slab.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  196. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  197. /*
  198. * struct slab
  199. *
  200. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  201. * for a slab, or allocated from an general cache.
  202. * Slabs are chained into three list: fully used, partial, fully free slabs.
  203. */
  204. struct slab {
  205. struct list_head list;
  206. unsigned long colouroff;
  207. void *s_mem; /* including colour offset */
  208. unsigned int inuse; /* num of objs active in slab */
  209. kmem_bufctl_t free;
  210. unsigned short nodeid;
  211. };
  212. /*
  213. * struct slab_rcu
  214. *
  215. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  216. * arrange for kmem_freepages to be called via RCU. This is useful if
  217. * we need to approach a kernel structure obliquely, from its address
  218. * obtained without the usual locking. We can lock the structure to
  219. * stabilize it and check it's still at the given address, only if we
  220. * can be sure that the memory has not been meanwhile reused for some
  221. * other kind of object (which our subsystem's lock might corrupt).
  222. *
  223. * rcu_read_lock before reading the address, then rcu_read_unlock after
  224. * taking the spinlock within the structure expected at that address.
  225. *
  226. * We assume struct slab_rcu can overlay struct slab when destroying.
  227. */
  228. struct slab_rcu {
  229. struct rcu_head head;
  230. struct kmem_cache *cachep;
  231. void *addr;
  232. };
  233. /*
  234. * struct array_cache
  235. *
  236. * Purpose:
  237. * - LIFO ordering, to hand out cache-warm objects from _alloc
  238. * - reduce the number of linked list operations
  239. * - reduce spinlock operations
  240. *
  241. * The limit is stored in the per-cpu structure to reduce the data cache
  242. * footprint.
  243. *
  244. */
  245. struct array_cache {
  246. unsigned int avail;
  247. unsigned int limit;
  248. unsigned int batchcount;
  249. unsigned int touched;
  250. spinlock_t lock;
  251. void *entry[0]; /*
  252. * Must have this definition in here for the proper
  253. * alignment of array_cache. Also simplifies accessing
  254. * the entries.
  255. * [0] is for gcc 2.95. It should really be [].
  256. */
  257. };
  258. /*
  259. * bootstrap: The caches do not work without cpuarrays anymore, but the
  260. * cpuarrays are allocated from the generic caches...
  261. */
  262. #define BOOT_CPUCACHE_ENTRIES 1
  263. struct arraycache_init {
  264. struct array_cache cache;
  265. void *entries[BOOT_CPUCACHE_ENTRIES];
  266. };
  267. /*
  268. * The slab lists for all objects.
  269. */
  270. struct kmem_list3 {
  271. struct list_head slabs_partial; /* partial list first, better asm code */
  272. struct list_head slabs_full;
  273. struct list_head slabs_free;
  274. unsigned long free_objects;
  275. unsigned int free_limit;
  276. unsigned int colour_next; /* Per-node cache coloring */
  277. spinlock_t list_lock;
  278. struct array_cache *shared; /* shared per node */
  279. struct array_cache **alien; /* on other nodes */
  280. unsigned long next_reap; /* updated without locking */
  281. int free_touched; /* updated without locking */
  282. };
  283. /*
  284. * Need this for bootstrapping a per node allocator.
  285. */
  286. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  287. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  288. #define CACHE_CACHE 0
  289. #define SIZE_AC 1
  290. #define SIZE_L3 (1 + MAX_NUMNODES)
  291. /*
  292. * This function must be completely optimized away if a constant is passed to
  293. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  294. */
  295. static __always_inline int index_of(const size_t size)
  296. {
  297. extern void __bad_size(void);
  298. if (__builtin_constant_p(size)) {
  299. int i = 0;
  300. #define CACHE(x) \
  301. if (size <=x) \
  302. return i; \
  303. else \
  304. i++;
  305. #include "linux/kmalloc_sizes.h"
  306. #undef CACHE
  307. __bad_size();
  308. } else
  309. __bad_size();
  310. return 0;
  311. }
  312. static int slab_early_init = 1;
  313. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  314. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  315. static void kmem_list3_init(struct kmem_list3 *parent)
  316. {
  317. INIT_LIST_HEAD(&parent->slabs_full);
  318. INIT_LIST_HEAD(&parent->slabs_partial);
  319. INIT_LIST_HEAD(&parent->slabs_free);
  320. parent->shared = NULL;
  321. parent->alien = NULL;
  322. parent->colour_next = 0;
  323. spin_lock_init(&parent->list_lock);
  324. parent->free_objects = 0;
  325. parent->free_touched = 0;
  326. }
  327. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  328. do { \
  329. INIT_LIST_HEAD(listp); \
  330. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  331. } while (0)
  332. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  333. do { \
  334. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  337. } while (0)
  338. /*
  339. * struct kmem_cache
  340. *
  341. * manages a cache.
  342. */
  343. struct kmem_cache {
  344. /* 1) per-cpu data, touched during every alloc/free */
  345. struct array_cache *array[NR_CPUS];
  346. /* 2) Cache tunables. Protected by cache_chain_mutex */
  347. unsigned int batchcount;
  348. unsigned int limit;
  349. unsigned int shared;
  350. unsigned int buffer_size;
  351. /* 3) touched by every alloc & free from the backend */
  352. struct kmem_list3 *nodelists[MAX_NUMNODES];
  353. unsigned int flags; /* constant flags */
  354. unsigned int num; /* # of objs per slab */
  355. /* 4) cache_grow/shrink */
  356. /* order of pgs per slab (2^n) */
  357. unsigned int gfporder;
  358. /* force GFP flags, e.g. GFP_DMA */
  359. gfp_t gfpflags;
  360. size_t colour; /* cache colouring range */
  361. unsigned int colour_off; /* colour offset */
  362. struct kmem_cache *slabp_cache;
  363. unsigned int slab_size;
  364. unsigned int dflags; /* dynamic flags */
  365. /* constructor func */
  366. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  367. /* de-constructor func */
  368. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  369. /* 5) cache creation/removal */
  370. const char *name;
  371. struct list_head next;
  372. /* 6) statistics */
  373. #if STATS
  374. unsigned long num_active;
  375. unsigned long num_allocations;
  376. unsigned long high_mark;
  377. unsigned long grown;
  378. unsigned long reaped;
  379. unsigned long errors;
  380. unsigned long max_freeable;
  381. unsigned long node_allocs;
  382. unsigned long node_frees;
  383. unsigned long node_overflow;
  384. atomic_t allochit;
  385. atomic_t allocmiss;
  386. atomic_t freehit;
  387. atomic_t freemiss;
  388. #endif
  389. #if DEBUG
  390. /*
  391. * If debugging is enabled, then the allocator can add additional
  392. * fields and/or padding to every object. buffer_size contains the total
  393. * object size including these internal fields, the following two
  394. * variables contain the offset to the user object and its size.
  395. */
  396. int obj_offset;
  397. int obj_size;
  398. #endif
  399. };
  400. #define CFLGS_OFF_SLAB (0x80000000UL)
  401. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  402. #define BATCHREFILL_LIMIT 16
  403. /*
  404. * Optimization question: fewer reaps means less probability for unnessary
  405. * cpucache drain/refill cycles.
  406. *
  407. * OTOH the cpuarrays can contain lots of objects,
  408. * which could lock up otherwise freeable slabs.
  409. */
  410. #define REAPTIMEOUT_CPUC (2*HZ)
  411. #define REAPTIMEOUT_LIST3 (4*HZ)
  412. #if STATS
  413. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  414. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  415. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  416. #define STATS_INC_GROWN(x) ((x)->grown++)
  417. #define STATS_INC_REAPED(x) ((x)->reaped++)
  418. #define STATS_SET_HIGH(x) \
  419. do { \
  420. if ((x)->num_active > (x)->high_mark) \
  421. (x)->high_mark = (x)->num_active; \
  422. } while (0)
  423. #define STATS_INC_ERR(x) ((x)->errors++)
  424. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  425. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  426. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  427. #define STATS_SET_FREEABLE(x, i) \
  428. do { \
  429. if ((x)->max_freeable < i) \
  430. (x)->max_freeable = i; \
  431. } while (0)
  432. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  433. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  434. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  435. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  436. #else
  437. #define STATS_INC_ACTIVE(x) do { } while (0)
  438. #define STATS_DEC_ACTIVE(x) do { } while (0)
  439. #define STATS_INC_ALLOCED(x) do { } while (0)
  440. #define STATS_INC_GROWN(x) do { } while (0)
  441. #define STATS_INC_REAPED(x) do { } while (0)
  442. #define STATS_SET_HIGH(x) do { } while (0)
  443. #define STATS_INC_ERR(x) do { } while (0)
  444. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  445. #define STATS_INC_NODEFREES(x) do { } while (0)
  446. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  447. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  448. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  449. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  450. #define STATS_INC_FREEHIT(x) do { } while (0)
  451. #define STATS_INC_FREEMISS(x) do { } while (0)
  452. #endif
  453. #if DEBUG
  454. /*
  455. * Magic nums for obj red zoning.
  456. * Placed in the first word before and the first word after an obj.
  457. */
  458. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  459. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  460. /* ...and for poisoning */
  461. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  462. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  463. #define POISON_END 0xa5 /* end-byte of poisoning */
  464. /*
  465. * memory layout of objects:
  466. * 0 : objp
  467. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  468. * the end of an object is aligned with the end of the real
  469. * allocation. Catches writes behind the end of the allocation.
  470. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  471. * redzone word.
  472. * cachep->obj_offset: The real object.
  473. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  474. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  475. * [BYTES_PER_WORD long]
  476. */
  477. static int obj_offset(struct kmem_cache *cachep)
  478. {
  479. return cachep->obj_offset;
  480. }
  481. static int obj_size(struct kmem_cache *cachep)
  482. {
  483. return cachep->obj_size;
  484. }
  485. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  486. {
  487. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  488. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  489. }
  490. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  491. {
  492. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  493. if (cachep->flags & SLAB_STORE_USER)
  494. return (unsigned long *)(objp + cachep->buffer_size -
  495. 2 * BYTES_PER_WORD);
  496. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  497. }
  498. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  499. {
  500. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  501. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  502. }
  503. #else
  504. #define obj_offset(x) 0
  505. #define obj_size(cachep) (cachep->buffer_size)
  506. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  508. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  509. #endif
  510. /*
  511. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  512. * order.
  513. */
  514. #if defined(CONFIG_LARGE_ALLOCS)
  515. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  516. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  517. #elif defined(CONFIG_MMU)
  518. #define MAX_OBJ_ORDER 5 /* 32 pages */
  519. #define MAX_GFP_ORDER 5 /* 32 pages */
  520. #else
  521. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  522. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  523. #endif
  524. /*
  525. * Do not go above this order unless 0 objects fit into the slab.
  526. */
  527. #define BREAK_GFP_ORDER_HI 1
  528. #define BREAK_GFP_ORDER_LO 0
  529. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  530. /*
  531. * Functions for storing/retrieving the cachep and or slab from the page
  532. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  533. * these are used to find the cache which an obj belongs to.
  534. */
  535. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  536. {
  537. page->lru.next = (struct list_head *)cache;
  538. }
  539. static inline struct kmem_cache *page_get_cache(struct page *page)
  540. {
  541. if (unlikely(PageCompound(page)))
  542. page = (struct page *)page_private(page);
  543. BUG_ON(!PageSlab(page));
  544. return (struct kmem_cache *)page->lru.next;
  545. }
  546. static inline void page_set_slab(struct page *page, struct slab *slab)
  547. {
  548. page->lru.prev = (struct list_head *)slab;
  549. }
  550. static inline struct slab *page_get_slab(struct page *page)
  551. {
  552. if (unlikely(PageCompound(page)))
  553. page = (struct page *)page_private(page);
  554. BUG_ON(!PageSlab(page));
  555. return (struct slab *)page->lru.prev;
  556. }
  557. static inline struct kmem_cache *virt_to_cache(const void *obj)
  558. {
  559. struct page *page = virt_to_page(obj);
  560. return page_get_cache(page);
  561. }
  562. static inline struct slab *virt_to_slab(const void *obj)
  563. {
  564. struct page *page = virt_to_page(obj);
  565. return page_get_slab(page);
  566. }
  567. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  568. unsigned int idx)
  569. {
  570. return slab->s_mem + cache->buffer_size * idx;
  571. }
  572. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  573. struct slab *slab, void *obj)
  574. {
  575. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  576. }
  577. /*
  578. * These are the default caches for kmalloc. Custom caches can have other sizes.
  579. */
  580. struct cache_sizes malloc_sizes[] = {
  581. #define CACHE(x) { .cs_size = (x) },
  582. #include <linux/kmalloc_sizes.h>
  583. CACHE(ULONG_MAX)
  584. #undef CACHE
  585. };
  586. EXPORT_SYMBOL(malloc_sizes);
  587. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  588. struct cache_names {
  589. char *name;
  590. char *name_dma;
  591. };
  592. static struct cache_names __initdata cache_names[] = {
  593. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  594. #include <linux/kmalloc_sizes.h>
  595. {NULL,}
  596. #undef CACHE
  597. };
  598. static struct arraycache_init initarray_cache __initdata =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. static struct arraycache_init initarray_generic =
  601. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  602. /* internal cache of cache description objs */
  603. static struct kmem_cache cache_cache = {
  604. .batchcount = 1,
  605. .limit = BOOT_CPUCACHE_ENTRIES,
  606. .shared = 1,
  607. .buffer_size = sizeof(struct kmem_cache),
  608. .name = "kmem_cache",
  609. #if DEBUG
  610. .obj_size = sizeof(struct kmem_cache),
  611. #endif
  612. };
  613. /* Guard access to the cache-chain. */
  614. static DEFINE_MUTEX(cache_chain_mutex);
  615. static struct list_head cache_chain;
  616. /*
  617. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  618. * are possibly freeable under pressure
  619. *
  620. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  621. */
  622. atomic_t slab_reclaim_pages;
  623. /*
  624. * chicken and egg problem: delay the per-cpu array allocation
  625. * until the general caches are up.
  626. */
  627. static enum {
  628. NONE,
  629. PARTIAL_AC,
  630. PARTIAL_L3,
  631. FULL
  632. } g_cpucache_up;
  633. /*
  634. * used by boot code to determine if it can use slab based allocator
  635. */
  636. int slab_is_available(void)
  637. {
  638. return g_cpucache_up == FULL;
  639. }
  640. static DEFINE_PER_CPU(struct work_struct, reap_work);
  641. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  642. int node);
  643. static void enable_cpucache(struct kmem_cache *cachep);
  644. static void cache_reap(void *unused);
  645. static int __node_shrink(struct kmem_cache *cachep, int node);
  646. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  647. {
  648. return cachep->array[smp_processor_id()];
  649. }
  650. static inline struct kmem_cache *__find_general_cachep(size_t size,
  651. gfp_t gfpflags)
  652. {
  653. struct cache_sizes *csizep = malloc_sizes;
  654. #if DEBUG
  655. /* This happens if someone tries to call
  656. * kmem_cache_create(), or __kmalloc(), before
  657. * the generic caches are initialized.
