smp.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. * Author: Andy Fleming <afleming@freescale.com>
  3. * Kumar Gala <galak@kernel.crashing.org>
  4. *
  5. * Copyright 2006-2008 Freescale Semiconductor Inc.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. */
  12. #include <linux/stddef.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/delay.h>
  16. #include <linux/of.h>
  17. #include <linux/kexec.h>
  18. #include <linux/highmem.h>
  19. #include <asm/machdep.h>
  20. #include <asm/pgtable.h>
  21. #include <asm/page.h>
  22. #include <asm/mpic.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/dbell.h>
  25. #include <sysdev/fsl_soc.h>
  26. #include <sysdev/mpic.h>
  27. extern void __early_start(void);
  28. #define BOOT_ENTRY_ADDR_UPPER 0
  29. #define BOOT_ENTRY_ADDR_LOWER 1
  30. #define BOOT_ENTRY_R3_UPPER 2
  31. #define BOOT_ENTRY_R3_LOWER 3
  32. #define BOOT_ENTRY_RESV 4
  33. #define BOOT_ENTRY_PIR 5
  34. #define BOOT_ENTRY_R6_UPPER 6
  35. #define BOOT_ENTRY_R6_LOWER 7
  36. #define NUM_BOOT_ENTRY 8
  37. #define SIZE_BOOT_ENTRY (NUM_BOOT_ENTRY * sizeof(u32))
  38. static void __init
  39. smp_85xx_kick_cpu(int nr)
  40. {
  41. unsigned long flags;
  42. const u64 *cpu_rel_addr;
  43. __iomem u32 *bptr_vaddr;
  44. struct device_node *np;
  45. int n = 0;
  46. int ioremappable;
  47. WARN_ON (nr < 0 || nr >= NR_CPUS);
  48. pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr);
  49. np = of_get_cpu_node(nr, NULL);
  50. cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
  51. if (cpu_rel_addr == NULL) {
  52. printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr);
  53. return;
  54. }
  55. /*
  56. * A secondary core could be in a spinloop in the bootpage
  57. * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
  58. * The bootpage and highmem can be accessed via ioremap(), but
  59. * we need to directly access the spinloop if its in lowmem.
  60. */
  61. ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);
  62. /* Map the spin table */
  63. if (ioremappable)
  64. bptr_vaddr = ioremap(*cpu_rel_addr, SIZE_BOOT_ENTRY);
  65. else
  66. bptr_vaddr = phys_to_virt(*cpu_rel_addr);
  67. local_irq_save(flags);
  68. out_be32(bptr_vaddr + BOOT_ENTRY_PIR, nr);
  69. #ifdef CONFIG_PPC32
  70. out_be32(bptr_vaddr + BOOT_ENTRY_ADDR_LOWER, __pa(__early_start));
  71. if (!ioremappable)
  72. flush_dcache_range((ulong)bptr_vaddr,
  73. (ulong)(bptr_vaddr + SIZE_BOOT_ENTRY));
  74. /* Wait a bit for the CPU to ack. */
  75. while ((__secondary_hold_acknowledge != nr) && (++n < 1000))
  76. mdelay(1);
  77. #else
  78. out_be64((u64 *)(bptr_vaddr + BOOT_ENTRY_ADDR_UPPER),
  79. __pa((u64)*((unsigned long long *) generic_secondary_smp_init)));
  80. smp_generic_kick_cpu(nr);
  81. #endif
  82. local_irq_restore(flags);
  83. if (ioremappable)
  84. iounmap(bptr_vaddr);
  85. pr_debug("waited %d msecs for CPU #%d.\n", n, nr);
  86. }
  87. static void __init
  88. smp_85xx_setup_cpu(int cpu_nr)
  89. {
  90. mpic_setup_this_cpu();
  91. if (cpu_has_feature(CPU_FTR_DBELL))
  92. doorbell_setup_this_cpu();
  93. }
  94. struct smp_ops_t smp_85xx_ops = {
  95. .kick_cpu = smp_85xx_kick_cpu,
  96. #ifdef CONFIG_KEXEC
  97. .give_timebase = smp_generic_give_timebase,
  98. .take_timebase = smp_generic_take_timebase,
  99. #endif
  100. };
  101. #ifdef CONFIG_KEXEC
  102. atomic_t kexec_down_cpus = ATOMIC_INIT(0);
