sched.c 213 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define DEF_TIMESLICE (100 * HZ / 1000)
  103. /*
  104. * single value that denotes runtime == period, ie unlimited time.
  105. */
  106. #define RUNTIME_INF ((u64)~0ULL)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. struct rt_bandwidth {
  144. /* nests inside the rq lock: */
  145. spinlock_t rt_runtime_lock;
  146. ktime_t rt_period;
  147. u64 rt_runtime;
  148. struct hrtimer rt_period_timer;
  149. };
  150. static struct rt_bandwidth def_rt_bandwidth;
  151. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  152. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  153. {
  154. struct rt_bandwidth *rt_b =
  155. container_of(timer, struct rt_bandwidth, rt_period_timer);
  156. ktime_t now;
  157. int overrun;
  158. int idle = 0;
  159. for (;;) {
  160. now = hrtimer_cb_get_time(timer);
  161. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  162. if (!overrun)
  163. break;
  164. idle = do_sched_rt_period_timer(rt_b, overrun);
  165. }
  166. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  167. }
  168. static
  169. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  170. {
  171. rt_b->rt_period = ns_to_ktime(period);
  172. rt_b->rt_runtime = runtime;
  173. spin_lock_init(&rt_b->rt_runtime_lock);
  174. hrtimer_init(&rt_b->rt_period_timer,
  175. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  176. rt_b->rt_period_timer.function = sched_rt_period_timer;
  177. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  178. }
  179. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  180. {
  181. ktime_t now;
  182. if (rt_b->rt_runtime == RUNTIME_INF)
  183. return;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. return;
  186. spin_lock(&rt_b->rt_runtime_lock);
  187. for (;;) {
  188. if (hrtimer_active(&rt_b->rt_period_timer))
  189. break;
  190. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  191. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  192. hrtimer_start(&rt_b->rt_period_timer,
  193. rt_b->rt_period_timer.expires,
  194. HRTIMER_MODE_ABS);
  195. }
  196. spin_unlock(&rt_b->rt_runtime_lock);
  197. }
  198. #ifdef CONFIG_RT_GROUP_SCHED
  199. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  200. {
  201. hrtimer_cancel(&rt_b->rt_period_timer);
  202. }
  203. #endif
  204. /*
  205. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  206. * detach_destroy_domains and partition_sched_domains.
  207. */
  208. static DEFINE_MUTEX(sched_domains_mutex);
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. struct task_group *parent;
  233. struct list_head siblings;
  234. struct list_head children;
  235. };
  236. #ifdef CONFIG_USER_SCHED
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #else
  254. #define root_task_group init_task_group
  255. #endif
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_USER_SCHED
  262. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  263. #else
  264. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  265. #endif
  266. /*
  267. * A weight of 0 or 1 can cause arithmetics problems.
  268. * A weight of a cfs_rq is the sum of weights of which entities
  269. * are queued on this cfs_rq, so a weight of a entity should not be
  270. * too large, so as the shares value of a task group.
  271. * (The default weight is 1024 - so there's no practical
  272. * limitation from this.)
  273. */
  274. #define MIN_SHARES 2
  275. #define MAX_SHARES (1UL << 18)
  276. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  277. #endif
  278. /* Default task group.
  279. * Every task in system belong to this group at bootup.
