random.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #include <linux/workqueue.h>
  257. #ifdef CONFIG_GENERIC_HARDIRQS
  258. # include <linux/irq.h>
  259. #endif
  260. #include <asm/processor.h>
  261. #include <asm/uaccess.h>
  262. #include <asm/irq.h>
  263. #include <asm/irq_regs.h>
  264. #include <asm/io.h>
  265. #define CREATE_TRACE_POINTS
  266. #include <trace/events/random.h>
  267. /*
  268. * Configuration information
  269. */
  270. #define INPUT_POOL_SHIFT 12
  271. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  272. #define OUTPUT_POOL_SHIFT 10
  273. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  274. #define SEC_XFER_SIZE 512
  275. #define EXTRACT_SIZE 10
  276. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  277. /*
  278. * To allow fractional bits to be tracked, the entropy_count field is
  279. * denominated in units of 1/8th bits.
  280. *
  281. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  282. * credit_entropy_bits() needs to be 64 bits wide.
  283. */
  284. #define ENTROPY_SHIFT 3
  285. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  286. /*
  287. * The minimum number of bits of entropy before we wake up a read on
  288. * /dev/random. Should be enough to do a significant reseed.
  289. */
  290. static int random_read_wakeup_thresh = 64;
  291. /*
  292. * If the entropy count falls under this number of bits, then we
  293. * should wake up processes which are selecting or polling on write
  294. * access to /dev/random.
  295. */
  296. static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
  297. /*
  298. * The minimum number of seconds between urandom pool resending. We
  299. * do this to limit the amount of entropy that can be drained from the
  300. * input pool even if there are heavy demands on /dev/urandom.
  301. */
  302. static int random_min_urandom_seed = 60;
  303. /*
  304. * Originally, we used a primitive polynomial of degree .poolwords
  305. * over GF(2). The taps for various sizes are defined below. They
  306. * were chosen to be evenly spaced except for the last tap, which is 1
  307. * to get the twisting happening as fast as possible.
  308. *
  309. * For the purposes of better mixing, we use the CRC-32 polynomial as
  310. * well to make a (modified) twisted Generalized Feedback Shift
  311. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  312. * generators. ACM Transactions on Modeling and Computer Simulation
  313. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  314. * GFSR generators II. ACM Transactions on Mdeling and Computer
  315. * Simulation 4:254-266)
  316. *
  317. * Thanks to Colin Plumb for suggesting this.
  318. *
  319. * The mixing operation is much less sensitive than the output hash,
  320. * where we use SHA-1. All that we want of mixing operation is that
  321. * it be a good non-cryptographic hash; i.e. it not produce collisions
  322. * when fed "random" data of the sort we expect to see. As long as
  323. * the pool state differs for different inputs, we have preserved the
  324. * input entropy and done a good job. The fact that an intelligent
  325. * attacker can construct inputs that will produce controlled
  326. * alterations to the pool's state is not important because we don't
  327. * consider such inputs to contribute any randomness. The only
  328. * property we need with respect to them is that the attacker can't
  329. * increase his/her knowledge of the pool's state. Since all
  330. * additions are reversible (knowing the final state and the input,
  331. * you can reconstruct the initial state), if an attacker has any
  332. * uncertainty about the initial state, he/she can only shuffle that
  333. * uncertainty about, but never cause any collisions (which would
  334. * decrease the uncertainty).
  335. *
  336. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  337. * Videau in their paper, "The Linux Pseudorandom Number Generator
  338. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  339. * paper, they point out that we are not using a true Twisted GFSR,
  340. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  341. * is, with only three taps, instead of the six that we are using).
  342. * As a result, the resulting polynomial is neither primitive nor
  343. * irreducible, and hence does not have a maximal period over
  344. * GF(2**32). They suggest a slight change to the generator
  345. * polynomial which improves the resulting TGFSR polynomial to be
  346. * irreducible, which we have made here.
  347. */
  348. static struct poolinfo {
  349. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  350. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  351. int tap1, tap2, tap3, tap4, tap5;
  352. } poolinfo_table[] = {
  353. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  354. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  355. { S(128), 104, 76, 51, 25, 1 },
  356. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  357. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  358. { S(32), 26, 19, 14, 7, 1 },
  359. #if 0
  360. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  361. { S(2048), 1638, 1231, 819, 411, 1 },
  362. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  363. { S(1024), 817, 615, 412, 204, 1 },
  364. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  365. { S(1024), 819, 616, 410, 207, 2 },
  366. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  367. { S(512), 411, 308, 208, 104, 1 },
  368. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  369. { S(512), 409, 307, 206, 102, 2 },
  370. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  371. { S(512), 409, 309, 205, 103, 2 },
  372. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  373. { S(256), 205, 155, 101, 52, 1 },
  374. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  375. { S(128), 103, 78, 51, 27, 2 },
  376. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  377. { S(64), 52, 39, 26, 14, 1 },
  378. #endif
  379. };
  380. /*
  381. * Static global variables
  382. */
  383. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  384. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  385. static struct fasync_struct *fasync;
  386. /**********************************************************************
  387. *
  388. * OS independent entropy store. Here are the functions which handle
  389. * storing entropy in an entropy pool.