  658. */
  659. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  660. #endif
  661. while (size > csizep->cs_size)
  662. csizep++;
  663. /*
  664. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  665. * has cs_{dma,}cachep==NULL. Thus no special case
  666. * for large kmalloc calls required.
  667. */
  668. if (unlikely(gfpflags & GFP_DMA))
  669. return csizep->cs_dmacachep;
  670. return csizep->cs_cachep;
  671. }
  672. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  673. {
  674. return __find_general_cachep(size, gfpflags);
  675. }
  676. EXPORT_SYMBOL(kmem_find_general_cachep);
  677. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  678. {
  679. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  680. }
  681. /*
  682. * Calculate the number of objects and left-over bytes for a given buffer size.
  683. */
  684. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  685. size_t align, int flags, size_t *left_over,
  686. unsigned int *num)
  687. {
  688. int nr_objs;
  689. size_t mgmt_size;
  690. size_t slab_size = PAGE_SIZE << gfporder;
  691. /*
  692. * The slab management structure can be either off the slab or
  693. * on it. For the latter case, the memory allocated for a
  694. * slab is used for:
  695. *
  696. * - The struct slab
  697. * - One kmem_bufctl_t for each object
  698. * - Padding to respect alignment of @align
  699. * - @buffer_size bytes for each object
  700. *
  701. * If the slab management structure is off the slab, then the
  702. * alignment will already be calculated into the size. Because
  703. * the slabs are all pages aligned, the objects will be at the
  704. * correct alignment when allocated.
  705. */
  706. if (flags & CFLGS_OFF_SLAB) {
  707. mgmt_size = 0;
  708. nr_objs = slab_size / buffer_size;
  709. if (nr_objs > SLAB_LIMIT)
  710. nr_objs = SLAB_LIMIT;
  711. } else {
  712. /*
  713. * Ignore padding for the initial guess. The padding
  714. * is at most @align-1 bytes, and @buffer_size is at
  715. * least @align. In the worst case, this result will
  716. * be one greater than the number of objects that fit
  717. * into the memory allocation when taking the padding
  718. * into account.
  719. */
  720. nr_objs = (slab_size - sizeof(struct slab)) /
  721. (buffer_size + sizeof(kmem_bufctl_t));
  722. /*
  723. * This calculated number will be either the right
  724. * amount, or one greater than what we want.
  725. */
  726. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  727. > slab_size)
  728. nr_objs--;
  729. if (nr_objs > SLAB_LIMIT)
  730. nr_objs = SLAB_LIMIT;
  731. mgmt_size = slab_mgmt_size(nr_objs, align);
  732. }
  733. *num = nr_objs;
  734. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  735. }
  736. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  737. static void __slab_error(const char *function, struct kmem_cache *cachep,
  738. char *msg)
  739. {
  740. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  741. function, cachep->name, msg);
  742. dump_stack();
  743. }
  744. #ifdef CONFIG_NUMA
  745. /*
  746. * Special reaping functions for NUMA systems called from cache_reap().
  747. * These take care of doing round robin flushing of alien caches (containing
  748. * objects freed on different nodes from which they were allocated) and the
  749. * flushing of remote pcps by calling drain_node_pages.
  750. */
  751. static DEFINE_PER_CPU(unsigned long, reap_node);
  752. static void init_reap_node(int cpu)
  753. {
  754. int node;
  755. node = next_node(cpu_to_node(cpu), node_online_map);
  756. if (node == MAX_NUMNODES)
  757. node = first_node(node_online_map);
  758. __get_cpu_var(reap_node) = node;
  759. }
  760. static void next_reap_node(void)
  761. {
  762. int node = __get_cpu_var(reap_node);
  763. /*
  764. * Also drain per cpu pages on remote zones
  765. */
  766. if (node != numa_node_id())
  767. drain_node_pages(node);
  768. node = next_node(node, node_online_map);
  769. if (unlikely(node >= MAX_NUMNODES))
  770. node = first_node(node_online_map);
  771. __get_cpu_var(reap_node) = node;
  772. }
  773. #else
  774. #define init_reap_node(cpu) do { } while (0)
  775. #define next_reap_node(void) do { } while (0)
  776. #endif
  777. /*
  778. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  779. * via the workqueue/eventd.
  780. * Add the CPU number into the expiration time to minimize the possibility of
  781. * the CPUs getting into lockstep and contending for the global cache chain
  782. * lock.
  783. */
  784. static void __devinit start_cpu_timer(int cpu)
  785. {
  786. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  787. /*
  788. * When this gets called from do_initcalls via cpucache_init(),
  789. * init_workqueues() has already run, so keventd will be setup
  790. * at that time.
  791. */
  792. if (keventd_up() && reap_work->func == NULL) {
  793. init_reap_node(cpu);
  794. INIT_WORK(reap_work, cache_reap, NULL);
  795. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  796. }
  797. }
  798. static struct array_cache *alloc_arraycache(int node, int entries,
  799. int batchcount)
  800. {
  801. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  802. struct array_cache *nc = NULL;
  803. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  804. if (nc) {
  805. nc->avail = 0;
  806. nc->limit = entries;
  807. nc->batchcount = batchcount;
  808. nc->touched = 0;
  809. spin_lock_init(&nc->lock);
  810. }
  811. return nc;
  812. }
  813. /*
  814. * Transfer objects in one arraycache to another.
  815. * Locking must be handled by the caller.
  816. *
  817. * Return the number of entries transferred.
  818. */
  819. static int transfer_objects(struct array_cache *to,
  820. struct array_cache *from, unsigned int max)
  821. {
  822. /* Figure out how many entries to transfer */
  823. int nr = min(min(from->avail, max), to->limit - to->avail);
  824. if (!nr)
  825. return 0;
  826. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  827. sizeof(void *) *nr);
  828. from->avail -= nr;
  829. to->avail += nr;
  830. to->touched = 1;
  831. return nr;
  832. }
  833. #ifdef CONFIG_NUMA
  834. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  835. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  836. static struct array_cache **alloc_alien_cache(int node, int limit)
  837. {
  838. struct array_cache **ac_ptr;
  839. int memsize = sizeof(void *) * MAX_NUMNODES;
  840. int i;
  841. if (limit > 1)
  842. limit = 12;
  843. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  844. if (ac_ptr) {
  845. for_each_node(i) {
  846. if (i == node || !node_online(i)) {
  847. ac_ptr[i] = NULL;
  848. continue;
  849. }
  850. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  851. if (!ac_ptr[i]) {
  852. for (i--; i <= 0; i--)
  853. kfree(ac_ptr[i]);
  854. kfree(ac_ptr);
  855. return NULL;
  856. }
  857. }
  858. }
  859. return ac_ptr;
  860. }
  861. static void free_alien_cache(struct array_cache **ac_ptr)
  862. {
  863. int i;
  864. if (!ac_ptr)
  865. return;
  866. for_each_node(i)
  867. kfree(ac_ptr[i]);
  868. kfree(ac_ptr);
  869. }
  870. static void __drain_alien_cache(struct kmem_cache *cachep,
  871. struct array_cache *ac, int node)
  872. {
  873. struct kmem_list3 *rl3 = cachep->nodelists[node];
  874. if (ac->avail) {
  875. spin_lock(&rl3->list_lock);
  876. /*
  877. * Stuff objects into the remote nodes shared array first.
  878. * That way we could avoid the overhead of putting the objects
  879. * into the free lists and getting them back later.
  880. */
  881. if (rl3->shared)
  882. transfer_objects(rl3->shared, ac, ac->limit);
  883. free_block(cachep, ac->entry, ac->avail, node);
  884. ac->avail = 0;
  885. spin_unlock(&rl3->list_lock);
  886. }
  887. }
  888. /*
  889. * Called from cache_reap() to regularly drain alien caches round robin.
  890. */
  891. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  892. {
  893. int node = __get_cpu_var(reap_node);
  894. if (l3->alien) {
  895. struct array_cache *ac = l3->alien[node];
  896. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  897. __drain_alien_cache(cachep, ac, node);
  898. spin_unlock_irq(&ac->lock);
  899. }
  900. }
  901. }
  902. static void drain_alien_cache(struct kmem_cache *cachep,
  903. struct array_cache **alien)
  904. {
  905. int i = 0;
  906. struct array_cache *ac;
  907. unsigned long flags;
  908. for_each_online_node(i) {
  909. ac = alien[i];
  910. if (ac) {
  911. spin_lock_irqsave(&ac->lock, flags);
  912. __drain_alien_cache(cachep, ac, i);
  913. spin_unlock_irqrestore(&ac->lock, flags);
  914. }
  915. }
  916. }
  917. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  918. {
  919. struct slab *slabp = virt_to_slab(objp);
  920. int nodeid = slabp->nodeid;
  921. struct kmem_list3 *l3;
  922. struct array_cache *alien = NULL;
  923. /*
  924. * Make sure we are not freeing a object from another node to the array
  925. * cache on this cpu.
  926. */
  927. if (likely(slabp->nodeid == numa_node_id()))
  928. return 0;
  929. l3 = cachep->nodelists[numa_node_id()];
  930. STATS_INC_NODEFREES(cachep);
  931. if (l3->alien && l3->alien[nodeid]) {
  932. alien = l3->alien[nodeid];
  933. spin_lock(&alien->lock);
  934. if (unlikely(alien->avail == alien->limit)) {
  935. STATS_INC_ACOVERFLOW(cachep);
  936. __drain_alien_cache(cachep, alien, nodeid);
  937. }
  938. alien->entry[alien->avail++] = objp;
  939. spin_unlock(&alien->lock);
  940. } else {
  941. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  942. free_block(cachep, &objp, 1, nodeid);
  943. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  944. }
  945. return 1;
  946. }
  947. #else
  948. #define drain_alien_cache(cachep, alien) do { } while (0)
  949. #define reap_alien(cachep, l3) do { } while (0)
  950. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  951. {
  952. return (struct array_cache **) 0x01020304ul;
  953. }
  954. static inline void free_alien_cache(struct array_cache **ac_ptr)
  955. {
  956. }
  957. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  958. {
  959. return 0;
  960. }
  961. #endif
  962. static int cpuup_callback(struct notifier_block *nfb,
  963. unsigned long action, void *hcpu)
  964. {
  965. long cpu = (long)hcpu;
  966. struct kmem_cache *cachep;
  967. struct kmem_list3 *l3 = NULL;
  968. int node = cpu_to_node(cpu);
  969. int memsize = sizeof(struct kmem_list3);
  970. switch (action) {
  971. case CPU_UP_PREPARE:
  972. mutex_lock(&cache_chain_mutex);
  973. /*
  974. * We need to do this right in the beginning since
  975. * alloc_arraycache's are going to use this list.
  976. * kmalloc_node allows us to add the slab to the right
  977. * kmem_list3 and not this cpu's kmem_list3
  978. */
  979. list_for_each_entry(cachep, &cache_chain, next) {
  980. /*
  981. * Set up the size64 kmemlist for cpu before we can
  982. * begin anything. Make sure some other cpu on this
  983. * node has not already allocated this
  984. */
  985. if (!cachep->nodelists[node]) {
  986. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  987. if (!l3)
  988. goto bad;
  989. kmem_list3_init(l3);
  990. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  991. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  992. /*
  993. * The l3s don't come and go as CPUs come and
  994. * go. cache_chain_mutex is sufficient
  995. * protection here.
  996. */
  997. cachep->nodelists[node] = l3;
  998. }
  999. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1000. cachep->nodelists[node]->free_limit =
  1001. (1 + nr_cpus_node(node)) *
  1002. cachep->batchcount + cachep->num;
  1003. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1004. }
  1005. /*
  1006. * Now we can go ahead with allocating the shared arrays and
  1007. * array caches
  1008. */
  1009. list_for_each_entry(cachep, &cache_chain, next) {
  1010. struct array_cache *nc;
  1011. struct array_cache *shared;
  1012. struct array_cache **alien;
  1013. nc = alloc_arraycache(node, cachep->limit,
  1014. cachep->batchcount);
  1015. if (!nc)
  1016. goto bad;
  1017. shared = alloc_arraycache(node,
  1018. cachep->shared * cachep->batchcount,
  1019. 0xbaadf00d);
  1020. if (!shared)
  1021. goto bad;
  1022. alien = alloc_alien_cache(node, cachep->limit);
  1023. if (!alien)
  1024. goto bad;
  1025. cachep->array[cpu] = nc;
  1026. l3 = cachep->nodelists[node];
  1027. BUG_ON(!l3);
  1028. spin_lock_irq(&l3->list_lock);
  1029. if (!l3->shared) {
  1030. /*
  1031. * We are serialised from CPU_DEAD or
  1032. * CPU_UP_CANCELLED by the cpucontrol lock
  1033. */
  1034. l3->shared = shared;
  1035. shared = NULL;
  1036. }
  1037. #ifdef CONFIG_NUMA
  1038. if (!l3->alien) {
  1039. l3->alien = alien;
  1040. alien = NULL;
  1041. }
  1042. #endif
  1043. spin_unlock_irq(&l3->list_lock);
  1044. kfree(shared);
  1045. free_alien_cache(alien);
  1046. }
  1047. mutex_unlock(&cache_chain_mutex);
  1048. break;
  1049. case CPU_ONLINE:
  1050. start_cpu_timer(cpu);
  1051. break;
  1052. #ifdef CONFIG_HOTPLUG_CPU
  1053. case CPU_DEAD:
  1054. /*
  1055. * Even if all the cpus of a node are down, we don't free the
  1056. * kmem_list3 of any cache. This to avoid a race between
  1057. * cpu_down, and a kmalloc allocation from another cpu for
  1058. * memory from the node of the cpu going down. The list3
  1059. * structure is usually allocated from kmem_cache_create() and
  1060. * gets destroyed at kmem_cache_destroy().
  1061. */
  1062. /* fall thru */
  1063. case CPU_UP_CANCELED:
  1064. mutex_lock(&cache_chain_mutex);
  1065. list_for_each_entry(cachep, &cache_chain, next) {
  1066. struct array_cache *nc;
  1067. struct array_cache *shared;
  1068. struct array_cache **alien;
  1069. cpumask_t mask;
  1070. mask = node_to_cpumask(node);
  1071. /* cpu is dead; no one can alloc from it. */
  1072. nc = cachep->array[cpu];
  1073. cachep->array[cpu] = NULL;
  1074. l3 = cachep->nodelists[node];
  1075. if (!l3)
  1076. goto free_array_cache;
  1077. spin_lock_irq(&l3->list_lock);
  1078. /* Free limit for this kmem_list3 */
  1079. l3->free_limit -= cachep->batchcount;
  1080. if (nc)
  1081. free_block(cachep, nc->entry, nc->avail, node);
  1082. if (!cpus_empty(mask)) {
  1083. spin_unlock_irq(&l3->list_lock);
  1084. goto free_array_cache;
  1085. }
  1086. shared = l3->shared;
  1087. if (shared) {
  1088. free_block(cachep, l3->shared->entry,
  1089. l3->shared->avail, node);
  1090. l3->shared = NULL;
  1091. }
  1092. alien = l3->alien;
  1093. l3->alien = NULL;
  1094. spin_unlock_irq(&l3->list_lock);
  1095. kfree(shared);
  1096. if (alien) {
  1097. drain_alien_cache(cachep, alien);
  1098. free_alien_cache(alien);
  1099. }
  1100. free_array_cache:
  1101. kfree(nc);
  1102. }
  1103. /*
  1104. * In the previous loop, all the objects were freed to
  1105. * the respective cache's slabs, now we can go ahead and
  1106. * shrink each nodelist to its limit.
