prom_parse.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. #undef DEBUG
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/pci_regs.h>
  5. #include <linux/module.h>
  6. #include <linux/ioport.h>
  7. #include <linux/etherdevice.h>
  8. #include <linux/of_address.h>
  9. #include <asm/prom.h>
  10. #include <asm/pci-bridge.h>
  11. #ifdef CONFIG_PCI
  12. int of_irq_map_pci(struct pci_dev *pdev, struct of_irq *out_irq)
  13. {
  14. struct device_node *dn, *ppnode;
  15. struct pci_dev *ppdev;
  16. u32 lspec;
  17. u32 laddr[3];
  18. u8 pin;
  19. int rc;
  20. /* Check if we have a device node, if yes, fallback to standard OF
  21. * parsing
  22. */
  23. dn = pci_device_to_OF_node(pdev);
  24. if (dn) {
  25. rc = of_irq_map_one(dn, 0, out_irq);
  26. if (!rc)
  27. return rc;
  28. }
  29. /* Ok, we don't, time to have fun. Let's start by building up an
  30. * interrupt spec. we assume #interrupt-cells is 1, which is standard
  31. * for PCI. If you do different, then don't use that routine.
  32. */
  33. rc = pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pin);
  34. if (rc != 0)
  35. return rc;
  36. /* No pin, exit */
  37. if (pin == 0)
  38. return -ENODEV;
  39. /* Now we walk up the PCI tree */
  40. lspec = pin;
  41. for (;;) {
  42. /* Get the pci_dev of our parent */
  43. ppdev = pdev->bus->self;
  44. /* Ouch, it's a host bridge... */
  45. if (ppdev == NULL) {
  46. #ifdef CONFIG_PPC64
  47. ppnode = pci_bus_to_OF_node(pdev->bus);
  48. #else
  49. struct pci_controller *host;
  50. host = pci_bus_to_host(pdev->bus);
  51. ppnode = host ? host->dn : NULL;
  52. #endif
  53. /* No node for host bridge ? give up */
  54. if (ppnode == NULL)
  55. return -EINVAL;
  56. } else
  57. /* We found a P2P bridge, check if it has a node */
  58. ppnode = pci_device_to_OF_node(ppdev);
  59. /* Ok, we have found a parent with a device-node, hand over to
  60. * the OF parsing code.
  61. * We build a unit address from the linux device to be used for
  62. * resolution. Note that we use the linux bus number which may
  63. * not match your firmware bus numbering.
  64. * Fortunately, in most cases, interrupt-map-mask doesn't include
  65. * the bus number as part of the matching.
  66. * You should still be careful about that though if you intend
  67. * to rely on this function (you ship a firmware that doesn't
  68. * create device nodes for all PCI devices).
  69. */
  70. if (ppnode)
  71. break;
  72. /* We can only get here if we hit a P2P bridge with no node,
  73. * let's do standard swizzling and try again
  74. */
  75. lspec = pci_swizzle_interrupt_pin(pdev, lspec);
  76. pdev = ppdev;
  77. }
  78. laddr[0] = (pdev->bus->number << 16)
  79. | (pdev->devfn << 8);
  80. laddr[1] = laddr[2] = 0;
  81. return of_irq_map_raw(ppnode, &lspec, 1, laddr, out_irq);
  82. }
  83. EXPORT_SYMBOL_GPL(of_irq_map_pci);
  84. #endif /* CONFIG_PCI */
  85. void of_parse_dma_window(struct device_node *dn, const void *dma_window_prop,
  86. unsigned long *busno, unsigned long *phys, unsigned long *size)
  87. {
  88. const u32 *dma_window;
  89. u32 cells;
  90. const unsigned char *prop;
  91. dma_window = dma_window_prop;
  92. /* busno is always one cell */
  93. *busno = *(dma_window++);
  94. prop = of_get_property(dn, "ibm,#dma-address-cells", NULL);
  95. if (!prop)
  96. prop = of_get_property(dn, "#address-cells", NULL);
  97. cells = prop ? *(u32 *)prop : of_n_addr_cells(dn);
  98. *phys = of_read_number(dma_window, cells);
  99. dma_window += cells;
  100. prop = of_get_property(dn, "ibm,#dma-size-cells", NULL);
  101. cells = prop ? *(u32 *)prop : of_n_size_cells(dn);
  102. *size = of_read_number(dma_window, cells);
  103. }
  104. /**
  105. * Search the device tree for the best MAC address to use. 'mac-address' is
  106. * checked first, because that is supposed to contain to "most recent" MAC
  107. * address. If that isn't set, then 'local-mac-address' is checked next,
  108. * because that is the default address. If that isn't set, then the obsolete
  109. * 'address' is checked, just in case we're using an old device tree.
  110. *
  111. * Note that the 'address' property is supposed to contain a virtual address of
  112. * the register set, but some DTS files have redefined that property to be the
  113. * MAC address.
  114. *
  115. * All-zero MAC addresses are rejected, because those could be properties that
  116. * exist in the device tree, but were not set by U-Boot. For example, the
  117. * DTS could define 'mac-address' and 'local-mac-address', with zero MAC
  118. * addresses. Some older U-Boots only initialized 'local-mac-address'. In
  119. * this case, the real MAC is in 'local-mac-address', and 'mac-address' exists
  120. * but is all zeros.
  121. */
  122. const void *of_get_mac_address(struct device_node *np)
  123. {
  124. struct property *pp;
  125. pp = of_find_property(np, "mac-address", NULL);
  126. if (pp && (pp->length == 6) && is_valid_ether_addr(pp->value))
  127. return pp->value;
  128. pp = of_find_property(np, "local-mac-address", NULL);
  129. if (pp && (pp->length == 6) && is_valid_ether_addr(pp->value))
  130. return pp->value;
  131. pp = of_find_property(np, "address", NULL);
  132. if (pp && (pp->length == 6) && is_valid_ether_addr(pp->value))
  133. return pp->value;
  134. return NULL;
  135. }
  136. EXPORT_SYMBOL(of_get_mac_address);