  390. *
  391. **********************************************************************/
  392. struct entropy_store;
  393. struct entropy_store {
  394. /* read-only data: */
  395. const struct poolinfo *poolinfo;
  396. __u32 *pool;
  397. const char *name;
  398. struct entropy_store *pull;
  399. struct work_struct push_work;
  400. /* read-write data: */
  401. unsigned long last_pulled;
  402. spinlock_t lock;
  403. unsigned short add_ptr;
  404. unsigned short input_rotate;
  405. int entropy_count;
  406. int entropy_total;
  407. unsigned int initialized:1;
  408. unsigned int limit:1;
  409. unsigned int last_data_init:1;
  410. __u8 last_data[EXTRACT_SIZE];
  411. };
  412. static void push_to_pool(struct work_struct *work);
  413. static __u32 input_pool_data[INPUT_POOL_WORDS];
  414. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  415. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  416. static struct entropy_store input_pool = {
  417. .poolinfo = &poolinfo_table[0],
  418. .name = "input",
  419. .limit = 1,
  420. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  421. .pool = input_pool_data
  422. };
  423. static struct entropy_store blocking_pool = {
  424. .poolinfo = &poolinfo_table[1],
  425. .name = "blocking",
  426. .limit = 1,
  427. .pull = &input_pool,
  428. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  429. .pool = blocking_pool_data,
  430. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  431. push_to_pool),
  432. };
  433. static struct entropy_store nonblocking_pool = {
  434. .poolinfo = &poolinfo_table[1],
  435. .name = "nonblocking",
  436. .pull = &input_pool,
  437. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  438. .pool = nonblocking_pool_data,
  439. .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
  440. push_to_pool),
  441. };
  442. static __u32 const twist_table[8] = {
  443. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  444. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  445. /*
  446. * This function adds bytes into the entropy "pool". It does not
  447. * update the entropy estimate. The caller should call
  448. * credit_entropy_bits if this is appropriate.
  449. *
  450. * The pool is stirred with a primitive polynomial of the appropriate
  451. * degree, and then twisted. We twist by three bits at a time because
  452. * it's cheap to do so and helps slightly in the expected case where
  453. * the entropy is concentrated in the low-order bits.
  454. */
  455. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  456. int nbytes, __u8 out[64])
  457. {
  458. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  459. int input_rotate;
  460. int wordmask = r->poolinfo->poolwords - 1;
  461. const char *bytes = in;
  462. __u32 w;
  463. tap1 = r->poolinfo->tap1;
  464. tap2 = r->poolinfo->tap2;
  465. tap3 = r->poolinfo->tap3;
  466. tap4 = r->poolinfo->tap4;
  467. tap5 = r->poolinfo->tap5;
  468. smp_rmb();
  469. input_rotate = ACCESS_ONCE(r->input_rotate);
  470. i = ACCESS_ONCE(r->add_ptr);
  471. /* mix one byte at a time to simplify size handling and churn faster */
  472. while (nbytes--) {
  473. w = rol32(*bytes++, input_rotate);
  474. i = (i - 1) & wordmask;
  475. /* XOR in the various taps */
  476. w ^= r->pool[i];
  477. w ^= r->pool[(i + tap1) & wordmask];
  478. w ^= r->pool[(i + tap2) & wordmask];
  479. w ^= r->pool[(i + tap3) & wordmask];
  480. w ^= r->pool[(i + tap4) & wordmask];
  481. w ^= r->pool[(i + tap5) & wordmask];
  482. /* Mix the result back in with a twist */
  483. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  484. /*
  485. * Normally, we add 7 bits of rotation to the pool.
  486. * At the beginning of the pool, add an extra 7 bits
  487. * rotation, so that successive passes spread the
  488. * input bits across the pool evenly.
  489. */
  490. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  491. }
  492. ACCESS_ONCE(r->input_rotate) = input_rotate;
  493. ACCESS_ONCE(r->add_ptr) = i;
  494. smp_wmb();
  495. if (out)
  496. for (j = 0; j < 16; j++)
  497. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  498. }
  499. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  500. int nbytes, __u8 out[64])
  501. {
  502. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  503. _mix_pool_bytes(r, in, nbytes, out);
  504. }
  505. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  506. int nbytes, __u8 out[64])
  507. {
  508. unsigned long flags;
  509. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  510. spin_lock_irqsave(&r->lock, flags);
  511. _mix_pool_bytes(r, in, nbytes, out);
  512. spin_unlock_irqrestore(&r->lock, flags);
  513. }
  514. struct fast_pool {
  515. __u32 pool[4];
  516. unsigned long last;
  517. unsigned short count;
  518. unsigned char rotate;
  519. unsigned char last_timer_intr;
  520. };
  521. /*
  522. * This is a fast mixing routine used by the interrupt randomness
  523. * collector. It's hardcoded for an 128 bit pool and assumes that any
  524. * locks that might be needed are taken by the caller.
  525. */
  526. static void fast_mix(struct fast_pool *f, __u32 input[4])
  527. {
  528. __u32 w;
  529. unsigned input_rotate = f->rotate;
  530. w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
  531. f->pool[0] = (w >> 3) ^ twist_table[w & 7];
  532. input_rotate = (input_rotate + 14) & 31;
  533. w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
  534. f->pool[1] = (w >> 3) ^ twist_table[w & 7];
  535. input_rotate = (input_rotate + 7) & 31;
  536. w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
  537. f->pool[2] = (w >> 3) ^ twist_table[w & 7];
  538. input_rotate = (input_rotate + 7) & 31;
  539. w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
  540. f->pool[3] = (w >> 3) ^ twist_table[w & 7];
  541. input_rotate = (input_rotate + 7) & 31;
  542. f->rotate = input_rotate;
  543. f->count++;
  544. }
  545. /*
  546. * Credit (or debit) the entropy store with n bits of entropy.
  547. * Use credit_entropy_bits_safe() if the value comes from userspace
  548. * or otherwise should be checked for extreme values.
