init.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation, version 2.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12. * NON INFRINGEMENT. See the GNU General Public License for
  13. * more details.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/errno.h>
  20. #include <linux/string.h>
  21. #include <linux/types.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/hugetlb.h>
  26. #include <linux/swap.h>
  27. #include <linux/smp.h>
  28. #include <linux/init.h>
  29. #include <linux/highmem.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/poison.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/slab.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/efi.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/processor.h>
  40. #include <asm/system.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/pgalloc.h>
  43. #include <asm/dma.h>
  44. #include <asm/fixmap.h>
  45. #include <asm/tlb.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/sections.h>
  48. #include <asm/setup.h>
  49. #include <asm/homecache.h>
  50. #include <hv/hypervisor.h>
  51. #include <arch/chip.h>
  52. #include "migrate.h"
  53. /*
  54. * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
  55. * in the Tile Kconfig, but this generates configure warnings.
  56. * Do it here and force people to get it right to compile this file.
  57. * The problem is that with 4KB small pages and 16MB huge pages,
  58. * the default value doesn't allow us to group enough small pages
  59. * together to make up a huge page.
  60. */
  61. #if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
  62. # error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
  63. #endif
  64. #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  65. #ifndef __tilegx__
  66. unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  67. #endif
  68. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  69. /* Create an L2 page table */
  70. static pte_t * __init alloc_pte(void)
  71. {
  72. return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  73. }
  74. /*
  75. * L2 page tables per controller. We allocate these all at once from
  76. * the bootmem allocator and store them here. This saves on kernel L2
  77. * page table memory, compared to allocating a full 64K page per L2
  78. * page table, and also means that in cases where we use huge pages,
  79. * we are guaranteed to later be able to shatter those huge pages and
  80. * switch to using these page tables instead, without requiring
  81. * further allocation. Each l2_ptes[] entry points to the first page
  82. * table for the first hugepage-size piece of memory on the
  83. * controller; other page tables are just indexed directly, i.e. the
  84. * L2 page tables are contiguous in memory for each controller.
  85. */
  86. static pte_t *l2_ptes[MAX_NUMNODES];
  87. static int num_l2_ptes[MAX_NUMNODES];
  88. static void init_prealloc_ptes(int node, int pages)
  89. {
  90. BUG_ON(pages & (HV_L2_ENTRIES-1));
  91. if (pages) {
  92. num_l2_ptes[node] = pages;
  93. l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  94. HV_PAGE_TABLE_ALIGN, 0);
  95. }
  96. }
  97. pte_t *get_prealloc_pte(unsigned long pfn)
  98. {
  99. int node = pfn_to_nid(pfn);
  100. pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  101. BUG_ON(node >= MAX_NUMNODES);
  102. BUG_ON(pfn >= num_l2_ptes[node]);
  103. return &l2_ptes[node][pfn];
  104. }
  105. /*
  106. * What caching do we expect pages from the heap to have when
  107. * they are allocated during bootup? (Once we've installed the
  108. * "real" swapper_pg_dir.)
  109. */
  110. static int initial_heap_home(void)
  111. {
  112. #if CHIP_HAS_CBOX_HOME_MAP()
  113. if (hash_default)
  114. return PAGE_HOME_HASH;
  115. #endif
  116. return smp_processor_id();
  117. }
  118. /*
  119. * Place a pointer to an L2 page table in a middle page
  120. * directory entry.
  121. */
  122. static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
  123. {
  124. phys_addr_t pa = __pa(page_table);
  125. unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
  126. pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
  127. BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
  128. pteval = pte_set_home(pteval, initial_heap_home());
  129. *(pte_t *)pmd = pteval;
  130. if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
  131. BUG();
  132. }
  133. #ifdef __tilegx__
  134. #if HV_L1_SIZE != HV_L2_SIZE
  135. # error Rework assumption that L1 and L2 page tables are same size.
  136. #endif
  137. /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
  138. static inline pmd_t *alloc_pmd(void)
  139. {
  140. return (pmd_t *)alloc_pte();
  141. }
  142. static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
  143. {
  144. assign_pte((pmd_t *)pud, (pte_t *)pmd);
  145. }
  146. #endif /* __tilegx__ */
  147. /* Replace the given pmd with a full PTE table. */
  148. void __init shatter_pmd(pmd_t *pmd)
  149. {
  150. pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
  151. assign_pte(pmd, pte);
  152. }
  153. #ifdef CONFIG_HIGHMEM
  154. /*
  155. * This function initializes a certain range of kernel virtual memory
  156. * with new bootmem page tables, everywhere page tables are missing in
  157. * the given range.
