcpu);
  684. svm->nested.vmcb = 0;
  685. svm->vcpu.arch.hflags = 0;
  686. if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
  687. control->pause_filter_count = 3000;
  688. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  689. }
  690. enable_gif(svm);
  691. }
  692. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  693. {
  694. struct vcpu_svm *svm = to_svm(vcpu);
  695. init_vmcb(svm);
  696. if (!kvm_vcpu_is_bsp(vcpu)) {
  697. kvm_rip_write(vcpu, 0);
  698. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  699. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  700. }
  701. vcpu->arch.regs_avail = ~0;
  702. vcpu->arch.regs_dirty = ~0;
  703. return 0;
  704. }
  705. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  706. {
  707. struct vcpu_svm *svm;
  708. struct page *page;
  709. struct page *msrpm_pages;
  710. struct page *hsave_page;
  711. struct page *nested_msrpm_pages;
  712. int err;
  713. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  714. if (!svm) {
  715. err = -ENOMEM;
  716. goto out;
  717. }
  718. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  719. if (err)
  720. goto free_svm;
  721. err = -ENOMEM;
  722. page = alloc_page(GFP_KERNEL);
  723. if (!page)
  724. goto uninit;
  725. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  726. if (!msrpm_pages)
  727. goto free_page1;
  728. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  729. if (!nested_msrpm_pages)
  730. goto free_page2;
  731. hsave_page = alloc_page(GFP_KERNEL);
  732. if (!hsave_page)
  733. goto free_page3;
  734. svm->nested.hsave = page_address(hsave_page);
  735. svm->msrpm = page_address(msrpm_pages);
  736. svm_vcpu_init_msrpm(svm->msrpm);
  737. svm->nested.msrpm = page_address(nested_msrpm_pages);
  738. svm_vcpu_init_msrpm(svm->nested.msrpm);
  739. svm->vmcb = page_address(page);
  740. clear_page(svm->vmcb);
  741. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  742. svm->asid_generation = 0;
  743. init_vmcb(svm);
  744. kvm_write_tsc(&svm->vcpu, 0);
  745. err = fx_init(&svm->vcpu);
  746. if (err)
  747. goto free_page4;
  748. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  749. if (kvm_vcpu_is_bsp(&svm->vcpu))
  750. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  751. return &svm->vcpu;
  752. free_page4:
  753. __free_page(hsave_page);
  754. free_page3:
  755. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  756. free_page2:
  757. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  758. free_page1:
  759. __free_page(page);
  760. uninit:
  761. kvm_vcpu_uninit(&svm->vcpu);
  762. free_svm:
  763. kmem_cache_free(kvm_vcpu_cache, svm);
  764. out:
  765. return ERR_PTR(err);
  766. }
  767. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  768. {
  769. struct vcpu_svm *svm = to_svm(vcpu);
  770. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  771. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  772. __free_page(virt_to_page(svm->nested.hsave));
  773. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  774. kvm_vcpu_uninit(vcpu);
  775. kmem_cache_free(kvm_vcpu_cache, svm);
  776. }
  777. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  778. {
  779. struct vcpu_svm *svm = to_svm(vcpu);
  780. int i;
  781. if (unlikely(cpu != vcpu->cpu)) {
  782. svm->asid_generation = 0;
  783. }
  784. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  785. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  786. }
  787. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  788. {
  789. struct vcpu_svm *svm = to_svm(vcpu);
  790. int i;
  791. ++vcpu->stat.host_state_reload;
  792. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  793. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  794. }
  795. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  796. {
  797. return to_svm(vcpu)->vmcb->save.rflags;
  798. }
  799. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  800. {
  801. to_svm(vcpu)->vmcb->save.rflags = rflags;
  802. }
  803. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  804. {
  805. switch (reg) {
  806. case VCPU_EXREG_PDPTR:
  807. BUG_ON(!npt_enabled);
  808. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  809. break;
  810. default:
  811. BUG();
  812. }
  813. }
  814. static void svm_set_vintr(struct vcpu_svm *svm)
  815. {
  816. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  817. }
  818. static void svm_clear_vintr(struct vcpu_svm *svm)
  819. {
  820. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  821. }
  822. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  823. {
  824. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  825. switch (seg) {
  826. case VCPU_SREG_CS: return &save->cs;
  827. case VCPU_SREG_DS: return &save->ds;
  828. case VCPU_SREG_ES: return &save->es;
  829. case VCPU_SREG_FS: return &save->fs;
  830. case VCPU_SREG_GS: return &save->gs;
  831. case VCPU_SREG_SS: return &save->ss;
  832. case VCPU_SREG_TR: return &save->tr;
  833. case VCPU_SREG_LDTR: return &save->ldtr;
  834. }
  835. BUG();
  836. return NULL;
  837. }
  838. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  839. {
  840. struct vmcb_seg *s = svm_seg(vcpu, seg);
  841. return s->base;
  842. }
  843. static void svm_get_segment(struct kvm_vcpu *vcpu,
  844. struct kvm_segment *var, int seg)
  845. {
  846. struct vmcb_seg *s = svm_seg(vcpu, seg);
  847. var->base = s->base;
  848. var->limit = s->limit;
  849. var->selector = s->selector;
  850. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  851. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  852. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  853. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  854. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  855. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  856. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  857. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  858. /*
  859. * AMD's VMCB does not have an explicit unusable field, so emulate it
  860. * for cross vendor migration purposes by "not present"
  861. */
  862. var->unusable = !var->present || (var->type == 0);
  863. switch (seg) {
  864. case VCPU_SREG_CS:
  865. /*
  866. * SVM always stores 0 for the 'G' bit in the CS selector in
  867. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  868. * Intel's VMENTRY has a check on the 'G' bit.
  869. */
  870. var->g = s->limit > 0xfffff;
  871. break;
  872. case VCPU_SREG_TR:
  873. /*
  874. * Work around a bug where the busy flag in the tr selector
  875. * isn't exposed
  876. */
  877. var->type |= 0x2;
  878. break;
  879. case VCPU_SREG_DS:
  880. case VCPU_SREG_ES:
  881. case VCPU_SREG_FS:
  882. case VCPU_SREG_GS:
  883. /*
  884. * The accessed bit must always be set in the segment
  885. * descriptor cache, although it can be cleared in the
  886. * descriptor, the cached bit always remains at 1. Since
  887. * Intel has a check on this, set it here to support
  888. * cross-vendor migration.
  889. */
  890. if (!var->unusable)
  891. var->type |= 0x1;
  892. break;
  893. case VCPU_SREG_SS:
  894. /*
  895. * On AMD CPUs sometimes the DB bit in the segment
  896. * descriptor is left as 1, although the whole segment has
  897. * been made unusable. Clear it here to pass an Intel VMX
  898. * entry check when cross vendor migrating.
  899. */
  900. if (var->unusable)
  901. var->db = 0;
  902. break;
  903. }
  904. }
  905. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  906. {
  907. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  908. return save->cpl;
  909. }
  910. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  911. {
  912. struct vcpu_svm *svm = to_svm(vcpu);
  913. dt->size = svm->vmcb->save.idtr.limit;
  914. dt->address = svm->vmcb->save.idtr.base;
  915. }
  916. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  917. {
  918. struct vcpu_svm *svm = to_svm(vcpu);
  919. svm->vmcb->save.idtr.limit = dt->size;
  920. svm->vmcb->save.idtr.base = dt->address ;
  921. }
  922. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  923. {
  924. struct vcpu_svm *svm = to_svm(vcpu);
  925. dt->size = svm->vmcb->save.gdtr.limit;
  926. dt->address = svm->vmcb->save.gdtr.base;
  927. }
  928. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  929. {
  930. struct vcpu_svm *svm = to_svm(vcpu);
  931. svm->vmcb->save.gdtr.limit = dt->size;
  932. svm->vmcb->save.gdtr.base = dt->address ;
  933. }
  934. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  935. {
  936. }
  937. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  938. {
  939. }
  940. static void update_cr0_intercept(struct vcpu_svm *svm)
  941. {
  942. struct vmcb *vmcb = svm->vmcb;
  943. ulong gcr0 = svm->vcpu.arch.cr0;
  944. u64 *hcr0 = &svm->vmcb->save.cr0;
  945. if (!svm->vcpu.fpu_active)
  946. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  947. else
  948. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  949. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  950. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  951. vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  952. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  953. if (is_nested(svm)) {
  954. struct vmcb *hsave = svm->nested.hsave;
  955. hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  956. hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  957. vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
  958. vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
  959. }
  960. } else {
  961. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  962. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  963. if (is_nested(svm)) {
  964. struct vmcb *hsave = svm->nested.hsave;
  965. hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  966. hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  967. }
  968. }
  969. }
  970. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  971. {
  972. struct vcpu_svm *svm = to_svm(vcpu);
  973. if (is_nested(svm)) {
  974. /*
  975. * We are here because we run in nested mode, the host kvm
  976. * intercepts cr0 writes but the l1 hypervisor does not.
  977. * But the L1 hypervisor may intercept selective cr0 writes.
  978. * This needs to be checked here.