  549. */
  550. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  551. {
  552. int entropy_count, orig;
  553. const int pool_size = r->poolinfo->poolfracbits;
  554. int nfrac = nbits << ENTROPY_SHIFT;
  555. if (!nbits)
  556. return;
  557. retry:
  558. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  559. if (nfrac < 0) {
  560. /* Debit */
  561. entropy_count += nfrac;
  562. } else {
  563. /*
  564. * Credit: we have to account for the possibility of
  565. * overwriting already present entropy. Even in the
  566. * ideal case of pure Shannon entropy, new contributions
  567. * approach the full value asymptotically:
  568. *
  569. * entropy <- entropy + (pool_size - entropy) *
  570. * (1 - exp(-add_entropy/pool_size))
  571. *
  572. * For add_entropy <= pool_size/2 then
  573. * (1 - exp(-add_entropy/pool_size)) >=
  574. * (add_entropy/pool_size)*0.7869...
  575. * so we can approximate the exponential with
  576. * 3/4*add_entropy/pool_size and still be on the
  577. * safe side by adding at most pool_size/2 at a time.
  578. *
  579. * The use of pool_size-2 in the while statement is to
  580. * prevent rounding artifacts from making the loop
  581. * arbitrarily long; this limits the loop to log2(pool_size)*2
  582. * turns no matter how large nbits is.
  583. */
  584. int pnfrac = nfrac;
  585. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  586. /* The +2 corresponds to the /4 in the denominator */
  587. do {
  588. unsigned int anfrac = min(pnfrac, pool_size/2);
  589. unsigned int add =
  590. ((pool_size - entropy_count)*anfrac*3) >> s;
  591. entropy_count += add;
  592. pnfrac -= anfrac;
  593. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  594. }
  595. if (entropy_count < 0) {
  596. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  597. r->name, entropy_count);
  598. WARN_ON(1);
  599. entropy_count = 0;
  600. } else if (entropy_count > pool_size)
  601. entropy_count = pool_size;
  602. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  603. goto retry;
  604. r->entropy_total += nbits;
  605. if (!r->initialized && nbits > 0) {
  606. if (r->entropy_total > 128) {
  607. if (r == &nonblocking_pool)
  608. pr_notice("random: %s pool is initialized\n",
  609. r->name);
  610. r->initialized = 1;
  611. r->entropy_total = 0;
  612. }
  613. }
  614. trace_credit_entropy_bits(r->name, nbits,
  615. entropy_count >> ENTROPY_SHIFT,
  616. r->entropy_total, _RET_IP_);
  617. if (r == &input_pool) {
  618. int entropy_bytes = entropy_count >> ENTROPY_SHIFT;
  619. /* should we wake readers? */
  620. if (entropy_bytes >= random_read_wakeup_thresh) {
  621. wake_up_interruptible(&random_read_wait);
  622. kill_fasync(&fasync, SIGIO, POLL_IN);
  623. }
  624. /* If the input pool is getting full, send some
  625. * entropy to the two output pools, flipping back and
  626. * forth between them, until the output pools are 75%
  627. * full.
  628. */
  629. if (entropy_bytes > random_write_wakeup_thresh &&
  630. r->initialized &&
  631. r->entropy_total >= 2*random_read_wakeup_thresh) {
  632. static struct entropy_store *last = &blocking_pool;
  633. struct entropy_store *other = &blocking_pool;
  634. if (last == &blocking_pool)
  635. other = &nonblocking_pool;
  636. if (other->entropy_count <=
  637. 3 * other->poolinfo->poolfracbits / 4)
  638. last = other;
  639. if (last->entropy_count <=
  640. 3 * last->poolinfo->poolfracbits / 4) {
  641. schedule_work(&last->push_work);
  642. r->entropy_total = 0;
  643. }
  644. }
  645. }
  646. }
  647. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  648. {
  649. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  650. /* Cap the value to avoid overflows */
  651. nbits = min(nbits, nbits_max);
  652. nbits = max(nbits, -nbits_max);
  653. credit_entropy_bits(r, nbits);
  654. }
  655. /*********************************************************************
  656. *
  657. * Entropy input management
  658. *
  659. *********************************************************************/
  660. /* There is one of these per entropy source */
  661. struct timer_rand_state {
  662. cycles_t last_time;
  663. long last_delta, last_delta2;
  664. unsigned dont_count_entropy:1;
  665. };
  666. /*
  667. * Add device- or boot-specific data to the input and nonblocking
  668. * pools to help initialize them to unique values.
  669. *
  670. * None of this adds any entropy, it is meant to avoid the
  671. * problem of the nonblocking pool having similar initial state
  672. * across largely identical devices.
  673. */
  674. void add_device_randomness(const void *buf, unsigned int size)
  675. {
  676. unsigned long time = random_get_entropy() ^ jiffies;
  677. unsigned long flags;
  678. trace_add_device_randomness(size, _RET_IP_);
  679. spin_lock_irqsave(&input_pool.lock, flags);
  680. _mix_pool_bytes(&input_pool, buf, size, NULL);
  681. _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  682. spin_unlock_irqrestore(&input_pool.lock, flags);
  683. spin_lock_irqsave(&nonblocking_pool.lock, flags);
  684. _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  685. _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  686. spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
  687. }
  688. EXPORT_SYMBOL(add_device_randomness);
  689. static struct timer_rand_state input_timer_state;
  690. /*
  691. * This function adds entropy to the entropy "pool" by using timing
  692. * delays. It uses the timer_rand_state structure to make an estimate
  693. * of how many bits of entropy this call has added to the pool.
  694. *
  695. * The number "num" is also added to the pool - it should somehow describe
  696. * the type of event which just happened. This is currently 0-255 for
  697. * keyboard scan codes, and 256 upwards for interrupts.