  280. */
  281. struct task_group init_task_group;
  282. /* return group to which a task belongs */
  283. static inline struct task_group *task_group(struct task_struct *p)
  284. {
  285. struct task_group *tg;
  286. #ifdef CONFIG_USER_SCHED
  287. tg = p->user->tg;
  288. #elif defined(CONFIG_CGROUP_SCHED)
  289. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  290. struct task_group, css);
  291. #else
  292. tg = &init_task_group;
  293. #endif
  294. return tg;
  295. }
  296. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  298. {
  299. #ifdef CONFIG_FAIR_GROUP_SCHED
  300. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  301. p->se.parent = task_group(p)->se[cpu];
  302. #endif
  303. #ifdef CONFIG_RT_GROUP_SCHED
  304. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  305. p->rt.parent = task_group(p)->rt_se[cpu];
  306. #endif
  307. }
  308. #else
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  310. #endif /* CONFIG_GROUP_SCHED */
  311. /* CFS-related fields in a runqueue */
  312. struct cfs_rq {
  313. struct load_weight load;
  314. unsigned long nr_running;
  315. u64 exec_clock;
  316. u64 min_vruntime;
  317. struct rb_root tasks_timeline;
  318. struct rb_node *rb_leftmost;
  319. struct list_head tasks;
  320. struct list_head *balance_iterator;
  321. /*
  322. * 'curr' points to currently running entity on this cfs_rq.
  323. * It is set to NULL otherwise (i.e when none are currently running).
  324. */
  325. struct sched_entity *curr, *next;
  326. unsigned long nr_spread_over;
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  329. /*
  330. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  331. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  332. * (like users, containers etc.)
  333. *
  334. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  335. * list is used during load balance.
  336. */
  337. struct list_head leaf_cfs_rq_list;
  338. struct task_group *tg; /* group that "owns" this runqueue */
  339. #endif
  340. };
  341. /* Real-Time classes' related field in a runqueue: */
  342. struct rt_rq {
  343. struct rt_prio_array active;
  344. unsigned long rt_nr_running;
  345. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  346. int highest_prio; /* highest queued rt task prio */
  347. #endif
  348. #ifdef CONFIG_SMP
  349. unsigned long rt_nr_migratory;
  350. int overloaded;
  351. #endif
  352. int rt_throttled;
  353. u64 rt_time;
  354. u64 rt_runtime;
  355. /* Nests inside the rq lock: */
  356. spinlock_t rt_runtime_lock;
  357. #ifdef CONFIG_RT_GROUP_SCHED
  358. unsigned long rt_nr_boosted;
  359. struct rq *rq;
  360. struct list_head leaf_rt_rq_list;
  361. struct task_group *tg;
  362. struct sched_rt_entity *rt_se;
  363. #endif
  364. };
  365. #ifdef CONFIG_SMP
  366. /*
  367. * We add the notion of a root-domain which will be used to define per-domain
  368. * variables. Each exclusive cpuset essentially defines an island domain by
  369. * fully partitioning the member cpus from any other cpuset. Whenever a new
  370. * exclusive cpuset is created, we also create and attach a new root-domain
  371. * object.
  372. *
  373. */
  374. struct root_domain {
  375. atomic_t refcount;
  376. cpumask_t span;
  377. cpumask_t online;
  378. /*
  379. * The "RT overload" flag: it gets set if a CPU has more than
  380. * one runnable RT task.
  381. */
  382. cpumask_t rto_mask;
  383. atomic_t rto_count;
  384. };
  385. /*
  386. * By default the system creates a single root-domain with all cpus as
  387. * members (mimicking the global state we have today).
  388. */
  389. static struct root_domain def_root_domain;
  390. #endif
  391. /*
  392. * This is the main, per-CPU runqueue data structure.
  393. *
  394. * Locking rule: those places that want to lock multiple runqueues
  395. * (such as the load balancing or the thread migration code), lock
  396. * acquire operations must be ordered by ascending &runqueue.
  397. */
  398. struct rq {
  399. /* runqueue lock: */
  400. spinlock_t lock;
  401. /*
  402. * nr_running and cpu_load should be in the same cacheline because
  403. * remote CPUs use both these fields when doing load calculation.