  979. */
  980. unsigned long old, new;
  981. /* Remove bits that would trigger a real cr0 write intercept */
  982. old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
  983. new = cr0 & SVM_CR0_SELECTIVE_MASK;
  984. if (old == new) {
  985. /* cr0 write with ts and mp unchanged */
  986. svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
  987. if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
  988. svm->nested.vmexit_rip = kvm_rip_read(vcpu);
  989. svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  990. svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  991. return;
  992. }
  993. }
  994. }
  995. #ifdef CONFIG_X86_64
  996. if (vcpu->arch.efer & EFER_LME) {
  997. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  998. vcpu->arch.efer |= EFER_LMA;
  999. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  1000. }
  1001. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  1002. vcpu->arch.efer &= ~EFER_LMA;
  1003. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  1004. }
  1005. }
  1006. #endif
  1007. vcpu->arch.cr0 = cr0;
  1008. if (!npt_enabled)
  1009. cr0 |= X86_CR0_PG | X86_CR0_WP;
  1010. if (!vcpu->fpu_active)
  1011. cr0 |= X86_CR0_TS;
  1012. /*
  1013. * re-enable caching here because the QEMU bios
  1014. * does not do it - this results in some delay at
  1015. * reboot
  1016. */
  1017. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  1018. svm->vmcb->save.cr0 = cr0;
  1019. update_cr0_intercept(svm);
  1020. }
  1021. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1022. {
  1023. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  1024. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  1025. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  1026. force_new_asid(vcpu);
  1027. vcpu->arch.cr4 = cr4;
  1028. if (!npt_enabled)
  1029. cr4 |= X86_CR4_PAE;
  1030. cr4 |= host_cr4_mce;
  1031. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  1032. }
  1033. static void svm_set_segment(struct kvm_vcpu *vcpu,
  1034. struct kvm_segment *var, int seg)
  1035. {
  1036. struct vcpu_svm *svm = to_svm(vcpu);
  1037. struct vmcb_seg *s = svm_seg(vcpu, seg);
  1038. s->base = var->base;
  1039. s->limit = var->limit;
  1040. s->selector = var->selector;
  1041. if (var->unusable)
  1042. s->attrib = 0;
  1043. else {
  1044. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  1045. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  1046. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  1047. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  1048. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  1049. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  1050. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  1051. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  1052. }
  1053. if (seg == VCPU_SREG_CS)
  1054. svm->vmcb->save.cpl
  1055. = (svm->vmcb->save.cs.attrib
  1056. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  1057. }
  1058. static void update_db_intercept(struct kvm_vcpu *vcpu)
  1059. {
  1060. struct vcpu_svm *svm = to_svm(vcpu);
  1061. svm->vmcb->control.intercept_exceptions &=
  1062. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  1063. if (svm->nmi_singlestep)
  1064. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  1065. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  1066. if (vcpu->guest_debug &
  1067. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  1068. svm->vmcb->control.intercept_exceptions |=
  1069. 1 << DB_VECTOR;
  1070. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  1071. svm->vmcb->control.intercept_exceptions |=
  1072. 1 << BP_VECTOR;
  1073. } else
  1074. vcpu->guest_debug = 0;
  1075. }
  1076. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1077. {
  1078. struct vcpu_svm *svm = to_svm(vcpu);
  1079. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1080. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  1081. else
  1082. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1083. update_db_intercept(vcpu);
  1084. }
  1085. static void load_host_msrs(struct kvm_vcpu *vcpu)
  1086. {
  1087. #ifdef CONFIG_X86_64
  1088. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1089. #endif
  1090. }
  1091. static void save_host_msrs(struct kvm_vcpu *vcpu)
  1092. {
  1093. #ifdef CONFIG_X86_64
  1094. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  1095. #endif
  1096. }
  1097. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  1098. {
  1099. if (sd->next_asid > sd->max_asid) {
  1100. ++sd->asid_generation;
  1101. sd->next_asid = 1;
  1102. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  1103. }
  1104. svm->asid_generation = sd->asid_generation;
  1105. svm->vmcb->control.asid = sd->next_asid++;
  1106. }
  1107. static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
  1108. {
  1109. struct vcpu_svm *svm = to_svm(vcpu);
  1110. svm->vmcb->save.dr7 = value;
  1111. }
  1112. static int pf_interception(struct vcpu_svm *svm)
  1113. {
  1114. u64 fault_address;
  1115. u32 error_code;
  1116. fault_address = svm->vmcb->control.exit_info_2;
  1117. error_code = svm->vmcb->control.exit_info_1;
  1118. trace_kvm_page_fault(fault_address, error_code);
  1119. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  1120. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  1121. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  1122. }
  1123. static int db_interception(struct vcpu_svm *svm)
  1124. {
  1125. struct kvm_run *kvm_run = svm->vcpu.run;
  1126. if (!(svm->vcpu.guest_debug &
  1127. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  1128. !svm->nmi_singlestep) {
  1129. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  1130. return 1;
  1131. }
  1132. if (svm->nmi_singlestep) {
  1133. svm->nmi_singlestep = false;
  1134. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1135. svm->vmcb->save.rflags &=
  1136. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1137. update_db_intercept(&svm->vcpu);
  1138. }
  1139. if (svm->vcpu.guest_debug &
  1140. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
  1141. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1142. kvm_run->debug.arch.pc =
  1143. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1144. kvm_run->debug.arch.exception = DB_VECTOR;
  1145. return 0;
  1146. }
  1147. return 1;
  1148. }
  1149. static int bp_interception(struct vcpu_svm *svm)
  1150. {
  1151. struct kvm_run *kvm_run = svm->vcpu.run;
  1152. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1153. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1154. kvm_run->debug.arch.exception = BP_VECTOR;
  1155. return 0;
  1156. }
  1157. static int ud_interception(struct vcpu_svm *svm)
  1158. {
  1159. int er;
  1160. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1161. if (er != EMULATE_DONE)
  1162. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1163. return 1;
  1164. }
  1165. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1166. {
  1167. struct vcpu_svm *svm = to_svm(vcpu);
  1168. u32 excp;
  1169. if (is_nested(svm)) {
  1170. u32 h_excp, n_excp;
  1171. h_excp = svm->nested.hsave->control.intercept_exceptions;
  1172. n_excp = svm->nested.intercept_exceptions;
  1173. h_excp &= ~(1 << NM_VECTOR);
  1174. excp = h_excp | n_excp;
  1175. } else {
  1176. excp = svm->vmcb->control.intercept_exceptions;
  1177. excp &= ~(1 << NM_VECTOR);
  1178. }
  1179. svm->vmcb->control.intercept_exceptions = excp;
  1180. svm->vcpu.fpu_active = 1;
  1181. update_cr0_intercept(svm);
  1182. }
  1183. static int nm_interception(struct vcpu_svm *svm)
  1184. {
  1185. svm_fpu_activate(&svm->vcpu);
  1186. return 1;
  1187. }
  1188. static bool is_erratum_383(void)
  1189. {
  1190. int err, i;
  1191. u64 value;
  1192. if (!erratum_383_found)
  1193. return false;
  1194. value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
  1195. if (err)
  1196. return false;
  1197. /* Bit 62 may or may not be set for this mce */
  1198. value &= ~(1ULL << 62);
  1199. if (value != 0xb600000000010015ULL)
  1200. return false;
  1201. /* Clear MCi_STATUS registers */
  1202. for (i = 0; i < 6; ++i)
  1203. native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
  1204. value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
  1205. if (!err) {
  1206. u32 low, high;
  1207. value &= ~(1ULL << 2);
  1208. low = lower_32_bits(value);
  1209. high = upper_32_bits(value);
  1210. native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
  1211. }
  1212. /* Flush tlb to evict multi-match entries */
  1213. __flush_tlb_all();
  1214. return true;
  1215. }
  1216. static void svm_handle_mce(struct vcpu_svm *svm)
  1217. {
  1218. if (is_erratum_383()) {
  1219. /*
  1220. * Erratum 383 triggered. Guest state is corrupt so kill the
  1221. * guest.
  1222. */
  1223. pr_err("KVM: Guest triggered AMD Erratum 383\n");
  1224. kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
  1225. return;
  1226. }
  1227. /*
  1228. * On an #MC intercept the MCE handler is not called automatically in
  1229. * the host. So do it by hand here.
  1230. */
  1231. asm volatile (
  1232. "int $0x12\n");
  1233. /* not sure if we ever come back to this point */
  1234. return;
  1235. }
  1236. static int mc_interception(struct vcpu_svm *svm)
  1237. {
  1238. return 1;
  1239. }
  1240. static int shutdown_interception(struct vcpu_svm *svm)
  1241. {
  1242. struct kvm_run *kvm_run = svm->vcpu.run;
  1243. /*
  1244. * VMCB is undefined after a SHUTDOWN intercept
  1245. * so reinitialize it.
  1246. */
  1247. clear_page(svm->vmcb);
  1248. init_vmcb(svm);
  1249. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1250. return 0;
  1251. }
  1252. static int io_interception(struct vcpu_svm *svm)
  1253. {
  1254. struct kvm_vcpu *vcpu = &svm->vcpu;
  1255. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1256. int size, in, string;
  1257. unsigned port;
  1258. ++svm->vcpu.stat.io_exits;
  1259. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1260. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1261. if (string || in)
  1262. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  1263. port = io_info >> 16;
  1264. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1265. svm->next_rip = svm->vmcb->control.exit_info_2;
  1266. skip_emulated_instruction(&svm->vcpu);
  1267. return kvm_fast_pio_out(vcpu, size, port);
  1268. }
  1269. static int nmi_interception(struct vcpu_svm *svm)
  1270. {
  1271. return 1;
  1272. }
  1273. static int intr_interception(struct vcpu_svm *svm)
  1274. {
  1275. ++svm->vcpu.stat.irq_exits;
  1276. return 1;
  1277. }
  1278. static int nop_on_interception(struct vcpu_svm *svm)
  1279. {
  1280. return 1;
  1281. }
  1282. static int halt_interception(struct vcpu_svm *svm)
  1283. {
  1284. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1285. skip_emulated_instruction(&svm->vcpu);
  1286. return kvm_emulate_halt(&svm->vcpu);
  1287. }
  1288. static int vmmcall_interception(struct vcpu_svm *svm)
  1289. {
  1290. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1291. skip_emulated_instruction(&svm->vcpu);
  1292. kvm_emulate_hypercall(&svm->vcpu);
  1293. return 1;
  1294. }
  1295. static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
  1296. {
  1297. struct vcpu_svm *svm = to_svm(vcpu);
  1298. return svm->nested.nested_cr3;
  1299. }
  1300. static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
  1301. unsigned long root)
  1302. {
  1303. struct vcpu_svm *svm = to_svm(vcpu);
  1304. svm->vmcb->control.nested_cr3 = root;
  1305. force_new_asid(vcpu);
  1306. }
  1307. static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
  1308. {
  1309. struct vcpu_svm *svm = to_svm(vcpu);
  1310. svm->vmcb->control.exit_code = SVM_EXIT_NPF;
  1311. svm->vmcb->control.exit_code_hi = 0;
  1312. svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
  1313. svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
  1314. nested_svm_vmexit(svm);
  1315. }
  1316. static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
  1317. {
  1318. int r;
  1319. r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
  1320. vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
  1321. vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
  1322. vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
  1323. vcpu->arch.mmu.shadow_root_level = get_npt_level();
  1324. vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
  1325. return r;
  1326. }
  1327. static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
  1328. {
  1329. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  1330. }
  1331. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1332. {
  1333. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1334. || !is_paging(&svm->vcpu)) {
  1335. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1336. return 1;
  1337. }
  1338. if (svm->vmcb->save.cpl) {
  1339. kvm_inject_gp(&svm->vcpu, 0);
  1340. return 1;
  1341. }
  1342. return 0;
  1343. }
  1344. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1345. bool has_error_code, u32 error_code)
  1346. {
  1347. int vmexit;
  1348. if (!is_nested(svm))
  1349. return 0;
  1350. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1351. svm->vmcb->control.exit_code_hi = 0;
  1352. svm->vmcb->control.exit_info_1 = error_code;
  1353. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1354. vmexit = nested_svm_intercept(svm);
  1355. if (vmexit == NESTED_EXIT_DONE)
  1356. svm->nested.exit_required = true;
  1357. return vmexit;
  1358. }
  1359. /* This function returns true if it is save to enable the irq window */
  1360. static inline bool nested_svm_intr(struct vcpu_svm *svm)
  1361. {
  1362. if (!is_nested(svm))
  1363. return true;
  1364. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1365. return true;
  1366. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1367. return false;
  1368. /*
  1369. * if vmexit was already requested (by intercepted exception
  1370. * for instance) do not overwrite it with "external interrupt"
  1371. * vmexit.