  698. *
  699. */
  700. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  701. {
  702. struct entropy_store *r;
  703. struct {
  704. long jiffies;
  705. unsigned cycles;
  706. unsigned num;
  707. } sample;
  708. long delta, delta2, delta3;
  709. preempt_disable();
  710. sample.jiffies = jiffies;
  711. sample.cycles = random_get_entropy();
  712. sample.num = num;
  713. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  714. mix_pool_bytes(r, &sample, sizeof(sample), NULL);
  715. /*
  716. * Calculate number of bits of randomness we probably added.
  717. * We take into account the first, second and third-order deltas
  718. * in order to make our estimate.
  719. */
  720. if (!state->dont_count_entropy) {
  721. delta = sample.jiffies - state->last_time;
  722. state->last_time = sample.jiffies;
  723. delta2 = delta - state->last_delta;
  724. state->last_delta = delta;
  725. delta3 = delta2 - state->last_delta2;
  726. state->last_delta2 = delta2;
  727. if (delta < 0)
  728. delta = -delta;
  729. if (delta2 < 0)
  730. delta2 = -delta2;
  731. if (delta3 < 0)
  732. delta3 = -delta3;
  733. if (delta > delta2)
  734. delta = delta2;
  735. if (delta > delta3)
  736. delta = delta3;
  737. /*
  738. * delta is now minimum absolute delta.
  739. * Round down by 1 bit on general principles,
  740. * and limit entropy entimate to 12 bits.
  741. */
  742. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  743. }
  744. preempt_enable();
  745. }
  746. void add_input_randomness(unsigned int type, unsigned int code,
  747. unsigned int value)
  748. {
  749. static unsigned char last_value;
  750. /* ignore autorepeat and the like */
  751. if (value == last_value)
  752. return;
  753. last_value = value;
  754. add_timer_randomness(&input_timer_state,
  755. (type << 4) ^ code ^ (code >> 4) ^ value);
  756. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  757. }
  758. EXPORT_SYMBOL_GPL(add_input_randomness);
  759. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  760. void add_interrupt_randomness(int irq, int irq_flags)
  761. {
  762. struct entropy_store *r;
  763. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  764. struct pt_regs *regs = get_irq_regs();
  765. unsigned long now = jiffies;
  766. cycles_t cycles = random_get_entropy();
  767. __u32 input[4], c_high, j_high;
  768. __u64 ip;
  769. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  770. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  771. input[0] = cycles ^ j_high ^ irq;
  772. input[1] = now ^ c_high;
  773. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  774. input[2] = ip;
  775. input[3] = ip >> 32;
  776. fast_mix(fast_pool, input);
  777. if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
  778. return;
  779. fast_pool->last = now;
  780. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  781. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  782. /*
  783. * If we don't have a valid cycle counter, and we see
  784. * back-to-back timer interrupts, then skip giving credit for
  785. * any entropy.
  786. */
  787. if (cycles == 0) {
  788. if (irq_flags & __IRQF_TIMER) {
  789. if (fast_pool->last_timer_intr)
  790. return;
  791. fast_pool->last_timer_intr = 1;
  792. } else
  793. fast_pool->last_timer_intr = 0;
  794. }
  795. credit_entropy_bits(r, 1);
  796. }
  797. #ifdef CONFIG_BLOCK
  798. void add_disk_randomness(struct gendisk *disk)
  799. {
  800. if (!disk || !disk->random)
  801. return;
  802. /* first major is 1, so we get >= 0x200 here */
  803. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  804. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  805. }
  806. #endif
  807. /*********************************************************************
  808. *
  809. * Entropy extraction routines
  810. *
  811. *********************************************************************/
  812. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  813. size_t nbytes, int min, int rsvd);
  814. /*
  815. * This utility inline function is responsible for transferring entropy
  816. * from the primary pool to the secondary extraction pool. We make
  817. * sure we pull enough for a 'catastrophic reseed'.
  818. */
  819. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  820. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  821. {
  822. if (r->limit == 0 && random_min_urandom_seed) {
  823. unsigned long now = jiffies;
  824. if (time_before(now,
  825. r->last_pulled + random_min_urandom_seed * HZ))
  826. return;
  827. r->last_pulled = now;
  828. }
  829. if (r->pull &&
  830. r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
  831. r->entropy_count < r->poolinfo->poolfracbits)
  832. _xfer_secondary_pool(r, nbytes);
  833. }
  834. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  835. {
  836. __u32 tmp[OUTPUT_POOL_WORDS];
  837. /* For /dev/random's pool, always leave two wakeup worth's BITS */
  838. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  839. int bytes = nbytes;
  840. /* pull at least as many as BYTES as wakeup BITS */
  841. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  842. /* but never more than the buffer size */
  843. bytes = min_t(int, bytes, sizeof(tmp));
  844. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  845. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  846. bytes = extract_entropy(r->pull, tmp, bytes,
  847. random_read_wakeup_thresh / 8, rsvd);
  848. mix_pool_bytes(r, tmp, bytes, NULL);
  849. credit_entropy_bits(r, bytes*8);
  850. }
  851. /*
  852. * Used as a workqueue function so that when the input pool is getting
  853. * full, we can "spill over" some entropy to the output pools. That
  854. * way the output pools can store some of the excess entropy instead
  855. * of letting it go to waste.
  856. */
  857. static void push_to_pool(struct work_struct *work)
  858. {
  859. struct entropy_store *r = container_of(work, struct entropy_store,
  860. push_work);
  861. BUG_ON(!r);
  862. _xfer_secondary_pool(r, random_read_wakeup_thresh/8);
  863. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  864. r->pull->entropy_count >> ENTROPY_SHIFT);
  865. }
  866. /*
  867. * These functions extracts randomness from the "entropy pool", and
  868. * returns it in a buffer.