  158. */
  159. /*
  160. * NOTE: The pagetables are allocated contiguous on the physical space
  161. * so we can cache the place of the first one and move around without
  162. * checking the pgd every time.
  163. */
  164. static void __init page_table_range_init(unsigned long start,
  165. unsigned long end, pgd_t *pgd_base)
  166. {
  167. pgd_t *pgd;
  168. int pgd_idx;
  169. unsigned long vaddr;
  170. vaddr = start;
  171. pgd_idx = pgd_index(vaddr);
  172. pgd = pgd_base + pgd_idx;
  173. for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
  174. pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
  175. if (pmd_none(*pmd))
  176. assign_pte(pmd, alloc_pte());
  177. vaddr += PMD_SIZE;
  178. }
  179. }
  180. #endif /* CONFIG_HIGHMEM */
  181. #if CHIP_HAS_CBOX_HOME_MAP()
  182. static int __initdata ktext_hash = 1; /* .text pages */
  183. static int __initdata kdata_hash = 1; /* .data and .bss pages */
  184. int __write_once hash_default = 1; /* kernel allocator pages */
  185. EXPORT_SYMBOL(hash_default);
  186. int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
  187. #endif /* CHIP_HAS_CBOX_HOME_MAP */
  188. /*
  189. * CPUs to use to for striping the pages of kernel data. If hash-for-home
  190. * is available, this is only relevant if kcache_hash sets up the
  191. * .data and .bss to be page-homed, and we don't want the default mode
  192. * of using the full set of kernel cpus for the striping.
  193. */
  194. static __initdata struct cpumask kdata_mask;
  195. static __initdata int kdata_arg_seen;
  196. int __write_once kdata_huge; /* if no homecaching, small pages */
  197. /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
  198. static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
  199. {
  200. prot = pte_set_home(prot, home);
  201. #if CHIP_HAS_CBOX_HOME_MAP()
  202. if (home == PAGE_HOME_IMMUTABLE) {
  203. if (ktext_hash)
  204. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
  205. else
  206. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
  207. }
  208. #endif
  209. return prot;
  210. }
  211. /*
  212. * For a given kernel data VA, how should it be cached?
  213. * We return the complete pgprot_t with caching bits set.
  214. */
  215. static pgprot_t __init init_pgprot(ulong address)
  216. {
  217. int cpu;
  218. unsigned long page;
  219. enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
  220. #if CHIP_HAS_CBOX_HOME_MAP()
  221. /* For kdata=huge, everything is just hash-for-home. */
  222. if (kdata_huge)
  223. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  224. #endif
  225. /* We map the aliased pages of permanent text inaccessible. */
  226. if (address < (ulong) _sinittext - CODE_DELTA)
  227. return PAGE_NONE;
  228. /*
  229. * We map read-only data non-coherent for performance. We could
  230. * use neighborhood caching on TILE64, but it's not clear it's a win.
  231. */
  232. if ((address >= (ulong) __start_rodata &&
  233. address < (ulong) __end_rodata) ||
  234. address == (ulong) empty_zero_page) {
  235. return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
  236. }
  237. /* As a performance optimization, keep the boot init stack here. */
  238. if (address >= (ulong)&init_thread_union &&
  239. address < (ulong)&init_thread_union + THREAD_SIZE)
  240. return construct_pgprot(PAGE_KERNEL, smp_processor_id());
  241. #ifndef __tilegx__
  242. #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
  243. /* Force the atomic_locks[] array page to be hash-for-home. */
  244. if (address == (ulong) atomic_locks)
  245. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  246. #endif
  247. #endif
  248. /*
  249. * Everything else that isn't data or bss is heap, so mark it
  250. * with the initial heap home (hash-for-home, or this cpu). This
  251. * includes any addresses after the loaded image and any address before
  252. * _einitdata, since we already captured the case of text before
  253. * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
  254. *
  255. * All the LOWMEM pages that we mark this way will get their
  256. * struct page homecache properly marked later, in set_page_homes().
  257. * The HIGHMEM pages we leave with a default zero for their
  258. * homes, but with a zero free_time we don't have to actually
  259. * do a flush action the first time we use them, either.
  260. */
  261. if (address >= (ulong) _end || address < (ulong) _einitdata)
  262. return construct_pgprot(PAGE_KERNEL, initial_heap_home());
  263. #if CHIP_HAS_CBOX_HOME_MAP()
  264. /* Use hash-for-home if requested for data/bss. */
  265. if (kdata_hash)
  266. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  267. #endif
  268. /*
  269. * Make the w1data homed like heap to start with, to avoid
  270. * making it part of the page-striped data area when we're just
  271. * going to convert it to read-only soon anyway.