  404. */
  405. unsigned long nr_running;
  406. #define CPU_LOAD_IDX_MAX 5
  407. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  408. unsigned char idle_at_tick;
  409. #ifdef CONFIG_NO_HZ
  410. unsigned long last_tick_seen;
  411. unsigned char in_nohz_recently;
  412. #endif
  413. /* capture load from *all* tasks on this cpu: */
  414. struct load_weight load;
  415. unsigned long nr_load_updates;
  416. u64 nr_switches;
  417. struct cfs_rq cfs;
  418. struct rt_rq rt;
  419. #ifdef CONFIG_FAIR_GROUP_SCHED
  420. /* list of leaf cfs_rq on this cpu: */
  421. struct list_head leaf_cfs_rq_list;
  422. #endif
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. struct list_head leaf_rt_rq_list;
  425. #endif
  426. /*
  427. * This is part of a global counter where only the total sum
  428. * over all CPUs matters. A task can increase this counter on
  429. * one CPU and if it got migrated afterwards it may decrease
  430. * it on another CPU. Always updated under the runqueue lock:
  431. */
  432. unsigned long nr_uninterruptible;
  433. struct task_struct *curr, *idle;
  434. unsigned long next_balance;
  435. struct mm_struct *prev_mm;
  436. u64 clock;
  437. atomic_t nr_iowait;
  438. #ifdef CONFIG_SMP
  439. struct root_domain *rd;
  440. struct sched_domain *sd;
  441. /* For active balancing */
  442. int active_balance;
  443. int push_cpu;
  444. /* cpu of this runqueue: */
  445. int cpu;
  446. struct task_struct *migration_thread;
  447. struct list_head migration_queue;
  448. #endif
  449. #ifdef CONFIG_SCHED_HRTICK
  450. unsigned long hrtick_flags;
  451. ktime_t hrtick_expire;
  452. struct hrtimer hrtick_timer;
  453. #endif
  454. #ifdef CONFIG_SCHEDSTATS
  455. /* latency stats */
  456. struct sched_info rq_sched_info;
  457. /* sys_sched_yield() stats */
  458. unsigned int yld_exp_empty;
  459. unsigned int yld_act_empty;
  460. unsigned int yld_both_empty;
  461. unsigned int yld_count;
  462. /* schedule() stats */
  463. unsigned int sched_switch;
  464. unsigned int sched_count;
  465. unsigned int sched_goidle;
  466. /* try_to_wake_up() stats */
  467. unsigned int ttwu_count;
  468. unsigned int ttwu_local;
  469. /* BKL stats */
  470. unsigned int bkl_count;
  471. #endif
  472. struct lock_class_key rq_lock_key;
  473. };
  474. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  475. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  476. {
  477. rq->curr->sched_class->check_preempt_curr(rq, p);
  478. }
  479. static inline int cpu_of(struct rq *rq)
  480. {
  481. #ifdef CONFIG_SMP
  482. return rq->cpu;
  483. #else
  484. return 0;
  485. #endif
  486. }
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. static inline void update_rq_clock(struct rq *rq)
  501. {
  502. rq->clock = sched_clock_cpu(cpu_of(rq));
  503. }
  504. /*
  505. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  506. */
  507. #ifdef CONFIG_SCHED_DEBUG
  508. # define const_debug __read_mostly
  509. #else
  510. # define const_debug static const
  511. #endif
  512. /*
  513. * Debugging: various feature bits
  514. */
  515. #define SCHED_FEAT(name, enabled) \
  516. __SCHED_FEAT_##name ,
  517. enum {
