paging_tmpl.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  33. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  34. #ifdef CONFIG_X86_64
  35. #define PT_MAX_FULL_LEVELS 4
  36. #define CMPXCHG cmpxchg
  37. #else
  38. #define CMPXCHG cmpxchg64
  39. #define PT_MAX_FULL_LEVELS 2
  40. #endif
  41. #elif PTTYPE == 32
  42. #define pt_element_t u32
  43. #define guest_walker guest_walker32
  44. #define FNAME(name) paging##32_##name
  45. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  46. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  47. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  48. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  49. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  50. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  51. #define PT_MAX_FULL_LEVELS 2
  52. #define CMPXCHG cmpxchg
  53. #else
  54. #error Invalid PTTYPE value
  55. #endif
  56. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  57. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  58. /*
  59. * The guest_walker structure emulates the behavior of the hardware page
  60. * table walker.
  61. */
  62. struct guest_walker {
  63. int level;
  64. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  65. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  66. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  67. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. u32 error_code;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  78. gfn_t table_gfn, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. pt_element_t ret;
  82. pt_element_t *table;
  83. struct page *page;
  84. page = gfn_to_page(kvm, table_gfn);
  85. table = kmap_atomic(page, KM_USER0);
  86. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  87. kunmap_atomic(table, KM_USER0);
  88. kvm_release_page_dirty(page);
  89. return (ret != orig_pte);
  90. }
  91. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  92. {
  93. unsigned access;
  94. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  95. #if PTTYPE == 64
  96. if (vcpu->arch.mmu.nx)
  97. access &= ~(gpte >> PT64_NX_SHIFT);
  98. #endif
  99. return access;
  100. }
  101. /*
  102. * Fetch a guest pte for a guest virtual address
  103. */
  104. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  105. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  106. gva_t addr, u32 access)
  107. {
  108. pt_element_t pte;
  109. gfn_t table_gfn;
  110. unsigned index, pt_access, uninitialized_var(pte_access);
  111. gpa_t pte_gpa;
  112. bool eperm, present, rsvd_fault;
  113. int offset, write_fault, user_fault, fetch_fault;
  114. write_fault = access & PFERR_WRITE_MASK;
  115. user_fault = access & PFERR_USER_MASK;
  116. fetch_fault = access & PFERR_FETCH_MASK;
  117. trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
  118. fetch_fault);
  119. walk:
  120. present = true;
  121. eperm = rsvd_fault = false;
  122. walker->level = mmu->root_level;
  123. pte = mmu->get_cr3(vcpu);
  124. #if PTTYPE == 64
  125. if (walker->level == PT32E_ROOT_LEVEL) {
  126. pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
  127. trace_kvm_mmu_paging_element(pte, walker->level);
  128. if (!is_present_gpte(pte)) {
  129. present = false;
  130. goto error;
  131. }
  132. --walker->level;
  133. }
  134. #endif
  135. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  136. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  137. pt_access = ACC_ALL;
  138. for (;;) {
  139. index = PT_INDEX(addr, walker->level);
  140. table_gfn = gpte_to_gfn(pte);
  141. offset = index * sizeof(pt_element_t);
  142. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  143. walker->table_gfn[walker->level - 1] = table_gfn;
  144. walker->pte_gpa[walker->level - 1] = pte_gpa;
  145. if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte,
  146. offset, sizeof(pte),
  147. PFERR_USER_MASK|PFERR_WRITE_MASK)) {
  148. present = false;
  149. break;
  150. }
  151. trace_kvm_mmu_paging_element(pte, walker->level);
  152. if (!is_present_gpte(pte)) {
  153. present = false;
  154. break;
  155. }
  156. if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
  157. rsvd_fault = true;
  158. break;
  159. }