  1107. */
  1108. list_for_each_entry(cachep, &cache_chain, next) {
  1109. l3 = cachep->nodelists[node];
  1110. if (!l3)
  1111. continue;
  1112. spin_lock_irq(&l3->list_lock);
  1113. /* free slabs belonging to this node */
  1114. __node_shrink(cachep, node);
  1115. spin_unlock_irq(&l3->list_lock);
  1116. }
  1117. mutex_unlock(&cache_chain_mutex);
  1118. break;
  1119. #endif
  1120. }
  1121. return NOTIFY_OK;
  1122. bad:
  1123. mutex_unlock(&cache_chain_mutex);
  1124. return NOTIFY_BAD;
  1125. }
  1126. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1127. /*
  1128. * swap the static kmem_list3 with kmalloced memory
  1129. */
  1130. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1131. int nodeid)
  1132. {
  1133. struct kmem_list3 *ptr;
  1134. BUG_ON(cachep->nodelists[nodeid] != list);
  1135. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1136. BUG_ON(!ptr);
  1137. local_irq_disable();
  1138. memcpy(ptr, list, sizeof(struct kmem_list3));
  1139. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1140. cachep->nodelists[nodeid] = ptr;
  1141. local_irq_enable();
  1142. }
  1143. /*
  1144. * Initialisation. Called after the page allocator have been initialised and
  1145. * before smp_init().
  1146. */
  1147. void __init kmem_cache_init(void)
  1148. {
  1149. size_t left_over;
  1150. struct cache_sizes *sizes;
  1151. struct cache_names *names;
  1152. int i;
  1153. int order;
  1154. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1155. kmem_list3_init(&initkmem_list3[i]);
  1156. if (i < MAX_NUMNODES)
  1157. cache_cache.nodelists[i] = NULL;
  1158. }
  1159. /*
  1160. * Fragmentation resistance on low memory - only use bigger
  1161. * page orders on machines with more than 32MB of memory.
  1162. */
  1163. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1164. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1165. /* Bootstrap is tricky, because several objects are allocated
  1166. * from caches that do not exist yet:
  1167. * 1) initialize the cache_cache cache: it contains the struct
  1168. * kmem_cache structures of all caches, except cache_cache itself:
  1169. * cache_cache is statically allocated.
  1170. * Initially an __init data area is used for the head array and the
  1171. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1172. * array at the end of the bootstrap.
  1173. * 2) Create the first kmalloc cache.
  1174. * The struct kmem_cache for the new cache is allocated normally.
  1175. * An __init data area is used for the head array.
  1176. * 3) Create the remaining kmalloc caches, with minimally sized
  1177. * head arrays.
  1178. * 4) Replace the __init data head arrays for cache_cache and the first
  1179. * kmalloc cache with kmalloc allocated arrays.
  1180. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1181. * the other cache's with kmalloc allocated memory.
  1182. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1183. */
  1184. /* 1) create the cache_cache */
  1185. INIT_LIST_HEAD(&cache_chain);
  1186. list_add(&cache_cache.next, &cache_chain);
  1187. cache_cache.colour_off = cache_line_size();
  1188. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1189. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1190. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1191. cache_line_size());
  1192. for (order = 0; order < MAX_ORDER; order++) {
  1193. cache_estimate(order, cache_cache.buffer_size,
  1194. cache_line_size(), 0, &left_over, &cache_cache.num);
  1195. if (cache_cache.num)
  1196. break;
  1197. }
  1198. BUG_ON(!cache_cache.num);
  1199. cache_cache.gfporder = order;
  1200. cache_cache.colour = left_over / cache_cache.colour_off;
  1201. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1202. sizeof(struct slab), cache_line_size());
  1203. /* 2+3) create the kmalloc caches */
  1204. sizes = malloc_sizes;
  1205. names = cache_names;
  1206. /*
  1207. * Initialize the caches that provide memory for the array cache and the
  1208. * kmem_list3 structures first. Without this, further allocations will
  1209. * bug.
  1210. */
  1211. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1212. sizes[INDEX_AC].cs_size,
  1213. ARCH_KMALLOC_MINALIGN,
  1214. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1215. NULL, NULL);
  1216. if (INDEX_AC != INDEX_L3) {
  1217. sizes[INDEX_L3].cs_cachep =
  1218. kmem_cache_create(names[INDEX_L3].name,
  1219. sizes[INDEX_L3].cs_size,
  1220. ARCH_KMALLOC_MINALIGN,
  1221. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1222. NULL, NULL);
  1223. }
  1224. slab_early_init = 0;
  1225. while (sizes->cs_size != ULONG_MAX) {
  1226. /*
  1227. * For performance, all the general caches are L1 aligned.
  1228. * This should be particularly beneficial on SMP boxes, as it
  1229. * eliminates "false sharing".
  1230. * Note for systems short on memory removing the alignment will
  1231. * allow tighter packing of the smaller caches.
  1232. */
  1233. if (!sizes->cs_cachep) {
  1234. sizes->cs_cachep = kmem_cache_create(names->name,
  1235. sizes->cs_size,
  1236. ARCH_KMALLOC_MINALIGN,
  1237. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1238. NULL, NULL);
  1239. }
  1240. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1241. sizes->cs_size,
  1242. ARCH_KMALLOC_MINALIGN,
  1243. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1244. SLAB_PANIC,
  1245. NULL, NULL);
  1246. sizes++;
  1247. names++;
  1248. }
  1249. /* 4) Replace the bootstrap head arrays */
  1250. {
  1251. void *ptr;
  1252. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1253. local_irq_disable();
  1254. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1255. memcpy(ptr, cpu_cache_get(&cache_cache),
  1256. sizeof(struct arraycache_init));
  1257. cache_cache.array[smp_processor_id()] = ptr;
  1258. local_irq_enable();
  1259. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1260. local_irq_disable();
  1261. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1262. != &initarray_generic.cache);
  1263. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1264. sizeof(struct arraycache_init));
  1265. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1266. ptr;
  1267. local_irq_enable();
  1268. }
  1269. /* 5) Replace the bootstrap kmem_list3's */
  1270. {
  1271. int node;
  1272. /* Replace the static kmem_list3 structures for the boot cpu */
  1273. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1274. numa_node_id());
  1275. for_each_online_node(node) {
  1276. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1277. &initkmem_list3[SIZE_AC + node], node);
  1278. if (INDEX_AC != INDEX_L3) {
  1279. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1280. &initkmem_list3[SIZE_L3 + node],
  1281. node);
  1282. }
  1283. }
  1284. }
  1285. /* 6) resize the head arrays to their final sizes */
  1286. {
  1287. struct kmem_cache *cachep;
  1288. mutex_lock(&cache_chain_mutex);
  1289. list_for_each_entry(cachep, &cache_chain, next)
  1290. enable_cpucache(cachep);
  1291. mutex_unlock(&cache_chain_mutex);
  1292. }
  1293. /* Done! */
  1294. g_cpucache_up = FULL;
  1295. /*
  1296. * Register a cpu startup notifier callback that initializes
  1297. * cpu_cache_get for all new cpus
  1298. */
  1299. register_cpu_notifier(&cpucache_notifier);
  1300. /*
  1301. * The reap timers are started later, with a module init call: That part
  1302. * of the kernel is not yet operational.
  1303. */
  1304. }
  1305. static int __init cpucache_init(void)
  1306. {
  1307. int cpu;
  1308. /*
  1309. * Register the timers that return unneeded pages to the page allocator
  1310. */
  1311. for_each_online_cpu(cpu)
  1312. start_cpu_timer(cpu);
  1313. return 0;
  1314. }
  1315. __initcall(cpucache_init);
  1316. /*
  1317. * Interface to system's page allocator. No need to hold the cache-lock.
  1318. *
  1319. * If we requested dmaable memory, we will get it. Even if we
  1320. * did not request dmaable memory, we might get it, but that
  1321. * would be relatively rare and ignorable.
  1322. */
  1323. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1324. {
  1325. struct page *page;
  1326. int nr_pages;
  1327. int i;
  1328. #ifndef CONFIG_MMU
  1329. /*
  1330. * Nommu uses slab's for process anonymous memory allocations, and thus
  1331. * requires __GFP_COMP to properly refcount higher order allocations
  1332. */
  1333. flags |= __GFP_COMP;
  1334. #endif
  1335. flags |= cachep->gfpflags;
  1336. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1337. if (!page)
  1338. return NULL;
  1339. nr_pages = (1 << cachep->gfporder);
  1340. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1341. atomic_add(nr_pages, &slab_reclaim_pages);
  1342. add_page_state(nr_slab, nr_pages);
  1343. for (i = 0; i < nr_pages; i++)
  1344. __SetPageSlab(page + i);
  1345. return page_address(page);
  1346. }
  1347. /*
  1348. * Interface to system's page release.
  1349. */
  1350. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1351. {
  1352. unsigned long i = (1 << cachep->gfporder);
  1353. struct page *page = virt_to_page(addr);
  1354. const unsigned long nr_freed = i;
  1355. while (i--) {
  1356. BUG_ON(!PageSlab(page));
  1357. __ClearPageSlab(page);
  1358. page++;
  1359. }
  1360. sub_page_state(nr_slab, nr_freed);
  1361. if (current->reclaim_state)
  1362. current->reclaim_state->reclaimed_slab += nr_freed;
  1363. free_pages((unsigned long)addr, cachep->gfporder);
  1364. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1365. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1366. }
  1367. static void kmem_rcu_free(struct rcu_head *head)
  1368. {
  1369. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1370. struct kmem_cache *cachep = slab_rcu->cachep;
  1371. kmem_freepages(cachep, slab_rcu->addr);
  1372. if (OFF_SLAB(cachep))
  1373. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1374. }
  1375. #if DEBUG
  1376. #ifdef CONFIG_DEBUG_PAGEALLOC
  1377. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1378. unsigned long caller)
  1379. {
  1380. int size = obj_size(cachep);
  1381. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1382. if (size < 5 * sizeof(unsigned long))
  1383. return;
  1384. *addr++ = 0x12345678;
  1385. *addr++ = caller;
  1386. *addr++ = smp_processor_id();
  1387. size -= 3 * sizeof(unsigned long);
  1388. {
  1389. unsigned long *sptr = &caller;
  1390. unsigned long svalue;
  1391. while (!kstack_end(sptr)) {
  1392. svalue = *sptr++;
  1393. if (kernel_text_address(svalue)) {
  1394. *addr++ = svalue;
  1395. size -= sizeof(unsigned long);
  1396. if (size <= sizeof(unsigned long))
  1397. break;
  1398. }
  1399. }
  1400. }
  1401. *addr++ = 0x87654321;
  1402. }
  1403. #endif
  1404. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1405. {
  1406. int size = obj_size(cachep);
  1407. addr = &((char *)addr)[obj_offset(cachep)];
  1408. memset(addr, val, size);
  1409. *(unsigned char *)(addr + size - 1) = POISON_END;
  1410. }
  1411. static void dump_line(char *data, int offset, int limit)
  1412. {
  1413. int i;
  1414. printk(KERN_ERR "%03x:", offset);
  1415. for (i = 0; i < limit; i++)
  1416. printk(" %02x", (unsigned char)data[offset + i]);
  1417. printk("\n");
  1418. }
  1419. #endif
  1420. #if DEBUG
  1421. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1422. {
  1423. int i, size;
  1424. char *realobj;
  1425. if (cachep->flags & SLAB_RED_ZONE) {
  1426. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1427. *dbg_redzone1(cachep, objp),
  1428. *dbg_redzone2(cachep, objp));
  1429. }
  1430. if (cachep->flags & SLAB_STORE_USER) {
  1431. printk(KERN_ERR "Last user: [<%p>]",
  1432. *dbg_userword(cachep, objp));
  1433. print_symbol("(%s)",
  1434. (unsigned long)*dbg_userword(cachep, objp));
  1435. printk("\n");
  1436. }
  1437. realobj = (char *)objp + obj_offset(cachep);
  1438. size = obj_size(cachep);
  1439. for (i = 0; i < size && lines; i += 16, lines--) {
  1440. int limit;
  1441. limit = 16;
  1442. if (i + limit > size)
  1443. limit = size - i;
  1444. dump_line(realobj, i, limit);
  1445. }
  1446. }
  1447. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1448. {
  1449. char *realobj;
  1450. int size, i;
  1451. int lines = 0;
  1452. realobj = (char *)objp + obj_offset(cachep);
  1453. size = obj_size(cachep);
  1454. for (i = 0; i < size; i++) {
  1455. char exp = POISON_FREE;
  1456. if (i == size - 1)
  1457. exp = POISON_END;
  1458. if (realobj[i] != exp) {
  1459. int limit;
  1460. /* Mismatch ! */
  1461. /* Print header */
  1462. if (lines == 0) {
  1463. printk(KERN_ERR
  1464. "Slab corruption: start=%p, len=%d\n",
  1465. realobj, size);
  1466. print_objinfo(cachep, objp, 0);
  1467. }
  1468. /* Hexdump the affected line */
  1469. i = (i / 16) * 16;
  1470. limit = 16;
  1471. if (i + limit > size)
  1472. limit = size - i;
  1473. dump_line(realobj, i, limit);
  1474. i += 16;
  1475. lines++;
  1476. /* Limit to 5 lines */
  1477. if (lines > 5)
  1478. break;
  1479. }
  1480. }
  1481. if (lines != 0) {
  1482. /* Print some data about the neighboring objects, if they
  1483. * exist:
  1484. */
  1485. struct slab *slabp = virt_to_slab(objp);
  1486. unsigned int objnr;
  1487. objnr = obj_to_index(cachep, slabp, objp);
  1488. if (objnr) {
  1489. objp = index_to_obj(cachep, slabp, objnr - 1);
  1490. realobj = (char *)objp + obj_offset(cachep);
  1491. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1492. realobj, size);
  1493. print_objinfo(cachep, objp, 2);
  1494. }
  1495. if (objnr + 1 < cachep->num) {
  1496. objp = index_to_obj(cachep, slabp, objnr + 1);
  1497. realobj = (char *)objp + obj_offset(cachep);
  1498. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1499. realobj, size);
  1500. print_objinfo(cachep, objp, 2);
  1501. }
  1502. }
  1503. }
  1504. #endif
  1505. #if DEBUG
  1506. /**
  1507. * slab_destroy_objs - destroy a slab and its objects
  1508. * @cachep: cache pointer being destroyed
  1509. * @slabp: slab pointer being destroyed
  1510. *
  1511. * Call the registered destructor for each object in a slab that is being
  1512. * destroyed.