  518. #include "sched_features.h"
  519. };
  520. #undef SCHED_FEAT
  521. #define SCHED_FEAT(name, enabled) \
  522. (1UL << __SCHED_FEAT_##name) * enabled |
  523. const_debug unsigned int sysctl_sched_features =
  524. #include "sched_features.h"
  525. 0;
  526. #undef SCHED_FEAT
  527. #ifdef CONFIG_SCHED_DEBUG
  528. #define SCHED_FEAT(name, enabled) \
  529. #name ,
  530. static __read_mostly char *sched_feat_names[] = {
  531. #include "sched_features.h"
  532. NULL
  533. };
  534. #undef SCHED_FEAT
  535. static int sched_feat_open(struct inode *inode, struct file *filp)
  536. {
  537. filp->private_data = inode->i_private;
  538. return 0;
  539. }
  540. static ssize_t
  541. sched_feat_read(struct file *filp, char __user *ubuf,
  542. size_t cnt, loff_t *ppos)
  543. {
  544. char *buf;
  545. int r = 0;
  546. int len = 0;
  547. int i;
  548. for (i = 0; sched_feat_names[i]; i++) {
  549. len += strlen(sched_feat_names[i]);
  550. len += 4;
  551. }
  552. buf = kmalloc(len + 2, GFP_KERNEL);
  553. if (!buf)
  554. return -ENOMEM;
  555. for (i = 0; sched_feat_names[i]; i++) {
  556. if (sysctl_sched_features & (1UL << i))
  557. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  558. else
  559. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  560. }
  561. r += sprintf(buf + r, "\n");
  562. WARN_ON(r >= len + 2);
  563. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  564. kfree(buf);
  565. return r;
  566. }
  567. static ssize_t
  568. sched_feat_write(struct file *filp, const char __user *ubuf,
  569. size_t cnt, loff_t *ppos)
  570. {
  571. char buf[64];
  572. char *cmp = buf;
  573. int neg = 0;
  574. int i;
  575. if (cnt > 63)
  576. cnt = 63;
  577. if (copy_from_user(&buf, ubuf, cnt))
  578. return -EFAULT;
  579. buf[cnt] = 0;
  580. if (strncmp(buf, "NO_", 3) == 0) {
  581. neg = 1;
  582. cmp += 3;
  583. }
  584. for (i = 0; sched_feat_names[i]; i++) {
  585. int len = strlen(sched_feat_names[i]);
  586. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  587. if (neg)
  588. sysctl_sched_features &= ~(1UL << i);
  589. else
  590. sysctl_sched_features |= (1UL << i);
  591. break;
  592. }
  593. }
  594. if (!sched_feat_names[i])
  595. return -EINVAL;
  596. filp->f_pos += cnt;
  597. return cnt;
  598. }
  599. static struct file_operations sched_feat_fops = {
  600. .open = sched_feat_open,
  601. .read = sched_feat_read,
  602. .write = sched_feat_write,
  603. };
  604. static __init int sched_init_debug(void)
  605. {
  606. debugfs_create_file("sched_features", 0644, NULL, NULL,
  607. &sched_feat_fops);
  608. return 0;
  609. }
  610. late_initcall(sched_init_debug);
  611. #endif
  612. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  613. /*
  614. * Number of tasks to iterate in a single balance run.
  615. * Limited because this is done with IRQs disabled.
  616. */
  617. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  618. /*
  619. * period over which we measure -rt task cpu usage in us.
  620. * default: 1s
  621. */
  622. unsigned int sysctl_sched_rt_period = 1000000;
  623. static __read_mostly int scheduler_running;
  624. /*
  625. * part of the period that we allow rt tasks to run in us.