  1372. */
  1373. if (svm->nested.exit_required)
  1374. return false;
  1375. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1376. svm->vmcb->control.exit_info_1 = 0;
  1377. svm->vmcb->control.exit_info_2 = 0;
  1378. if (svm->nested.intercept & 1ULL) {
  1379. /*
  1380. * The #vmexit can't be emulated here directly because this
  1381. * code path runs with irqs and preemtion disabled. A
  1382. * #vmexit emulation might sleep. Only signal request for
  1383. * the #vmexit here.
  1384. */
  1385. svm->nested.exit_required = true;
  1386. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1387. return false;
  1388. }
  1389. return true;
  1390. }
  1391. /* This function returns true if it is save to enable the nmi window */
  1392. static inline bool nested_svm_nmi(struct vcpu_svm *svm)
  1393. {
  1394. if (!is_nested(svm))
  1395. return true;
  1396. if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
  1397. return true;
  1398. svm->vmcb->control.exit_code = SVM_EXIT_NMI;
  1399. svm->nested.exit_required = true;
  1400. return false;
  1401. }
  1402. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1403. {
  1404. struct page *page;
  1405. might_sleep();
  1406. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1407. if (is_error_page(page))
  1408. goto error;
  1409. *_page = page;
  1410. return kmap(page);
  1411. error:
  1412. kvm_release_page_clean(page);
  1413. kvm_inject_gp(&svm->vcpu, 0);
  1414. return NULL;
  1415. }
  1416. static void nested_svm_unmap(struct page *page)
  1417. {
  1418. kunmap(page);
  1419. kvm_release_page_dirty(page);
  1420. }
  1421. static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
  1422. {
  1423. unsigned port;
  1424. u8 val, bit;
  1425. u64 gpa;
  1426. if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
  1427. return NESTED_EXIT_HOST;
  1428. port = svm->vmcb->control.exit_info_1 >> 16;
  1429. gpa = svm->nested.vmcb_iopm + (port / 8);
  1430. bit = port % 8;
  1431. val = 0;
  1432. if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
  1433. val &= (1 << bit);
  1434. return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1435. }
  1436. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1437. {
  1438. u32 offset, msr, value;
  1439. int write, mask;
  1440. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1441. return NESTED_EXIT_HOST;
  1442. msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1443. offset = svm_msrpm_offset(msr);
  1444. write = svm->vmcb->control.exit_info_1 & 1;
  1445. mask = 1 << ((2 * (msr & 0xf)) + write);
  1446. if (offset == MSR_INVALID)
  1447. return NESTED_EXIT_DONE;
  1448. /* Offset is in 32 bit units but need in 8 bit units */
  1449. offset *= 4;
  1450. if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
  1451. return NESTED_EXIT_DONE;
  1452. return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1453. }
  1454. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1455. {
  1456. u32 exit_code = svm->vmcb->control.exit_code;
  1457. switch (exit_code) {
  1458. case SVM_EXIT_INTR:
  1459. case SVM_EXIT_NMI:
  1460. case SVM_EXIT_EXCP_BASE + MC_VECTOR:
  1461. return NESTED_EXIT_HOST;
  1462. case SVM_EXIT_NPF:
  1463. /* For now we are always handling NPFs when using them */
  1464. if (npt_enabled)
  1465. return NESTED_EXIT_HOST;
  1466. break;
  1467. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1468. /* When we're shadowing, trap PFs */
  1469. if (!npt_enabled)
  1470. return NESTED_EXIT_HOST;
  1471. break;
  1472. case SVM_EXIT_EXCP_BASE + NM_VECTOR:
  1473. nm_interception(svm);
  1474. break;
  1475. default:
  1476. break;
  1477. }
  1478. return NESTED_EXIT_CONTINUE;
  1479. }
  1480. /*
  1481. * If this function returns true, this #vmexit was already handled
  1482. */
  1483. static int nested_svm_intercept(struct vcpu_svm *svm)
  1484. {
  1485. u32 exit_code = svm->vmcb->control.exit_code;
  1486. int vmexit = NESTED_EXIT_HOST;
  1487. switch (exit_code) {
  1488. case SVM_EXIT_MSR:
  1489. vmexit = nested_svm_exit_handled_msr(svm);
  1490. break;
  1491. case SVM_EXIT_IOIO:
  1492. vmexit = nested_svm_intercept_ioio(svm);
  1493. break;
  1494. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1495. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1496. if (svm->nested.intercept_cr_read & cr_bits)
  1497. vmexit = NESTED_EXIT_DONE;
  1498. break;
  1499. }
  1500. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1501. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1502. if (svm->nested.intercept_cr_write & cr_bits)
  1503. vmexit = NESTED_EXIT_DONE;
  1504. break;
  1505. }
  1506. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1507. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1508. if (svm->nested.intercept_dr_read & dr_bits)
  1509. vmexit = NESTED_EXIT_DONE;
  1510. break;
  1511. }
  1512. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1513. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1514. if (svm->nested.intercept_dr_write & dr_bits)
  1515. vmexit = NESTED_EXIT_DONE;
  1516. break;
  1517. }
  1518. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1519. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1520. if (svm->nested.intercept_exceptions & excp_bits)
  1521. vmexit = NESTED_EXIT_DONE;
  1522. break;
  1523. }
  1524. case SVM_EXIT_ERR: {
  1525. vmexit = NESTED_EXIT_DONE;
  1526. break;
  1527. }
  1528. default: {
  1529. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1530. if (svm->nested.intercept & exit_bits)
  1531. vmexit = NESTED_EXIT_DONE;
  1532. }
  1533. }
  1534. return vmexit;
  1535. }
  1536. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1537. {
  1538. int vmexit;
  1539. vmexit = nested_svm_intercept(svm);
  1540. if (vmexit == NESTED_EXIT_DONE)
  1541. nested_svm_vmexit(svm);
  1542. return vmexit;
  1543. }
  1544. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1545. {
  1546. struct vmcb_control_area *dst = &dst_vmcb->control;
  1547. struct vmcb_control_area *from = &from_vmcb->control;
  1548. dst->intercept_cr_read = from->intercept_cr_read;
  1549. dst->intercept_cr_write = from->intercept_cr_write;
  1550. dst->intercept_dr_read = from->intercept_dr_read;
  1551. dst->intercept_dr_write = from->intercept_dr_write;
  1552. dst->intercept_exceptions = from->intercept_exceptions;
  1553. dst->intercept = from->intercept;
  1554. dst->iopm_base_pa = from->iopm_base_pa;
  1555. dst->msrpm_base_pa = from->msrpm_base_pa;
  1556. dst->tsc_offset = from->tsc_offset;
  1557. dst->asid = from->asid;
  1558. dst->tlb_ctl = from->tlb_ctl;
  1559. dst->int_ctl = from->int_ctl;
  1560. dst->int_vector = from->int_vector;
  1561. dst->int_state = from->int_state;
  1562. dst->exit_code = from->exit_code;
  1563. dst->exit_code_hi = from->exit_code_hi;
  1564. dst->exit_info_1 = from->exit_info_1;
  1565. dst->exit_info_2 = from->exit_info_2;
  1566. dst->exit_int_info = from->exit_int_info;
  1567. dst->exit_int_info_err = from->exit_int_info_err;
  1568. dst->nested_ctl = from->nested_ctl;
  1569. dst->event_inj = from->event_inj;
  1570. dst->event_inj_err = from->event_inj_err;
  1571. dst->nested_cr3 = from->nested_cr3;
  1572. dst->lbr_ctl = from->lbr_ctl;
  1573. }
  1574. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1575. {
  1576. struct vmcb *nested_vmcb;
  1577. struct vmcb *hsave = svm->nested.hsave;
  1578. struct vmcb *vmcb = svm->vmcb;
  1579. struct page *page;
  1580. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1581. vmcb->control.exit_info_1,
  1582. vmcb->control.exit_info_2,
  1583. vmcb->control.exit_int_info,
  1584. vmcb->control.exit_int_info_err);
  1585. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1586. if (!nested_vmcb)
  1587. return 1;
  1588. /* Exit nested SVM mode */
  1589. svm->nested.vmcb = 0;
  1590. /* Give the current vmcb to the guest */
  1591. disable_gif(svm);
  1592. nested_vmcb->save.es = vmcb->save.es;
  1593. nested_vmcb->save.cs = vmcb->save.cs;
  1594. nested_vmcb->save.ss = vmcb->save.ss;
  1595. nested_vmcb->save.ds = vmcb->save.ds;
  1596. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1597. nested_vmcb->save.idtr = vmcb->save.idtr;
  1598. nested_vmcb->save.efer = svm->vcpu.arch.efer;
  1599. nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1600. nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
  1601. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1602. nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
  1603. nested_vmcb->save.rflags = vmcb->save.rflags;
  1604. nested_vmcb->save.rip = vmcb->save.rip;
  1605. nested_vmcb->save.rsp = vmcb->save.rsp;
  1606. nested_vmcb->save.rax = vmcb->save.rax;
  1607. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1608. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1609. nested_vmcb->save.cpl = vmcb->save.cpl;
  1610. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1611. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1612. nested_vmcb->control.int_state = vmcb->control.int_state;
  1613. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1614. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1615. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1616. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1617. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1618. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1619. nested_vmcb->control.next_rip = vmcb->control.next_rip;
  1620. /*
  1621. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1622. * to make sure that we do not lose injected events. So check event_inj
  1623. * here and copy it to exit_int_info if it is valid.