  272. */
  273. if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
  274. return construct_pgprot(PAGE_KERNEL, initial_heap_home());
  275. /*
  276. * Otherwise we just hand out consecutive cpus. To avoid
  277. * requiring this function to hold state, we just walk forward from
  278. * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
  279. * the requested address, while walking cpu home around kdata_mask.
  280. * This is typically no more than a dozen or so iterations.
  281. */
  282. page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
  283. BUG_ON(address < page || address >= (ulong)_end);
  284. cpu = cpumask_first(&kdata_mask);
  285. for (; page < address; page += PAGE_SIZE) {
  286. if (page >= (ulong)&init_thread_union &&
  287. page < (ulong)&init_thread_union + THREAD_SIZE)
  288. continue;
  289. if (page == (ulong)empty_zero_page)
  290. continue;
  291. #ifndef __tilegx__
  292. #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
  293. if (page == (ulong)atomic_locks)
  294. continue;
  295. #endif
  296. #endif
  297. cpu = cpumask_next(cpu, &kdata_mask);
  298. if (cpu == NR_CPUS)
  299. cpu = cpumask_first(&kdata_mask);
  300. }
  301. return construct_pgprot(PAGE_KERNEL, cpu);
  302. }
  303. /*
  304. * This function sets up how we cache the kernel text. If we have
  305. * hash-for-home support, normally that is used instead (see the
  306. * kcache_hash boot flag for more information). But if we end up
  307. * using a page-based caching technique, this option sets up the
  308. * details of that. In addition, the "ktext=nocache" option may
  309. * always be used to disable local caching of text pages, if desired.
  310. */
  311. static int __initdata ktext_arg_seen;
  312. static int __initdata ktext_small;
  313. static int __initdata ktext_local;
  314. static int __initdata ktext_all;
  315. static int __initdata ktext_nondataplane;
  316. static int __initdata ktext_nocache;
  317. static struct cpumask __initdata ktext_mask;
  318. static int __init setup_ktext(char *str)
  319. {
  320. if (str == NULL)
  321. return -EINVAL;
  322. /* If you have a leading "nocache", turn off ktext caching */
  323. if (strncmp(str, "nocache", 7) == 0) {
  324. ktext_nocache = 1;
  325. pr_info("ktext: disabling local caching of kernel text\n");
  326. str += 7;
  327. if (*str == ',')
  328. ++str;
  329. if (*str == '\0')
  330. return 0;
  331. }
  332. ktext_arg_seen = 1;
  333. /* Default setting on Tile64: use a huge page */
  334. if (strcmp(str, "huge") == 0)
  335. pr_info("ktext: using one huge locally cached page\n");
  336. /* Pay TLB cost but get no cache benefit: cache small pages locally */
  337. else if (strcmp(str, "local") == 0) {
  338. ktext_small = 1;
  339. ktext_local = 1;
  340. pr_info("ktext: using small pages with local caching\n");
  341. }
  342. /* Neighborhood cache ktext pages on all cpus. */
  343. else if (strcmp(str, "all") == 0) {
  344. ktext_small = 1;
  345. ktext_all = 1;
  346. pr_info("ktext: using maximal caching neighborhood\n");
  347. }
  348. /* Neighborhood ktext pages on specified mask */
  349. else if (cpulist_parse(str, &ktext_mask) == 0) {
  350. char buf[NR_CPUS * 5];
  351. cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
  352. if (cpumask_weight(&ktext_mask) > 1) {
  353. ktext_small = 1;
  354. pr_info("ktext: using caching neighborhood %s "
  355. "with small pages\n", buf);
  356. } else {
  357. pr_info("ktext: caching on cpu %s with one huge page\n",
  358. buf);
  359. }
  360. }
  361. else if (*str)
  362. return -EINVAL;
  363. return 0;
  364. }
  365. early_param("ktext", setup_ktext);
  366. static inline pgprot_t ktext_set_nocache(pgprot_t prot)
  367. {
  368. if (!ktext_nocache)
  369. prot = hv_pte_set_nc(prot);
  370. #if CHIP_HAS_NC_AND_NOALLOC_BITS()
  371. else
  372. prot = hv_pte_set_no_alloc_l2(prot);
  373. #endif
  374. return prot;
  375. }
  376. #ifndef __tilegx__
  377. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  378. {
  379. return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
  380. }
  381. #else
  382. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  383. {
  384. pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
  385. if (pud_none(*pud))
  386. assign_pmd(pud, alloc_pmd());
  387. return pmd_offset(pud, va);
  388. }
  389. #endif
  390. /* Temporary page table we use for staging. */
  391. static pgd_t pgtables[PTRS_PER_PGD]
  392. __attribute__((section(".init.page")));
  393. /*
  394. * This maps the physical memory to kernel virtual address space, a total
  395. * of max_low_pfn pages, by creating page tables starting from address
  396. * PAGE_OFFSET.
