main.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include "core.h"
  19. #include "hif-ops.h"
  20. #include "cfg80211.h"
  21. #include "target.h"
  22. #include "debug.h"
  23. struct ath6kl_sta *ath6kl_find_sta(struct ath6kl_vif *vif, u8 *node_addr)
  24. {
  25. struct ath6kl *ar = vif->ar;
  26. struct ath6kl_sta *conn = NULL;
  27. u8 i, max_conn;
  28. max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
  29. for (i = 0; i < max_conn; i++) {
  30. if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
  31. conn = &ar->sta_list[i];
  32. break;
  33. }
  34. }
  35. return conn;
  36. }
  37. struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
  38. {
  39. struct ath6kl_sta *conn = NULL;
  40. u8 ctr;
  41. for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
  42. if (ar->sta_list[ctr].aid == aid) {
  43. conn = &ar->sta_list[ctr];
  44. break;
  45. }
  46. }
  47. return conn;
  48. }
  49. static void ath6kl_add_new_sta(struct ath6kl_vif *vif, u8 *mac, u16 aid,
  50. u8 *wpaie, size_t ielen, u8 keymgmt,
  51. u8 ucipher, u8 auth, u8 apsd_info)
  52. {
  53. struct ath6kl *ar = vif->ar;
  54. struct ath6kl_sta *sta;
  55. u8 free_slot;
  56. free_slot = aid - 1;
  57. sta = &ar->sta_list[free_slot];
  58. memcpy(sta->mac, mac, ETH_ALEN);
  59. if (ielen <= ATH6KL_MAX_IE)
  60. memcpy(sta->wpa_ie, wpaie, ielen);
  61. sta->aid = aid;
  62. sta->keymgmt = keymgmt;
  63. sta->ucipher = ucipher;
  64. sta->auth = auth;
  65. sta->apsd_info = apsd_info;
  66. ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
  67. ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
  68. aggr_conn_init(vif, vif->aggr_cntxt, sta->aggr_conn);
  69. }
  70. static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
  71. {
  72. struct ath6kl_sta *sta = &ar->sta_list[i];
  73. struct ath6kl_mgmt_buff *entry, *tmp;
  74. /* empty the queued pkts in the PS queue if any */
  75. spin_lock_bh(&sta->psq_lock);
  76. skb_queue_purge(&sta->psq);
  77. skb_queue_purge(&sta->apsdq);
  78. if (sta->mgmt_psq_len != 0) {
  79. list_for_each_entry_safe(entry, tmp, &sta->mgmt_psq, list) {
  80. kfree(entry);
  81. }
  82. INIT_LIST_HEAD(&sta->mgmt_psq);
  83. sta->mgmt_psq_len = 0;
  84. }
  85. spin_unlock_bh(&sta->psq_lock);
  86. memset(&ar->ap_stats.sta[sta->aid - 1], 0,
  87. sizeof(struct wmi_per_sta_stat));
  88. memset(sta->mac, 0, ETH_ALEN);
  89. memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
  90. sta->aid = 0;
  91. sta->sta_flags = 0;
  92. ar->sta_list_index = ar->sta_list_index & ~(1 << i);
  93. aggr_reset_state(sta->aggr_conn);
  94. }
  95. static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
  96. {
  97. u8 i, removed = 0;
  98. if (is_zero_ether_addr(mac))
  99. return removed;
  100. if (is_broadcast_ether_addr(mac)) {
  101. ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
  102. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  103. if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
  104. ath6kl_sta_cleanup(ar, i);
  105. removed = 1;
  106. }
  107. }
  108. } else {
  109. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  110. if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
  111. ath6kl_dbg(ATH6KL_DBG_TRC,
  112. "deleting station %pM aid=%d reason=%d\n",
  113. mac, ar->sta_list[i].aid, reason);
  114. ath6kl_sta_cleanup(ar, i);
  115. removed = 1;
  116. break;
  117. }
  118. }
  119. }
  120. return removed;
  121. }
  122. enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
  123. {
  124. struct ath6kl *ar = devt;
  125. return ar->ac2ep_map[ac];
  126. }
  127. struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
  128. {
  129. struct ath6kl_cookie *cookie;
  130. cookie = ar->cookie_list;
  131. if (cookie != NULL) {
  132. ar->cookie_list = cookie->arc_list_next;
  133. ar->cookie_count--;
  134. }
  135. return cookie;
  136. }
  137. void ath6kl_cookie_init(struct ath6kl *ar)
  138. {
  139. u32 i;
  140. ar->cookie_list = NULL;
  141. ar->cookie_count = 0;
  142. memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
  143. for (i = 0; i < MAX_COOKIE_NUM; i++)
  144. ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
  145. }
  146. void ath6kl_cookie_cleanup(struct ath6kl *ar)
  147. {
  148. ar->cookie_list = NULL;
  149. ar->cookie_count = 0;
  150. }
  151. void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
  152. {
  153. /* Insert first */
  154. if (!ar || !cookie)
  155. return;
  156. cookie->arc_list_next = ar->cookie_list;
  157. ar->cookie_list = cookie;
  158. ar->cookie_count++;
  159. }
  160. /*
  161. * Read from the hardware through its diagnostic window. No cooperation
  162. * from the firmware is required for this.