  1624. * Exit_int_info and event_inj can't be both valid because the case
  1625. * below only happens on a VMRUN instruction intercept which has
  1626. * no valid exit_int_info set.
  1627. */
  1628. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1629. struct vmcb_control_area *nc = &nested_vmcb->control;
  1630. nc->exit_int_info = vmcb->control.event_inj;
  1631. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1632. }
  1633. nested_vmcb->control.tlb_ctl = 0;
  1634. nested_vmcb->control.event_inj = 0;
  1635. nested_vmcb->control.event_inj_err = 0;
  1636. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1637. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1638. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1639. /* Restore the original control entries */
  1640. copy_vmcb_control_area(vmcb, hsave);
  1641. kvm_clear_exception_queue(&svm->vcpu);
  1642. kvm_clear_interrupt_queue(&svm->vcpu);
  1643. svm->nested.nested_cr3 = 0;
  1644. /* Restore selected save entries */
  1645. svm->vmcb->save.es = hsave->save.es;
  1646. svm->vmcb->save.cs = hsave->save.cs;
  1647. svm->vmcb->save.ss = hsave->save.ss;
  1648. svm->vmcb->save.ds = hsave->save.ds;
  1649. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1650. svm->vmcb->save.idtr = hsave->save.idtr;
  1651. svm->vmcb->save.rflags = hsave->save.rflags;
  1652. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1653. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1654. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1655. if (npt_enabled) {
  1656. svm->vmcb->save.cr3 = hsave->save.cr3;
  1657. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1658. } else {
  1659. (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1660. }
  1661. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1662. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1663. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1664. svm->vmcb->save.dr7 = 0;
  1665. svm->vmcb->save.cpl = 0;
  1666. svm->vmcb->control.exit_int_info = 0;
  1667. nested_svm_unmap(page);
  1668. nested_svm_uninit_mmu_context(&svm->vcpu);
  1669. kvm_mmu_reset_context(&svm->vcpu);
  1670. kvm_mmu_load(&svm->vcpu);
  1671. return 0;
  1672. }
  1673. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1674. {
  1675. /*
  1676. * This function merges the msr permission bitmaps of kvm and the
  1677. * nested vmcb. It is omptimized in that it only merges the parts where
  1678. * the kvm msr permission bitmap may contain zero bits
  1679. */
  1680. int i;
  1681. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1682. return true;
  1683. for (i = 0; i < MSRPM_OFFSETS; i++) {
  1684. u32 value, p;
  1685. u64 offset;
  1686. if (msrpm_offsets[i] == 0xffffffff)
  1687. break;
  1688. p = msrpm_offsets[i];
  1689. offset = svm->nested.vmcb_msrpm + (p * 4);
  1690. if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
  1691. return false;
  1692. svm->nested.msrpm[p] = svm->msrpm[p] | value;
  1693. }
  1694. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1695. return true;
  1696. }
  1697. static bool nested_vmcb_checks(struct vmcb *vmcb)
  1698. {
  1699. if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
  1700. return false;
  1701. if (vmcb->control.asid == 0)
  1702. return false;
  1703. if (vmcb->control.nested_ctl && !npt_enabled)
  1704. return false;
  1705. return true;
  1706. }
  1707. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1708. {
  1709. struct vmcb *nested_vmcb;
  1710. struct vmcb *hsave = svm->nested.hsave;
  1711. struct vmcb *vmcb = svm->vmcb;
  1712. struct page *page;
  1713. u64 vmcb_gpa;
  1714. vmcb_gpa = svm->vmcb->save.rax;
  1715. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1716. if (!nested_vmcb)
  1717. return false;
  1718. if (!nested_vmcb_checks(nested_vmcb)) {
  1719. nested_vmcb->control.exit_code = SVM_EXIT_ERR;
  1720. nested_vmcb->control.exit_code_hi = 0;
  1721. nested_vmcb->control.exit_info_1 = 0;
  1722. nested_vmcb->control.exit_info_2 = 0;
  1723. nested_svm_unmap(page);
  1724. return false;
  1725. }
  1726. trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
  1727. nested_vmcb->save.rip,
  1728. nested_vmcb->control.int_ctl,
  1729. nested_vmcb->control.event_inj,
  1730. nested_vmcb->control.nested_ctl);
  1731. trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
  1732. nested_vmcb->control.intercept_cr_write,
  1733. nested_vmcb->control.intercept_exceptions,
  1734. nested_vmcb->control.intercept);
  1735. /* Clear internal status */
  1736. kvm_clear_exception_queue(&svm->vcpu);
  1737. kvm_clear_interrupt_queue(&svm->vcpu);
  1738. /*
  1739. * Save the old vmcb, so we don't need to pick what we save, but can
  1740. * restore everything when a VMEXIT occurs
  1741. */
  1742. hsave->save.es = vmcb->save.es;
  1743. hsave->save.cs = vmcb->save.cs;
  1744. hsave->save.ss = vmcb->save.ss;
  1745. hsave->save.ds = vmcb->save.ds;
  1746. hsave->save.gdtr = vmcb->save.gdtr;
  1747. hsave->save.idtr = vmcb->save.idtr;
  1748. hsave->save.efer = svm->vcpu.arch.efer;
  1749. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1750. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1751. hsave->save.rflags = vmcb->save.rflags;
  1752. hsave->save.rip = kvm_rip_read(&svm->vcpu);
  1753. hsave->save.rsp = vmcb->save.rsp;
  1754. hsave->save.rax = vmcb->save.rax;
  1755. if (npt_enabled)
  1756. hsave->save.cr3 = vmcb->save.cr3;
  1757. else
  1758. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1759. copy_vmcb_control_area(hsave, vmcb);
  1760. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1761. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1762. else
  1763. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1764. if (nested_vmcb->control.nested_ctl) {
  1765. kvm_mmu_unload(&svm->vcpu);
  1766. svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
  1767. nested_svm_init_mmu_context(&svm->vcpu);
  1768. }
  1769. /* Load the nested guest state */
  1770. svm->vmcb->save.es = nested_vmcb->save.es;
  1771. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1772. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1773. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1774. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1775. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1776. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1777. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1778. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1779. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1780. if (npt_enabled) {
  1781. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1782. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1783. } else
  1784. (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1785. /* Guest paging mode is active - reset mmu */
  1786. kvm_mmu_reset_context(&svm->vcpu);
  1787. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1788. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1789. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1790. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1791. /* In case we don't even reach vcpu_run, the fields are not updated */
  1792. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1793. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1794. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1795. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1796. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1797. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1798. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
  1799. svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
  1800. /* cache intercepts */
  1801. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1802. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1803. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1804. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1805. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1806. svm->nested.intercept = nested_vmcb->control.intercept;
  1807. force_new_asid(&svm->vcpu);
  1808. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1809. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1810. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1811. else
  1812. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1813. if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
  1814. /* We only want the cr8 intercept bits of the guest */
  1815. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
  1816. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1817. }
  1818. /* We don't want to see VMMCALLs from a nested guest */
  1819. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
  1820. /*
  1821. * We don't want a nested guest to be more powerful than the guest, so
  1822. * all intercepts are ORed
  1823. */
  1824. svm->vmcb->control.intercept_cr_read |=
  1825. nested_vmcb->control.intercept_cr_read;
  1826. svm->vmcb->control.intercept_cr_write |=
  1827. nested_vmcb->control.intercept_cr_write;
  1828. svm->vmcb->control.intercept_dr_read |=
  1829. nested_vmcb->control.intercept_dr_read;
  1830. svm->vmcb->control.intercept_dr_write |=
  1831. nested_vmcb->control.intercept_dr_write;
  1832. svm->vmcb->control.intercept_exceptions |=
  1833. nested_vmcb->control.intercept_exceptions;
  1834. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1835. svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
  1836. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1837. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1838. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1839. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1840. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1841. nested_svm_unmap(page);
  1842. /* nested_vmcb is our indicator if nested SVM is activated */
  1843. svm->nested.vmcb = vmcb_gpa;
  1844. enable_gif(svm);
  1845. return true;
  1846. }
  1847. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1848. {
  1849. to_vmcb->save.fs = from_vmcb->save.fs;
  1850. to_vmcb->save.gs = from_vmcb->save.gs;
  1851. to_vmcb->save.tr = from_vmcb->save.tr;
  1852. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1853. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1854. to_vmcb->save.star = from_vmcb->save.star;
  1855. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1856. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1857. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1858. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1859. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1860. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1861. }
  1862. static int vmload_interception(struct vcpu_svm *svm)
  1863. {
  1864. struct vmcb *nested_vmcb;