  397. *
  398. * This routine transitions us from using a set of compiled-in large
  399. * pages to using some more precise caching, including removing access
  400. * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
  401. * marking read-only data as locally cacheable, striping the remaining
  402. * .data and .bss across all the available tiles, and removing access
  403. * to pages above the top of RAM (thus ensuring a page fault from a bad
  404. * virtual address rather than a hypervisor shoot down for accessing
  405. * memory outside the assigned limits).
  406. */
  407. static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
  408. {
  409. unsigned long address, pfn;
  410. pmd_t *pmd;
  411. pte_t *pte;
  412. int pte_ofs;
  413. const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
  414. struct cpumask kstripe_mask;
  415. int rc, i;
  416. #if CHIP_HAS_CBOX_HOME_MAP()
  417. if (ktext_arg_seen && ktext_hash) {
  418. pr_warning("warning: \"ktext\" boot argument ignored"
  419. " if \"kcache_hash\" sets up text hash-for-home\n");
  420. ktext_small = 0;
  421. }
  422. if (kdata_arg_seen && kdata_hash) {
  423. pr_warning("warning: \"kdata\" boot argument ignored"
  424. " if \"kcache_hash\" sets up data hash-for-home\n");
  425. }
  426. if (kdata_huge && !hash_default) {
  427. pr_warning("warning: disabling \"kdata=huge\"; requires"
  428. " kcache_hash=all or =allbutstack\n");
  429. kdata_huge = 0;
  430. }
  431. #endif
  432. /*
  433. * Set up a mask for cpus to use for kernel striping.
  434. * This is normally all cpus, but minus dataplane cpus if any.
  435. * If the dataplane covers the whole chip, we stripe over
  436. * the whole chip too.
  437. */
  438. cpumask_copy(&kstripe_mask, cpu_possible_mask);
  439. if (!kdata_arg_seen)
  440. kdata_mask = kstripe_mask;
  441. /* Allocate and fill in L2 page tables */
  442. for (i = 0; i < MAX_NUMNODES; ++i) {
  443. #ifdef CONFIG_HIGHMEM
  444. unsigned long end_pfn = node_lowmem_end_pfn[i];
  445. #else
  446. unsigned long end_pfn = node_end_pfn[i];
  447. #endif
  448. unsigned long end_huge_pfn = 0;
  449. /* Pre-shatter the last huge page to allow per-cpu pages. */
  450. if (kdata_huge)
  451. end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
  452. pfn = node_start_pfn[i];
  453. /* Allocate enough memory to hold L2 page tables for node. */
  454. init_prealloc_ptes(i, end_pfn - pfn);
  455. address = (unsigned long) pfn_to_kaddr(pfn);
  456. while (pfn < end_pfn) {
  457. BUG_ON(address & (HPAGE_SIZE-1));
  458. pmd = get_pmd(pgtables, address);
  459. pte = get_prealloc_pte(pfn);
  460. if (pfn < end_huge_pfn) {
  461. pgprot_t prot = init_pgprot(address);
  462. *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
  463. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  464. pfn++, pte_ofs++, address += PAGE_SIZE)
  465. pte[pte_ofs] = pfn_pte(pfn, prot);
  466. } else {
  467. if (kdata_huge)
  468. printk(KERN_DEBUG "pre-shattered huge"
  469. " page at %#lx\n", address);
  470. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  471. pfn++, pte_ofs++, address += PAGE_SIZE) {
  472. pgprot_t prot = init_pgprot(address);
  473. pte[pte_ofs] = pfn_pte(pfn, prot);
  474. }
  475. assign_pte(pmd, pte);
  476. }
  477. }
  478. }
  479. /*
  480. * Set or check ktext_map now that we have cpu_possible_mask
  481. * and kstripe_mask to work with.