  163. */
  164. int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
  165. {
  166. int ret;
  167. ret = ath6kl_hif_diag_read32(ar, address, value);
  168. if (ret) {
  169. ath6kl_warn("failed to read32 through diagnose window: %d\n",
  170. ret);
  171. return ret;
  172. }
  173. return 0;
  174. }
  175. /*
  176. * Write to the ATH6KL through its diagnostic window. No cooperation from
  177. * the Target is required for this.
  178. */
  179. int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
  180. {
  181. int ret;
  182. ret = ath6kl_hif_diag_write32(ar, address, value);
  183. if (ret) {
  184. ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
  185. address, value);
  186. return ret;
  187. }
  188. return 0;
  189. }
  190. int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
  191. {
  192. u32 count, *buf = data;
  193. int ret;
  194. if (WARN_ON(length % 4))
  195. return -EINVAL;
  196. for (count = 0; count < length / 4; count++, address += 4) {
  197. ret = ath6kl_diag_read32(ar, address, &buf[count]);
  198. if (ret)
  199. return ret;
  200. }
  201. return 0;
  202. }
  203. int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
  204. {
  205. u32 count;
  206. __le32 *buf = data;
  207. int ret;
  208. if (WARN_ON(length % 4))
  209. return -EINVAL;
  210. for (count = 0; count < length / 4; count++, address += 4) {
  211. ret = ath6kl_diag_write32(ar, address, buf[count]);
  212. if (ret)
  213. return ret;
  214. }
  215. return 0;
  216. }
  217. int ath6kl_read_fwlogs(struct ath6kl *ar)
  218. {
  219. struct ath6kl_dbglog_hdr debug_hdr;
  220. struct ath6kl_dbglog_buf debug_buf;
  221. u32 address, length, dropped, firstbuf, debug_hdr_addr;
  222. int ret, loop;
  223. u8 *buf;
  224. buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
  225. if (!buf)
  226. return -ENOMEM;
  227. address = TARG_VTOP(ar->target_type,
  228. ath6kl_get_hi_item_addr(ar,
  229. HI_ITEM(hi_dbglog_hdr)));
  230. ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
  231. if (ret)
  232. goto out;
  233. /* Get the contents of the ring buffer */
  234. if (debug_hdr_addr == 0) {
  235. ath6kl_warn("Invalid address for debug_hdr_addr\n");
  236. ret = -EINVAL;
  237. goto out;
  238. }
  239. address = TARG_VTOP(ar->target_type, debug_hdr_addr);
  240. ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
  241. address = TARG_VTOP(ar->target_type,
  242. le32_to_cpu(debug_hdr.dbuf_addr));
  243. firstbuf = address;
  244. dropped = le32_to_cpu(debug_hdr.dropped);
  245. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  246. loop = 100;
  247. do {
  248. address = TARG_VTOP(ar->target_type,
  249. le32_to_cpu(debug_buf.buffer_addr));
  250. length = le32_to_cpu(debug_buf.length);
  251. if (length != 0 && (le32_to_cpu(debug_buf.length) <=
  252. le32_to_cpu(debug_buf.bufsize))) {
  253. length = ALIGN(length, 4);
  254. ret = ath6kl_diag_read(ar, address,
  255. buf, length);
  256. if (ret)
  257. goto out;
  258. ath6kl_debug_fwlog_event(ar, buf, length);
  259. }
  260. address = TARG_VTOP(ar->target_type,
  261. le32_to_cpu(debug_buf.next));
  262. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  263. if (ret)
  264. goto out;
  265. loop--;
  266. if (WARN_ON(loop == 0)) {
  267. ret = -ETIMEDOUT;
  268. goto out;
  269. }
  270. } while (address != firstbuf);
  271. out:
  272. kfree(buf);
  273. return ret;
  274. }
  275. /* FIXME: move to a better place, target.h? */
  276. #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
  277. #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
  278. void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
  279. bool wait_fot_compltn, bool cold_reset)
  280. {
  281. int status = 0;
  282. u32 address;
  283. __le32 data;
  284. if (target_type != TARGET_TYPE_AR6003 &&
  285. target_type != TARGET_TYPE_AR6004)
  286. return;
  287. data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) :
  288. cpu_to_le32(RESET_CONTROL_MBOX_RST);
  289. switch (target_type) {
  290. case TARGET_TYPE_AR6003:
  291. address = AR6003_RESET_CONTROL_ADDRESS;
  292. break;
  293. case TARGET_TYPE_AR6004:
  294. address = AR6004_RESET_CONTROL_ADDRESS;
  295. break;
  296. }
  297. status = ath6kl_diag_write32(ar, address, data);
  298. if (status)