  1865. struct page *page;
  1866. if (nested_svm_check_permissions(svm))
  1867. return 1;
  1868. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1869. skip_emulated_instruction(&svm->vcpu);
  1870. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1871. if (!nested_vmcb)
  1872. return 1;
  1873. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1874. nested_svm_unmap(page);
  1875. return 1;
  1876. }
  1877. static int vmsave_interception(struct vcpu_svm *svm)
  1878. {
  1879. struct vmcb *nested_vmcb;
  1880. struct page *page;
  1881. if (nested_svm_check_permissions(svm))
  1882. return 1;
  1883. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1884. skip_emulated_instruction(&svm->vcpu);
  1885. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1886. if (!nested_vmcb)
  1887. return 1;
  1888. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1889. nested_svm_unmap(page);
  1890. return 1;
  1891. }
  1892. static int vmrun_interception(struct vcpu_svm *svm)
  1893. {
  1894. if (nested_svm_check_permissions(svm))
  1895. return 1;
  1896. /* Save rip after vmrun instruction */
  1897. kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
  1898. if (!nested_svm_vmrun(svm))
  1899. return 1;
  1900. if (!nested_svm_vmrun_msrpm(svm))
  1901. goto failed;
  1902. return 1;
  1903. failed:
  1904. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1905. svm->vmcb->control.exit_code_hi = 0;
  1906. svm->vmcb->control.exit_info_1 = 0;
  1907. svm->vmcb->control.exit_info_2 = 0;
  1908. nested_svm_vmexit(svm);
  1909. return 1;
  1910. }
  1911. static int stgi_interception(struct vcpu_svm *svm)
  1912. {
  1913. if (nested_svm_check_permissions(svm))
  1914. return 1;
  1915. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1916. skip_emulated_instruction(&svm->vcpu);
  1917. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  1918. enable_gif(svm);
  1919. return 1;
  1920. }
  1921. static int clgi_interception(struct vcpu_svm *svm)
  1922. {
  1923. if (nested_svm_check_permissions(svm))
  1924. return 1;
  1925. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1926. skip_emulated_instruction(&svm->vcpu);
  1927. disable_gif(svm);
  1928. /* After a CLGI no interrupts should come */
  1929. svm_clear_vintr(svm);
  1930. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1931. return 1;
  1932. }
  1933. static int invlpga_interception(struct vcpu_svm *svm)
  1934. {
  1935. struct kvm_vcpu *vcpu = &svm->vcpu;
  1936. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1937. vcpu->arch.regs[VCPU_REGS_RAX]);
  1938. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1939. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1940. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1941. skip_emulated_instruction(&svm->vcpu);
  1942. return 1;
  1943. }
  1944. static int skinit_interception(struct vcpu_svm *svm)
  1945. {
  1946. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1947. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1948. return 1;
  1949. }
  1950. static int invalid_op_interception(struct vcpu_svm *svm)
  1951. {
  1952. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1953. return 1;
  1954. }
  1955. static int task_switch_interception(struct vcpu_svm *svm)
  1956. {
  1957. u16 tss_selector;
  1958. int reason;
  1959. int int_type = svm->vmcb->control.exit_int_info &
  1960. SVM_EXITINTINFO_TYPE_MASK;
  1961. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1962. uint32_t type =
  1963. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1964. uint32_t idt_v =
  1965. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1966. bool has_error_code = false;
  1967. u32 error_code = 0;
  1968. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1969. if (svm->vmcb->control.exit_info_2 &
  1970. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1971. reason = TASK_SWITCH_IRET;
  1972. else if (svm->vmcb->control.exit_info_2 &
  1973. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  1974. reason = TASK_SWITCH_JMP;
  1975. else if (idt_v)
  1976. reason = TASK_SWITCH_GATE;
  1977. else
  1978. reason = TASK_SWITCH_CALL;
  1979. if (reason == TASK_SWITCH_GATE) {
  1980. switch (type) {
  1981. case SVM_EXITINTINFO_TYPE_NMI:
  1982. svm->vcpu.arch.nmi_injected = false;
  1983. break;
  1984. case SVM_EXITINTINFO_TYPE_EXEPT:
  1985. if (svm->vmcb->control.exit_info_2 &
  1986. (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
  1987. has_error_code = true;
  1988. error_code =
  1989. (u32)svm->vmcb->control.exit_info_2;
  1990. }
  1991. kvm_clear_exception_queue(&svm->vcpu);
  1992. break;
  1993. case SVM_EXITINTINFO_TYPE_INTR:
  1994. kvm_clear_interrupt_queue(&svm->vcpu);
  1995. break;
  1996. default:
  1997. break;
  1998. }
  1999. }
  2000. if (reason != TASK_SWITCH_GATE ||
  2001. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  2002. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  2003. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  2004. skip_emulated_instruction(&svm->vcpu);
  2005. if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
  2006. has_error_code, error_code) == EMULATE_FAIL) {
  2007. svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2008. svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2009. svm->vcpu.run->internal.ndata = 0;
  2010. return 0;
  2011. }
  2012. return 1;
  2013. }
  2014. static int cpuid_interception(struct vcpu_svm *svm)
  2015. {
  2016. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2017. kvm_emulate_cpuid(&svm->vcpu);
  2018. return 1;
  2019. }
  2020. static int iret_interception(struct vcpu_svm *svm)
  2021. {
  2022. ++svm->vcpu.stat.nmi_window_exits;
  2023. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2024. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  2025. return 1;
  2026. }
  2027. static int invlpg_interception(struct vcpu_svm *svm)
  2028. {
  2029. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2030. }
  2031. static int emulate_on_interception(struct vcpu_svm *svm)
  2032. {
  2033. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2034. }
  2035. static int cr0_write_interception(struct vcpu_svm *svm)
  2036. {
  2037. struct kvm_vcpu *vcpu = &svm->vcpu;
  2038. int r;
  2039. r = emulate_instruction(&svm->vcpu, 0, 0, 0);
  2040. if (svm->nested.vmexit_rip) {
  2041. kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
  2042. kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
  2043. kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
  2044. svm->nested.vmexit_rip = 0;
  2045. }
  2046. return r == EMULATE_DONE;
  2047. }
  2048. static int cr8_write_interception(struct vcpu_svm *svm)
  2049. {
  2050. struct kvm_run *kvm_run = svm->vcpu.run;
  2051. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  2052. /* instruction emulation calls kvm_set_cr8() */
  2053. emulate_instruction(&svm->vcpu, 0, 0, 0);
  2054. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  2055. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  2056. return 1;
  2057. }
  2058. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  2059. return 1;
  2060. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2061. return 0;
  2062. }
  2063. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  2064. {
  2065. struct vcpu_svm *svm = to_svm(vcpu);
  2066. switch (ecx) {
  2067. case MSR_IA32_TSC: {
  2068. u64 tsc_offset;
  2069. if (is_nested(svm))
  2070. tsc_offset = svm->nested.hsave->control.tsc_offset;
  2071. else
  2072. tsc_offset = svm->vmcb->control.tsc_offset;
  2073. *data = tsc_offset + native_read_tsc();
  2074. break;
  2075. }
  2076. case MSR_STAR:
  2077. *data = svm->vmcb->save.star;
  2078. break;
  2079. #ifdef CONFIG_X86_64
  2080. case MSR_LSTAR:
  2081. *data = svm->vmcb->save.lstar;
  2082. break;
  2083. case MSR_CSTAR:
  2084. *data = svm->vmcb->save.cstar;
  2085. break;
  2086. case MSR_KERNEL_GS_BASE:
  2087. *data = svm->vmcb->save.kernel_gs_base;
  2088. break;
  2089. case MSR_SYSCALL_MASK:
  2090. *data = svm->vmcb->save.sfmask;
  2091. break;
  2092. #endif
  2093. case MSR_IA32_SYSENTER_CS:
  2094. *data = svm->vmcb->save.sysenter_cs;
  2095. break;
  2096. case MSR_IA32_SYSENTER_EIP:
  2097. *data = svm->sysenter_eip;
  2098. break;
  2099. case MSR_IA32_SYSENTER_ESP:
  2100. *data = svm->sysenter_esp;
  2101. break;
  2102. /*
  2103. * Nobody will change the following 5 values in the VMCB so we can
  2104. * safely return them on rdmsr. They will always be 0 until LBRV is
  2105. * implemented.
  2106. */
  2107. case MSR_IA32_DEBUGCTLMSR:
  2108. *data = svm->vmcb->save.dbgctl;
  2109. break;
  2110. case MSR_IA32_LASTBRANCHFROMIP:
  2111. *data = svm->vmcb->save.br_from;
  2112. break;
  2113. case MSR_IA32_LASTBRANCHTOIP:
  2114. *data = svm->vmcb->save.br_to;
  2115. break;
  2116. case MSR_IA32_LASTINTFROMIP:
  2117. *data = svm->vmcb->save.last_excp_from;
  2118. break;
  2119. case MSR_IA32_LASTINTTOIP:
  2120. *data = svm->vmcb->save.last_excp_to;
  2121. break;
  2122. case MSR_VM_HSAVE_PA:
  2123. *data = svm->nested.hsave_msr;
  2124. break;
  2125. case MSR_VM_CR:
  2126. *data = svm->nested.vm_cr_msr;
  2127. break;
  2128. case MSR_IA32_UCODE_REV:
  2129. *data = 0x01000065;
  2130. break;
  2131. default:
  2132. return kvm_get_msr_common(vcpu, ecx, data);
  2133. }
  2134. return 0;
  2135. }
  2136. static int rdmsr_interception(struct vcpu_svm *svm)
  2137. {
  2138. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2139. u64 data;
  2140. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  2141. trace_kvm_msr_read_ex(ecx);
  2142. kvm_inject_gp(&svm->vcpu, 0);
  2143. } else {
  2144. trace_kvm_msr_read(ecx, data);
  2145. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  2146. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  2147. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2148. skip_emulated_instruction(&svm->vcpu);
  2149. }
  2150. return 1;
  2151. }
  2152. static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
  2153. {
  2154. struct vcpu_svm *svm = to_svm(vcpu);
  2155. int svm_dis, chg_mask;
  2156. if (data & ~SVM_VM_CR_VALID_MASK)
  2157. return 1;
  2158. chg_mask = SVM_VM_CR_VALID_MASK;
  2159. if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
  2160. chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
  2161. svm->nested.vm_cr_msr &= ~chg_mask;
  2162. svm->nested.vm_cr_msr |= (data & chg_mask);
  2163. svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
  2164. /* check for svm_disable while efer.svme is set */
  2165. if (svm_dis && (vcpu->arch.efer & EFER_SVME))
  2166. return 1;
  2167. return 0;
  2168. }
  2169. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  2170. {