  869. *
  870. * The min parameter specifies the minimum amount we can pull before
  871. * failing to avoid races that defeat catastrophic reseeding while the
  872. * reserved parameter indicates how much entropy we must leave in the
  873. * pool after each pull to avoid starving other readers.
  874. *
  875. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  876. */
  877. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  878. int reserved)
  879. {
  880. unsigned long flags;
  881. int wakeup_write = 0;
  882. int have_bytes;
  883. int entropy_count, orig;
  884. size_t ibytes;
  885. /* Hold lock while accounting */
  886. spin_lock_irqsave(&r->lock, flags);
  887. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  888. /* Can we pull enough? */
  889. retry:
  890. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  891. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  892. ibytes = nbytes;
  893. if (have_bytes < min + reserved) {
  894. ibytes = 0;
  895. } else {
  896. /* If limited, never pull more than available */
  897. if (r->limit && ibytes + reserved >= have_bytes)
  898. ibytes = have_bytes - reserved;
  899. if (have_bytes >= ibytes + reserved)
  900. entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
  901. else
  902. entropy_count = reserved << (ENTROPY_SHIFT + 3);
  903. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  904. goto retry;
  905. if ((r->entropy_count >> ENTROPY_SHIFT)
  906. < random_write_wakeup_thresh)
  907. wakeup_write = 1;
  908. }
  909. spin_unlock_irqrestore(&r->lock, flags);
  910. trace_debit_entropy(r->name, 8 * ibytes);
  911. if (wakeup_write) {
  912. wake_up_interruptible(&random_write_wait);
  913. kill_fasync(&fasync, SIGIO, POLL_OUT);
  914. }
  915. return ibytes;
  916. }
  917. static void extract_buf(struct entropy_store *r, __u8 *out)
  918. {
  919. int i;
  920. union {
  921. __u32 w[5];
  922. unsigned long l[LONGS(20)];
  923. } hash;
  924. __u32 workspace[SHA_WORKSPACE_WORDS];
  925. __u8 extract[64];
  926. unsigned long flags;
  927. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  928. sha_init(hash.w);
  929. spin_lock_irqsave(&r->lock, flags);
  930. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  931. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  932. /*
  933. * If we have a architectural hardware random number
  934. * generator, mix that in, too.
  935. */
  936. for (i = 0; i < LONGS(20); i++) {
  937. unsigned long v;
  938. if (!arch_get_random_long(&v))
  939. break;
  940. hash.l[i] ^= v;
  941. }
  942. /*
  943. * We mix the hash back into the pool to prevent backtracking
  944. * attacks (where the attacker knows the state of the pool
  945. * plus the current outputs, and attempts to find previous
  946. * ouputs), unless the hash function can be inverted. By
  947. * mixing at least a SHA1 worth of hash data back, we make
  948. * brute-forcing the feedback as hard as brute-forcing the
  949. * hash.
  950. */
  951. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  952. spin_unlock_irqrestore(&r->lock, flags);
  953. /*
  954. * To avoid duplicates, we atomically extract a portion of the
  955. * pool while mixing, and hash one final time.
  956. */
  957. sha_transform(hash.w, extract, workspace);
  958. memset(extract, 0, sizeof(extract));
  959. memset(workspace, 0, sizeof(workspace));
  960. /*
  961. * In case the hash function has some recognizable output
  962. * pattern, we fold it in half. Thus, we always feed back
  963. * twice as much data as we output.
  964. */
  965. hash.w[0] ^= hash.w[3];
  966. hash.w[1] ^= hash.w[4];
  967. hash.w[2] ^= rol32(hash.w[2], 16);
  968. memcpy(out, &hash, EXTRACT_SIZE);
  969. memset(&hash, 0, sizeof(hash));
  970. }
  971. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  972. size_t nbytes, int min, int reserved)
  973. {
  974. ssize_t ret = 0, i;
  975. __u8 tmp[EXTRACT_SIZE];
  976. unsigned long flags;
  977. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  978. if (fips_enabled) {
  979. spin_lock_irqsave(&r->lock, flags);
  980. if (!r->last_data_init) {
  981. r->last_data_init = 1;
  982. spin_unlock_irqrestore(&r->lock, flags);
  983. trace_extract_entropy(r->name, EXTRACT_SIZE,
  984. ENTROPY_BITS(r), _RET_IP_);
  985. xfer_secondary_pool(r, EXTRACT_SIZE);
  986. extract_buf(r, tmp);
  987. spin_lock_irqsave(&r->lock, flags);
  988. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  989. }
  990. spin_unlock_irqrestore(&r->lock, flags);
  991. }
  992. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  993. xfer_secondary_pool(r, nbytes);
  994. nbytes = account(r, nbytes, min, reserved);
  995. while (nbytes) {
  996. extract_buf(r, tmp);
  997. if (fips_enabled) {
  998. spin_lock_irqsave(&r->lock, flags);
  999. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1000. panic("Hardware RNG duplicated output!\n");
  1001. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1002. spin_unlock_irqrestore(&r->lock, flags);
  1003. }
  1004. i = min_t(int, nbytes, EXTRACT_SIZE);
  1005. memcpy(buf, tmp, i);
  1006. nbytes -= i;
  1007. buf += i;
  1008. ret += i;
  1009. }
  1010. /* Wipe data just returned from memory */
  1011. memset(tmp, 0, sizeof(tmp));
  1012. return ret;
  1013. }
  1014. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1015. size_t nbytes)
  1016. {
  1017. ssize_t ret = 0, i;
  1018. __u8 tmp[EXTRACT_SIZE];
  1019. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1020. xfer_secondary_pool(r, nbytes);
  1021. nbytes = account(r, nbytes, 0, 0);
  1022. while (nbytes) {
  1023. if (need_resched()) {
  1024. if (signal_pending(current)) {
  1025. if (ret == 0)
  1026. ret = -ERESTARTSYS;
  1027. break;
  1028. }
  1029. schedule();
  1030. }
  1031. extract_buf(r, tmp);
  1032. i = min_t(int, nbytes, EXTRACT_SIZE);
  1033. if (copy_to_user(buf, tmp, i)) {
  1034. ret = -EFAULT;
  1035. break;
  1036. }
  1037. nbytes -= i;
  1038. buf += i;
  1039. ret += i;
  1040. }
  1041. /* Wipe data just returned from memory */
  1042. memset(tmp, 0, sizeof(tmp));
  1043. return ret;
  1044. }
  1045. /*
  1046. * This function is the exported kernel interface. It returns some
  1047. * number of good random numbers, suitable for key generation, seeding
  1048. * TCP sequence numbers, etc. It does not use the hw random number
  1049. * generator, if available; use get_random_bytes_arch() for that.