  1513. */
  1514. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1515. {
  1516. int i;
  1517. for (i = 0; i < cachep->num; i++) {
  1518. void *objp = index_to_obj(cachep, slabp, i);
  1519. if (cachep->flags & SLAB_POISON) {
  1520. #ifdef CONFIG_DEBUG_PAGEALLOC
  1521. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1522. OFF_SLAB(cachep))
  1523. kernel_map_pages(virt_to_page(objp),
  1524. cachep->buffer_size / PAGE_SIZE, 1);
  1525. else
  1526. check_poison_obj(cachep, objp);
  1527. #else
  1528. check_poison_obj(cachep, objp);
  1529. #endif
  1530. }
  1531. if (cachep->flags & SLAB_RED_ZONE) {
  1532. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1533. slab_error(cachep, "start of a freed object "
  1534. "was overwritten");
  1535. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1536. slab_error(cachep, "end of a freed object "
  1537. "was overwritten");
  1538. }
  1539. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1540. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1541. }
  1542. }
  1543. #else
  1544. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1545. {
  1546. if (cachep->dtor) {
  1547. int i;
  1548. for (i = 0; i < cachep->num; i++) {
  1549. void *objp = index_to_obj(cachep, slabp, i);
  1550. (cachep->dtor) (objp, cachep, 0);
  1551. }
  1552. }
  1553. }
  1554. #endif
  1555. /**
  1556. * slab_destroy - destroy and release all objects in a slab
  1557. * @cachep: cache pointer being destroyed
  1558. * @slabp: slab pointer being destroyed
  1559. *
  1560. * Destroy all the objs in a slab, and release the mem back to the system.
  1561. * Before calling the slab must have been unlinked from the cache. The
  1562. * cache-lock is not held/needed.
  1563. */
  1564. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1565. {
  1566. void *addr = slabp->s_mem - slabp->colouroff;
  1567. slab_destroy_objs(cachep, slabp);
  1568. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1569. struct slab_rcu *slab_rcu;
  1570. slab_rcu = (struct slab_rcu *)slabp;
  1571. slab_rcu->cachep = cachep;
  1572. slab_rcu->addr = addr;
  1573. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1574. } else {
  1575. kmem_freepages(cachep, addr);
  1576. if (OFF_SLAB(cachep))
  1577. kmem_cache_free(cachep->slabp_cache, slabp);
  1578. }
  1579. }
  1580. /*
  1581. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1582. * size of kmem_list3.
  1583. */
  1584. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1585. {
  1586. int node;
  1587. for_each_online_node(node) {
  1588. cachep->nodelists[node] = &initkmem_list3[index + node];
  1589. cachep->nodelists[node]->next_reap = jiffies +
  1590. REAPTIMEOUT_LIST3 +
  1591. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1592. }
  1593. }
  1594. /**
  1595. * calculate_slab_order - calculate size (page order) of slabs
  1596. * @cachep: pointer to the cache that is being created
  1597. * @size: size of objects to be created in this cache.
  1598. * @align: required alignment for the objects.
  1599. * @flags: slab allocation flags
  1600. *
  1601. * Also calculates the number of objects per slab.
  1602. *
  1603. * This could be made much more intelligent. For now, try to avoid using
  1604. * high order pages for slabs. When the gfp() functions are more friendly
  1605. * towards high-order requests, this should be changed.
  1606. */
  1607. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1608. size_t size, size_t align, unsigned long flags)
  1609. {
  1610. unsigned long offslab_limit;
  1611. size_t left_over = 0;
  1612. int gfporder;
  1613. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1614. unsigned int num;
  1615. size_t remainder;
  1616. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1617. if (!num)
  1618. continue;
  1619. if (flags & CFLGS_OFF_SLAB) {
  1620. /*
  1621. * Max number of objs-per-slab for caches which
  1622. * use off-slab slabs. Needed to avoid a possible
  1623. * looping condition in cache_grow().
  1624. */
  1625. offslab_limit = size - sizeof(struct slab);
  1626. offslab_limit /= sizeof(kmem_bufctl_t);
  1627. if (num > offslab_limit)
  1628. break;
  1629. }
  1630. /* Found something acceptable - save it away */
  1631. cachep->num = num;
  1632. cachep->gfporder = gfporder;
  1633. left_over = remainder;
  1634. /*
  1635. * A VFS-reclaimable slab tends to have most allocations
  1636. * as GFP_NOFS and we really don't want to have to be allocating
  1637. * higher-order pages when we are unable to shrink dcache.
  1638. */
  1639. if (flags & SLAB_RECLAIM_ACCOUNT)
  1640. break;
  1641. /*
  1642. * Large number of objects is good, but very large slabs are
  1643. * currently bad for the gfp()s.
  1644. */
  1645. if (gfporder >= slab_break_gfp_order)
  1646. break;
  1647. /*
  1648. * Acceptable internal fragmentation?
  1649. */
  1650. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1651. break;
  1652. }
  1653. return left_over;
  1654. }
  1655. static void setup_cpu_cache(struct kmem_cache *cachep)
  1656. {
  1657. if (g_cpucache_up == FULL) {
  1658. enable_cpucache(cachep);
  1659. return;
  1660. }
  1661. if (g_cpucache_up == NONE) {
  1662. /*
  1663. * Note: the first kmem_cache_create must create the cache
  1664. * that's used by kmalloc(24), otherwise the creation of
  1665. * further caches will BUG().
  1666. */
  1667. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1668. /*
  1669. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1670. * the first cache, then we need to set up all its list3s,
  1671. * otherwise the creation of further caches will BUG().
  1672. */
  1673. set_up_list3s(cachep, SIZE_AC);
  1674. if (INDEX_AC == INDEX_L3)
  1675. g_cpucache_up = PARTIAL_L3;
  1676. else
  1677. g_cpucache_up = PARTIAL_AC;
  1678. } else {
  1679. cachep->array[smp_processor_id()] =
  1680. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1681. if (g_cpucache_up == PARTIAL_AC) {
  1682. set_up_list3s(cachep, SIZE_L3);
  1683. g_cpucache_up = PARTIAL_L3;
  1684. } else {
  1685. int node;
  1686. for_each_online_node(node) {
  1687. cachep->nodelists[node] =
  1688. kmalloc_node(sizeof(struct kmem_list3),
  1689. GFP_KERNEL, node);
  1690. BUG_ON(!cachep->nodelists[node]);
  1691. kmem_list3_init(cachep->nodelists[node]);
  1692. }
  1693. }
  1694. }
  1695. cachep->nodelists[numa_node_id()]->next_reap =
  1696. jiffies + REAPTIMEOUT_LIST3 +
  1697. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1698. cpu_cache_get(cachep)->avail = 0;
  1699. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1700. cpu_cache_get(cachep)->batchcount = 1;
  1701. cpu_cache_get(cachep)->touched = 0;
  1702. cachep->batchcount = 1;
  1703. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1704. }
  1705. /**
  1706. * kmem_cache_create - Create a cache.
  1707. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1708. * @size: The size of objects to be created in this cache.
  1709. * @align: The required alignment for the objects.
  1710. * @flags: SLAB flags
  1711. * @ctor: A constructor for the objects.
  1712. * @dtor: A destructor for the objects.
  1713. *
  1714. * Returns a ptr to the cache on success, NULL on failure.
  1715. * Cannot be called within a int, but can be interrupted.
  1716. * The @ctor is run when new pages are allocated by the cache
  1717. * and the @dtor is run before the pages are handed back.
  1718. *
  1719. * @name must be valid until the cache is destroyed. This implies that
  1720. * the module calling this has to destroy the cache before getting unloaded.
  1721. *
  1722. * The flags are
  1723. *
  1724. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1725. * to catch references to uninitialised memory.
  1726. *
  1727. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1728. * for buffer overruns.
  1729. *
  1730. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1731. * cacheline. This can be beneficial if you're counting cycles as closely
  1732. * as davem.
  1733. */
  1734. struct kmem_cache *
  1735. kmem_cache_create (const char *name, size_t size, size_t align,
  1736. unsigned long flags,
  1737. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1738. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1739. {
  1740. size_t left_over, slab_size, ralign;
  1741. struct kmem_cache *cachep = NULL, *pc;
  1742. /*
  1743. * Sanity checks... these are all serious usage bugs.
  1744. */
  1745. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1746. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1747. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1748. name);
  1749. BUG();
  1750. }
  1751. /*
  1752. * Prevent CPUs from coming and going.
  1753. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1754. */
  1755. lock_cpu_hotplug();
  1756. mutex_lock(&cache_chain_mutex);
  1757. list_for_each_entry(pc, &cache_chain, next) {
  1758. mm_segment_t old_fs = get_fs();
  1759. char tmp;
  1760. int res;
  1761. /*
  1762. * This happens when the module gets unloaded and doesn't
  1763. * destroy its slab cache and no-one else reuses the vmalloc
  1764. * area of the module. Print a warning.
  1765. */
  1766. set_fs(KERNEL_DS);
  1767. res = __get_user(tmp, pc->name);
  1768. set_fs(old_fs);
  1769. if (res) {
  1770. printk("SLAB: cache with size %d has lost its name\n",
  1771. pc->buffer_size);
  1772. continue;
  1773. }
  1774. if (!strcmp(pc->name, name)) {
  1775. printk("kmem_cache_create: duplicate cache %s\n", name);
  1776. dump_stack();
  1777. goto oops;
  1778. }
  1779. }
  1780. #if DEBUG
  1781. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1782. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1783. /* No constructor, but inital state check requested */
  1784. printk(KERN_ERR "%s: No con, but init state check "
  1785. "requested - %s\n", __FUNCTION__, name);
  1786. flags &= ~SLAB_DEBUG_INITIAL;
  1787. }
  1788. #if FORCED_DEBUG
  1789. /*
  1790. * Enable redzoning and last user accounting, except for caches with
  1791. * large objects, if the increased size would increase the object size
  1792. * above the next power of two: caches with object sizes just above a
  1793. * power of two have a significant amount of internal fragmentation.
  1794. */
  1795. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1796. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1797. if (!(flags & SLAB_DESTROY_BY_RCU))
  1798. flags |= SLAB_POISON;
  1799. #endif
  1800. if (flags & SLAB_DESTROY_BY_RCU)
  1801. BUG_ON(flags & SLAB_POISON);
  1802. #endif
  1803. if (flags & SLAB_DESTROY_BY_RCU)
  1804. BUG_ON(dtor);
  1805. /*
  1806. * Always checks flags, a caller might be expecting debug support which
  1807. * isn't available.
  1808. */
  1809. BUG_ON(flags & ~CREATE_MASK);
  1810. /*
  1811. * Check that size is in terms of words. This is needed to avoid
  1812. * unaligned accesses for some archs when redzoning is used, and makes
  1813. * sure any on-slab bufctl's are also correctly aligned.
  1814. */
  1815. if (size & (BYTES_PER_WORD - 1)) {
  1816. size += (BYTES_PER_WORD - 1);
  1817. size &= ~(BYTES_PER_WORD - 1);
  1818. }
  1819. /* calculate the final buffer alignment: */
  1820. /* 1) arch recommendation: can be overridden for debug */
  1821. if (flags & SLAB_HWCACHE_ALIGN) {
  1822. /*
  1823. * Default alignment: as specified by the arch code. Except if
  1824. * an object is really small, then squeeze multiple objects into
  1825. * one cacheline.
  1826. */
  1827. ralign = cache_line_size();
  1828. while (size <= ralign / 2)
  1829. ralign /= 2;
  1830. } else {
  1831. ralign = BYTES_PER_WORD;
  1832. }
  1833. /* 2) arch mandated alignment: disables debug if necessary */
  1834. if (ralign < ARCH_SLAB_MINALIGN) {
  1835. ralign = ARCH_SLAB_MINALIGN;
  1836. if (ralign > BYTES_PER_WORD)
  1837. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1838. }
  1839. /* 3) caller mandated alignment: disables debug if necessary */
  1840. if (ralign < align) {
  1841. ralign = align;
  1842. if (ralign > BYTES_PER_WORD)
  1843. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1844. }
  1845. /*
  1846. * 4) Store it. Note that the debug code below can reduce
  1847. * the alignment to BYTES_PER_WORD.
  1848. */
  1849. align = ralign;
  1850. /* Get cache's description obj. */
  1851. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1852. if (!cachep)
  1853. goto oops;
  1854. #if DEBUG
  1855. cachep->obj_size = size;
  1856. if (flags & SLAB_RED_ZONE) {
  1857. /* redzoning only works with word aligned caches */
  1858. align = BYTES_PER_WORD;
  1859. /* add space for red zone words */
  1860. cachep->obj_offset += BYTES_PER_WORD;
  1861. size += 2 * BYTES_PER_WORD;
  1862. }
  1863. if (flags & SLAB_STORE_USER) {
  1864. /* user store requires word alignment and
  1865. * one word storage behind the end of the real
  1866. * object.
  1867. */
  1868. align = BYTES_PER_WORD;
  1869. size += BYTES_PER_WORD;
  1870. }
  1871. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1872. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1873. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1874. cachep->obj_offset += PAGE_SIZE - size;
  1875. size = PAGE_SIZE;
  1876. }
  1877. #endif
  1878. #endif
  1879. /*
  1880. * Determine if the slab management is 'on' or 'off' slab.
  1881. * (bootstrapping cannot cope with offslab caches so don't do
  1882. * it too early on.)
  1883. */
  1884. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  1885. /*
  1886. * Size is large, assume best to place the slab management obj
  1887. * off-slab (should allow better packing of objs).
  1888. */
  1889. flags |= CFLGS_OFF_SLAB;
  1890. size = ALIGN(size, align);
  1891. left_over = calculate_slab_order(cachep, size, align, flags);
  1892. if (!cachep->num) {
  1893. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1894. kmem_cache_free(&cache_cache, cachep);
  1895. cachep = NULL;
  1896. goto oops;
  1897. }
  1898. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1899. + sizeof(struct slab), align);
  1900. /*
  1901. * If the slab has been placed off-slab, and we have enough space then
  1902. * move it on-slab. This is at the expense of any extra colouring.