  160. if (write_fault && !is_writable_pte(pte))
  161. if (user_fault || is_write_protection(vcpu))
  162. eperm = true;
  163. if (user_fault && !(pte & PT_USER_MASK))
  164. eperm = true;
  165. #if PTTYPE == 64
  166. if (fetch_fault && (pte & PT64_NX_MASK))
  167. eperm = true;
  168. #endif
  169. if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
  170. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  171. sizeof(pte));
  172. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  173. index, pte, pte|PT_ACCESSED_MASK))
  174. goto walk;
  175. mark_page_dirty(vcpu->kvm, table_gfn);
  176. pte |= PT_ACCESSED_MASK;
  177. }
  178. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  179. walker->ptes[walker->level - 1] = pte;
  180. if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
  181. ((walker->level == PT_DIRECTORY_LEVEL) &&
  182. is_large_pte(pte) &&
  183. (PTTYPE == 64 || is_pse(vcpu))) ||
  184. ((walker->level == PT_PDPE_LEVEL) &&
  185. is_large_pte(pte) &&
  186. mmu->root_level == PT64_ROOT_LEVEL)) {
  187. int lvl = walker->level;
  188. gpa_t real_gpa;
  189. gfn_t gfn;
  190. u32 ac;
  191. gfn = gpte_to_gfn_lvl(pte, lvl);
  192. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  193. if (PTTYPE == 32 &&
  194. walker->level == PT_DIRECTORY_LEVEL &&
  195. is_cpuid_PSE36())
  196. gfn += pse36_gfn_delta(pte);
  197. ac = write_fault | fetch_fault | user_fault;
  198. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  199. ac);
  200. if (real_gpa == UNMAPPED_GVA)
  201. return 0;
  202. walker->gfn = real_gpa >> PAGE_SHIFT;
  203. break;
  204. }
  205. pt_access = pte_access;
  206. --walker->level;
  207. }
  208. if (!present || eperm || rsvd_fault)
  209. goto error;
  210. if (write_fault && !is_dirty_gpte(pte)) {
  211. bool ret;
  212. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  213. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  214. pte|PT_DIRTY_MASK);
  215. if (ret)
  216. goto walk;
  217. mark_page_dirty(vcpu->kvm, table_gfn);
  218. pte |= PT_DIRTY_MASK;
  219. walker->ptes[walker->level - 1] = pte;
  220. }
  221. walker->pt_access = pt_access;
  222. walker->pte_access = pte_access;
  223. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  224. __func__, (u64)pte, pte_access, pt_access);
  225. return 1;
  226. error:
  227. walker->error_code = 0;
  228. if (present)
  229. walker->error_code |= PFERR_PRESENT_MASK;
  230. walker->error_code |= write_fault | user_fault;
  231. if (fetch_fault && mmu->nx)
  232. walker->error_code |= PFERR_FETCH_MASK;
  233. if (rsvd_fault)
  234. walker->error_code |= PFERR_RSVD_MASK;
  235. vcpu->arch.fault.address = addr;
  236. vcpu->arch.fault.error_code = walker->error_code;
  237. trace_kvm_mmu_walker_error(walker->error_code);
  238. return 0;
  239. }
  240. static int FNAME(walk_addr)(struct guest_walker *walker,
  241. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  242. {
  243. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  244. access);
  245. }
  246. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  247. struct kvm_vcpu *vcpu, gva_t addr,
  248. u32 access)
  249. {
  250. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  251. addr, access);
  252. }
  253. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  254. u64 *spte, const void *pte)
  255. {
  256. pt_element_t gpte;
  257. unsigned pte_access;
  258. pfn_t pfn;
  259. u64 new_spte;
  260. gpte = *(const pt_element_t *)pte;
  261. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  262. if (!is_present_gpte(gpte)) {
  263. if (sp->unsync)
  264. new_spte = shadow_trap_nonpresent_pte;
  265. else
  266. new_spte = shadow_notrap_nonpresent_pte;
  267. __set_spte(spte, new_spte);
  268. }
  269. return;
  270. }
  271. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  272. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  273. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  274. return;
  275. pfn = vcpu->arch.update_pte.pfn;
  276. if (is_error_pfn(pfn))
  277. return;
  278. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  279. return;
  280. kvm_get_pfn(pfn);
  281. /*
  282. * we call mmu_set_spte() with reset_host_protection = true beacuse that
  283. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  284. */