  103. void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
  104. {
  105. local_irq_disable();
  106. if (secondary) {
  107. atomic_inc(&kexec_down_cpus);
  108. /* loop forever */
  109. while (1);
  110. }
  111. }
  112. static void mpc85xx_smp_kexec_down(void *arg)
  113. {
  114. if (ppc_md.kexec_cpu_down)
  115. ppc_md.kexec_cpu_down(0,1);
  116. }
  117. static void map_and_flush(unsigned long paddr)
  118. {
  119. struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
  120. unsigned long kaddr = (unsigned long)kmap(page);
  121. flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
  122. kunmap(page);
  123. }
  124. /**
  125. * Before we reset the other cores, we need to flush relevant cache
  126. * out to memory so we don't get anything corrupted, some of these flushes
  127. * are performed out of an overabundance of caution as interrupts are not
  128. * disabled yet and we can switch cores
  129. */
  130. static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image)
  131. {
  132. kimage_entry_t *ptr, entry;
  133. unsigned long paddr;
  134. int i;
  135. if (image->type == KEXEC_TYPE_DEFAULT) {
  136. /* normal kexec images are stored in temporary pages */
  137. for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
  138. ptr = (entry & IND_INDIRECTION) ?
  139. phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
  140. if (!(entry & IND_DESTINATION)) {
  141. map_and_flush(entry);
  142. }
  143. }
  144. /* flush out last IND_DONE page */
  145. map_and_flush(entry);
  146. } else {
  147. /* crash type kexec images are copied to the crash region */
  148. for (i = 0; i < image->nr_segments; i++) {
  149. struct kexec_segment *seg = &image->segment[i];
  150. for (paddr = seg->mem; paddr < seg->mem + seg->memsz;
  151. paddr += PAGE_SIZE) {
  152. map_and_flush(paddr);
  153. }
  154. }
  155. }
  156. /* also flush the kimage struct to be passed in as well */
  157. flush_dcache_range((unsigned long)image,
  158. (unsigned long)image + sizeof(*image));
  159. }
  160. static void mpc85xx_smp_machine_kexec(struct kimage *image)
  161. {
  162. int timeout = INT_MAX;
  163. int i, num_cpus = num_present_cpus();
  164. mpc85xx_smp_flush_dcache_kexec(image);
  165. if (image->type == KEXEC_TYPE_DEFAULT)
  166. smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
  167. while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
  168. ( timeout > 0 ) )
  169. {
  170. timeout--;
  171. }
  172. if ( !timeout )
  173. printk(KERN_ERR "Unable to bring down secondary cpu(s)");
  174. for (i = 0; i < num_cpus; i++)
  175. {
  176. if ( i == smp_processor_id() ) continue;
  177. mpic_reset_core(i);
  178. }
  179. default_machine_kexec(image);
  180. }
  181. #endif /* CONFIG_KEXEC */
  182. void __init mpc85xx_smp_init(void)
  183. {
  184. struct device_node *np;
  185. np = of_find_node_by_type(NULL, "open-pic");
  186. if (np) {
  187. smp_85xx_ops.probe = smp_mpic_probe;
  188. smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
  189. smp_85xx_ops.message_pass = smp_mpic_message_pass;
  190. }
  191. if (cpu_has_feature(CPU_FTR_DBELL))
  192. smp_85xx_ops.message_pass = doorbell_message_pass;
  193. BUG_ON(!smp_85xx_ops.message_pass);
  194. smp_ops = &smp_85xx_ops;
  195. #ifdef CONFIG_KEXEC
  196. ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
  197. ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
  198. #endif
  199. }