  2171. struct vcpu_svm *svm = to_svm(vcpu);
  2172. switch (ecx) {
  2173. case MSR_IA32_TSC:
  2174. kvm_write_tsc(vcpu, data);
  2175. break;
  2176. case MSR_STAR:
  2177. svm->vmcb->save.star = data;
  2178. break;
  2179. #ifdef CONFIG_X86_64
  2180. case MSR_LSTAR:
  2181. svm->vmcb->save.lstar = data;
  2182. break;
  2183. case MSR_CSTAR:
  2184. svm->vmcb->save.cstar = data;
  2185. break;
  2186. case MSR_KERNEL_GS_BASE:
  2187. svm->vmcb->save.kernel_gs_base = data;
  2188. break;
  2189. case MSR_SYSCALL_MASK:
  2190. svm->vmcb->save.sfmask = data;
  2191. break;
  2192. #endif
  2193. case MSR_IA32_SYSENTER_CS:
  2194. svm->vmcb->save.sysenter_cs = data;
  2195. break;
  2196. case MSR_IA32_SYSENTER_EIP:
  2197. svm->sysenter_eip = data;
  2198. svm->vmcb->save.sysenter_eip = data;
  2199. break;
  2200. case MSR_IA32_SYSENTER_ESP:
  2201. svm->sysenter_esp = data;
  2202. svm->vmcb->save.sysenter_esp = data;
  2203. break;
  2204. case MSR_IA32_DEBUGCTLMSR:
  2205. if (!svm_has(SVM_FEATURE_LBRV)) {
  2206. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  2207. __func__, data);
  2208. break;
  2209. }
  2210. if (data & DEBUGCTL_RESERVED_BITS)
  2211. return 1;
  2212. svm->vmcb->save.dbgctl = data;
  2213. if (data & (1ULL<<0))
  2214. svm_enable_lbrv(svm);
  2215. else
  2216. svm_disable_lbrv(svm);
  2217. break;
  2218. case MSR_VM_HSAVE_PA:
  2219. svm->nested.hsave_msr = data;
  2220. break;
  2221. case MSR_VM_CR:
  2222. return svm_set_vm_cr(vcpu, data);
  2223. case MSR_VM_IGNNE:
  2224. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  2225. break;
  2226. default:
  2227. return kvm_set_msr_common(vcpu, ecx, data);
  2228. }
  2229. return 0;
  2230. }
  2231. static int wrmsr_interception(struct vcpu_svm *svm)
  2232. {
  2233. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2234. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  2235. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2236. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2237. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  2238. trace_kvm_msr_write_ex(ecx, data);
  2239. kvm_inject_gp(&svm->vcpu, 0);
  2240. } else {
  2241. trace_kvm_msr_write(ecx, data);
  2242. skip_emulated_instruction(&svm->vcpu);
  2243. }
  2244. return 1;
  2245. }
  2246. static int msr_interception(struct vcpu_svm *svm)
  2247. {
  2248. if (svm->vmcb->control.exit_info_1)
  2249. return wrmsr_interception(svm);
  2250. else
  2251. return rdmsr_interception(svm);
  2252. }
  2253. static int interrupt_window_interception(struct vcpu_svm *svm)
  2254. {
  2255. struct kvm_run *kvm_run = svm->vcpu.run;
  2256. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2257. svm_clear_vintr(svm);
  2258. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  2259. /*
  2260. * If the user space waits to inject interrupts, exit as soon as
  2261. * possible
  2262. */
  2263. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  2264. kvm_run->request_interrupt_window &&
  2265. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  2266. ++svm->vcpu.stat.irq_window_exits;
  2267. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2268. return 0;
  2269. }
  2270. return 1;
  2271. }
  2272. static int pause_interception(struct vcpu_svm *svm)
  2273. {
  2274. kvm_vcpu_on_spin(&(svm->vcpu));
  2275. return 1;
  2276. }
  2277. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  2278. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  2279. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  2280. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  2281. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  2282. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  2283. [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
  2284. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  2285. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  2286. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  2287. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  2288. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  2289. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  2290. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  2291. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  2292. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  2293. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  2294. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  2295. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  2296. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  2297. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  2298. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  2299. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  2300. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  2301. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  2302. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  2303. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  2304. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  2305. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  2306. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  2307. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  2308. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  2309. [SVM_EXIT_INTR] = intr_interception,
  2310. [SVM_EXIT_NMI] = nmi_interception,
  2311. [SVM_EXIT_SMI] = nop_on_interception,
  2312. [SVM_EXIT_INIT] = nop_on_interception,
  2313. [SVM_EXIT_VINTR] = interrupt_window_interception,
  2314. [SVM_EXIT_CPUID] = cpuid_interception,
  2315. [SVM_EXIT_IRET] = iret_interception,
  2316. [SVM_EXIT_INVD] = emulate_on_interception,
  2317. [SVM_EXIT_PAUSE] = pause_interception,
  2318. [SVM_EXIT_HLT] = halt_interception,
  2319. [SVM_EXIT_INVLPG] = invlpg_interception,
  2320. [SVM_EXIT_INVLPGA] = invlpga_interception,
  2321. [SVM_EXIT_IOIO] = io_interception,
  2322. [SVM_EXIT_MSR] = msr_interception,
  2323. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  2324. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  2325. [SVM_EXIT_VMRUN] = vmrun_interception,
  2326. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  2327. [SVM_EXIT_VMLOAD] = vmload_interception,
  2328. [SVM_EXIT_VMSAVE] = vmsave_interception,
  2329. [SVM_EXIT_STGI] = stgi_interception,
  2330. [SVM_EXIT_CLGI] = clgi_interception,
  2331. [SVM_EXIT_SKINIT] = skinit_interception,
  2332. [SVM_EXIT_WBINVD] = emulate_on_interception,
  2333. [SVM_EXIT_MONITOR] = invalid_op_interception,
  2334. [SVM_EXIT_MWAIT] = invalid_op_interception,
  2335. [SVM_EXIT_NPF] = pf_interception,
  2336. };
  2337. void dump_vmcb(struct kvm_vcpu *vcpu)
  2338. {
  2339. struct vcpu_svm *svm = to_svm(vcpu);
  2340. struct vmcb_control_area *control = &svm->vmcb->control;
  2341. struct vmcb_save_area *save = &svm->vmcb->save;
  2342. pr_err("VMCB Control Area:\n");
  2343. pr_err("cr_read: %04x\n", control->intercept_cr_read);
  2344. pr_err("cr_write: %04x\n", control->intercept_cr_write);
  2345. pr_err("dr_read: %04x\n", control->intercept_dr_read);
  2346. pr_err("dr_write: %04x\n", control->intercept_dr_write);
  2347. pr_err("exceptions: %08x\n", control->intercept_exceptions);
  2348. pr_err("intercepts: %016llx\n", control->intercept);
  2349. pr_err("pause filter count: %d\n", control->pause_filter_count);
  2350. pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
  2351. pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
  2352. pr_err("tsc_offset: %016llx\n", control->tsc_offset);
  2353. pr_err("asid: %d\n", control->asid);
  2354. pr_err("tlb_ctl: %d\n", control->tlb_ctl);
  2355. pr_err("int_ctl: %08x\n", control->int_ctl);
  2356. pr_err("int_vector: %08x\n", control->int_vector);
  2357. pr_err("int_state: %08x\n", control->int_state);
  2358. pr_err("exit_code: %08x\n", control->exit_code);
  2359. pr_err("exit_info1: %016llx\n", control->exit_info_1);
  2360. pr_err("exit_info2: %016llx\n", control->exit_info_2);
  2361. pr_err("exit_int_info: %08x\n", control->exit_int_info);
  2362. pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
  2363. pr_err("nested_ctl: %lld\n", control->nested_ctl);
  2364. pr_err("nested_cr3: %016llx\n", control->nested_cr3);
  2365. pr_err("event_inj: %08x\n", control->event_inj);
  2366. pr_err("event_inj_err: %08x\n", control->event_inj_err);
  2367. pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
  2368. pr_err("next_rip: %016llx\n", control->next_rip);
  2369. pr_err("VMCB State Save Area:\n");
  2370. pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
  2371. save->es.selector, save->es.attrib,
  2372. save->es.limit, save->es.base);
  2373. pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
  2374. save->cs.selector, save->cs.attrib,
  2375. save->cs.limit, save->cs.base);
  2376. pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
  2377. save->ss.selector, save->ss.attrib,
  2378. save->ss.limit, save->ss.base);
  2379. pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
  2380. save->ds.selector, save->ds.attrib,
  2381. save->ds.limit, save->ds.base);
  2382. pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
  2383. save->fs.selector, save->fs.attrib,
  2384. save->fs.limit, save->fs.base);
  2385. pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
  2386. save->gs.selector, save->gs.attrib,
  2387. save->gs.limit, save->gs.base);
  2388. pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2389. save->gdtr.selector, save->gdtr.attrib,
  2390. save->gdtr.limit, save->gdtr.base);
  2391. pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2392. save->ldtr.selector, save->ldtr.attrib,
  2393. save->ldtr.limit, save->ldtr.base);
  2394. pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2395. save->idtr.selector, save->idtr.attrib,
  2396. save->idtr.limit, save->idtr.base);
  2397. pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
  2398. save->tr.selector, save->tr.attrib,
  2399. save->tr.limit, save->tr.base);
  2400. pr_err("cpl: %d efer: %016llx\n",
  2401. save->cpl, save->efer);
  2402. pr_err("cr0: %016llx cr2: %016llx\n",
  2403. save->cr0, save->cr2);
  2404. pr_err("cr3: %016llx cr4: %016llx\n",
  2405. save->cr3, save->cr4);
  2406. pr_err("dr6: %016llx dr7: %016llx\n",
  2407. save->dr6, save->dr7);
  2408. pr_err("rip: %016llx rflags: %016llx\n",
  2409. save->rip, save->rflags);
  2410. pr_err("rsp: %016llx rax: %016llx\n",
  2411. save->rsp, save->rax);
  2412. pr_err("star: %016llx lstar: %016llx\n",
  2413. save->star, save->lstar);
  2414. pr_err("cstar: %016llx sfmask: %016llx\n",
  2415. save->cstar, save->sfmask);
  2416. pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
  2417. save->kernel_gs_base, save->sysenter_cs);
  2418. pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