  299. ath6kl_err("failed to reset target\n");
  300. }
  301. static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif)
  302. {
  303. u8 index;
  304. u8 keyusage;
  305. for (index = 0; index <= WMI_MAX_KEY_INDEX; index++) {
  306. if (vif->wep_key_list[index].key_len) {
  307. keyusage = GROUP_USAGE;
  308. if (index == vif->def_txkey_index)
  309. keyusage |= TX_USAGE;
  310. ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx,
  311. index,
  312. WEP_CRYPT,
  313. keyusage,
  314. vif->wep_key_list[index].key_len,
  315. NULL, 0,
  316. vif->wep_key_list[index].key,
  317. KEY_OP_INIT_VAL, NULL,
  318. NO_SYNC_WMIFLAG);
  319. }
  320. }
  321. }
  322. void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel)
  323. {
  324. struct ath6kl *ar = vif->ar;
  325. struct ath6kl_req_key *ik;
  326. int res;
  327. u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
  328. ik = &ar->ap_mode_bkey;
  329. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
  330. switch (vif->auth_mode) {
  331. case NONE_AUTH:
  332. if (vif->prwise_crypto == WEP_CRYPT)
  333. ath6kl_install_static_wep_keys(vif);
  334. if (!ik->valid || ik->key_type != WAPI_CRYPT)
  335. break;
  336. /* for WAPI, we need to set the delayed group key, continue: */
  337. case WPA_PSK_AUTH:
  338. case WPA2_PSK_AUTH:
  339. case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
  340. if (!ik->valid)
  341. break;
  342. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
  343. "the initial group key for AP mode\n");
  344. memset(key_rsc, 0, sizeof(key_rsc));
  345. res = ath6kl_wmi_addkey_cmd(
  346. ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type,
  347. GROUP_USAGE, ik->key_len, key_rsc, ATH6KL_KEY_SEQ_LEN,
  348. ik->key,
  349. KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
  350. if (res) {
  351. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
  352. "addkey failed: %d\n", res);
  353. }
  354. break;
  355. }
  356. if (ar->want_ch_switch & (1 << vif->fw_vif_idx)) {
  357. ar->want_ch_switch &= ~(1 << vif->fw_vif_idx);
  358. /* we actually don't know the phymode, default to HT20 */
  359. ath6kl_cfg80211_ch_switch_notify(vif, channel,
  360. WMI_11G_HT20);
  361. }
  362. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0);
  363. set_bit(CONNECTED, &vif->flags);
  364. netif_carrier_on(vif->ndev);
  365. }
  366. void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr,
  367. u8 keymgmt, u8 ucipher, u8 auth,
  368. u8 assoc_req_len, u8 *assoc_info, u8 apsd_info)
  369. {
  370. u8 *ies = NULL, *wpa_ie = NULL, *pos;
  371. size_t ies_len = 0;
  372. struct station_info sinfo;
  373. ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
  374. if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
  375. struct ieee80211_mgmt *mgmt =
  376. (struct ieee80211_mgmt *) assoc_info;
  377. if (ieee80211_is_assoc_req(mgmt->frame_control) &&
  378. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
  379. sizeof(mgmt->u.assoc_req)) {
  380. ies = mgmt->u.assoc_req.variable;
  381. ies_len = assoc_info + assoc_req_len - ies;
  382. } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
  383. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
  384. + sizeof(mgmt->u.reassoc_req)) {
  385. ies = mgmt->u.reassoc_req.variable;
  386. ies_len = assoc_info + assoc_req_len - ies;
  387. }
  388. }
  389. pos = ies;
  390. while (pos && pos + 1 < ies + ies_len) {
  391. if (pos + 2 + pos[1] > ies + ies_len)
  392. break;
  393. if (pos[0] == WLAN_EID_RSN)
  394. wpa_ie = pos; /* RSN IE */
  395. else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
  396. pos[1] >= 4 &&
  397. pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
  398. if (pos[5] == 0x01)
  399. wpa_ie = pos; /* WPA IE */
  400. else if (pos[5] == 0x04) {
  401. wpa_ie = pos; /* WPS IE */
  402. break; /* overrides WPA/RSN IE */
  403. }
  404. } else if (pos[0] == 0x44 && wpa_ie == NULL) {
  405. /*
  406. * Note: WAPI Parameter Set IE re-uses Element ID that
  407. * was officially allocated for BSS AC Access Delay. As
  408. * such, we need to be a bit more careful on when
  409. * parsing the frame. However, BSS AC Access Delay
  410. * element is not supposed to be included in
  411. * (Re)Association Request frames, so this should not
  412. * cause problems.