  626. * default: 0.95s
  627. */
  628. int sysctl_sched_rt_runtime = 950000;
  629. static inline u64 global_rt_period(void)
  630. {
  631. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  632. }
  633. static inline u64 global_rt_runtime(void)
  634. {
  635. if (sysctl_sched_rt_period < 0)
  636. return RUNTIME_INF;
  637. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  638. }
  639. unsigned long long time_sync_thresh = 100000;
  640. static DEFINE_PER_CPU(unsigned long long, time_offset);
  641. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  642. /*
  643. * Global lock which we take every now and then to synchronize
  644. * the CPUs time. This method is not warp-safe, but it's good
  645. * enough to synchronize slowly diverging time sources and thus
  646. * it's good enough for tracing:
  647. */
  648. static DEFINE_SPINLOCK(time_sync_lock);
  649. static unsigned long long prev_global_time;
  650. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  651. {
  652. /*
  653. * We want this inlined, to not get tracer function calls
  654. * in this critical section:
  655. */
  656. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  657. __raw_spin_lock(&time_sync_lock.raw_lock);
  658. if (time < prev_global_time) {
  659. per_cpu(time_offset, cpu) += prev_global_time - time;
  660. time = prev_global_time;
  661. } else {
  662. prev_global_time = time;
  663. }
  664. __raw_spin_unlock(&time_sync_lock.raw_lock);
  665. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  666. return time;
  667. }
  668. static unsigned long long __cpu_clock(int cpu)
  669. {
  670. unsigned long long now;
  671. /*
  672. * Only call sched_clock() if the scheduler has already been
  673. * initialized (some code might call cpu_clock() very early):
  674. */
  675. if (unlikely(!scheduler_running))
  676. return 0;
  677. now = sched_clock_cpu(cpu);
  678. return now;
  679. }
  680. /*
  681. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  682. * clock constructed from sched_clock():
  683. */
  684. unsigned long long cpu_clock(int cpu)
  685. {
  686. unsigned long long prev_cpu_time, time, delta_time;
  687. unsigned long flags;
  688. local_irq_save(flags);
  689. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  690. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  691. delta_time = time-prev_cpu_time;
  692. if (unlikely(delta_time > time_sync_thresh)) {
  693. time = __sync_cpu_clock(time, cpu);
  694. per_cpu(prev_cpu_time, cpu) = time;
  695. }
  696. local_irq_restore(flags);
  697. return time;
  698. }
  699. EXPORT_SYMBOL_GPL(cpu_clock);
  700. #ifndef prepare_arch_switch
  701. # define prepare_arch_switch(next) do { } while (0)
  702. #endif
  703. #ifndef finish_arch_switch
  704. # define finish_arch_switch(prev) do { } while (0)
  705. #endif
  706. static inline int task_current(struct rq *rq, struct task_struct *p)
  707. {
  708. return rq->curr == p;
  709. }
  710. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. return task_current(rq, p);
  714. }
  715. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  716. {
  717. }
  718. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  719. {
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline int task_running(struct rq *rq, struct task_struct *p)
  734. {
  735. #ifdef CONFIG_SMP
  736. return p->oncpu;
  737. #else
  738. return task_current(rq, p);
  739. #endif
  740. }
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. #ifdef CONFIG_SMP
  744. /*
  745. * We can optimise this out completely for !SMP, because the
  746. * SMP rebalancing from interrupt is the only thing that cares
  747. * here.
  748. */
  749. next->oncpu = 1;
  750. #endif
  751. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  752. spin_unlock_irq(&rq->lock);
  753. #else
  754. spin_unlock(&rq->lock);
  755. #endif
  756. }
  757. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  758. {
  759. #ifdef CONFIG_SMP
  760. /*
  761. * After ->oncpu is cleared, the task can be moved to a different CPU.
  762. * We must ensure this doesn't happen until the switch is completely
  763. * finished.
  764. */
  765. smp_wmb();
  766. prev->oncpu = 0;
  767. #endif
  768. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. local_irq_enable();
  770. #endif
  771. }
  772. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. for (;;) {
  781. struct rq *rq = task_rq(p);
  782. spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock the runqueue a given task resides on and disable
  790. * interrupts. Note the ordering: we can safely lookup the task_rq without
  791. * explicitly disabling preemption.
  792. */
  793. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  794. __acquires(rq->lock)
  795. {
  796. struct rq *rq;
  797. for (;;) {
  798. local_irq_save(*flags);
  799. rq = task_rq(p);
  800. spin_lock(&rq->lock);
  801. if (likely(rq == task_rq(p)))
  802. return rq;
  803. spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. static void __resched_task(struct task_struct *p, int tif_bit);
  829. static inline void resched_task(struct task_struct *p)
  830. {
  831. __resched_task(p, TIF_NEED_RESCHED);
  832. }
  833. #ifdef CONFIG_SCHED_HRTICK
  834. /*
  835. * Use HR-timers to deliver accurate preemption points.