  285. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  286. is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
  287. gpte_to_gfn(gpte), pfn, true, true);
  288. }
  289. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  290. struct guest_walker *gw, int level)
  291. {
  292. pt_element_t curr_pte;
  293. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  294. u64 mask;
  295. int r, index;
  296. if (level == PT_PAGE_TABLE_LEVEL) {
  297. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  298. base_gpa = pte_gpa & ~mask;
  299. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  300. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  301. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  302. curr_pte = gw->prefetch_ptes[index];
  303. } else
  304. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  305. &curr_pte, sizeof(curr_pte));
  306. return r || curr_pte != gw->ptes[level - 1];
  307. }
  308. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  309. u64 *sptep)
  310. {
  311. struct kvm_mmu_page *sp;
  312. struct kvm_mmu *mmu = &vcpu->arch.mmu;
  313. pt_element_t *gptep = gw->prefetch_ptes;
  314. u64 *spte;
  315. int i;
  316. sp = page_header(__pa(sptep));
  317. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  318. return;
  319. if (sp->role.direct)
  320. return __direct_pte_prefetch(vcpu, sp, sptep);
  321. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  322. spte = sp->spt + i;
  323. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  324. pt_element_t gpte;
  325. unsigned pte_access;
  326. gfn_t gfn;
  327. pfn_t pfn;
  328. bool dirty;
  329. if (spte == sptep)
  330. continue;
  331. if (*spte != shadow_trap_nonpresent_pte)
  332. continue;
  333. gpte = gptep[i];
  334. if (!is_present_gpte(gpte) ||
  335. is_rsvd_bits_set(mmu, gpte, PT_PAGE_TABLE_LEVEL)) {
  336. if (!sp->unsync)
  337. __set_spte(spte, shadow_notrap_nonpresent_pte);
  338. continue;
  339. }
  340. if (!(gpte & PT_ACCESSED_MASK))
  341. continue;
  342. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  343. gfn = gpte_to_gfn(gpte);
  344. dirty = is_dirty_gpte(gpte);
  345. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  346. (pte_access & ACC_WRITE_MASK) && dirty);
  347. if (is_error_pfn(pfn)) {
  348. kvm_release_pfn_clean(pfn);
  349. break;
  350. }
  351. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  352. dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
  353. pfn, true, true);
  354. }
  355. }
  356. /*
  357. * Fetch a shadow pte for a specific level in the paging hierarchy.
  358. */
  359. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  360. struct guest_walker *gw,
  361. int user_fault, int write_fault, int hlevel,
  362. int *ptwrite, pfn_t pfn)
  363. {
  364. unsigned access = gw->pt_access;
  365. struct kvm_mmu_page *sp = NULL;
  366. bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
  367. int top_level;
  368. unsigned direct_access;
  369. struct kvm_shadow_walk_iterator it;
  370. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  371. return NULL;
  372. direct_access = gw->pt_access & gw->pte_access;
  373. if (!dirty)
  374. direct_access &= ~ACC_WRITE_MASK;
  375. top_level = vcpu->arch.mmu.root_level;
  376. if (top_level == PT32E_ROOT_LEVEL)
  377. top_level = PT32_ROOT_LEVEL;
  378. /*
  379. * Verify that the top-level gpte is still there. Since the page
  380. * is a root page, it is either write protected (and cannot be
  381. * changed from now on) or it is invalid (in which case, we don't
  382. * really care if it changes underneath us after this point).
  383. */
  384. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  385. goto out_gpte_changed;
  386. for (shadow_walk_init(&it, vcpu, addr);
  387. shadow_walk_okay(&it) && it.level > gw->level;
  388. shadow_walk_next(&it)) {
  389. gfn_t table_gfn;
  390. drop_large_spte(vcpu, it.sptep);
  391. sp = NULL;
  392. if (!is_shadow_present_pte(*it.sptep)) {
  393. table_gfn = gw->table_gfn[it.level - 2];
  394. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  395. false, access, it.sptep);
  396. }
  397. /*
  398. * Verify that the gpte in the page we've just write
  399. * protected is still there.