  413. */
  414. wpa_ie = pos; /* WAPI IE */
  415. break;
  416. }
  417. pos += 2 + pos[1];
  418. }
  419. ath6kl_add_new_sta(vif, mac_addr, aid, wpa_ie,
  420. wpa_ie ? 2 + wpa_ie[1] : 0,
  421. keymgmt, ucipher, auth, apsd_info);
  422. /* send event to application */
  423. memset(&sinfo, 0, sizeof(sinfo));
  424. /* TODO: sinfo.generation */
  425. sinfo.assoc_req_ies = ies;
  426. sinfo.assoc_req_ies_len = ies_len;
  427. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  428. cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL);
  429. netif_wake_queue(vif->ndev);
  430. }
  431. void disconnect_timer_handler(unsigned long ptr)
  432. {
  433. struct net_device *dev = (struct net_device *)ptr;
  434. struct ath6kl_vif *vif = netdev_priv(dev);
  435. ath6kl_init_profile_info(vif);
  436. ath6kl_disconnect(vif);
  437. }
  438. void ath6kl_disconnect(struct ath6kl_vif *vif)
  439. {
  440. if (test_bit(CONNECTED, &vif->flags) ||
  441. test_bit(CONNECT_PEND, &vif->flags)) {
  442. ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
  443. /*
  444. * Disconnect command is issued, clear the connect pending
  445. * flag. The connected flag will be cleared in
  446. * disconnect event notification.
  447. */
  448. clear_bit(CONNECT_PEND, &vif->flags);
  449. }
  450. }
  451. /* WMI Event handlers */
  452. void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
  453. {
  454. struct ath6kl *ar = devt;
  455. memcpy(ar->mac_addr, datap, ETH_ALEN);
  456. ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
  457. __func__, ar->mac_addr);
  458. ar->version.wlan_ver = sw_ver;
  459. ar->version.abi_ver = abi_ver;
  460. snprintf(ar->wiphy->fw_version,
  461. sizeof(ar->wiphy->fw_version),
  462. "%u.%u.%u.%u",
  463. (ar->version.wlan_ver & 0xf0000000) >> 28,
  464. (ar->version.wlan_ver & 0x0f000000) >> 24,
  465. (ar->version.wlan_ver & 0x00ff0000) >> 16,
  466. (ar->version.wlan_ver & 0x0000ffff));
  467. /* indicate to the waiting thread that the ready event was received */
  468. set_bit(WMI_READY, &ar->flag);
  469. wake_up(&ar->event_wq);
  470. }
  471. void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status)
  472. {
  473. struct ath6kl *ar = vif->ar;
  474. bool aborted = false;
  475. if (status != WMI_SCAN_STATUS_SUCCESS)
  476. aborted = true;
  477. ath6kl_cfg80211_scan_complete_event(vif, aborted);
  478. if (!ar->usr_bss_filter) {
  479. clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  480. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  481. NONE_BSS_FILTER, 0);
  482. }
  483. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "scan complete: %d\n", status);
  484. }
  485. static int ath6kl_commit_ch_switch(struct ath6kl_vif *vif, u16 channel)
  486. {
  487. struct ath6kl *ar = vif->ar;
  488. vif->next_chan = channel;
  489. vif->profile.ch = cpu_to_le16(channel);
  490. switch (vif->nw_type) {
  491. case AP_NETWORK:
  492. return ath6kl_wmi_ap_profile_commit(ar->wmi, vif->fw_vif_idx,
  493. &vif->profile);
  494. default:
  495. ath6kl_err("won't switch channels nw_type=%d\n", vif->nw_type);
  496. return -ENOTSUPP;
  497. }
  498. }
  499. static void ath6kl_check_ch_switch(struct ath6kl *ar, u16 channel)
  500. {
  501. struct ath6kl_vif *vif;
  502. int res = 0;
  503. if (!ar->want_ch_switch)
  504. return;
  505. spin_lock_bh(&ar->list_lock);
  506. list_for_each_entry(vif, &ar->vif_list, list) {
  507. if (ar->want_ch_switch & (1 << vif->fw_vif_idx))
  508. res = ath6kl_commit_ch_switch(vif, channel);
  509. if (res)
  510. ath6kl_err("channel switch failed nw_type %d res %d\n",
  511. vif->nw_type, res);
  512. }
  513. spin_unlock_bh(&ar->list_lock);
  514. }
  515. void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid,
  516. u16 listen_int, u16 beacon_int,
  517. enum network_type net_type, u8 beacon_ie_len,
  518. u8 assoc_req_len, u8 assoc_resp_len,
  519. u8 *assoc_info)
  520. {
  521. struct ath6kl *ar = vif->ar;
  522. ath6kl_cfg80211_connect_event(vif, channel, bssid,
  523. listen_int, beacon_int,
  524. net_type, beacon_ie_len,
  525. assoc_req_len, assoc_resp_len,
  526. assoc_info);
  527. memcpy(vif->bssid, bssid, sizeof(vif->bssid));
  528. vif->bss_ch = channel;
  529. if ((vif->nw_type == INFRA_NETWORK)) {
  530. ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
  531. vif->listen_intvl_t, 0);
  532. ath6kl_check_ch_switch(ar, channel);
  533. }
  534. netif_wake_queue(vif->ndev);
  535. /* Update connect & link status atomically */
  536. spin_lock_bh(&vif->if_lock);
  537. set_bit(CONNECTED, &vif->flags);
  538. clear_bit(CONNECT_PEND, &vif->flags);
  539. netif_carrier_on(vif->ndev);
  540. spin_unlock_bh(&vif->if_lock);
  541. aggr_reset_state(vif->aggr_cntxt->aggr_conn);
  542. vif->reconnect_flag = 0;
  543. if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
  544. memset(ar->node_map, 0, sizeof(ar->node_map));
  545. ar->node_num = 0;
  546. ar->next_ep_id = ENDPOINT_2;
  547. }
  548. if (!ar->usr_bss_filter) {
  549. set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  550. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  551. CURRENT_BSS_FILTER, 0);
  552. }
  553. }
  554. void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast)
  555. {
  556. struct ath6kl_sta *sta;
  557. struct ath6kl *ar = vif->ar;
  558. u8 tsc[6];
  559. /*
  560. * For AP case, keyid will have aid of STA which sent pkt with
  561. * MIC error. Use this aid to get MAC & send it to hostapd.