  1050. */
  1051. void get_random_bytes(void *buf, int nbytes)
  1052. {
  1053. trace_get_random_bytes(nbytes, _RET_IP_);
  1054. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1055. }
  1056. EXPORT_SYMBOL(get_random_bytes);
  1057. /*
  1058. * This function will use the architecture-specific hardware random
  1059. * number generator if it is available. The arch-specific hw RNG will
  1060. * almost certainly be faster than what we can do in software, but it
  1061. * is impossible to verify that it is implemented securely (as
  1062. * opposed, to, say, the AES encryption of a sequence number using a
  1063. * key known by the NSA). So it's useful if we need the speed, but
  1064. * only if we're willing to trust the hardware manufacturer not to
  1065. * have put in a back door.
  1066. */
  1067. void get_random_bytes_arch(void *buf, int nbytes)
  1068. {
  1069. char *p = buf;
  1070. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1071. while (nbytes) {
  1072. unsigned long v;
  1073. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1074. if (!arch_get_random_long(&v))
  1075. break;
  1076. memcpy(p, &v, chunk);
  1077. p += chunk;
  1078. nbytes -= chunk;
  1079. }
  1080. if (nbytes)
  1081. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1082. }
  1083. EXPORT_SYMBOL(get_random_bytes_arch);
  1084. /*
  1085. * init_std_data - initialize pool with system data
  1086. *
  1087. * @r: pool to initialize
  1088. *
  1089. * This function clears the pool's entropy count and mixes some system
  1090. * data into the pool to prepare it for use. The pool is not cleared
  1091. * as that can only decrease the entropy in the pool.
  1092. */
  1093. static void init_std_data(struct entropy_store *r)
  1094. {
  1095. int i;
  1096. ktime_t now = ktime_get_real();
  1097. unsigned long rv;
  1098. r->last_pulled = jiffies;
  1099. mix_pool_bytes(r, &now, sizeof(now), NULL);
  1100. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1101. if (!arch_get_random_long(&rv))
  1102. rv = random_get_entropy();
  1103. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  1104. }
  1105. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  1106. }
  1107. /*
  1108. * Note that setup_arch() may call add_device_randomness()
  1109. * long before we get here. This allows seeding of the pools
  1110. * with some platform dependent data very early in the boot
  1111. * process. But it limits our options here. We must use
  1112. * statically allocated structures that already have all
  1113. * initializations complete at compile time. We should also
  1114. * take care not to overwrite the precious per platform data
  1115. * we were given.
  1116. */
  1117. static int rand_initialize(void)
  1118. {
  1119. init_std_data(&input_pool);
  1120. init_std_data(&blocking_pool);
  1121. init_std_data(&nonblocking_pool);
  1122. return 0;
  1123. }
  1124. early_initcall(rand_initialize);
  1125. #ifdef CONFIG_BLOCK
  1126. void rand_initialize_disk(struct gendisk *disk)
  1127. {
  1128. struct timer_rand_state *state;
  1129. /*
  1130. * If kzalloc returns null, we just won't use that entropy
  1131. * source.