  2419. save->sysenter_esp, save->sysenter_eip);
  2420. pr_err("gpat: %016llx dbgctl: %016llx\n",
  2421. save->g_pat, save->dbgctl);
  2422. pr_err("br_from: %016llx br_to: %016llx\n",
  2423. save->br_from, save->br_to);
  2424. pr_err("excp_from: %016llx excp_to: %016llx\n",
  2425. save->last_excp_from, save->last_excp_to);
  2426. }
  2427. static int handle_exit(struct kvm_vcpu *vcpu)
  2428. {
  2429. struct vcpu_svm *svm = to_svm(vcpu);
  2430. struct kvm_run *kvm_run = vcpu->run;
  2431. u32 exit_code = svm->vmcb->control.exit_code;
  2432. trace_kvm_exit(exit_code, vcpu);
  2433. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2434. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2435. if (npt_enabled)
  2436. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2437. if (unlikely(svm->nested.exit_required)) {
  2438. nested_svm_vmexit(svm);
  2439. svm->nested.exit_required = false;
  2440. return 1;
  2441. }
  2442. if (is_nested(svm)) {
  2443. int vmexit;
  2444. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2445. svm->vmcb->control.exit_info_1,
  2446. svm->vmcb->control.exit_info_2,
  2447. svm->vmcb->control.exit_int_info,
  2448. svm->vmcb->control.exit_int_info_err);
  2449. vmexit = nested_svm_exit_special(svm);
  2450. if (vmexit == NESTED_EXIT_CONTINUE)
  2451. vmexit = nested_svm_exit_handled(svm);
  2452. if (vmexit == NESTED_EXIT_DONE)
  2453. return 1;
  2454. }
  2455. svm_complete_interrupts(svm);
  2456. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2457. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2458. kvm_run->fail_entry.hardware_entry_failure_reason
  2459. = svm->vmcb->control.exit_code;
  2460. pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
  2461. dump_vmcb(vcpu);
  2462. return 0;
  2463. }
  2464. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2465. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2466. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
  2467. exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
  2468. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2469. "exit_code 0x%x\n",
  2470. __func__, svm->vmcb->control.exit_int_info,
  2471. exit_code);
  2472. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2473. || !svm_exit_handlers[exit_code]) {
  2474. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2475. kvm_run->hw.hardware_exit_reason = exit_code;
  2476. return 0;
  2477. }
  2478. return svm_exit_handlers[exit_code](svm);
  2479. }
  2480. static void reload_tss(struct kvm_vcpu *vcpu)
  2481. {
  2482. int cpu = raw_smp_processor_id();
  2483. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2484. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2485. load_TR_desc();
  2486. }
  2487. static void pre_svm_run(struct vcpu_svm *svm)
  2488. {
  2489. int cpu = raw_smp_processor_id();
  2490. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2491. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2492. /* FIXME: handle wraparound of asid_generation */
  2493. if (svm->asid_generation != sd->asid_generation)
  2494. new_asid(svm, sd);
  2495. }
  2496. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2497. {
  2498. struct vcpu_svm *svm = to_svm(vcpu);
  2499. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2500. vcpu->arch.hflags |= HF_NMI_MASK;
  2501. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2502. ++vcpu->stat.nmi_injections;
  2503. }
  2504. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2505. {
  2506. struct vmcb_control_area *control;
  2507. control = &svm->vmcb->control;
  2508. control->int_vector = irq;
  2509. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2510. control->int_ctl |= V_IRQ_MASK |
  2511. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2512. }
  2513. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2514. {
  2515. struct vcpu_svm *svm = to_svm(vcpu);
  2516. BUG_ON(!(gif_set(svm)));
  2517. trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
  2518. ++vcpu->stat.irq_injections;
  2519. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2520. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2521. }
  2522. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2523. {
  2524. struct vcpu_svm *svm = to_svm(vcpu);
  2525. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2526. return;
  2527. if (irr == -1)
  2528. return;
  2529. if (tpr >= irr)
  2530. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2531. }
  2532. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2533. {
  2534. struct vcpu_svm *svm = to_svm(vcpu);
  2535. struct vmcb *vmcb = svm->vmcb;
  2536. int ret;
  2537. ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2538. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2539. ret = ret && gif_set(svm) && nested_svm_nmi(svm);
  2540. return ret;
  2541. }
  2542. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2543. {
  2544. struct vcpu_svm *svm = to_svm(vcpu);
  2545. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2546. }
  2547. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2548. {
  2549. struct vcpu_svm *svm = to_svm(vcpu);
  2550. if (masked) {
  2551. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2552. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2553. } else {
  2554. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2555. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2556. }
  2557. }
  2558. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2559. {
  2560. struct vcpu_svm *svm = to_svm(vcpu);
  2561. struct vmcb *vmcb = svm->vmcb;
  2562. int ret;
  2563. if (!gif_set(svm) ||
  2564. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2565. return 0;
  2566. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2567. if (is_nested(svm))
  2568. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2569. return ret;
  2570. }
  2571. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2572. {
  2573. struct vcpu_svm *svm = to_svm(vcpu);
  2574. /*
  2575. * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
  2576. * 1, because that's a separate STGI/VMRUN intercept. The next time we
  2577. * get that intercept, this function will be called again though and
  2578. * we'll get the vintr intercept.
  2579. */
  2580. if (gif_set(svm) && nested_svm_intr(svm)) {
  2581. svm_set_vintr(svm);
  2582. svm_inject_irq(svm, 0x0);
  2583. }
  2584. }
  2585. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2586. {
  2587. struct vcpu_svm *svm = to_svm(vcpu);
  2588. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2589. == HF_NMI_MASK)
  2590. return; /* IRET will cause a vm exit */
  2591. /*
  2592. * Something prevents NMI from been injected. Single step over possible
  2593. * problem (IRET or exception injection or interrupt shadow)
  2594. */
  2595. svm->nmi_singlestep = true;
  2596. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2597. update_db_intercept(vcpu);
  2598. }
  2599. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2600. {
  2601. return 0;
  2602. }
  2603. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2604. {
  2605. force_new_asid(vcpu);
  2606. }
  2607. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2608. {
  2609. }
  2610. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2611. {
  2612. struct vcpu_svm *svm = to_svm(vcpu);
  2613. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2614. return;
  2615. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2616. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2617. kvm_set_cr8(vcpu, cr8);
  2618. }
  2619. }
  2620. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2621. {
  2622. struct vcpu_svm *svm = to_svm(vcpu);
  2623. u64 cr8;
  2624. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2625. return;
  2626. cr8 = kvm_get_cr8(vcpu);
  2627. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2628. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2629. }
  2630. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2631. {
  2632. u8 vector;
  2633. int type;
  2634. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2635. unsigned int3_injected = svm->int3_injected;
  2636. svm->int3_injected = 0;
  2637. if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
  2638. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2639. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2640. }
  2641. svm->vcpu.arch.nmi_injected = false;
  2642. kvm_clear_exception_queue(&svm->vcpu);
  2643. kvm_clear_interrupt_queue(&svm->vcpu);
  2644. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2645. return;
  2646. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2647. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2648. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2649. switch (type) {
  2650. case SVM_EXITINTINFO_TYPE_NMI:
  2651. svm->vcpu.arch.nmi_injected = true;
  2652. break;
  2653. case SVM_EXITINTINFO_TYPE_EXEPT:
  2654. /*
  2655. * In case of software exceptions, do not reinject the vector,
  2656. * but re-execute the instruction instead. Rewind RIP first
  2657. * if we emulated INT3 before.
  2658. */
  2659. if (kvm_exception_is_soft(vector)) {
  2660. if (vector == BP_VECTOR && int3_injected &&
  2661. kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
  2662. kvm_rip_write(&svm->vcpu,
  2663. kvm_rip_read(&svm->vcpu) -
  2664. int3_injected);
  2665. break;
  2666. }
  2667. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2668. u32 err = svm->vmcb->control.exit_int_info_err;
  2669. kvm_requeue_exception_e(&svm->vcpu, vector, err);
  2670. } else
  2671. kvm_requeue_exception(&svm->vcpu, vector);
  2672. break;
  2673. case SVM_EXITINTINFO_TYPE_INTR:
  2674. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2675. break;
  2676. default:
  2677. break;
  2678. }
  2679. }
  2680. static void svm_cancel_injection(struct kvm_vcpu *vcpu)
  2681. {
  2682. struct vcpu_svm *svm = to_svm(vcpu);
  2683. struct vmcb_control_area *control = &svm->vmcb->control;
  2684. control->exit_int_info = control->event_inj;
  2685. control->exit_int_info_err = control->event_inj_err;
  2686. control->event_inj = 0;
  2687. svm_complete_interrupts(svm);
  2688. }
  2689. #ifdef CONFIG_X86_64
  2690. #define R "r"
  2691. #else
  2692. #define R "e"
  2693. #endif
  2694. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2695. {
  2696. struct vcpu_svm *svm = to_svm(vcpu);
  2697. u16 fs_selector;
  2698. u16 gs_selector;
  2699. u16 ldt_selector;
  2700. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2701. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2702. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2703. /*
  2704. * A vmexit emulation is required before the vcpu can be executed
  2705. * again.