  562. */
  563. if (vif->nw_type == AP_NETWORK) {
  564. sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
  565. if (!sta)
  566. return;
  567. ath6kl_dbg(ATH6KL_DBG_TRC,
  568. "ap tkip mic error received from aid=%d\n", keyid);
  569. memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
  570. cfg80211_michael_mic_failure(vif->ndev, sta->mac,
  571. NL80211_KEYTYPE_PAIRWISE, keyid,
  572. tsc, GFP_KERNEL);
  573. } else
  574. ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast);
  575. }
  576. static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  577. {
  578. struct wmi_target_stats *tgt_stats =
  579. (struct wmi_target_stats *) ptr;
  580. struct ath6kl *ar = vif->ar;
  581. struct target_stats *stats = &vif->target_stats;
  582. struct tkip_ccmp_stats *ccmp_stats;
  583. u8 ac;
  584. if (len < sizeof(*tgt_stats))
  585. return;
  586. ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
  587. stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
  588. stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
  589. stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
  590. stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
  591. stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
  592. stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
  593. stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
  594. stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
  595. stats->tx_rts_success_cnt +=
  596. le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
  597. for (ac = 0; ac < WMM_NUM_AC; ac++)
  598. stats->tx_pkt_per_ac[ac] +=
  599. le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
  600. stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
  601. stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
  602. stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
  603. stats->tx_mult_retry_cnt +=
  604. le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
  605. stats->tx_rts_fail_cnt +=
  606. le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
  607. stats->tx_ucast_rate =
  608. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
  609. stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
  610. stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
  611. stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
  612. stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
  613. stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
  614. stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
  615. stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
  616. stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
  617. stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
  618. stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
  619. stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
  620. stats->rx_key_cache_miss +=
  621. le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
  622. stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
  623. stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
  624. stats->rx_ucast_rate =
  625. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
  626. ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
  627. stats->tkip_local_mic_fail +=
  628. le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
  629. stats->tkip_cnter_measures_invoked +=
  630. le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
  631. stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
  632. stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
  633. stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
  634. stats->pwr_save_fail_cnt +=
  635. le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
  636. stats->noise_floor_calib =
  637. a_sle32_to_cpu(tgt_stats->noise_floor_calib);
  638. stats->cs_bmiss_cnt +=
  639. le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
  640. stats->cs_low_rssi_cnt +=
  641. le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
  642. stats->cs_connect_cnt +=
  643. le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
  644. stats->cs_discon_cnt +=
  645. le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
  646. stats->cs_ave_beacon_rssi =
  647. a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
  648. stats->cs_last_roam_msec =
  649. tgt_stats->cserv_stats.cs_last_roam_msec;
  650. stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
  651. stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
  652. stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
  653. stats->wow_pkt_dropped +=
  654. le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
  655. stats->wow_host_pkt_wakeups +=
  656. tgt_stats->wow_stats.wow_host_pkt_wakeups;
  657. stats->wow_host_evt_wakeups +=
  658. tgt_stats->wow_stats.wow_host_evt_wakeups;
  659. stats->wow_evt_discarded +=
  660. le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
  661. stats->arp_received = le32_to_cpu(tgt_stats->arp_stats.arp_received);
  662. stats->arp_replied = le32_to_cpu(tgt_stats->arp_stats.arp_replied);
  663. stats->arp_matched = le32_to_cpu(tgt_stats->arp_stats.arp_matched);
  664. if (test_bit(STATS_UPDATE_PEND, &vif->flags)) {
  665. clear_bit(STATS_UPDATE_PEND, &vif->flags);
  666. wake_up(&ar->event_wq);
  667. }
  668. }
  669. static void ath6kl_add_le32(__le32 *var, __le32 val)
  670. {
  671. *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
  672. }
  673. void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  674. {
  675. struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
  676. struct ath6kl *ar = vif->ar;
  677. struct wmi_ap_mode_stat *ap = &ar->ap_stats;
  678. struct wmi_per_sta_stat *st_ap, *st_p;
  679. u8 ac;
  680. if (vif->nw_type == AP_NETWORK) {
  681. if (len < sizeof(*p))
  682. return;
  683. for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
  684. st_ap = &ap->sta[ac];
  685. st_p = &p->sta[ac];
  686. ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
  687. ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
  688. ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
  689. ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
  690. ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
  691. ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
  692. ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
  693. ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
  694. }
  695. } else {
  696. ath6kl_update_target_stats(vif, ptr, len);
  697. }
  698. }
  699. void ath6kl_wakeup_event(void *dev)
  700. {
  701. struct ath6kl *ar = (struct ath6kl *) dev;
  702. wake_up(&ar->event_wq);
  703. }
  704. void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
  705. {
  706. struct ath6kl *ar = (struct ath6kl *) devt;
  707. ar->tx_pwr = tx_pwr;
  708. wake_up(&ar->event_wq);
  709. }
  710. void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid)
  711. {
  712. struct ath6kl_sta *conn;
  713. struct sk_buff *skb;
  714. bool psq_empty = false;
  715. struct ath6kl *ar = vif->ar;
  716. struct ath6kl_mgmt_buff *mgmt_buf;
  717. conn = ath6kl_find_sta_by_aid(ar, aid);
  718. if (!conn)
  719. return;
  720. /*
  721. * Send out a packet queued on ps queue. When the ps queue
  722. * becomes empty update the PVB for this station.