  836. *
  837. * Its all a bit involved since we cannot program an hrt while holding the
  838. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  839. * reschedule event.
  840. *
  841. * When we get rescheduled we reprogram the hrtick_timer outside of the
  842. * rq->lock.
  843. */
  844. static inline void resched_hrt(struct task_struct *p)
  845. {
  846. __resched_task(p, TIF_HRTICK_RESCHED);
  847. }
  848. static inline void resched_rq(struct rq *rq)
  849. {
  850. unsigned long flags;
  851. spin_lock_irqsave(&rq->lock, flags);
  852. resched_task(rq->curr);
  853. spin_unlock_irqrestore(&rq->lock, flags);
  854. }
  855. enum {
  856. HRTICK_SET, /* re-programm hrtick_timer */
  857. HRTICK_RESET, /* not a new slice */
  858. HRTICK_BLOCK, /* stop hrtick operations */
  859. };
  860. /*
  861. * Use hrtick when:
  862. * - enabled by features
  863. * - hrtimer is actually high res
  864. */
  865. static inline int hrtick_enabled(struct rq *rq)
  866. {
  867. if (!sched_feat(HRTICK))
  868. return 0;
  869. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  870. return 0;
  871. return hrtimer_is_hres_active(&rq->hrtick_timer);
  872. }
  873. /*
  874. * Called to set the hrtick timer state.
  875. *
  876. * called with rq->lock held and irqs disabled
  877. */
  878. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  879. {
  880. assert_spin_locked(&rq->lock);
  881. /*
  882. * preempt at: now + delay
  883. */
  884. rq->hrtick_expire =
  885. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  886. /*
  887. * indicate we need to program the timer
  888. */
  889. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  890. if (reset)
  891. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  892. /*
  893. * New slices are called from the schedule path and don't need a
  894. * forced reschedule.
  895. */
  896. if (reset)
  897. resched_hrt(rq->curr);
  898. }
  899. static void hrtick_clear(struct rq *rq)
  900. {
  901. if (hrtimer_active(&rq->hrtick_timer))
  902. hrtimer_cancel(&rq->hrtick_timer);
  903. }
  904. /*
  905. * Update the timer from the possible pending state.
  906. */
  907. static void hrtick_set(struct rq *rq)
  908. {
  909. ktime_t time;
  910. int set, reset;
  911. unsigned long flags;
  912. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  913. spin_lock_irqsave(&rq->lock, flags);
  914. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  915. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  916. time = rq->hrtick_expire;
  917. clear_thread_flag(TIF_HRTICK_RESCHED);
  918. spin_unlock_irqrestore(&rq->lock, flags);
  919. if (set) {
  920. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  921. if (reset && !hrtimer_active(&rq->hrtick_timer))
  922. resched_rq(rq);
  923. } else
  924. hrtick_clear(rq);
  925. }
  926. /*
  927. * High-resolution timer tick.
  928. * Runs from hardirq context with interrupts disabled.