  400. */
  401. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  402. goto out_gpte_changed;
  403. if (sp)
  404. link_shadow_page(it.sptep, sp);
  405. }
  406. for (;
  407. shadow_walk_okay(&it) && it.level > hlevel;
  408. shadow_walk_next(&it)) {
  409. gfn_t direct_gfn;
  410. validate_direct_spte(vcpu, it.sptep, direct_access);
  411. drop_large_spte(vcpu, it.sptep);
  412. if (is_shadow_present_pte(*it.sptep))
  413. continue;
  414. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  415. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  416. true, direct_access, it.sptep);
  417. link_shadow_page(it.sptep, sp);
  418. }
  419. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
  420. user_fault, write_fault, dirty, ptwrite, it.level,
  421. gw->gfn, pfn, false, true);
  422. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  423. return it.sptep;
  424. out_gpte_changed:
  425. if (sp)
  426. kvm_mmu_put_page(sp, it.sptep);
  427. kvm_release_pfn_clean(pfn);
  428. return NULL;
  429. }
  430. /*
  431. * Page fault handler. There are several causes for a page fault:
  432. * - there is no shadow pte for the guest pte
  433. * - write access through a shadow pte marked read only so that we can set
  434. * the dirty bit
  435. * - write access to a shadow pte marked read only so we can update the page
  436. * dirty bitmap, when userspace requests it
  437. * - mmio access; in this case we will never install a present shadow pte
  438. * - normal guest page fault due to the guest pte marked not present, not
  439. * writable, or not executable
  440. *
  441. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  442. * a negative value on error.
  443. */
  444. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  445. u32 error_code)
  446. {
  447. int write_fault = error_code & PFERR_WRITE_MASK;
  448. int user_fault = error_code & PFERR_USER_MASK;
  449. struct guest_walker walker;
  450. u64 *sptep;
  451. int write_pt = 0;
  452. int r;
  453. pfn_t pfn;
  454. int level = PT_PAGE_TABLE_LEVEL;
  455. unsigned long mmu_seq;
  456. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  457. r = mmu_topup_memory_caches(vcpu);
  458. if (r)
  459. return r;
  460. /*
  461. * Look up the guest pte for the faulting address.
  462. */
  463. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  464. /*
  465. * The page is not mapped by the guest. Let the guest handle it.
  466. */
  467. if (!r) {
  468. pgprintk("%s: guest page fault\n", __func__);
  469. inject_page_fault(vcpu);
  470. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  471. return 0;
  472. }
  473. if (walker.level >= PT_DIRECTORY_LEVEL) {
  474. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  475. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  476. }
  477. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  478. smp_rmb();
  479. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  480. /* mmio */
  481. if (is_error_pfn(pfn))
  482. return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
  483. spin_lock(&vcpu->kvm->mmu_lock);
  484. if (mmu_notifier_retry(vcpu, mmu_seq))
  485. goto out_unlock;
  486. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  487. kvm_mmu_free_some_pages(vcpu);
  488. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  489. level, &write_pt, pfn);
  490. (void)sptep;
  491. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  492. sptep, *sptep, write_pt);
  493. if (!write_pt)
  494. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  495. ++vcpu->stat.pf_fixed;
  496. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  497. spin_unlock(&vcpu->kvm->mmu_lock);
  498. return write_pt;
  499. out_unlock:
  500. spin_unlock(&vcpu->kvm->mmu_lock);
  501. kvm_release_pfn_clean(pfn);
  502. return 0;
  503. }
  504. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  505. {
  506. struct kvm_shadow_walk_iterator iterator;
  507. struct kvm_mmu_page *sp;
  508. gpa_t pte_gpa = -1;
  509. int level;
  510. u64 *sptep;
  511. int need_flush = 0;
  512. spin_lock(&vcpu->kvm->mmu_lock);
  513. for_each_shadow_entry(vcpu, gva, iterator) {
  514. level = iterator.level;
  515. sptep = iterator.sptep;
  516. sp = page_header(__pa(sptep));
  517. if (is_last_spte(*sptep, level)) {
  518. int offset, shift;
  519. if (!sp->unsync)
  520. break;
  521. shift = PAGE_SHIFT -
  522. (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
  523. offset = sp->role.quadrant << shift;
  524. pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
  525. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  526. if (is_shadow_present_pte(*sptep)) {
  527. if (is_large_pte(*sptep))
  528. --vcpu->kvm->stat.lpages;
  529. drop_spte(vcpu->kvm, sptep,