  482. */
  483. if (ktext_all)
  484. cpumask_copy(&ktext_mask, cpu_possible_mask);
  485. else if (ktext_nondataplane)
  486. ktext_mask = kstripe_mask;
  487. else if (!cpumask_empty(&ktext_mask)) {
  488. /* Sanity-check any mask that was requested */
  489. struct cpumask bad;
  490. cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
  491. cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
  492. if (!cpumask_empty(&bad)) {
  493. char buf[NR_CPUS * 5];
  494. cpulist_scnprintf(buf, sizeof(buf), &bad);
  495. pr_info("ktext: not using unavailable cpus %s\n", buf);
  496. }
  497. if (cpumask_empty(&ktext_mask)) {
  498. pr_warning("ktext: no valid cpus; caching on %d.\n",
  499. smp_processor_id());
  500. cpumask_copy(&ktext_mask,
  501. cpumask_of(smp_processor_id()));
  502. }
  503. }
  504. address = MEM_SV_INTRPT;
  505. pmd = get_pmd(pgtables, address);
  506. if (ktext_small) {
  507. /* Allocate an L2 PTE for the kernel text */
  508. int cpu = 0;
  509. pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
  510. PAGE_HOME_IMMUTABLE);
  511. if (ktext_local) {
  512. if (ktext_nocache)
  513. prot = hv_pte_set_mode(prot,
  514. HV_PTE_MODE_UNCACHED);
  515. else
  516. prot = hv_pte_set_mode(prot,
  517. HV_PTE_MODE_CACHE_NO_L3);
  518. } else {
  519. prot = hv_pte_set_mode(prot,
  520. HV_PTE_MODE_CACHE_TILE_L3);
  521. cpu = cpumask_first(&ktext_mask);
  522. prot = ktext_set_nocache(prot);
  523. }
  524. BUG_ON(address != (unsigned long)_stext);
  525. pfn = 0; /* code starts at PA 0 */
  526. pte = alloc_pte();
  527. for (pte_ofs = 0; address < (unsigned long)_einittext;
  528. pfn++, pte_ofs++, address += PAGE_SIZE) {
  529. if (!ktext_local) {
  530. prot = set_remote_cache_cpu(prot, cpu);
  531. cpu = cpumask_next(cpu, &ktext_mask);
  532. if (cpu == NR_CPUS)
  533. cpu = cpumask_first(&ktext_mask);
  534. }
  535. pte[pte_ofs] = pfn_pte(pfn, prot);
  536. }
  537. assign_pte(pmd, pte);
  538. } else {
  539. pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
  540. pteval = pte_mkhuge(pteval);
  541. #if CHIP_HAS_CBOX_HOME_MAP()
  542. if (ktext_hash) {
  543. pteval = hv_pte_set_mode(pteval,
  544. HV_PTE_MODE_CACHE_HASH_L3);
  545. pteval = ktext_set_nocache(pteval);
  546. } else
  547. #endif /* CHIP_HAS_CBOX_HOME_MAP() */
  548. if (cpumask_weight(&ktext_mask) == 1) {
  549. pteval = set_remote_cache_cpu(pteval,
  550. cpumask_first(&ktext_mask));
  551. pteval = hv_pte_set_mode(pteval,
  552. HV_PTE_MODE_CACHE_TILE_L3);
  553. pteval = ktext_set_nocache(pteval);
  554. } else if (ktext_nocache)
  555. pteval = hv_pte_set_mode(pteval,
  556. HV_PTE_MODE_UNCACHED);
  557. else
  558. pteval = hv_pte_set_mode(pteval,
  559. HV_PTE_MODE_CACHE_NO_L3);
  560. *(pte_t *)pmd = pteval;
  561. }
  562. /* Set swapper_pgprot here so it is flushed to memory right away. */
  563. swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
  564. /*
  565. * Since we may be changing the caching of the stack and page
  566. * table itself, we invoke an assembly helper to do the
  567. * following steps:
  568. *
  569. * - flush the cache so we start with an empty slate
  570. * - install pgtables[] as the real page table
  571. * - flush the TLB so the new page table takes effect
  572. */
  573. rc = flush_and_install_context(__pa(pgtables),
  574. init_pgprot((unsigned long)pgtables),
  575. __get_cpu_var(current_asid),
  576. cpumask_bits(my_cpu_mask));
  577. BUG_ON(rc != 0);
  578. /* Copy the page table back to the normal swapper_pg_dir. */
  579. memcpy(pgd_base, pgtables, sizeof(pgtables));
  580. __install_page_table(pgd_base, __get_cpu_var(current_asid),
  581. swapper_pgprot);
  582. }
  583. /*
  584. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  585. * is valid. The argument is a physical page number.
  586. *
  587. * On Tile, the only valid things for which we can just hand out unchecked
  588. * PTEs are the kernel code and data. Anything else might change its
  589. * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
  590. * Note that init_thread_union is released to heap soon after boot,
  591. * so we include it in the init data.
  592. *
  593. * For TILE-Gx, we might want to consider allowing access to PA
  594. * regions corresponding to PCI space, etc.