  1132. */
  1133. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1134. if (state)
  1135. disk->random = state;
  1136. }
  1137. #endif
  1138. static ssize_t
  1139. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1140. {
  1141. ssize_t n, retval = 0, count = 0;
  1142. if (nbytes == 0)
  1143. return 0;
  1144. while (nbytes > 0) {
  1145. n = nbytes;
  1146. if (n > SEC_XFER_SIZE)
  1147. n = SEC_XFER_SIZE;
  1148. n = extract_entropy_user(&blocking_pool, buf, n);
  1149. if (n < 0) {
  1150. retval = n;
  1151. break;
  1152. }
  1153. trace_random_read(n*8, (nbytes-n)*8,
  1154. ENTROPY_BITS(&blocking_pool),
  1155. ENTROPY_BITS(&input_pool));
  1156. if (n == 0) {
  1157. if (file->f_flags & O_NONBLOCK) {
  1158. retval = -EAGAIN;
  1159. break;
  1160. }
  1161. wait_event_interruptible(random_read_wait,
  1162. ENTROPY_BITS(&input_pool) >=
  1163. random_read_wakeup_thresh);
  1164. if (signal_pending(current)) {
  1165. retval = -ERESTARTSYS;
  1166. break;
  1167. }
  1168. continue;
  1169. }
  1170. count += n;
  1171. buf += n;
  1172. nbytes -= n;
  1173. break; /* This break makes the device work */
  1174. /* like a named pipe */
  1175. }
  1176. return (count ? count : retval);
  1177. }
  1178. static ssize_t
  1179. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1180. {
  1181. int ret;
  1182. if (unlikely(nonblocking_pool.initialized == 0))
  1183. printk_once(KERN_NOTICE "random: %s urandom read "
  1184. "with %d bits of entropy available\n",
  1185. current->comm, nonblocking_pool.entropy_total);
  1186. ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1187. trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
  1188. ENTROPY_BITS(&input_pool));
  1189. return ret;
  1190. }
  1191. static unsigned int
  1192. random_poll(struct file *file, poll_table * wait)
  1193. {
  1194. unsigned int mask;
  1195. poll_wait(file, &random_read_wait, wait);
  1196. poll_wait(file, &random_write_wait, wait);
  1197. mask = 0;
  1198. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
  1199. mask |= POLLIN | POLLRDNORM;
  1200. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
  1201. mask |= POLLOUT | POLLWRNORM;
  1202. return mask;
  1203. }
  1204. static int
  1205. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1206. {
  1207. size_t bytes;
  1208. __u32 buf[16];
  1209. const char __user *p = buffer;
  1210. while (count > 0) {
  1211. bytes = min(count, sizeof(buf));
  1212. if (copy_from_user(&buf, p, bytes))
  1213. return -EFAULT;
  1214. count -= bytes;
  1215. p += bytes;
  1216. mix_pool_bytes(r, buf, bytes, NULL);
  1217. cond_resched();
  1218. }
  1219. return 0;
  1220. }
  1221. static ssize_t random_write(struct file *file, const char __user *buffer,
  1222. size_t count, loff_t *ppos)
  1223. {
  1224. size_t ret;
  1225. ret = write_pool(&blocking_pool, buffer, count);
  1226. if (ret)
  1227. return ret;
  1228. ret = write_pool(&nonblocking_pool, buffer, count);
  1229. if (ret)
  1230. return ret;
  1231. return (ssize_t)count;
  1232. }
  1233. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1234. {
  1235. int size, ent_count;
  1236. int __user *p = (int __user *)arg;
  1237. int retval;
  1238. switch (cmd) {
  1239. case RNDGETENTCNT:
  1240. /* inherently racy, no point locking */
  1241. ent_count = ENTROPY_BITS(&input_pool);
  1242. if (put_user(ent_count, p))
  1243. return -EFAULT;
  1244. return 0;
  1245. case RNDADDTOENTCNT:
  1246. if (!capable(CAP_SYS_ADMIN))
  1247. return -EPERM;
  1248. if (get_user(ent_count, p))
  1249. return -EFAULT;
  1250. credit_entropy_bits_safe(&input_pool, ent_count);
  1251. return 0;
  1252. case RNDADDENTROPY:
  1253. if (!capable(CAP_SYS_ADMIN))
  1254. return -EPERM;
  1255. if (get_user(ent_count, p++))
  1256. return -EFAULT;
  1257. if (ent_count < 0)
  1258. return -EINVAL;
  1259. if (get_user(size, p++))
  1260. return -EFAULT;
  1261. retval = write_pool(&input_pool, (const char __user *)p,
  1262. size);
  1263. if (retval < 0)
  1264. return retval;
  1265. credit_entropy_bits_safe(&input_pool, ent_count);
  1266. return 0;
  1267. case RNDZAPENTCNT:
  1268. case RNDCLEARPOOL:
  1269. /*
  1270. * Clear the entropy pool counters. We no longer clear
  1271. * the entropy pool, as that's silly.
  1272. */
  1273. if (!capable(CAP_SYS_ADMIN))
  1274. return -EPERM;
  1275. input_pool.entropy_count = 0;
  1276. nonblocking_pool.entropy_count = 0;
  1277. blocking_pool.entropy_count = 0;
  1278. return 0;
  1279. default:
  1280. return -EINVAL;
  1281. }
  1282. }
  1283. static int random_fasync(int fd, struct file *filp, int on)
  1284. {
  1285. return fasync_helper(fd, filp, on, &fasync);
  1286. }
  1287. const struct file_operations random_fops = {
  1288. .read = random_read,
  1289. .write = random_write,
  1290. .poll = random_poll,
  1291. .unlocked_ioctl = random_ioctl,
  1292. .fasync = random_fasync,
  1293. .llseek = noop_llseek,
  1294. };
  1295. const struct file_operations urandom_fops = {
  1296. .read = urandom_read,
  1297. .write = random_write,
  1298. .unlocked_ioctl = random_ioctl,
  1299. .fasync = random_fasync,
  1300. .llseek = noop_llseek,
  1301. };
  1302. /***************************************************************
  1303. * Random UUID interface
  1304. *
  1305. * Used here for a Boot ID, but can be useful for other kernel
  1306. * drivers.
  1307. ***************************************************************/
  1308. /*
  1309. * Generate random UUID
  1310. */
  1311. void generate_random_uuid(unsigned char uuid_out[16])
  1312. {
  1313. get_random_bytes(uuid_out, 16);
  1314. /* Set UUID version to 4 --- truly random generation */
  1315. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1316. /* Set the UUID variant to DCE */
  1317. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1318. }
  1319. EXPORT_SYMBOL(generate_random_uuid);
  1320. /********************************************************************
  1321. *
  1322. * Sysctl interface
  1323. *
  1324. ********************************************************************/
  1325. #ifdef CONFIG_SYSCTL
  1326. #include <linux/sysctl.h>
  1327. static int min_read_thresh = 8, min_write_thresh;
  1328. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1329. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1330. static char sysctl_bootid[16];
  1331. /*
  1332. * These functions is used to return both the bootid UUID, and random
  1333. * UUID. The difference is in whether table->data is NULL; if it is,
  1334. * then a new UUID is generated and returned to the user.