  1903. */
  1904. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1905. flags &= ~CFLGS_OFF_SLAB;
  1906. left_over -= slab_size;
  1907. }
  1908. if (flags & CFLGS_OFF_SLAB) {
  1909. /* really off slab. No need for manual alignment */
  1910. slab_size =
  1911. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1912. }
  1913. cachep->colour_off = cache_line_size();
  1914. /* Offset must be a multiple of the alignment. */
  1915. if (cachep->colour_off < align)
  1916. cachep->colour_off = align;
  1917. cachep->colour = left_over / cachep->colour_off;
  1918. cachep->slab_size = slab_size;
  1919. cachep->flags = flags;
  1920. cachep->gfpflags = 0;
  1921. if (flags & SLAB_CACHE_DMA)
  1922. cachep->gfpflags |= GFP_DMA;
  1923. cachep->buffer_size = size;
  1924. if (flags & CFLGS_OFF_SLAB)
  1925. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1926. cachep->ctor = ctor;
  1927. cachep->dtor = dtor;
  1928. cachep->name = name;
  1929. setup_cpu_cache(cachep);
  1930. /* cache setup completed, link it into the list */
  1931. list_add(&cachep->next, &cache_chain);
  1932. oops:
  1933. if (!cachep && (flags & SLAB_PANIC))
  1934. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1935. name);
  1936. mutex_unlock(&cache_chain_mutex);
  1937. unlock_cpu_hotplug();
  1938. return cachep;
  1939. }
  1940. EXPORT_SYMBOL(kmem_cache_create);
  1941. #if DEBUG
  1942. static void check_irq_off(void)
  1943. {
  1944. BUG_ON(!irqs_disabled());
  1945. }
  1946. static void check_irq_on(void)
  1947. {
  1948. BUG_ON(irqs_disabled());
  1949. }
  1950. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1951. {
  1952. #ifdef CONFIG_SMP
  1953. check_irq_off();
  1954. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1955. #endif
  1956. }
  1957. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1958. {
  1959. #ifdef CONFIG_SMP
  1960. check_irq_off();
  1961. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1962. #endif
  1963. }
  1964. #else
  1965. #define check_irq_off() do { } while(0)
  1966. #define check_irq_on() do { } while(0)
  1967. #define check_spinlock_acquired(x) do { } while(0)
  1968. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1969. #endif
  1970. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1971. struct array_cache *ac,
  1972. int force, int node);
  1973. static void do_drain(void *arg)
  1974. {
  1975. struct kmem_cache *cachep = arg;
  1976. struct array_cache *ac;
  1977. int node = numa_node_id();
  1978. check_irq_off();
  1979. ac = cpu_cache_get(cachep);
  1980. spin_lock(&cachep->nodelists[node]->list_lock);
  1981. free_block(cachep, ac->entry, ac->avail, node);
  1982. spin_unlock(&cachep->nodelists[node]->list_lock);
  1983. ac->avail = 0;
  1984. }
  1985. static void drain_cpu_caches(struct kmem_cache *cachep)
  1986. {
  1987. struct kmem_list3 *l3;
  1988. int node;
  1989. on_each_cpu(do_drain, cachep, 1, 1);
  1990. check_irq_on();
  1991. for_each_online_node(node) {
  1992. l3 = cachep->nodelists[node];
  1993. if (l3 && l3->alien)
  1994. drain_alien_cache(cachep, l3->alien);
  1995. }
  1996. for_each_online_node(node) {
  1997. l3 = cachep->nodelists[node];
  1998. if (l3)
  1999. drain_array(cachep, l3, l3->shared, 1, node);
  2000. }
  2001. }
  2002. static int __node_shrink(struct kmem_cache *cachep, int node)
  2003. {
  2004. struct slab *slabp;
  2005. struct kmem_list3 *l3 = cachep->nodelists[node];
  2006. int ret;
  2007. for (;;) {
  2008. struct list_head *p;
  2009. p = l3->slabs_free.prev;
  2010. if (p == &l3->slabs_free)
  2011. break;
  2012. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  2013. #if DEBUG
  2014. BUG_ON(slabp->inuse);
  2015. #endif
  2016. list_del(&slabp->list);
  2017. l3->free_objects -= cachep->num;
  2018. spin_unlock_irq(&l3->list_lock);
  2019. slab_destroy(cachep, slabp);
  2020. spin_lock_irq(&l3->list_lock);
  2021. }
  2022. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  2023. return ret;
  2024. }
  2025. static int __cache_shrink(struct kmem_cache *cachep)
  2026. {
  2027. int ret = 0, i = 0;
  2028. struct kmem_list3 *l3;
  2029. drain_cpu_caches(cachep);
  2030. check_irq_on();
  2031. for_each_online_node(i) {
  2032. l3 = cachep->nodelists[i];
  2033. if (l3) {
  2034. spin_lock_irq(&l3->list_lock);
  2035. ret += __node_shrink(cachep, i);
  2036. spin_unlock_irq(&l3->list_lock);
  2037. }
  2038. }
  2039. return (ret ? 1 : 0);
  2040. }
  2041. /**
  2042. * kmem_cache_shrink - Shrink a cache.
  2043. * @cachep: The cache to shrink.
  2044. *
  2045. * Releases as many slabs as possible for a cache.
  2046. * To help debugging, a zero exit status indicates all slabs were released.
  2047. */
  2048. int kmem_cache_shrink(struct kmem_cache *cachep)
  2049. {
  2050. BUG_ON(!cachep || in_interrupt());
  2051. return __cache_shrink(cachep);
  2052. }
  2053. EXPORT_SYMBOL(kmem_cache_shrink);
  2054. /**
  2055. * kmem_cache_destroy - delete a cache
  2056. * @cachep: the cache to destroy
  2057. *
  2058. * Remove a struct kmem_cache object from the slab cache.
  2059. * Returns 0 on success.
  2060. *
  2061. * It is expected this function will be called by a module when it is
  2062. * unloaded. This will remove the cache completely, and avoid a duplicate
  2063. * cache being allocated each time a module is loaded and unloaded, if the
  2064. * module doesn't have persistent in-kernel storage across loads and unloads.
  2065. *
  2066. * The cache must be empty before calling this function.
  2067. *
  2068. * The caller must guarantee that noone will allocate memory from the cache
  2069. * during the kmem_cache_destroy().
  2070. */
  2071. int kmem_cache_destroy(struct kmem_cache *cachep)
  2072. {
  2073. int i;
  2074. struct kmem_list3 *l3;
  2075. BUG_ON(!cachep || in_interrupt());
  2076. /* Don't let CPUs to come and go */
  2077. lock_cpu_hotplug();
  2078. /* Find the cache in the chain of caches. */
  2079. mutex_lock(&cache_chain_mutex);
  2080. /*
  2081. * the chain is never empty, cache_cache is never destroyed
  2082. */
  2083. list_del(&cachep->next);
  2084. mutex_unlock(&cache_chain_mutex);
  2085. if (__cache_shrink(cachep)) {
  2086. slab_error(cachep, "Can't free all objects");
  2087. mutex_lock(&cache_chain_mutex);
  2088. list_add(&cachep->next, &cache_chain);
  2089. mutex_unlock(&cache_chain_mutex);
  2090. unlock_cpu_hotplug();
  2091. return 1;
  2092. }
  2093. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2094. synchronize_rcu();
  2095. for_each_online_cpu(i)
  2096. kfree(cachep->array[i]);
  2097. /* NUMA: free the list3 structures */
  2098. for_each_online_node(i) {
  2099. l3 = cachep->nodelists[i];
  2100. if (l3) {
  2101. kfree(l3->shared);
  2102. free_alien_cache(l3->alien);
  2103. kfree(l3);
  2104. }
  2105. }
  2106. kmem_cache_free(&cache_cache, cachep);
  2107. unlock_cpu_hotplug();
  2108. return 0;
  2109. }
  2110. EXPORT_SYMBOL(kmem_cache_destroy);
  2111. /* Get the memory for a slab management obj. */
  2112. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2113. int colour_off, gfp_t local_flags,
  2114. int nodeid)
  2115. {
  2116. struct slab *slabp;
  2117. if (OFF_SLAB(cachep)) {
  2118. /* Slab management obj is off-slab. */
  2119. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2120. local_flags, nodeid);
  2121. if (!slabp)
  2122. return NULL;
  2123. } else {
  2124. slabp = objp + colour_off;
  2125. colour_off += cachep->slab_size;
  2126. }
  2127. slabp->inuse = 0;
  2128. slabp->colouroff = colour_off;
  2129. slabp->s_mem = objp + colour_off;
  2130. slabp->nodeid = nodeid;
  2131. return slabp;
  2132. }
  2133. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2134. {
  2135. return (kmem_bufctl_t *) (slabp + 1);
  2136. }
  2137. static void cache_init_objs(struct kmem_cache *cachep,
  2138. struct slab *slabp, unsigned long ctor_flags)
  2139. {
  2140. int i;
  2141. for (i = 0; i < cachep->num; i++) {
  2142. void *objp = index_to_obj(cachep, slabp, i);
  2143. #if DEBUG
  2144. /* need to poison the objs? */
  2145. if (cachep->flags & SLAB_POISON)
  2146. poison_obj(cachep, objp, POISON_FREE);
  2147. if (cachep->flags & SLAB_STORE_USER)
  2148. *dbg_userword(cachep, objp) = NULL;
  2149. if (cachep->flags & SLAB_RED_ZONE) {
  2150. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2151. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2152. }
  2153. /*
  2154. * Constructors are not allowed to allocate memory from the same
  2155. * cache which they are a constructor for. Otherwise, deadlock.
  2156. * They must also be threaded.
  2157. */
  2158. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2159. cachep->ctor(objp + obj_offset(cachep), cachep,
  2160. ctor_flags);
  2161. if (cachep->flags & SLAB_RED_ZONE) {
  2162. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2163. slab_error(cachep, "constructor overwrote the"
  2164. " end of an object");
  2165. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2166. slab_error(cachep, "constructor overwrote the"
  2167. " start of an object");
  2168. }
  2169. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2170. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2171. kernel_map_pages(virt_to_page(objp),
  2172. cachep->buffer_size / PAGE_SIZE, 0);
  2173. #else
  2174. if (cachep->ctor)
  2175. cachep->ctor(objp, cachep, ctor_flags);
  2176. #endif
  2177. slab_bufctl(slabp)[i] = i + 1;
  2178. }
  2179. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2180. slabp->free = 0;
  2181. }
  2182. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2183. {
  2184. if (flags & SLAB_DMA)
  2185. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2186. else
  2187. BUG_ON(cachep->gfpflags & GFP_DMA);
  2188. }
  2189. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2190. int nodeid)
  2191. {
  2192. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2193. kmem_bufctl_t next;
  2194. slabp->inuse++;
  2195. next = slab_bufctl(slabp)[slabp->free];
  2196. #if DEBUG
  2197. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2198. WARN_ON(slabp->nodeid != nodeid);
  2199. #endif
  2200. slabp->free = next;
  2201. return objp;
  2202. }
  2203. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2204. void *objp, int nodeid)
  2205. {
  2206. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2207. #if DEBUG
  2208. /* Verify that the slab belongs to the intended node */
  2209. WARN_ON(slabp->nodeid != nodeid);
  2210. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2211. printk(KERN_ERR "slab: double free detected in cache "
  2212. "'%s', objp %p\n", cachep->name, objp);
  2213. BUG();
  2214. }
  2215. #endif
  2216. slab_bufctl(slabp)[objnr] = slabp->free;
  2217. slabp->free = objnr;
  2218. slabp->inuse--;
  2219. }
  2220. /*
  2221. * Map pages beginning at addr to the given cache and slab. This is required
  2222. * for the slab allocator to be able to lookup the cache and slab of a
  2223. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2224. */
  2225. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2226. void *addr)
  2227. {
  2228. int nr_pages;
  2229. struct page *page;
  2230. page = virt_to_page(addr);
  2231. nr_pages = 1;
  2232. if (likely(!PageCompound(page)))
  2233. nr_pages <<= cache->gfporder;
  2234. do {
  2235. page_set_cache(page, cache);
  2236. page_set_slab(page, slab);
  2237. page++;
  2238. } while (--nr_pages);
  2239. }
  2240. /*
  2241. * Grow (by 1) the number of slabs within a cache. This is called by
  2242. * kmem_cache_alloc() when there are no active objs left in a cache.
  2243. */
  2244. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2245. {
  2246. struct slab *slabp;
  2247. void *objp;
  2248. size_t offset;
  2249. gfp_t local_flags;
  2250. unsigned long ctor_flags;
  2251. struct kmem_list3 *l3;
  2252. /*
  2253. * Be lazy and only check for valid flags here, keeping it out of the
  2254. * critical path in kmem_cache_alloc().
  2255. */
  2256. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2257. if (flags & SLAB_NO_GROW)
  2258. return 0;
  2259. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2260. local_flags = (flags & SLAB_LEVEL_MASK);
  2261. if (!(local_flags & __GFP_WAIT))
  2262. /*
  2263. * Not allowed to sleep. Need to tell a constructor about
  2264. * this - it might need to know...
  2265. */
  2266. ctor_flags |= SLAB_CTOR_ATOMIC;
  2267. /* Take the l3 list lock to change the colour_next on this node */
  2268. check_irq_off();
  2269. l3 = cachep->nodelists[nodeid];
  2270. spin_lock(&l3->list_lock);
  2271. /* Get colour for the slab, and cal the next value. */
  2272. offset = l3->colour_next;
  2273. l3->colour_next++;
  2274. if (l3->colour_next >= cachep->colour)
  2275. l3->colour_next = 0;
  2276. spin_unlock(&l3->list_lock);
  2277. offset *= cachep->colour_off;
  2278. if (local_flags & __GFP_WAIT)
  2279. local_irq_enable();
  2280. /*
  2281. * The test for missing atomic flag is performed here, rather than
  2282. * the more obvious place, simply to reduce the critical path length
  2283. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2284. * will eventually be caught here (where it matters).
  2285. */
  2286. kmem_flagcheck(cachep, flags);
  2287. /*
  2288. * Get mem for the objs. Attempt to allocate a physical page from
  2289. * 'nodeid'.
  2290. */
  2291. objp = kmem_getpages(cachep, flags, nodeid);
  2292. if (!objp)
  2293. goto failed;
  2294. /* Get slab management. */
  2295. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2296. if (!slabp)
  2297. goto opps1;
  2298. slabp->nodeid = nodeid;
  2299. slab_map_pages(cachep, slabp, objp);
  2300. cache_init_objs(cachep, slabp, ctor_flags);
  2301. if (local_flags & __GFP_WAIT)
  2302. local_irq_disable();
  2303. check_irq_off();
  2304. spin_lock(&l3->list_lock);
  2305. /* Make slab active. */
  2306. list_add_tail(&slabp->list, &(l3->slabs_free));
  2307. STATS_INC_GROWN(cachep);
  2308. l3->free_objects += cachep->num;
  2309. spin_unlock(&l3->list_lock);
  2310. return 1;
  2311. opps1:
  2312. kmem_freepages(cachep, objp);
  2313. failed:
  2314. if (local_flags & __GFP_WAIT)
  2315. local_irq_disable();
  2316. return 0;
  2317. }
  2318. #if DEBUG
  2319. /*
  2320. * Perform extra freeing checks:
  2321. * - detect bad pointers.
  2322. * - POISON/RED_ZONE checking
  2323. * - destructor calls, for caches with POISON+dtor
  2324. */
  2325. static void kfree_debugcheck(const void *objp)
  2326. {
  2327. struct page *page;
  2328. if (!virt_addr_valid(objp)) {
  2329. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2330. (unsigned long)objp);
  2331. BUG();
  2332. }
  2333. page = virt_to_page(objp);
  2334. if (!PageSlab(page)) {
  2335. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2336. (unsigned long)objp);
  2337. BUG();
  2338. }
  2339. }
  2340. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2341. {
  2342. unsigned long redzone1, redzone2;
  2343. redzone1 = *dbg_redzone1(cache, obj);
  2344. redzone2 = *dbg_redzone2(cache, obj);
  2345. /*
  2346. * Redzone is ok.