  595. */
  596. int devmem_is_allowed(unsigned long pagenr)
  597. {
  598. return pagenr < kaddr_to_pfn(_end) &&
  599. !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
  600. pagenr < kaddr_to_pfn(_einitdata)) &&
  601. !(pagenr >= kaddr_to_pfn(_sinittext) ||
  602. pagenr <= kaddr_to_pfn(_einittext-1));
  603. }
  604. #ifdef CONFIG_HIGHMEM
  605. static void __init permanent_kmaps_init(pgd_t *pgd_base)
  606. {
  607. pgd_t *pgd;
  608. pud_t *pud;
  609. pmd_t *pmd;
  610. pte_t *pte;
  611. unsigned long vaddr;
  612. vaddr = PKMAP_BASE;
  613. page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
  614. pgd = swapper_pg_dir + pgd_index(vaddr);
  615. pud = pud_offset(pgd, vaddr);
  616. pmd = pmd_offset(pud, vaddr);
  617. pte = pte_offset_kernel(pmd, vaddr);
  618. pkmap_page_table = pte;
  619. }
  620. #endif /* CONFIG_HIGHMEM */
  621. static void __init init_free_pfn_range(unsigned long start, unsigned long end)
  622. {
  623. unsigned long pfn;
  624. struct page *page = pfn_to_page(start);
  625. for (pfn = start; pfn < end; ) {
  626. /* Optimize by freeing pages in large batches */
  627. int order = __ffs(pfn);
  628. int count, i;
  629. struct page *p;
  630. if (order >= MAX_ORDER)
  631. order = MAX_ORDER-1;
  632. count = 1 << order;
  633. while (pfn + count > end) {
  634. count >>= 1;
  635. --order;
  636. }
  637. for (p = page, i = 0; i < count; ++i, ++p) {
  638. __ClearPageReserved(p);
  639. /*
  640. * Hacky direct set to avoid unnecessary
  641. * lock take/release for EVERY page here.
  642. */
  643. p->_count.counter = 0;
  644. p->_mapcount.counter = -1;
  645. }
  646. init_page_count(page);
  647. __free_pages(page, order);
  648. totalram_pages += count;
  649. page += count;
  650. pfn += count;
  651. }
  652. }
  653. static void __init set_non_bootmem_pages_init(void)
  654. {
  655. struct zone *z;
  656. for_each_zone(z) {
  657. unsigned long start, end;
  658. int nid = z->zone_pgdat->node_id;
  659. int idx = zone_idx(z);
  660. start = z->zone_start_pfn;
  661. if (start == 0)
  662. continue; /* bootmem */
  663. end = start + z->spanned_pages;
  664. if (idx == ZONE_NORMAL) {
  665. BUG_ON(start != node_start_pfn[nid]);
  666. start = node_free_pfn[nid];
  667. }
  668. #ifdef CONFIG_HIGHMEM
  669. if (idx == ZONE_HIGHMEM)
  670. totalhigh_pages += z->spanned_pages;
  671. #endif
  672. if (kdata_huge) {
  673. unsigned long percpu_pfn = node_percpu_pfn[nid];
  674. if (start < percpu_pfn && end > percpu_pfn)
  675. end = percpu_pfn;
  676. }
  677. #ifdef CONFIG_PCI
  678. if (start <= pci_reserve_start_pfn &&
  679. end > pci_reserve_start_pfn) {
  680. if (end > pci_reserve_end_pfn)
  681. init_free_pfn_range(pci_reserve_end_pfn, end);
  682. end = pci_reserve_start_pfn;
  683. }
  684. #endif
  685. init_free_pfn_range(start, end);
  686. }
  687. }
  688. /*
  689. * paging_init() sets up the page tables - note that all of lowmem is
  690. * already mapped by head.S.
  691. */
  692. void __init paging_init(void)
  693. {
  694. #ifdef CONFIG_HIGHMEM
  695. unsigned long vaddr, end;
  696. #endif
  697. #ifdef __tilegx__
  698. pud_t *pud;
  699. #endif
  700. pgd_t *pgd_base = swapper_pg_dir;
  701. kernel_physical_mapping_init(pgd_base);
  702. #ifdef CONFIG_HIGHMEM
  703. /*
  704. * Fixed mappings, only the page table structure has to be
  705. * created - mappings will be set by set_fixmap():
  706. */
  707. vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
  708. end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
  709. page_table_range_init(vaddr, end, pgd_base);
  710. permanent_kmaps_init(pgd_base);
  711. #endif
  712. #ifdef __tilegx__
  713. /*
  714. * Since GX allocates just one pmd_t array worth of vmalloc space,
  715. * we go ahead and allocate it statically here, then share it
  716. * globally. As a result we don't have to worry about any task
  717. * changing init_mm once we get up and running, and there's no
  718. * need for e.g. vmalloc_sync_all().