  723. */
  724. spin_lock_bh(&conn->psq_lock);
  725. psq_empty = skb_queue_empty(&conn->psq) && (conn->mgmt_psq_len == 0);
  726. spin_unlock_bh(&conn->psq_lock);
  727. if (psq_empty)
  728. /* TODO: Send out a NULL data frame */
  729. return;
  730. spin_lock_bh(&conn->psq_lock);
  731. if (conn->mgmt_psq_len > 0) {
  732. mgmt_buf = list_first_entry(&conn->mgmt_psq,
  733. struct ath6kl_mgmt_buff, list);
  734. list_del(&mgmt_buf->list);
  735. conn->mgmt_psq_len--;
  736. spin_unlock_bh(&conn->psq_lock);
  737. conn->sta_flags |= STA_PS_POLLED;
  738. ath6kl_wmi_send_mgmt_cmd(ar->wmi, vif->fw_vif_idx,
  739. mgmt_buf->id, mgmt_buf->freq,
  740. mgmt_buf->wait, mgmt_buf->buf,
  741. mgmt_buf->len, mgmt_buf->no_cck);
  742. conn->sta_flags &= ~STA_PS_POLLED;
  743. kfree(mgmt_buf);
  744. } else {
  745. skb = skb_dequeue(&conn->psq);
  746. spin_unlock_bh(&conn->psq_lock);
  747. conn->sta_flags |= STA_PS_POLLED;
  748. ath6kl_data_tx(skb, vif->ndev);
  749. conn->sta_flags &= ~STA_PS_POLLED;
  750. }
  751. spin_lock_bh(&conn->psq_lock);
  752. psq_empty = skb_queue_empty(&conn->psq) && (conn->mgmt_psq_len == 0);
  753. spin_unlock_bh(&conn->psq_lock);
  754. if (psq_empty)
  755. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0);
  756. }
  757. void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif)
  758. {
  759. bool mcastq_empty = false;
  760. struct sk_buff *skb;
  761. struct ath6kl *ar = vif->ar;
  762. /*
  763. * If there are no associated STAs, ignore the DTIM expiry event.
  764. * There can be potential race conditions where the last associated
  765. * STA may disconnect & before the host could clear the 'Indicate
  766. * DTIM' request to the firmware, the firmware would have just
  767. * indicated a DTIM expiry event. The race is between 'clear DTIM
  768. * expiry cmd' going from the host to the firmware & the DTIM
  769. * expiry event happening from the firmware to the host.
  770. */
  771. if (!ar->sta_list_index)
  772. return;
  773. spin_lock_bh(&ar->mcastpsq_lock);
  774. mcastq_empty = skb_queue_empty(&ar->mcastpsq);
  775. spin_unlock_bh(&ar->mcastpsq_lock);
  776. if (mcastq_empty)
  777. return;
  778. /* set the STA flag to dtim_expired for the frame to go out */
  779. set_bit(DTIM_EXPIRED, &vif->flags);
  780. spin_lock_bh(&ar->mcastpsq_lock);
  781. while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
  782. spin_unlock_bh(&ar->mcastpsq_lock);
  783. ath6kl_data_tx(skb, vif->ndev);
  784. spin_lock_bh(&ar->mcastpsq_lock);
  785. }
  786. spin_unlock_bh(&ar->mcastpsq_lock);
  787. clear_bit(DTIM_EXPIRED, &vif->flags);
  788. /* clear the LSB of the BitMapCtl field of the TIM IE */
  789. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0);
  790. }
  791. void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid,
  792. u8 assoc_resp_len, u8 *assoc_info,
  793. u16 prot_reason_status)
  794. {
  795. struct ath6kl *ar = vif->ar;
  796. if (vif->nw_type == AP_NETWORK) {
  797. /* disconnect due to other STA vif switching channels */
  798. if (reason == BSS_DISCONNECTED &&
  799. prot_reason_status == WMI_AP_REASON_STA_ROAM)
  800. ar->want_ch_switch |= 1 << vif->fw_vif_idx;
  801. if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
  802. return;
  803. /* if no more associated STAs, empty the mcast PS q */
  804. if (ar->sta_list_index == 0) {
  805. spin_lock_bh(&ar->mcastpsq_lock);
  806. skb_queue_purge(&ar->mcastpsq);
  807. spin_unlock_bh(&ar->mcastpsq_lock);
  808. /* clear the LSB of the TIM IE's BitMapCtl field */
  809. if (test_bit(WMI_READY, &ar->flag))
  810. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
  811. MCAST_AID, 0);
  812. }
  813. if (!is_broadcast_ether_addr(bssid)) {
  814. /* send event to application */
  815. cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL);
  816. }
  817. if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) {
  818. memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
  819. clear_bit(CONNECTED, &vif->flags);
  820. }
  821. return;
  822. }
  823. ath6kl_cfg80211_disconnect_event(vif, reason, bssid,
  824. assoc_resp_len, assoc_info,
  825. prot_reason_status);
  826. aggr_reset_state(vif->aggr_cntxt->aggr_conn);
  827. del_timer(&vif->disconnect_timer);
  828. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "disconnect reason is %d\n", reason);
  829. /*
  830. * If the event is due to disconnect cmd from the host, only they
  831. * the target would stop trying to connect. Under any other
  832. * condition, target would keep trying to connect.