  530. shadow_trap_nonpresent_pte);
  531. need_flush = 1;
  532. } else
  533. __set_spte(sptep, shadow_trap_nonpresent_pte);
  534. break;
  535. }
  536. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  537. break;
  538. }
  539. if (need_flush)
  540. kvm_flush_remote_tlbs(vcpu->kvm);
  541. atomic_inc(&vcpu->kvm->arch.invlpg_counter);
  542. spin_unlock(&vcpu->kvm->mmu_lock);
  543. if (pte_gpa == -1)
  544. return;
  545. if (mmu_topup_memory_caches(vcpu))
  546. return;
  547. kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
  548. }
  549. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  550. u32 *error)
  551. {
  552. struct guest_walker walker;
  553. gpa_t gpa = UNMAPPED_GVA;
  554. int r;
  555. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  556. if (r) {
  557. gpa = gfn_to_gpa(walker.gfn);
  558. gpa |= vaddr & ~PAGE_MASK;
  559. } else if (error)
  560. *error = walker.error_code;
  561. return gpa;
  562. }
  563. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  564. u32 access, u32 *error)
  565. {
  566. struct guest_walker walker;
  567. gpa_t gpa = UNMAPPED_GVA;
  568. int r;
  569. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  570. if (r) {
  571. gpa = gfn_to_gpa(walker.gfn);
  572. gpa |= vaddr & ~PAGE_MASK;
  573. } else if (error)
  574. *error = walker.error_code;
  575. return gpa;
  576. }
  577. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  578. struct kvm_mmu_page *sp)
  579. {
  580. int i, j, offset, r;
  581. pt_element_t pt[256 / sizeof(pt_element_t)];
  582. gpa_t pte_gpa;
  583. if (sp->role.direct
  584. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  585. nonpaging_prefetch_page(vcpu, sp);
  586. return;
  587. }
  588. pte_gpa = gfn_to_gpa(sp->gfn);
  589. if (PTTYPE == 32) {
  590. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  591. pte_gpa += offset * sizeof(pt_element_t);
  592. }
  593. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  594. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  595. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  596. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  597. if (r || is_present_gpte(pt[j]))
  598. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  599. else
  600. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  601. }
  602. }
  603. /*
  604. * Using the cached information from sp->gfns is safe because:
  605. * - The spte has a reference to the struct page, so the pfn for a given gfn
  606. * can't change unless all sptes pointing to it are nuked first.
  607. */
  608. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  609. bool clear_unsync)
  610. {
  611. int i, offset, nr_present;
  612. bool reset_host_protection;
  613. gpa_t first_pte_gpa;
  614. offset = nr_present = 0;
  615. /* direct kvm_mmu_page can not be unsync. */
  616. BUG_ON(sp->role.direct);
  617. if (PTTYPE == 32)
  618. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  619. first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  620. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  621. unsigned pte_access;
  622. pt_element_t gpte;
  623. gpa_t pte_gpa;
  624. gfn_t gfn;
  625. if (!is_shadow_present_pte(sp->spt[i]))
  626. continue;
  627. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  628. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  629. sizeof(pt_element_t)))
  630. return -EINVAL;
  631. gfn = gpte_to_gfn(gpte);
  632. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)
  633. || gfn != sp->gfns[i] || !is_present_gpte(gpte)
  634. || !(gpte & PT_ACCESSED_MASK)) {
  635. u64 nonpresent;
  636. if (is_present_gpte(gpte) || !clear_unsync)
  637. nonpresent = shadow_trap_nonpresent_pte;
  638. else
  639. nonpresent = shadow_notrap_nonpresent_pte;
  640. drop_spte(vcpu->kvm, &sp->spt[i], nonpresent);
  641. continue;
  642. }
  643. nr_present++;
  644. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  645. if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
  646. pte_access &= ~ACC_WRITE_MASK;
  647. reset_host_protection = 0;
  648. } else {
  649. reset_host_protection = 1;
  650. }
  651. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  652. is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
  653. spte_to_pfn(sp->spt[i]), true, false,
  654. reset_host_protection);
  655. }
  656. return !nr_present;
  657. }
  658. #undef pt_element_t
  659. #undef guest_walker
  660. #undef FNAME
  661. #undef PT_BASE_ADDR_MASK
  662. #undef PT_INDEX
  663. #undef PT_LEVEL_MASK
  664. #undef PT_LVL_ADDR_MASK
  665. #undef PT_LVL_OFFSET_MASK
  666. #undef PT_LEVEL_BITS
  667. #undef PT_MAX_FULL_LEVELS
  668. #undef gpte_to_gfn
  669. #undef gpte_to_gfn_lvl
  670. #undef CMPXCHG