  2347. */
  2348. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2349. return;
  2350. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2351. slab_error(cache, "double free detected");
  2352. else
  2353. slab_error(cache, "memory outside object was overwritten");
  2354. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2355. obj, redzone1, redzone2);
  2356. }
  2357. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2358. void *caller)
  2359. {
  2360. struct page *page;
  2361. unsigned int objnr;
  2362. struct slab *slabp;
  2363. objp -= obj_offset(cachep);
  2364. kfree_debugcheck(objp);
  2365. page = virt_to_page(objp);
  2366. slabp = page_get_slab(page);
  2367. if (cachep->flags & SLAB_RED_ZONE) {
  2368. verify_redzone_free(cachep, objp);
  2369. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2370. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2371. }
  2372. if (cachep->flags & SLAB_STORE_USER)
  2373. *dbg_userword(cachep, objp) = caller;
  2374. objnr = obj_to_index(cachep, slabp, objp);
  2375. BUG_ON(objnr >= cachep->num);
  2376. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2377. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2378. /*
  2379. * Need to call the slab's constructor so the caller can
  2380. * perform a verify of its state (debugging). Called without
  2381. * the cache-lock held.
  2382. */
  2383. cachep->ctor(objp + obj_offset(cachep),
  2384. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2385. }
  2386. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2387. /* we want to cache poison the object,
  2388. * call the destruction callback
  2389. */
  2390. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2391. }
  2392. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2393. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2394. #endif
  2395. if (cachep->flags & SLAB_POISON) {
  2396. #ifdef CONFIG_DEBUG_PAGEALLOC
  2397. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2398. store_stackinfo(cachep, objp, (unsigned long)caller);
  2399. kernel_map_pages(virt_to_page(objp),
  2400. cachep->buffer_size / PAGE_SIZE, 0);
  2401. } else {
  2402. poison_obj(cachep, objp, POISON_FREE);
  2403. }
  2404. #else
  2405. poison_obj(cachep, objp, POISON_FREE);
  2406. #endif
  2407. }
  2408. return objp;
  2409. }
  2410. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2411. {
  2412. kmem_bufctl_t i;
  2413. int entries = 0;
  2414. /* Check slab's freelist to see if this obj is there. */
  2415. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2416. entries++;
  2417. if (entries > cachep->num || i >= cachep->num)
  2418. goto bad;
  2419. }
  2420. if (entries != cachep->num - slabp->inuse) {
  2421. bad:
  2422. printk(KERN_ERR "slab: Internal list corruption detected in "
  2423. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2424. cachep->name, cachep->num, slabp, slabp->inuse);
  2425. for (i = 0;
  2426. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2427. i++) {
  2428. if (i % 16 == 0)
  2429. printk("\n%03x:", i);
  2430. printk(" %02x", ((unsigned char *)slabp)[i]);
  2431. }
  2432. printk("\n");
  2433. BUG();
  2434. }
  2435. }
  2436. #else
  2437. #define kfree_debugcheck(x) do { } while(0)
  2438. #define cache_free_debugcheck(x,objp,z) (objp)
  2439. #define check_slabp(x,y) do { } while(0)
  2440. #endif
  2441. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2442. {
  2443. int batchcount;
  2444. struct kmem_list3 *l3;
  2445. struct array_cache *ac;
  2446. check_irq_off();
  2447. ac = cpu_cache_get(cachep);
  2448. retry:
  2449. batchcount = ac->batchcount;
  2450. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2451. /*
  2452. * If there was little recent activity on this cache, then
  2453. * perform only a partial refill. Otherwise we could generate
  2454. * refill bouncing.
  2455. */
  2456. batchcount = BATCHREFILL_LIMIT;
  2457. }
  2458. l3 = cachep->nodelists[numa_node_id()];
  2459. BUG_ON(ac->avail > 0 || !l3);
  2460. spin_lock(&l3->list_lock);
  2461. /* See if we can refill from the shared array */
  2462. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2463. goto alloc_done;
  2464. while (batchcount > 0) {
  2465. struct list_head *entry;
  2466. struct slab *slabp;
  2467. /* Get slab alloc is to come from. */
  2468. entry = l3->slabs_partial.next;
  2469. if (entry == &l3->slabs_partial) {
  2470. l3->free_touched = 1;
  2471. entry = l3->slabs_free.next;
  2472. if (entry == &l3->slabs_free)
  2473. goto must_grow;
  2474. }
  2475. slabp = list_entry(entry, struct slab, list);
  2476. check_slabp(cachep, slabp);
  2477. check_spinlock_acquired(cachep);
  2478. while (slabp->inuse < cachep->num && batchcount--) {
  2479. STATS_INC_ALLOCED(cachep);
  2480. STATS_INC_ACTIVE(cachep);
  2481. STATS_SET_HIGH(cachep);
  2482. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2483. numa_node_id());
  2484. }
  2485. check_slabp(cachep, slabp);
  2486. /* move slabp to correct slabp list: */
  2487. list_del(&slabp->list);
  2488. if (slabp->free == BUFCTL_END)
  2489. list_add(&slabp->list, &l3->slabs_full);
  2490. else
  2491. list_add(&slabp->list, &l3->slabs_partial);
  2492. }
  2493. must_grow:
  2494. l3->free_objects -= ac->avail;
  2495. alloc_done:
  2496. spin_unlock(&l3->list_lock);
  2497. if (unlikely(!ac->avail)) {
  2498. int x;
  2499. x = cache_grow(cachep, flags, numa_node_id());
  2500. /* cache_grow can reenable interrupts, then ac could change. */
  2501. ac = cpu_cache_get(cachep);
  2502. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2503. return NULL;
  2504. if (!ac->avail) /* objects refilled by interrupt? */
  2505. goto retry;
  2506. }
  2507. ac->touched = 1;
  2508. return ac->entry[--ac->avail];
  2509. }
  2510. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2511. gfp_t flags)
  2512. {
  2513. might_sleep_if(flags & __GFP_WAIT);
  2514. #if DEBUG
  2515. kmem_flagcheck(cachep, flags);
  2516. #endif
  2517. }
  2518. #if DEBUG
  2519. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2520. gfp_t flags, void *objp, void *caller)
  2521. {
  2522. if (!objp)
  2523. return objp;
  2524. if (cachep->flags & SLAB_POISON) {
  2525. #ifdef CONFIG_DEBUG_PAGEALLOC
  2526. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2527. kernel_map_pages(virt_to_page(objp),
  2528. cachep->buffer_size / PAGE_SIZE, 1);
  2529. else
  2530. check_poison_obj(cachep, objp);
  2531. #else
  2532. check_poison_obj(cachep, objp);
  2533. #endif
  2534. poison_obj(cachep, objp, POISON_INUSE);
  2535. }
  2536. if (cachep->flags & SLAB_STORE_USER)
  2537. *dbg_userword(cachep, objp) = caller;
  2538. if (cachep->flags & SLAB_RED_ZONE) {
  2539. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2540. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2541. slab_error(cachep, "double free, or memory outside"
  2542. " object was overwritten");
  2543. printk(KERN_ERR
  2544. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2545. objp, *dbg_redzone1(cachep, objp),
  2546. *dbg_redzone2(cachep, objp));
  2547. }
  2548. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2549. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2550. }
  2551. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2552. {
  2553. struct slab *slabp;
  2554. unsigned objnr;
  2555. slabp = page_get_slab(virt_to_page(objp));
  2556. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2557. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2558. }
  2559. #endif
  2560. objp += obj_offset(cachep);
  2561. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2562. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2563. if (!(flags & __GFP_WAIT))
  2564. ctor_flags |= SLAB_CTOR_ATOMIC;
  2565. cachep->ctor(objp, cachep, ctor_flags);
  2566. }
  2567. return objp;
  2568. }
  2569. #else
  2570. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2571. #endif
  2572. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2573. {
  2574. void *objp;
  2575. struct array_cache *ac;
  2576. #ifdef CONFIG_NUMA
  2577. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2578. objp = alternate_node_alloc(cachep, flags);
  2579. if (objp != NULL)
  2580. return objp;
  2581. }
  2582. #endif
  2583. check_irq_off();
  2584. ac = cpu_cache_get(cachep);
  2585. if (likely(ac->avail)) {
  2586. STATS_INC_ALLOCHIT(cachep);
  2587. ac->touched = 1;
  2588. objp = ac->entry[--ac->avail];
  2589. } else {
  2590. STATS_INC_ALLOCMISS(cachep);
  2591. objp = cache_alloc_refill(cachep, flags);
  2592. }
  2593. return objp;
  2594. }
  2595. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2596. gfp_t flags, void *caller)
  2597. {
  2598. unsigned long save_flags;
  2599. void *objp;
  2600. cache_alloc_debugcheck_before(cachep, flags);
  2601. local_irq_save(save_flags);
  2602. objp = ____cache_alloc(cachep, flags);
  2603. local_irq_restore(save_flags);
  2604. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2605. caller);
  2606. prefetchw(objp);
  2607. return objp;
  2608. }
  2609. #ifdef CONFIG_NUMA
  2610. /*
  2611. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2612. *
  2613. * If we are in_interrupt, then process context, including cpusets and
  2614. * mempolicy, may not apply and should not be used for allocation policy.
  2615. */
  2616. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2617. {
  2618. int nid_alloc, nid_here;
  2619. if (in_interrupt())
  2620. return NULL;
  2621. nid_alloc = nid_here = numa_node_id();
  2622. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2623. nid_alloc = cpuset_mem_spread_node();
  2624. else if (current->mempolicy)
  2625. nid_alloc = slab_node(current->mempolicy);
  2626. if (nid_alloc != nid_here)
  2627. return __cache_alloc_node(cachep, flags, nid_alloc);
  2628. return NULL;
  2629. }
  2630. /*
  2631. * A interface to enable slab creation on nodeid
  2632. */
  2633. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2634. int nodeid)
  2635. {
  2636. struct list_head *entry;
  2637. struct slab *slabp;
  2638. struct kmem_list3 *l3;
  2639. void *obj;
  2640. int x;
  2641. l3 = cachep->nodelists[nodeid];
  2642. BUG_ON(!l3);
  2643. retry:
  2644. check_irq_off();
  2645. spin_lock(&l3->list_lock);
  2646. entry = l3->slabs_partial.next;
  2647. if (entry == &l3->slabs_partial) {
  2648. l3->free_touched = 1;
  2649. entry = l3->slabs_free.next;
  2650. if (entry == &l3->slabs_free)
  2651. goto must_grow;
  2652. }
  2653. slabp = list_entry(entry, struct slab, list);
  2654. check_spinlock_acquired_node(cachep, nodeid);
  2655. check_slabp(cachep, slabp);
  2656. STATS_INC_NODEALLOCS(cachep);
  2657. STATS_INC_ACTIVE(cachep);
  2658. STATS_SET_HIGH(cachep);
  2659. BUG_ON(slabp->inuse == cachep->num);
  2660. obj = slab_get_obj(cachep, slabp, nodeid);
  2661. check_slabp(cachep, slabp);
  2662. l3->free_objects--;
  2663. /* move slabp to correct slabp list: */
  2664. list_del(&slabp->list);
  2665. if (slabp->free == BUFCTL_END)
  2666. list_add(&slabp->list, &l3->slabs_full);
  2667. else
  2668. list_add(&slabp->list, &l3->slabs_partial);
  2669. spin_unlock(&l3->list_lock);
  2670. goto done;
  2671. must_grow:
  2672. spin_unlock(&l3->list_lock);
  2673. x = cache_grow(cachep, flags, nodeid);
  2674. if (!x)
  2675. return NULL;
  2676. goto retry;
  2677. done:
  2678. return obj;
  2679. }
  2680. #endif
  2681. /*
  2682. * Caller needs to acquire correct kmem_list's list_lock
  2683. */
  2684. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2685. int node)
  2686. {
  2687. int i;
  2688. struct kmem_list3 *l3;
  2689. for (i = 0; i < nr_objects; i++) {
  2690. void *objp = objpp[i];
  2691. struct slab *slabp;
  2692. slabp = virt_to_slab(objp);
  2693. l3 = cachep->nodelists[node];
  2694. list_del(&slabp->list);
  2695. check_spinlock_acquired_node(cachep, node);
  2696. check_slabp(cachep, slabp);
  2697. slab_put_obj(cachep, slabp, objp, node);
  2698. STATS_DEC_ACTIVE(cachep);
  2699. l3->free_objects++;
  2700. check_slabp(cachep, slabp);
  2701. /* fixup slab chains */
  2702. if (slabp->inuse == 0) {
  2703. if (l3->free_objects > l3->free_limit) {
  2704. l3->free_objects -= cachep->num;
  2705. slab_destroy(cachep, slabp);
  2706. } else {
  2707. list_add(&slabp->list, &l3->slabs_free);
  2708. }
  2709. } else {
  2710. /* Unconditionally move a slab to the end of the
  2711. * partial list on free - maximum time for the
  2712. * other objects to be freed, too.
  2713. */
  2714. list_add_tail(&slabp->list, &l3->slabs_partial);
  2715. }
  2716. }
  2717. }
  2718. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2719. {
  2720. int batchcount;
  2721. struct kmem_list3 *l3;
  2722. int node = numa_node_id();
  2723. batchcount = ac->batchcount;
  2724. #if DEBUG
  2725. BUG_ON(!batchcount || batchcount > ac->avail);
  2726. #endif
  2727. check_irq_off();
  2728. l3 = cachep->nodelists[node];
  2729. spin_lock(&l3->list_lock);
  2730. if (l3->shared) {
  2731. struct array_cache *shared_array = l3->shared;
  2732. int max = shared_array->limit - shared_array->avail;
  2733. if (max) {
  2734. if (batchcount > max)
  2735. batchcount = max;
  2736. memcpy(&(shared_array->entry[shared_array->avail]),
  2737. ac->entry, sizeof(void *) * batchcount);
  2738. shared_array->avail += batchcount;
  2739. goto free_done;
  2740. }
  2741. }
  2742. free_block(cachep, ac->entry, batchcount, node);
  2743. free_done:
  2744. #if STATS
  2745. {
  2746. int i = 0;
  2747. struct list_head *p;
  2748. p = l3->slabs_free.next;
  2749. while (p != &(l3->slabs_free)) {
  2750. struct slab *slabp;
  2751. slabp = list_entry(p, struct slab, list);
  2752. BUG_ON(slabp->inuse);
  2753. i++;
  2754. p = p->next;
  2755. }
  2756. STATS_SET_FREEABLE(cachep, i);
  2757. }
  2758. #endif
  2759. spin_unlock(&l3->list_lock);
  2760. ac->avail -= batchcount;
  2761. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2762. }
  2763. /*
  2764. * Release an obj back to its cache. If the obj has a constructed state, it must
  2765. * be in this state _before_ it is released. Called with disabled ints.
  2766. */
  2767. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2768. {
  2769. struct array_cache *ac = cpu_cache_get(cachep);
  2770. check_irq_off();
  2771. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2772. if (cache_free_alien(cachep, objp))
  2773. return;
  2774. if (likely(ac->avail < ac->limit)) {
  2775. STATS_INC_FREEHIT(cachep);
  2776. ac->entry[ac->avail++] = objp;
  2777. return;
  2778. } else {
  2779. STATS_INC_FREEMISS(cachep);
  2780. cache_flusharray(cachep, ac);
  2781. ac->entry[ac->avail++] = objp;
  2782. }
  2783. }
  2784. /**
  2785. * kmem_cache_alloc - Allocate an object
  2786. * @cachep: The cache to allocate from.
  2787. * @flags: See kmalloc().
  2788. *
  2789. * Allocate an object from this cache. The flags are only relevant
  2790. * if the cache has no available objects.