  719. */
  720. BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
  721. pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
  722. assign_pmd(pud, alloc_pmd());
  723. #endif
  724. }
  725. /*
  726. * Walk the kernel page tables and derive the page_home() from
  727. * the PTEs, so that set_pte() can properly validate the caching
  728. * of all PTEs it sees.
  729. */
  730. void __init set_page_homes(void)
  731. {
  732. }
  733. static void __init set_max_mapnr_init(void)
  734. {
  735. #ifdef CONFIG_FLATMEM
  736. max_mapnr = max_low_pfn;
  737. #endif
  738. }
  739. void __init mem_init(void)
  740. {
  741. int codesize, datasize, initsize;
  742. int i;
  743. #ifndef __tilegx__
  744. void *last;
  745. #endif
  746. #ifdef CONFIG_FLATMEM
  747. if (!mem_map)
  748. BUG();
  749. #endif
  750. #ifdef CONFIG_HIGHMEM
  751. /* check that fixmap and pkmap do not overlap */
  752. if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
  753. pr_err("fixmap and kmap areas overlap"
  754. " - this will crash\n");
  755. pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
  756. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
  757. FIXADDR_START);
  758. BUG();
  759. }
  760. #endif
  761. set_max_mapnr_init();
  762. /* this will put all bootmem onto the freelists */
  763. totalram_pages += free_all_bootmem();
  764. /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
  765. set_non_bootmem_pages_init();
  766. codesize = (unsigned long)&_etext - (unsigned long)&_text;
  767. datasize = (unsigned long)&_end - (unsigned long)&_sdata;
  768. initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
  769. initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
  770. pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
  771. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  772. num_physpages << (PAGE_SHIFT-10),
  773. codesize >> 10,
  774. datasize >> 10,
  775. initsize >> 10,
  776. (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
  777. );
  778. /*
  779. * In debug mode, dump some interesting memory mappings.
  780. */
  781. #ifdef CONFIG_HIGHMEM
  782. printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
  783. FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
  784. printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
  785. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
  786. #endif
  787. #ifdef CONFIG_HUGEVMAP
  788. printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
  789. HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
  790. #endif
  791. printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
  792. _VMALLOC_START, _VMALLOC_END - 1);
  793. #ifdef __tilegx__
  794. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  795. struct pglist_data *node = &node_data[i];
  796. if (node->node_present_pages) {
  797. unsigned long start = (unsigned long)
  798. pfn_to_kaddr(node->node_start_pfn);
  799. unsigned long end = start +
  800. (node->node_present_pages << PAGE_SHIFT);
  801. printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
  802. i, start, end - 1);
  803. }
  804. }
  805. #else
  806. last = high_memory;
  807. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  808. if ((unsigned long)vbase_map[i] != -1UL) {
  809. printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
  810. i, (unsigned long) (vbase_map[i]),
  811. (unsigned long) (last-1));
  812. last = vbase_map[i];
  813. }
  814. }
  815. #endif
  816. #ifndef __tilegx__
  817. /*
  818. * Convert from using one lock for all atomic operations to
  819. * one per cpu.
  820. */
  821. __init_atomic_per_cpu();
  822. #endif
  823. }
  824. /*
  825. * this is for the non-NUMA, single node SMP system case.
  826. * Specifically, in the case of x86, we will always add
  827. * memory to the highmem for now.
  828. */
  829. #ifndef CONFIG_NEED_MULTIPLE_NODES
  830. int arch_add_memory(u64 start, u64 size)
  831. {
  832. struct pglist_data *pgdata = &contig_page_data;
  833. struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
  834. unsigned long start_pfn = start >> PAGE_SHIFT;
  835. unsigned long nr_pages = size >> PAGE_SHIFT;
  836. return __add_pages(zone, start_pfn, nr_pages);
  837. }
  838. int remove_memory(u64 start, u64 size)
  839. {
  840. return -EINVAL;
  841. }
  842. #endif
  843. struct kmem_cache *pgd_cache;
  844. void __init pgtable_cache_init(void)
  845. {
  846. pgd_cache = kmem_cache_create("pgd",
  847. PTRS_PER_PGD*sizeof(pgd_t),
  848. PTRS_PER_PGD*sizeof(pgd_t),
  849. 0,
  850. NULL);
  851. if (!pgd_cache)
  852. panic("pgtable_cache_init(): Cannot create pgd cache");
  853. }
  854. #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
  855. /*
  856. * The __w1data area holds data that is only written during initialization,
  857. * and is read-only and thus freely cacheable thereafter. Fix the page
  858. * table entries that cover that region accordingly.