  833. */
  834. if (reason == DISCONNECT_CMD) {
  835. if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
  836. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  837. NONE_BSS_FILTER, 0);
  838. } else {
  839. set_bit(CONNECT_PEND, &vif->flags);
  840. if (((reason == ASSOC_FAILED) &&
  841. (prot_reason_status == 0x11)) ||
  842. ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0) &&
  843. (vif->reconnect_flag == 1))) {
  844. set_bit(CONNECTED, &vif->flags);
  845. return;
  846. }
  847. }
  848. /* update connect & link status atomically */
  849. spin_lock_bh(&vif->if_lock);
  850. clear_bit(CONNECTED, &vif->flags);
  851. netif_carrier_off(vif->ndev);
  852. spin_unlock_bh(&vif->if_lock);
  853. if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1))
  854. vif->reconnect_flag = 0;
  855. if (reason != CSERV_DISCONNECT)
  856. ar->user_key_ctrl = 0;
  857. netif_stop_queue(vif->ndev);
  858. memset(vif->bssid, 0, sizeof(vif->bssid));
  859. vif->bss_ch = 0;
  860. ath6kl_tx_data_cleanup(ar);
  861. }
  862. struct ath6kl_vif *ath6kl_vif_first(struct ath6kl *ar)
  863. {
  864. struct ath6kl_vif *vif;
  865. spin_lock_bh(&ar->list_lock);
  866. if (list_empty(&ar->vif_list)) {
  867. spin_unlock_bh(&ar->list_lock);
  868. return NULL;
  869. }
  870. vif = list_first_entry(&ar->vif_list, struct ath6kl_vif, list);
  871. spin_unlock_bh(&ar->list_lock);
  872. return vif;
  873. }
  874. static int ath6kl_open(struct net_device *dev)
  875. {
  876. struct ath6kl_vif *vif = netdev_priv(dev);
  877. set_bit(WLAN_ENABLED, &vif->flags);
  878. if (test_bit(CONNECTED, &vif->flags)) {
  879. netif_carrier_on(dev);
  880. netif_wake_queue(dev);
  881. } else
  882. netif_carrier_off(dev);
  883. return 0;
  884. }
  885. static int ath6kl_close(struct net_device *dev)
  886. {
  887. struct ath6kl_vif *vif = netdev_priv(dev);
  888. netif_stop_queue(dev);
  889. ath6kl_cfg80211_stop(vif);
  890. clear_bit(WLAN_ENABLED, &vif->flags);
  891. return 0;
  892. }
  893. static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
  894. {
  895. struct ath6kl_vif *vif = netdev_priv(dev);
  896. return &vif->net_stats;
  897. }
  898. static int ath6kl_set_features(struct net_device *dev,
  899. netdev_features_t features)
  900. {
  901. struct ath6kl_vif *vif = netdev_priv(dev);
  902. struct ath6kl *ar = vif->ar;
  903. int err = 0;
  904. if ((features & NETIF_F_RXCSUM) &&
  905. (ar->rx_meta_ver != WMI_META_VERSION_2)) {
  906. ar->rx_meta_ver = WMI_META_VERSION_2;
  907. err = ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi,
  908. vif->fw_vif_idx,
  909. ar->rx_meta_ver, 0, 0);
  910. if (err) {
  911. dev->features = features & ~NETIF_F_RXCSUM;
  912. return err;
  913. }
  914. } else if (!(features & NETIF_F_RXCSUM) &&
  915. (ar->rx_meta_ver == WMI_META_VERSION_2)) {
  916. ar->rx_meta_ver = 0;
  917. err = ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi,
  918. vif->fw_vif_idx,
  919. ar->rx_meta_ver, 0, 0);
  920. if (err) {
  921. dev->features = features | NETIF_F_RXCSUM;
  922. return err;
  923. }
  924. }
  925. return err;
  926. }
  927. static void ath6kl_set_multicast_list(struct net_device *ndev)
  928. {
  929. struct ath6kl_vif *vif = netdev_priv(ndev);
  930. bool mc_all_on = false, mc_all_off = false;
  931. int mc_count = netdev_mc_count(ndev);
  932. struct netdev_hw_addr *ha;
  933. bool found;
  934. struct ath6kl_mc_filter *mc_filter, *tmp;
  935. struct list_head mc_filter_new;
  936. int ret;
  937. if (!test_bit(WMI_READY, &vif->ar->flag) ||
  938. !test_bit(WLAN_ENABLED, &vif->flags))