  2791. */
  2792. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2793. {
  2794. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2795. }
  2796. EXPORT_SYMBOL(kmem_cache_alloc);
  2797. /**
  2798. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2799. * @cache: The cache to allocate from.
  2800. * @flags: See kmalloc().
  2801. *
  2802. * Allocate an object from this cache and set the allocated memory to zero.
  2803. * The flags are only relevant if the cache has no available objects.
  2804. */
  2805. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2806. {
  2807. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2808. if (ret)
  2809. memset(ret, 0, obj_size(cache));
  2810. return ret;
  2811. }
  2812. EXPORT_SYMBOL(kmem_cache_zalloc);
  2813. /**
  2814. * kmem_ptr_validate - check if an untrusted pointer might
  2815. * be a slab entry.
  2816. * @cachep: the cache we're checking against
  2817. * @ptr: pointer to validate
  2818. *
  2819. * This verifies that the untrusted pointer looks sane:
  2820. * it is _not_ a guarantee that the pointer is actually
  2821. * part of the slab cache in question, but it at least
  2822. * validates that the pointer can be dereferenced and
  2823. * looks half-way sane.
  2824. *
  2825. * Currently only used for dentry validation.
  2826. */
  2827. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2828. {
  2829. unsigned long addr = (unsigned long)ptr;
  2830. unsigned long min_addr = PAGE_OFFSET;
  2831. unsigned long align_mask = BYTES_PER_WORD - 1;
  2832. unsigned long size = cachep->buffer_size;
  2833. struct page *page;
  2834. if (unlikely(addr < min_addr))
  2835. goto out;
  2836. if (unlikely(addr > (unsigned long)high_memory - size))
  2837. goto out;
  2838. if (unlikely(addr & align_mask))
  2839. goto out;
  2840. if (unlikely(!kern_addr_valid(addr)))
  2841. goto out;
  2842. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2843. goto out;
  2844. page = virt_to_page(ptr);
  2845. if (unlikely(!PageSlab(page)))
  2846. goto out;
  2847. if (unlikely(page_get_cache(page) != cachep))
  2848. goto out;
  2849. return 1;
  2850. out:
  2851. return 0;
  2852. }
  2853. #ifdef CONFIG_NUMA
  2854. /**
  2855. * kmem_cache_alloc_node - Allocate an object on the specified node
  2856. * @cachep: The cache to allocate from.
  2857. * @flags: See kmalloc().
  2858. * @nodeid: node number of the target node.
  2859. *
  2860. * Identical to kmem_cache_alloc, except that this function is slow
  2861. * and can sleep. And it will allocate memory on the given node, which
  2862. * can improve the performance for cpu bound structures.
  2863. * New and improved: it will now make sure that the object gets
  2864. * put on the correct node list so that there is no false sharing.
  2865. */
  2866. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2867. {
  2868. unsigned long save_flags;
  2869. void *ptr;
  2870. cache_alloc_debugcheck_before(cachep, flags);
  2871. local_irq_save(save_flags);
  2872. if (nodeid == -1 || nodeid == numa_node_id() ||
  2873. !cachep->nodelists[nodeid])
  2874. ptr = ____cache_alloc(cachep, flags);
  2875. else
  2876. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2877. local_irq_restore(save_flags);
  2878. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2879. __builtin_return_address(0));
  2880. return ptr;
  2881. }
  2882. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2883. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2884. {
  2885. struct kmem_cache *cachep;
  2886. cachep = kmem_find_general_cachep(size, flags);
  2887. if (unlikely(cachep == NULL))
  2888. return NULL;
  2889. return kmem_cache_alloc_node(cachep, flags, node);
  2890. }
  2891. EXPORT_SYMBOL(kmalloc_node);
  2892. #endif
  2893. /**
  2894. * __do_kmalloc - allocate memory
  2895. * @size: how many bytes of memory are required.
  2896. * @flags: the type of memory to allocate (see kmalloc).
  2897. * @caller: function caller for debug tracking of the caller
  2898. */
  2899. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2900. void *caller)
  2901. {
  2902. struct kmem_cache *cachep;
  2903. /* If you want to save a few bytes .text space: replace
  2904. * __ with kmem_.
  2905. * Then kmalloc uses the uninlined functions instead of the inline
  2906. * functions.
  2907. */
  2908. cachep = __find_general_cachep(size, flags);
  2909. if (unlikely(cachep == NULL))
  2910. return NULL;
  2911. return __cache_alloc(cachep, flags, caller);
  2912. }
  2913. void *__kmalloc(size_t size, gfp_t flags)
  2914. {
  2915. #ifndef CONFIG_DEBUG_SLAB
  2916. return __do_kmalloc(size, flags, NULL);
  2917. #else
  2918. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2919. #endif
  2920. }
  2921. EXPORT_SYMBOL(__kmalloc);
  2922. #ifdef CONFIG_DEBUG_SLAB
  2923. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2924. {
  2925. return __do_kmalloc(size, flags, caller);
  2926. }
  2927. EXPORT_SYMBOL(__kmalloc_track_caller);
  2928. #endif
  2929. #ifdef CONFIG_SMP
  2930. /**
  2931. * __alloc_percpu - allocate one copy of the object for every present
  2932. * cpu in the system, zeroing them.
  2933. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2934. *
  2935. * @size: how many bytes of memory are required.
  2936. */
  2937. void *__alloc_percpu(size_t size)
  2938. {
  2939. int i;
  2940. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2941. if (!pdata)
  2942. return NULL;
  2943. /*
  2944. * Cannot use for_each_online_cpu since a cpu may come online
  2945. * and we have no way of figuring out how to fix the array
  2946. * that we have allocated then....
  2947. */
  2948. for_each_possible_cpu(i) {
  2949. int node = cpu_to_node(i);
  2950. if (node_online(node))
  2951. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2952. else
  2953. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2954. if (!pdata->ptrs[i])
  2955. goto unwind_oom;
  2956. memset(pdata->ptrs[i], 0, size);
  2957. }
  2958. /* Catch derefs w/o wrappers */
  2959. return (void *)(~(unsigned long)pdata);
  2960. unwind_oom:
  2961. while (--i >= 0) {
  2962. if (!cpu_possible(i))
  2963. continue;
  2964. kfree(pdata->ptrs[i]);
  2965. }
  2966. kfree(pdata);
  2967. return NULL;
  2968. }
  2969. EXPORT_SYMBOL(__alloc_percpu);
  2970. #endif
  2971. /**
  2972. * kmem_cache_free - Deallocate an object
  2973. * @cachep: The cache the allocation was from.
  2974. * @objp: The previously allocated object.
  2975. *
  2976. * Free an object which was previously allocated from this
  2977. * cache.
  2978. */
  2979. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2980. {
  2981. unsigned long flags;
  2982. BUG_ON(virt_to_cache(objp) != cachep);
  2983. local_irq_save(flags);
  2984. __cache_free(cachep, objp);
  2985. local_irq_restore(flags);
  2986. }
  2987. EXPORT_SYMBOL(kmem_cache_free);
  2988. /**
  2989. * kfree - free previously allocated memory
  2990. * @objp: pointer returned by kmalloc.
  2991. *
  2992. * If @objp is NULL, no operation is performed.
  2993. *
  2994. * Don't free memory not originally allocated by kmalloc()
  2995. * or you will run into trouble.
  2996. */
  2997. void kfree(const void *objp)
  2998. {
  2999. struct kmem_cache *c;
  3000. unsigned long flags;
  3001. if (unlikely(!objp))
  3002. return;
  3003. local_irq_save(flags);
  3004. kfree_debugcheck(objp);
  3005. c = virt_to_cache(objp);
  3006. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  3007. __cache_free(c, (void *)objp);
  3008. local_irq_restore(flags);
  3009. }
  3010. EXPORT_SYMBOL(kfree);
  3011. #ifdef CONFIG_SMP
  3012. /**
  3013. * free_percpu - free previously allocated percpu memory
  3014. * @objp: pointer returned by alloc_percpu.
  3015. *
  3016. * Don't free memory not originally allocated by alloc_percpu()
  3017. * The complemented objp is to check for that.
  3018. */
  3019. void free_percpu(const void *objp)
  3020. {
  3021. int i;
  3022. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3023. /*
  3024. * We allocate for all cpus so we cannot use for online cpu here.
  3025. */
  3026. for_each_possible_cpu(i)
  3027. kfree(p->ptrs[i]);
  3028. kfree(p);
  3029. }
  3030. EXPORT_SYMBOL(free_percpu);
  3031. #endif
  3032. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3033. {
  3034. return obj_size(cachep);
  3035. }
  3036. EXPORT_SYMBOL(kmem_cache_size);
  3037. const char *kmem_cache_name(struct kmem_cache *cachep)
  3038. {
  3039. return cachep->name;
  3040. }
  3041. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3042. /*
  3043. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3044. */
  3045. static int alloc_kmemlist(struct kmem_cache *cachep)
  3046. {
  3047. int node;
  3048. struct kmem_list3 *l3;
  3049. struct array_cache *new_shared;
  3050. struct array_cache **new_alien;
  3051. for_each_online_node(node) {
  3052. new_alien = alloc_alien_cache(node, cachep->limit);
  3053. if (!new_alien)
  3054. goto fail;
  3055. new_shared = alloc_arraycache(node,
  3056. cachep->shared*cachep->batchcount,
  3057. 0xbaadf00d);
  3058. if (!new_shared) {
  3059. free_alien_cache(new_alien);
  3060. goto fail;
  3061. }
  3062. l3 = cachep->nodelists[node];
  3063. if (l3) {
  3064. struct array_cache *shared = l3->shared;
  3065. spin_lock_irq(&l3->list_lock);
  3066. if (shared)
  3067. free_block(cachep, shared->entry,
  3068. shared->avail, node);
  3069. l3->shared = new_shared;
  3070. if (!l3->alien) {
  3071. l3->alien = new_alien;
  3072. new_alien = NULL;
  3073. }
  3074. l3->free_limit = (1 + nr_cpus_node(node)) *
  3075. cachep->batchcount + cachep->num;
  3076. spin_unlock_irq(&l3->list_lock);
  3077. kfree(shared);
  3078. free_alien_cache(new_alien);
  3079. continue;
  3080. }
  3081. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3082. if (!l3) {
  3083. free_alien_cache(new_alien);
  3084. kfree(new_shared);
  3085. goto fail;
  3086. }
  3087. kmem_list3_init(l3);
  3088. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3089. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3090. l3->shared = new_shared;
  3091. l3->alien = new_alien;
  3092. l3->free_limit = (1 + nr_cpus_node(node)) *
  3093. cachep->batchcount + cachep->num;
  3094. cachep->nodelists[node] = l3;
  3095. }
  3096. return 0;
  3097. fail:
  3098. if (!cachep->next.next) {
  3099. /* Cache is not active yet. Roll back what we did */
  3100. node--;
  3101. while (node >= 0) {
  3102. if (cachep->nodelists[node]) {
  3103. l3 = cachep->nodelists[node];
  3104. kfree(l3->shared);
  3105. free_alien_cache(l3->alien);
  3106. kfree(l3);
  3107. cachep->nodelists[node] = NULL;
  3108. }
  3109. node--;
  3110. }
  3111. }
  3112. return -ENOMEM;
  3113. }
  3114. struct ccupdate_struct {
  3115. struct kmem_cache *cachep;
  3116. struct array_cache *new[NR_CPUS];
  3117. };
  3118. static void do_ccupdate_local(void *info)
  3119. {
  3120. struct ccupdate_struct *new = info;
  3121. struct array_cache *old;
  3122. check_irq_off();
  3123. old = cpu_cache_get(new->cachep);
  3124. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3125. new->new[smp_processor_id()] = old;
  3126. }
  3127. /* Always called with the cache_chain_mutex held */
  3128. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3129. int batchcount, int shared)
  3130. {
  3131. struct ccupdate_struct new;
  3132. int i, err;
  3133. memset(&new.new, 0, sizeof(new.new));
  3134. for_each_online_cpu(i) {
  3135. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3136. batchcount);
  3137. if (!new.new[i]) {
  3138. for (i--; i >= 0; i--)
  3139. kfree(new.new[i]);
  3140. return -ENOMEM;
  3141. }
  3142. }
  3143. new.cachep = cachep;
  3144. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3145. check_irq_on();
  3146. cachep->batchcount = batchcount;
  3147. cachep->limit = limit;
  3148. cachep->shared = shared;
  3149. for_each_online_cpu(i) {
  3150. struct array_cache *ccold = new.new[i];
  3151. if (!ccold)
  3152. continue;
  3153. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3154. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3155. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3156. kfree(ccold);
  3157. }
  3158. err = alloc_kmemlist(cachep);
  3159. if (err) {
  3160. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3161. cachep->name, -err);
  3162. BUG();
  3163. }
  3164. return 0;
  3165. }
  3166. /* Called with cache_chain_mutex held always */
  3167. static void enable_cpucache(struct kmem_cache *cachep)
  3168. {
  3169. int err;
  3170. int limit, shared;
  3171. /*
  3172. * The head array serves three purposes:
  3173. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3174. * - reduce the number of spinlock operations.
  3175. * - reduce the number of linked list operations on the slab and
  3176. * bufctl chains: array operations are cheaper.
  3177. * The numbers are guessed, we should auto-tune as described by
  3178. * Bonwick.
  3179. */
  3180. if (cachep->buffer_size > 131072)
  3181. limit = 1;
  3182. else if (cachep->buffer_size > PAGE_SIZE)
  3183. limit = 8;
  3184. else if (cachep->buffer_size > 1024)
  3185. limit = 24;
  3186. else if (cachep->buffer_size > 256)
  3187. limit = 54;
  3188. else
  3189. limit = 120;
  3190. /*
  3191. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3192. * allocation behaviour: Most allocs on one cpu, most free operations
  3193. * on another cpu. For these cases, an efficient object passing between
  3194. * cpus is necessary. This is provided by a shared array. The array
  3195. * replaces Bonwick's magazine layer.
  3196. * On uniprocessor, it's functionally equivalent (but less efficient)
  3197. * to a larger limit. Thus disabled by default.
  3198. */
  3199. shared = 0;
  3200. #ifdef CONFIG_SMP
  3201. if (cachep->buffer_size <= PAGE_SIZE)
  3202. shared = 8;
  3203. #endif
  3204. #if DEBUG
  3205. /*
  3206. * With debugging enabled, large batchcount lead to excessively long
  3207. * periods with disabled local interrupts. Limit the batchcount
  3208. */
  3209. if (limit > 32)
  3210. limit = 32;
  3211. #endif
  3212. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3213. if (err)
  3214. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3215. cachep->name, -err);
  3216. }
  3217. /*
  3218. * Drain an array if it contains any elements taking the l3 lock only if
  3219. * necessary. Note that the l3 listlock also protects the array_cache
  3220. * if drain_array() is used on the shared array.