  859. */
  860. static void mark_w1data_ro(void)
  861. {
  862. /* Loop over page table entries */
  863. unsigned long addr = (unsigned long)__w1data_begin;
  864. BUG_ON((addr & (PAGE_SIZE-1)) != 0);
  865. for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
  866. unsigned long pfn = kaddr_to_pfn((void *)addr);
  867. pte_t *ptep = virt_to_pte(NULL, addr);
  868. BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
  869. set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
  870. }
  871. }
  872. #endif
  873. #ifdef CONFIG_DEBUG_PAGEALLOC
  874. static long __write_once initfree;
  875. #else
  876. static long __write_once initfree = 1;
  877. #endif
  878. /* Select whether to free (1) or mark unusable (0) the __init pages. */
  879. static int __init set_initfree(char *str)
  880. {
  881. long val;
  882. if (strict_strtol(str, 0, &val)) {
  883. initfree = val;
  884. pr_info("initfree: %s free init pages\n",
  885. initfree ? "will" : "won't");
  886. }
  887. return 1;
  888. }
  889. __setup("initfree=", set_initfree);
  890. static void free_init_pages(char *what, unsigned long begin, unsigned long end)
  891. {
  892. unsigned long addr = (unsigned long) begin;
  893. if (kdata_huge && !initfree) {
  894. pr_warning("Warning: ignoring initfree=0:"
  895. " incompatible with kdata=huge\n");
  896. initfree = 1;
  897. }
  898. end = (end + PAGE_SIZE - 1) & PAGE_MASK;
  899. local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
  900. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  901. /*
  902. * Note we just reset the home here directly in the
  903. * page table. We know this is safe because our caller
  904. * just flushed the caches on all the other cpus,
  905. * and they won't be touching any of these pages.
  906. */
  907. int pfn = kaddr_to_pfn((void *)addr);
  908. struct page *page = pfn_to_page(pfn);
  909. pte_t *ptep = virt_to_pte(NULL, addr);
  910. if (!initfree) {
  911. /*
  912. * If debugging page accesses then do not free
  913. * this memory but mark them not present - any
  914. * buggy init-section access will create a
  915. * kernel page fault:
  916. */
  917. pte_clear(&init_mm, addr, ptep);
  918. continue;
  919. }
  920. __ClearPageReserved(page);
  921. init_page_count(page);
  922. if (pte_huge(*ptep))
  923. BUG_ON(!kdata_huge);
  924. else
  925. set_pte_at(&init_mm, addr, ptep,
  926. pfn_pte(pfn, PAGE_KERNEL));
  927. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  928. free_page(addr);
  929. totalram_pages++;
  930. }
  931. pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  932. }
  933. void free_initmem(void)
  934. {
  935. const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
  936. /*
  937. * Evict the dirty initdata on the boot cpu, evict the w1data
  938. * wherever it's homed, and evict all the init code everywhere.
  939. * We are guaranteed that no one will touch the init pages any
  940. * more, and although other cpus may be touching the w1data,
  941. * we only actually change the caching on tile64, which won't
  942. * be keeping local copies in the other tiles' caches anyway.
  943. */
  944. homecache_evict(&cpu_cacheable_map);
  945. /* Free the data pages that we won't use again after init. */
  946. free_init_pages("unused kernel data",
  947. (unsigned long)_sinitdata,
  948. (unsigned long)_einitdata);
  949. /*
  950. * Free the pages mapped from 0xc0000000 that correspond to code
  951. * pages from MEM_SV_INTRPT that we won't use again after init.
  952. */
  953. free_init_pages("unused kernel text",
  954. (unsigned long)_sinittext - text_delta,
  955. (unsigned long)_einittext - text_delta);
  956. #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
  957. /*
  958. * Upgrade the .w1data section to globally cached.
  959. * We don't do this on tilepro, since the cache architecture
  960. * pretty much makes it irrelevant, and in any case we end
  961. * up having racing issues with other tiles that may touch
  962. * the data after we flush the cache but before we update
  963. * the PTEs and flush the TLBs, causing sharer shootdowns
  964. * later. Even though this is to clean data, it seems like
  965. * an unnecessary complication.
  966. */
  967. mark_w1data_ro();
  968. #endif
  969. /* Do a global TLB flush so everyone sees the changes. */
  970. flush_tlb_all();
  971. }