  939. return;
  940. mc_all_on = !!(ndev->flags & IFF_PROMISC) ||
  941. !!(ndev->flags & IFF_ALLMULTI) ||
  942. !!(mc_count > ATH6K_MAX_MC_FILTERS_PER_LIST);
  943. mc_all_off = !(ndev->flags & IFF_MULTICAST) || mc_count == 0;
  944. if (mc_all_on || mc_all_off) {
  945. /* Enable/disable all multicast */
  946. ath6kl_dbg(ATH6KL_DBG_TRC, "%s multicast filter\n",
  947. mc_all_on ? "enabling" : "disabling");
  948. ret = ath6kl_wmi_mcast_filter_cmd(vif->ar->wmi, vif->fw_vif_idx,
  949. mc_all_on);
  950. if (ret)
  951. ath6kl_warn("Failed to %s multicast receive\n",
  952. mc_all_on ? "enable" : "disable");
  953. return;
  954. }
  955. list_for_each_entry_safe(mc_filter, tmp, &vif->mc_filter, list) {
  956. found = false;
  957. netdev_for_each_mc_addr(ha, ndev) {
  958. if (memcmp(ha->addr, mc_filter->hw_addr,
  959. ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE) == 0) {
  960. found = true;
  961. break;
  962. }
  963. }
  964. if (!found) {
  965. /*
  966. * Delete the filter which was previously set
  967. * but not in the new request.
  968. */
  969. ath6kl_dbg(ATH6KL_DBG_TRC,
  970. "Removing %pM from multicast filter\n",
  971. mc_filter->hw_addr);
  972. ret = ath6kl_wmi_add_del_mcast_filter_cmd(vif->ar->wmi,
  973. vif->fw_vif_idx, mc_filter->hw_addr,
  974. false);
  975. if (ret) {
  976. ath6kl_warn("Failed to remove multicast filter:%pM\n",
  977. mc_filter->hw_addr);
  978. return;
  979. }
  980. list_del(&mc_filter->list);
  981. kfree(mc_filter);
  982. }
  983. }
  984. INIT_LIST_HEAD(&mc_filter_new);
  985. netdev_for_each_mc_addr(ha, ndev) {
  986. found = false;
  987. list_for_each_entry(mc_filter, &vif->mc_filter, list) {
  988. if (memcmp(ha->addr, mc_filter->hw_addr,
  989. ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE) == 0) {
  990. found = true;
  991. break;
  992. }
  993. }
  994. if (!found) {
  995. mc_filter = kzalloc(sizeof(struct ath6kl_mc_filter),
  996. GFP_ATOMIC);
  997. if (!mc_filter) {
  998. WARN_ON(1);
  999. goto out;
  1000. }
  1001. memcpy(mc_filter->hw_addr, ha->addr,
  1002. ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE);
  1003. /* Set the multicast filter */
  1004. ath6kl_dbg(ATH6KL_DBG_TRC,
  1005. "Adding %pM to multicast filter list\n",
  1006. mc_filter->hw_addr);
  1007. ret = ath6kl_wmi_add_del_mcast_filter_cmd(vif->ar->wmi,
  1008. vif->fw_vif_idx, mc_filter->hw_addr,
  1009. true);
  1010. if (ret) {
  1011. ath6kl_warn("Failed to add multicast filter :%pM\n",
  1012. mc_filter->hw_addr);
  1013. kfree(mc_filter);
  1014. goto out;
  1015. }
  1016. list_add_tail(&mc_filter->list, &mc_filter_new);
  1017. }
  1018. }
  1019. out:
  1020. list_splice_tail(&mc_filter_new, &vif->mc_filter);
  1021. }
  1022. static const struct net_device_ops ath6kl_netdev_ops = {
  1023. .ndo_open = ath6kl_open,
  1024. .ndo_stop = ath6kl_close,
  1025. .ndo_start_xmit = ath6kl_data_tx,
  1026. .ndo_get_stats = ath6kl_get_stats,
  1027. .ndo_set_features = ath6kl_set_features,
  1028. .ndo_set_rx_mode = ath6kl_set_multicast_list,
  1029. };
  1030. void init_netdev(struct net_device *dev)
  1031. {
  1032. dev->netdev_ops = &ath6kl_netdev_ops;
  1033. dev->destructor = free_netdev;
  1034. dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
  1035. dev->needed_headroom = ETH_HLEN;
  1036. dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
  1037. sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
  1038. + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
  1039. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
  1040. return;
  1041. }