  3221. */
  3222. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3223. struct array_cache *ac, int force, int node)
  3224. {
  3225. int tofree;
  3226. if (!ac || !ac->avail)
  3227. return;
  3228. if (ac->touched && !force) {
  3229. ac->touched = 0;
  3230. } else {
  3231. spin_lock_irq(&l3->list_lock);
  3232. if (ac->avail) {
  3233. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3234. if (tofree > ac->avail)
  3235. tofree = (ac->avail + 1) / 2;
  3236. free_block(cachep, ac->entry, tofree, node);
  3237. ac->avail -= tofree;
  3238. memmove(ac->entry, &(ac->entry[tofree]),
  3239. sizeof(void *) * ac->avail);
  3240. }
  3241. spin_unlock_irq(&l3->list_lock);
  3242. }
  3243. }
  3244. /**
  3245. * cache_reap - Reclaim memory from caches.
  3246. * @unused: unused parameter
  3247. *
  3248. * Called from workqueue/eventd every few seconds.
  3249. * Purpose:
  3250. * - clear the per-cpu caches for this CPU.
  3251. * - return freeable pages to the main free memory pool.
  3252. *
  3253. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3254. * again on the next iteration.
  3255. */
  3256. static void cache_reap(void *unused)
  3257. {
  3258. struct kmem_cache *searchp;
  3259. struct kmem_list3 *l3;
  3260. int node = numa_node_id();
  3261. if (!mutex_trylock(&cache_chain_mutex)) {
  3262. /* Give up. Setup the next iteration. */
  3263. schedule_delayed_work(&__get_cpu_var(reap_work),
  3264. REAPTIMEOUT_CPUC);
  3265. return;
  3266. }
  3267. list_for_each_entry(searchp, &cache_chain, next) {
  3268. struct list_head *p;
  3269. int tofree;
  3270. struct slab *slabp;
  3271. check_irq_on();
  3272. /*
  3273. * We only take the l3 lock if absolutely necessary and we
  3274. * have established with reasonable certainty that
  3275. * we can do some work if the lock was obtained.
  3276. */
  3277. l3 = searchp->nodelists[node];
  3278. reap_alien(searchp, l3);
  3279. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3280. /*
  3281. * These are racy checks but it does not matter
  3282. * if we skip one check or scan twice.
  3283. */
  3284. if (time_after(l3->next_reap, jiffies))
  3285. goto next;
  3286. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3287. drain_array(searchp, l3, l3->shared, 0, node);
  3288. if (l3->free_touched) {
  3289. l3->free_touched = 0;
  3290. goto next;
  3291. }
  3292. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3293. (5 * searchp->num);
  3294. do {
  3295. /*
  3296. * Do not lock if there are no free blocks.
  3297. */
  3298. if (list_empty(&l3->slabs_free))
  3299. break;
  3300. spin_lock_irq(&l3->list_lock);
  3301. p = l3->slabs_free.next;
  3302. if (p == &(l3->slabs_free)) {
  3303. spin_unlock_irq(&l3->list_lock);
  3304. break;
  3305. }
  3306. slabp = list_entry(p, struct slab, list);
  3307. BUG_ON(slabp->inuse);
  3308. list_del(&slabp->list);
  3309. STATS_INC_REAPED(searchp);
  3310. /*
  3311. * Safe to drop the lock. The slab is no longer linked
  3312. * to the cache. searchp cannot disappear, we hold
  3313. * cache_chain_lock
  3314. */
  3315. l3->free_objects -= searchp->num;
  3316. spin_unlock_irq(&l3->list_lock);
  3317. slab_destroy(searchp, slabp);
  3318. } while (--tofree > 0);
  3319. next:
  3320. cond_resched();
  3321. }
  3322. check_irq_on();
  3323. mutex_unlock(&cache_chain_mutex);
  3324. next_reap_node();
  3325. /* Set up the next iteration */
  3326. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3327. }
  3328. #ifdef CONFIG_PROC_FS
  3329. static void print_slabinfo_header(struct seq_file *m)
  3330. {
  3331. /*
  3332. * Output format version, so at least we can change it
  3333. * without _too_ many complaints.
  3334. */
  3335. #if STATS
  3336. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3337. #else
  3338. seq_puts(m, "slabinfo - version: 2.1\n");
  3339. #endif
  3340. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3341. "<objperslab> <pagesperslab>");
  3342. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3343. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3344. #if STATS
  3345. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3346. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3347. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3348. #endif
  3349. seq_putc(m, '\n');
  3350. }
  3351. static void *s_start(struct seq_file *m, loff_t *pos)
  3352. {
  3353. loff_t n = *pos;
  3354. struct list_head *p;
  3355. mutex_lock(&cache_chain_mutex);
  3356. if (!n)
  3357. print_slabinfo_header(m);
  3358. p = cache_chain.next;
  3359. while (n--) {
  3360. p = p->next;
  3361. if (p == &cache_chain)
  3362. return NULL;
  3363. }
  3364. return list_entry(p, struct kmem_cache, next);
  3365. }
  3366. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3367. {
  3368. struct kmem_cache *cachep = p;
  3369. ++*pos;
  3370. return cachep->next.next == &cache_chain ?
  3371. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3372. }
  3373. static void s_stop(struct seq_file *m, void *p)
  3374. {
  3375. mutex_unlock(&cache_chain_mutex);
  3376. }
  3377. static int s_show(struct seq_file *m, void *p)
  3378. {
  3379. struct kmem_cache *cachep = p;
  3380. struct slab *slabp;
  3381. unsigned long active_objs;
  3382. unsigned long num_objs;
  3383. unsigned long active_slabs = 0;
  3384. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3385. const char *name;
  3386. char *error = NULL;
  3387. int node;
  3388. struct kmem_list3 *l3;
  3389. active_objs = 0;
  3390. num_slabs = 0;
  3391. for_each_online_node(node) {
  3392. l3 = cachep->nodelists[node];
  3393. if (!l3)
  3394. continue;
  3395. check_irq_on();
  3396. spin_lock_irq(&l3->list_lock);
  3397. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3398. if (slabp->inuse != cachep->num && !error)
  3399. error = "slabs_full accounting error";
  3400. active_objs += cachep->num;
  3401. active_slabs++;
  3402. }
  3403. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3404. if (slabp->inuse == cachep->num && !error)
  3405. error = "slabs_partial inuse accounting error";
  3406. if (!slabp->inuse && !error)
  3407. error = "slabs_partial/inuse accounting error";
  3408. active_objs += slabp->inuse;
  3409. active_slabs++;
  3410. }
  3411. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3412. if (slabp->inuse && !error)
  3413. error = "slabs_free/inuse accounting error";
  3414. num_slabs++;
  3415. }
  3416. free_objects += l3->free_objects;
  3417. if (l3->shared)
  3418. shared_avail += l3->shared->avail;
  3419. spin_unlock_irq(&l3->list_lock);
  3420. }
  3421. num_slabs += active_slabs;
  3422. num_objs = num_slabs * cachep->num;
  3423. if (num_objs - active_objs != free_objects && !error)
  3424. error = "free_objects accounting error";
  3425. name = cachep->name;
  3426. if (error)
  3427. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3428. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3429. name, active_objs, num_objs, cachep->buffer_size,
  3430. cachep->num, (1 << cachep->gfporder));
  3431. seq_printf(m, " : tunables %4u %4u %4u",
  3432. cachep->limit, cachep->batchcount, cachep->shared);
  3433. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3434. active_slabs, num_slabs, shared_avail);
  3435. #if STATS
  3436. { /* list3 stats */
  3437. unsigned long high = cachep->high_mark;
  3438. unsigned long allocs = cachep->num_allocations;
  3439. unsigned long grown = cachep->grown;
  3440. unsigned long reaped = cachep->reaped;
  3441. unsigned long errors = cachep->errors;
  3442. unsigned long max_freeable = cachep->max_freeable;
  3443. unsigned long node_allocs = cachep->node_allocs;
  3444. unsigned long node_frees = cachep->node_frees;
  3445. unsigned long overflows = cachep->node_overflow;
  3446. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3447. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3448. reaped, errors, max_freeable, node_allocs,
  3449. node_frees, overflows);
  3450. }
  3451. /* cpu stats */
  3452. {
  3453. unsigned long allochit = atomic_read(&cachep->allochit);
  3454. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3455. unsigned long freehit = atomic_read(&cachep->freehit);
  3456. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3457. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3458. allochit, allocmiss, freehit, freemiss);
  3459. }
  3460. #endif
  3461. seq_putc(m, '\n');
  3462. return 0;
  3463. }
  3464. /*
  3465. * slabinfo_op - iterator that generates /proc/slabinfo
  3466. *
  3467. * Output layout:
  3468. * cache-name
  3469. * num-active-objs
  3470. * total-objs
  3471. * object size
  3472. * num-active-slabs
  3473. * total-slabs
  3474. * num-pages-per-slab
  3475. * + further values on SMP and with statistics enabled
  3476. */
  3477. struct seq_operations slabinfo_op = {
  3478. .start = s_start,
  3479. .next = s_next,
  3480. .stop = s_stop,
  3481. .show = s_show,
  3482. };
  3483. #define MAX_SLABINFO_WRITE 128
  3484. /**
  3485. * slabinfo_write - Tuning for the slab allocator
  3486. * @file: unused
  3487. * @buffer: user buffer
  3488. * @count: data length
  3489. * @ppos: unused
  3490. */
  3491. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3492. size_t count, loff_t *ppos)
  3493. {
  3494. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3495. int limit, batchcount, shared, res;
  3496. struct kmem_cache *cachep;
  3497. if (count > MAX_SLABINFO_WRITE)
  3498. return -EINVAL;
  3499. if (copy_from_user(&kbuf, buffer, count))
  3500. return -EFAULT;
  3501. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3502. tmp = strchr(kbuf, ' ');
  3503. if (!tmp)
  3504. return -EINVAL;
  3505. *tmp = '\0';
  3506. tmp++;
  3507. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3508. return -EINVAL;
  3509. /* Find the cache in the chain of caches. */
  3510. mutex_lock(&cache_chain_mutex);
  3511. res = -EINVAL;
  3512. list_for_each_entry(cachep, &cache_chain, next) {
  3513. if (!strcmp(cachep->name, kbuf)) {
  3514. if (limit < 1 || batchcount < 1 ||
  3515. batchcount > limit || shared < 0) {
  3516. res = 0;
  3517. } else {
  3518. res = do_tune_cpucache(cachep, limit,
  3519. batchcount, shared);
  3520. }
  3521. break;
  3522. }
  3523. }
  3524. mutex_unlock(&cache_chain_mutex);
  3525. if (res >= 0)
  3526. res = count;
  3527. return res;
  3528. }
  3529. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3530. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3531. {
  3532. loff_t n = *pos;
  3533. struct list_head *p;
  3534. mutex_lock(&cache_chain_mutex);
  3535. p = cache_chain.next;
  3536. while (n--) {
  3537. p = p->next;
  3538. if (p == &cache_chain)
  3539. return NULL;
  3540. }
  3541. return list_entry(p, struct kmem_cache, next);
  3542. }
  3543. static inline int add_caller(unsigned long *n, unsigned long v)
  3544. {
  3545. unsigned long *p;
  3546. int l;
  3547. if (!v)
  3548. return 1;
  3549. l = n[1];
  3550. p = n + 2;
  3551. while (l) {
  3552. int i = l/2;
  3553. unsigned long *q = p + 2 * i;
  3554. if (*q == v) {
  3555. q[1]++;
  3556. return 1;
  3557. }
  3558. if (*q > v) {
  3559. l = i;
  3560. } else {
  3561. p = q + 2;
  3562. l -= i + 1;
  3563. }
  3564. }
  3565. if (++n[1] == n[0])
  3566. return 0;
  3567. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3568. p[0] = v;
  3569. p[1] = 1;
  3570. return 1;
  3571. }
  3572. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3573. {
  3574. void *p;
  3575. int i;
  3576. if (n[0] == n[1])
  3577. return;
  3578. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3579. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3580. continue;
  3581. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3582. return;
  3583. }
  3584. }
  3585. static void show_symbol(struct seq_file *m, unsigned long address)
  3586. {
  3587. #ifdef CONFIG_KALLSYMS
  3588. char *modname;
  3589. const char *name;
  3590. unsigned long offset, size;
  3591. char namebuf[KSYM_NAME_LEN+1];
  3592. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3593. if (name) {
  3594. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3595. if (modname)
  3596. seq_printf(m, " [%s]", modname);
  3597. return;
  3598. }
  3599. #endif
  3600. seq_printf(m, "%p", (void *)address);
  3601. }
  3602. static int leaks_show(struct seq_file *m, void *p)
  3603. {
  3604. struct kmem_cache *cachep = p;
  3605. struct slab *slabp;
  3606. struct kmem_list3 *l3;
  3607. const char *name;
  3608. unsigned long *n = m->private;
  3609. int node;
  3610. int i;
  3611. if (!(cachep->flags & SLAB_STORE_USER))
  3612. return 0;
  3613. if (!(cachep->flags & SLAB_RED_ZONE))
  3614. return 0;
  3615. /* OK, we can do it */
  3616. n[1] = 0;
  3617. for_each_online_node(node) {
  3618. l3 = cachep->nodelists[node];
  3619. if (!l3)
  3620. continue;
  3621. check_irq_on();
  3622. spin_lock_irq(&l3->list_lock);
  3623. list_for_each_entry(slabp, &l3->slabs_full, list)
  3624. handle_slab(n, cachep, slabp);
  3625. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3626. handle_slab(n, cachep, slabp);
  3627. spin_unlock_irq(&l3->list_lock);
  3628. }
  3629. name = cachep->name;
  3630. if (n[0] == n[1]) {
  3631. /* Increase the buffer size */
  3632. mutex_unlock(&cache_chain_mutex);
  3633. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3634. if (!m->private) {
  3635. /* Too bad, we are really out */
  3636. m->private = n;
  3637. mutex_lock(&cache_chain_mutex);
  3638. return -ENOMEM;
  3639. }
  3640. *(unsigned long *)m->private = n[0] * 2;
  3641. kfree(n);
  3642. mutex_lock(&cache_chain_mutex);
  3643. /* Now make sure this entry will be retried */
  3644. m->count = m->size;
  3645. return 0;
  3646. }
  3647. for (i = 0; i < n[1]; i++) {
  3648. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3649. show_symbol(m, n[2*i+2]);
  3650. seq_putc(m, '\n');
  3651. }
  3652. return 0;
  3653. }
  3654. struct seq_operations slabstats_op = {
  3655. .start = leaks_start,
  3656. .next = s_next,
  3657. .stop = s_stop,
  3658. .show = leaks_show,
  3659. };
  3660. #endif
  3661. #endif
  3662. /**
  3663. * ksize - get the actual amount of memory allocated for a given object
  3664. * @objp: Pointer to the object
  3665. *
  3666. * kmalloc may internally round up allocations and return more memory
  3667. * than requested. ksize() can be used to determine the actual amount of
  3668. * memory allocated. The caller may use this additional memory, even though
  3669. * a smaller amount of memory was initially specified with the kmalloc call.
  3670. * The caller must guarantee that objp points to a valid object previously
  3671. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3672. * must not be freed during the duration of the call.
  3673. */
  3674. unsigned int ksize(const void *objp)
  3675. {
  3676. if (unlikely(objp == NULL))
  3677. return 0;
  3678. return obj_size(virt_to_cache(objp));
  3679. }