  2706. */
  2707. if (unlikely(svm->nested.exit_required))
  2708. return;
  2709. pre_svm_run(svm);
  2710. sync_lapic_to_cr8(vcpu);
  2711. save_host_msrs(vcpu);
  2712. savesegment(fs, fs_selector);
  2713. savesegment(gs, gs_selector);
  2714. ldt_selector = kvm_read_ldt();
  2715. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2716. clgi();
  2717. local_irq_enable();
  2718. asm volatile (
  2719. "push %%"R"bp; \n\t"
  2720. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2721. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2722. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2723. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2724. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2725. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2726. #ifdef CONFIG_X86_64
  2727. "mov %c[r8](%[svm]), %%r8 \n\t"
  2728. "mov %c[r9](%[svm]), %%r9 \n\t"
  2729. "mov %c[r10](%[svm]), %%r10 \n\t"
  2730. "mov %c[r11](%[svm]), %%r11 \n\t"
  2731. "mov %c[r12](%[svm]), %%r12 \n\t"
  2732. "mov %c[r13](%[svm]), %%r13 \n\t"
  2733. "mov %c[r14](%[svm]), %%r14 \n\t"
  2734. "mov %c[r15](%[svm]), %%r15 \n\t"
  2735. #endif
  2736. /* Enter guest mode */
  2737. "push %%"R"ax \n\t"
  2738. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2739. __ex(SVM_VMLOAD) "\n\t"
  2740. __ex(SVM_VMRUN) "\n\t"
  2741. __ex(SVM_VMSAVE) "\n\t"
  2742. "pop %%"R"ax \n\t"
  2743. /* Save guest registers, load host registers */
  2744. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2745. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2746. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2747. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2748. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2749. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2750. #ifdef CONFIG_X86_64
  2751. "mov %%r8, %c[r8](%[svm]) \n\t"
  2752. "mov %%r9, %c[r9](%[svm]) \n\t"
  2753. "mov %%r10, %c[r10](%[svm]) \n\t"
  2754. "mov %%r11, %c[r11](%[svm]) \n\t"
  2755. "mov %%r12, %c[r12](%[svm]) \n\t"
  2756. "mov %%r13, %c[r13](%[svm]) \n\t"
  2757. "mov %%r14, %c[r14](%[svm]) \n\t"
  2758. "mov %%r15, %c[r15](%[svm]) \n\t"
  2759. #endif
  2760. "pop %%"R"bp"
  2761. :
  2762. : [svm]"a"(svm),
  2763. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2764. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2765. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2766. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2767. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2768. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2769. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2770. #ifdef CONFIG_X86_64
  2771. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2772. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2773. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2774. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2775. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2776. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2777. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2778. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2779. #endif
  2780. : "cc", "memory"
  2781. , R"bx", R"cx", R"dx", R"si", R"di"
  2782. #ifdef CONFIG_X86_64
  2783. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2784. #endif
  2785. );
  2786. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2787. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2788. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2789. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2790. load_host_msrs(vcpu);
  2791. kvm_load_ldt(ldt_selector);
  2792. loadsegment(fs, fs_selector);
  2793. #ifdef CONFIG_X86_64
  2794. load_gs_index(gs_selector);
  2795. wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
  2796. #else
  2797. loadsegment(gs, gs_selector);
  2798. #endif
  2799. reload_tss(vcpu);
  2800. local_irq_disable();
  2801. stgi();
  2802. sync_cr8_to_lapic(vcpu);
  2803. svm->next_rip = 0;
  2804. if (npt_enabled) {
  2805. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2806. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2807. }
  2808. /*
  2809. * We need to handle MC intercepts here before the vcpu has a chance to
  2810. * change the physical cpu
  2811. */
  2812. if (unlikely(svm->vmcb->control.exit_code ==
  2813. SVM_EXIT_EXCP_BASE + MC_VECTOR))
  2814. svm_handle_mce(svm);
  2815. }
  2816. #undef R
  2817. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2818. {
  2819. struct vcpu_svm *svm = to_svm(vcpu);
  2820. svm->vmcb->save.cr3 = root;
  2821. force_new_asid(vcpu);
  2822. }
  2823. static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2824. {
  2825. struct vcpu_svm *svm = to_svm(vcpu);
  2826. svm->vmcb->control.nested_cr3 = root;
  2827. /* Also sync guest cr3 here in case we live migrate */
  2828. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2829. force_new_asid(vcpu);
  2830. }
  2831. static int is_disabled(void)
  2832. {
  2833. u64 vm_cr;
  2834. rdmsrl(MSR_VM_CR, vm_cr);
  2835. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2836. return 1;
  2837. return 0;
  2838. }
  2839. static void
  2840. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2841. {
  2842. /*
  2843. * Patch in the VMMCALL instruction:
  2844. */
  2845. hypercall[0] = 0x0f;
  2846. hypercall[1] = 0x01;
  2847. hypercall[2] = 0xd9;
  2848. }
  2849. static void svm_check_processor_compat(void *rtn)
  2850. {
  2851. *(int *)rtn = 0;
  2852. }
  2853. static bool svm_cpu_has_accelerated_tpr(void)
  2854. {
  2855. return false;
  2856. }
  2857. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2858. {
  2859. return 0;
  2860. }
  2861. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2862. {
  2863. }
  2864. static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  2865. {
  2866. switch (func) {
  2867. case 0x80000001:
  2868. if (nested)
  2869. entry->ecx |= (1 << 2); /* Set SVM bit */
  2870. break;
  2871. case 0x8000000A:
  2872. entry->eax = 1; /* SVM revision 1 */
  2873. entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
  2874. ASID emulation to nested SVM */
  2875. entry->ecx = 0; /* Reserved */
  2876. entry->edx = 0; /* Per default do not support any
  2877. additional features */
  2878. /* Support next_rip if host supports it */
  2879. if (svm_has(SVM_FEATURE_NRIP))
  2880. entry->edx |= SVM_FEATURE_NRIP;
  2881. /* Support NPT for the guest if enabled */
  2882. if (npt_enabled)
  2883. entry->edx |= SVM_FEATURE_NPT;
  2884. break;
  2885. }
  2886. }
  2887. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2888. { SVM_EXIT_READ_CR0, "read_cr0" },
  2889. { SVM_EXIT_READ_CR3, "read_cr3" },
  2890. { SVM_EXIT_READ_CR4, "read_cr4" },
  2891. { SVM_EXIT_READ_CR8, "read_cr8" },
  2892. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2893. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2894. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2895. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2896. { SVM_EXIT_READ_DR0, "read_dr0" },
  2897. { SVM_EXIT_READ_DR1, "read_dr1" },
  2898. { SVM_EXIT_READ_DR2, "read_dr2" },
  2899. { SVM_EXIT_READ_DR3, "read_dr3" },
  2900. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2901. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2902. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2903. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2904. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2905. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2906. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2907. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2908. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2909. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2910. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2911. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2912. { SVM_EXIT_INTR, "interrupt" },
  2913. { SVM_EXIT_NMI, "nmi" },
  2914. { SVM_EXIT_SMI, "smi" },
  2915. { SVM_EXIT_INIT, "init" },
  2916. { SVM_EXIT_VINTR, "vintr" },
  2917. { SVM_EXIT_CPUID, "cpuid" },
  2918. { SVM_EXIT_INVD, "invd" },
  2919. { SVM_EXIT_HLT, "hlt" },
  2920. { SVM_EXIT_INVLPG, "invlpg" },
  2921. { SVM_EXIT_INVLPGA, "invlpga" },
  2922. { SVM_EXIT_IOIO, "io" },
  2923. { SVM_EXIT_MSR, "msr" },
  2924. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2925. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2926. { SVM_EXIT_VMRUN, "vmrun" },
  2927. { SVM_EXIT_VMMCALL, "hypercall" },
  2928. { SVM_EXIT_VMLOAD, "vmload" },
  2929. { SVM_EXIT_VMSAVE, "vmsave" },
  2930. { SVM_EXIT_STGI, "stgi" },
  2931. { SVM_EXIT_CLGI, "clgi" },
  2932. { SVM_EXIT_SKINIT, "skinit" },
  2933. { SVM_EXIT_WBINVD, "wbinvd" },
  2934. { SVM_EXIT_MONITOR, "monitor" },
  2935. { SVM_EXIT_MWAIT, "mwait" },
  2936. { SVM_EXIT_NPF, "npf" },
  2937. { -1, NULL }
  2938. };
  2939. static int svm_get_lpage_level(void)
  2940. {
  2941. return PT_PDPE_LEVEL;
  2942. }
  2943. static bool svm_rdtscp_supported(void)
  2944. {
  2945. return false;
  2946. }
  2947. static bool svm_has_wbinvd_exit(void)
  2948. {
  2949. return true;
  2950. }
  2951. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2952. {
  2953. struct vcpu_svm *svm = to_svm(vcpu);
  2954. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2955. if (is_nested(svm))
  2956. svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
  2957. update_cr0_intercept(svm);
  2958. }
  2959. static struct kvm_x86_ops svm_x86_ops = {
  2960. .cpu_has_kvm_support = has_svm,
  2961. .disabled_by_bios = is_disabled,
  2962. .hardware_setup = svm_hardware_setup,
  2963. .hardware_unsetup = svm_hardware_unsetup,
  2964. .check_processor_compatibility = svm_check_processor_compat,
  2965. .hardware_enable = svm_hardware_enable,
  2966. .hardware_disable = svm_hardware_disable,
  2967. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2968. .vcpu_create = svm_create_vcpu,
  2969. .vcpu_free = svm_free_vcpu,
  2970. .vcpu_reset = svm_vcpu_reset,
  2971. .prepare_guest_switch = svm_prepare_guest_switch,
  2972. .vcpu_load = svm_vcpu_load,
  2973. .vcpu_put = svm_vcpu_put,
  2974. .set_guest_debug = svm_guest_debug,
  2975. .get_msr = svm_get_msr,
  2976. .set_msr = svm_set_msr,
  2977. .get_segment_base = svm_get_segment_base,
  2978. .get_segment = svm_get_segment,
  2979. .set_segment = svm_set_segment,
  2980. .get_cpl = svm_get_cpl,
  2981. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  2982. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  2983. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  2984. .set_cr0 = svm_set_cr0,
  2985. .set_cr3 = svm_set_cr3,
  2986. .set_cr4 = svm_set_cr4,
  2987. .set_efer = svm_set_efer,
  2988. .get_idt = svm_get_idt,
  2989. .set_idt = svm_set_idt,
  2990. .get_gdt = svm_get_gdt,
  2991. .set_gdt = svm_set_gdt,
  2992. .set_dr7 = svm_set_dr7,
  2993. .cache_reg = svm_cache_reg,
  2994. .get_rflags = svm_get_rflags,
  2995. .set_rflags = svm_set_rflags,
  2996. .fpu_activate = svm_fpu_activate,
  2997. .fpu_deactivate = svm_fpu_deactivate,
  2998. .tlb_flush = svm_flush_tlb,
  2999. .run = svm_vcpu_run,
  3000. .handle_exit = handle_exit,
  3001. .skip_emulated_instruction = skip_emulated_instruction,
  3002. .set_interrupt_shadow = svm_set_interrupt_shadow,
  3003. .get_interrupt_shadow = svm_get_interrupt_shadow,
  3004. .patch_hypercall = svm_patch_hypercall,
  3005. .set_irq = svm_set_irq,
  3006. .set_nmi = svm_inject_nmi,
  3007. .queue_exception = svm_queue_exception,
  3008. .cancel_injection = svm_cancel_injection,
  3009. .interrupt_allowed = svm_interrupt_allowed,
  3010. .nmi_allowed = svm_nmi_allowed,
  3011. .get_nmi_mask = svm_get_nmi_mask,
  3012. .set_nmi_mask = svm_set_nmi_mask,
  3013. .enable_nmi_window = enable_nmi_window,
  3014. .enable_irq_window = enable_irq_window,
  3015. .update_cr8_intercept = update_cr8_intercept,
  3016. .set_tss_addr = svm_set_tss_addr,
  3017. .get_tdp_level = get_npt_level,
  3018. .get_mt_mask = svm_get_mt_mask,
  3019. .exit_reasons_str = svm_exit_reasons_str,
  3020. .get_lpage_level = svm_get_lpage_level,
  3021. .cpuid_update = svm_cpuid_update,
  3022. .rdtscp_supported = svm_rdtscp_supported,
  3023. .set_supported_cpuid = svm_set_supported_cpuid,
  3024. .has_wbinvd_exit = svm_has_wbinvd_exit,
  3025. .write_tsc_offset = svm_write_tsc_offset,
  3026. .adjust_tsc_offset = svm_adjust_tsc_offset,
  3027. .set_tdp_cr3 = set_tdp_cr3,
  3028. };
  3029. static int __init svm_init(void)
  3030. {
  3031. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  3032. __alignof__(struct vcpu_svm), THIS_MODULE);
  3033. }
  3034. static void __exit svm_exit(void)
  3035. {
  3036. kvm_exit();
  3037. }
  3038. module_init(svm_init)
  3039. module_exit(svm_exit)