  1335. *
  1336. * If the user accesses this via the proc interface, it will be returned
  1337. * as an ASCII string in the standard UUID format. If accesses via the
  1338. * sysctl system call, it is returned as 16 bytes of binary data.
  1339. */
  1340. static int proc_do_uuid(struct ctl_table *table, int write,
  1341. void __user *buffer, size_t *lenp, loff_t *ppos)
  1342. {
  1343. struct ctl_table fake_table;
  1344. unsigned char buf[64], tmp_uuid[16], *uuid;
  1345. uuid = table->data;
  1346. if (!uuid) {
  1347. uuid = tmp_uuid;
  1348. generate_random_uuid(uuid);
  1349. } else {
  1350. static DEFINE_SPINLOCK(bootid_spinlock);
  1351. spin_lock(&bootid_spinlock);
  1352. if (!uuid[8])
  1353. generate_random_uuid(uuid);
  1354. spin_unlock(&bootid_spinlock);
  1355. }
  1356. sprintf(buf, "%pU", uuid);
  1357. fake_table.data = buf;
  1358. fake_table.maxlen = sizeof(buf);
  1359. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1360. }
  1361. /*
  1362. * Return entropy available scaled to integral bits
  1363. */
  1364. static int proc_do_entropy(ctl_table *table, int write,
  1365. void __user *buffer, size_t *lenp, loff_t *ppos)
  1366. {
  1367. ctl_table fake_table;
  1368. int entropy_count;
  1369. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1370. fake_table.data = &entropy_count;
  1371. fake_table.maxlen = sizeof(entropy_count);
  1372. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1373. }
  1374. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1375. extern struct ctl_table random_table[];
  1376. struct ctl_table random_table[] = {
  1377. {
  1378. .procname = "poolsize",
  1379. .data = &sysctl_poolsize,
  1380. .maxlen = sizeof(int),
  1381. .mode = 0444,
  1382. .proc_handler = proc_dointvec,
  1383. },
  1384. {
  1385. .procname = "entropy_avail",
  1386. .maxlen = sizeof(int),
  1387. .mode = 0444,
  1388. .proc_handler = proc_do_entropy,
  1389. .data = &input_pool.entropy_count,
  1390. },
  1391. {
  1392. .procname = "read_wakeup_threshold",
  1393. .data = &random_read_wakeup_thresh,
  1394. .maxlen = sizeof(int),
  1395. .mode = 0644,
  1396. .proc_handler = proc_dointvec_minmax,
  1397. .extra1 = &min_read_thresh,
  1398. .extra2 = &max_read_thresh,
  1399. },
  1400. {
  1401. .procname = "write_wakeup_threshold",
  1402. .data = &random_write_wakeup_thresh,
  1403. .maxlen = sizeof(int),
  1404. .mode = 0644,
  1405. .proc_handler = proc_dointvec_minmax,
  1406. .extra1 = &min_write_thresh,
  1407. .extra2 = &max_write_thresh,
  1408. },
  1409. {
  1410. .procname = "urandom_min_reseed_secs",
  1411. .data = &random_min_urandom_seed,
  1412. .maxlen = sizeof(int),
  1413. .mode = 0644,
  1414. .proc_handler = proc_dointvec,
  1415. },
  1416. {
  1417. .procname = "boot_id",
  1418. .data = &sysctl_bootid,
  1419. .maxlen = 16,
  1420. .mode = 0444,
  1421. .proc_handler = proc_do_uuid,
  1422. },
  1423. {
  1424. .procname = "uuid",
  1425. .maxlen = 16,
  1426. .mode = 0444,
  1427. .proc_handler = proc_do_uuid,
  1428. },
  1429. { }
  1430. };
  1431. #endif /* CONFIG_SYSCTL */
  1432. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1433. int random_int_secret_init(void)
  1434. {
  1435. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1436. return 0;
  1437. }
  1438. /*
  1439. * Get a random word for internal kernel use only. Similar to urandom but
  1440. * with the goal of minimal entropy pool depletion. As a result, the random
  1441. * value is not cryptographically secure but for several uses the cost of
  1442. * depleting entropy is too high
  1443. */
  1444. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1445. unsigned int get_random_int(void)
  1446. {
  1447. __u32 *hash;
  1448. unsigned int ret;
  1449. if (arch_get_random_int(&ret))
  1450. return ret;
  1451. hash = get_cpu_var(get_random_int_hash);
  1452. hash[0] += current->pid + jiffies + random_get_entropy();
  1453. md5_transform(hash, random_int_secret);
  1454. ret = hash[0];
  1455. put_cpu_var(get_random_int_hash);
  1456. return ret;
  1457. }
  1458. EXPORT_SYMBOL(get_random_int);
  1459. /*
  1460. * randomize_range() returns a start address such that
  1461. *
  1462. * [...... <range> .....]
  1463. * start end
  1464. *
  1465. * a <range> with size "len" starting at the return value is inside in the
  1466. * area defined by [start, end], but is otherwise randomized.
  1467. */
  1468. unsigned long
  1469. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1470. {
  1471. unsigned long range = end - len - start;
  1472. if (end <= start + len)
  1473. return 0;
  1474. return PAGE_ALIGN(get_random_int() % range + start);
  1475. }