  929. */
  930. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  931. {
  932. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  933. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  934. spin_lock(&rq->lock);
  935. update_rq_clock(rq);
  936. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  937. spin_unlock(&rq->lock);
  938. return HRTIMER_NORESTART;
  939. }
  940. #ifdef CONFIG_SMP
  941. static void hotplug_hrtick_disable(int cpu)
  942. {
  943. struct rq *rq = cpu_rq(cpu);
  944. unsigned long flags;
  945. spin_lock_irqsave(&rq->lock, flags);
  946. rq->hrtick_flags = 0;
  947. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  948. spin_unlock_irqrestore(&rq->lock, flags);
  949. hrtick_clear(rq);
  950. }
  951. static void hotplug_hrtick_enable(int cpu)
  952. {
  953. struct rq *rq = cpu_rq(cpu);
  954. unsigned long flags;
  955. spin_lock_irqsave(&rq->lock, flags);
  956. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  957. spin_unlock_irqrestore(&rq->lock, flags);
  958. }
  959. static int
  960. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  961. {
  962. int cpu = (int)(long)hcpu;
  963. switch (action) {
  964. case CPU_UP_CANCELED:
  965. case CPU_UP_CANCELED_FROZEN:
  966. case CPU_DOWN_PREPARE:
  967. case CPU_DOWN_PREPARE_FROZEN:
  968. case CPU_DEAD:
  969. case CPU_DEAD_FROZEN:
  970. hotplug_hrtick_disable(cpu);
  971. return NOTIFY_OK;
  972. case CPU_UP_PREPARE:
  973. case CPU_UP_PREPARE_FROZEN:
  974. case CPU_DOWN_FAILED:
  975. case CPU_DOWN_FAILED_FROZEN:
  976. case CPU_ONLINE:
  977. case CPU_ONLINE_FROZEN:
  978. hotplug_hrtick_enable(cpu);
  979. return NOTIFY_OK;
  980. }
  981. return NOTIFY_DONE;
  982. }
  983. static void init_hrtick(void)
  984. {
  985. hotcpu_notifier(hotplug_hrtick, 0);
  986. }
  987. #endif /* CONFIG_SMP */
  988. static void init_rq_hrtick(struct rq *rq)
  989. {
  990. rq->hrtick_flags = 0;
  991. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  992. rq->hrtick_timer.function = hrtick;
  993. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  994. }
  995. void hrtick_resched(void)
  996. {
  997. struct rq *rq;
  998. unsigned long flags;
  999. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1000. return;
  1001. local_irq_save(flags);
  1002. rq = cpu_rq(smp_processor_id());
  1003. hrtick_set(rq);
  1004. local_irq_restore(flags);
  1005. }
  1006. #else
  1007. static inline void hrtick_clear(struct rq *rq)
  1008. {
  1009. }
  1010. static inline void hrtick_set(struct rq *rq)
  1011. {
  1012. }
  1013. static inline void init_rq_hrtick(struct rq *rq)
  1014. {
  1015. }
  1016. void hrtick_resched(void)
  1017. {
  1018. }
  1019. static inline void init_hrtick(void)
  1020. {
  1021. }
  1022. #endif
  1023. /*
  1024. * resched_task - mark a task 'to be rescheduled now'.
  1025. *
  1026. * On UP this means the setting of the need_resched flag, on SMP it
  1027. * might also involve a cross-CPU call to trigger the scheduler on
  1028. * the target CPU.
  1029. */
  1030. #ifdef CONFIG_SMP
  1031. #ifndef tsk_is_polling
  1032. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1033. #endif
  1034. static void __resched_task(struct task_struct *p, int tif_bit)
  1035. {
  1036. int cpu;
  1037. assert_spin_locked(&task_rq(p)->lock);
  1038. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1039. return;
  1040. set_tsk_thread_flag(p, tif_bit);
  1041. cpu = task_cpu(p);
  1042. if (cpu == smp_processor_id())
  1043. return;
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(p))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. static void resched_cpu(int cpu)
  1050. {
  1051. struct rq *rq = cpu_rq(cpu);
  1052. unsigned long flags;
  1053. if (!spin_trylock_irqsave(&rq->lock, flags))
  1054. return;
  1055. resched_task(cpu_curr(cpu));
  1056. spin_unlock_irqrestore(&rq->lock, flags);
  1057. }
  1058. #ifdef CONFIG_NO_HZ
  1059. /*
  1060. * When add_timer_on() enqueues a timer into the timer wheel of an
  1061. * idle CPU then this timer might expire before the next timer event
  1062. * which is scheduled to wake up that CPU. In case of a completely
  1063. * idle system the next event might even be infinite time into the
  1064. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1065. * leaves the inner idle loop so the newly added timer is taken into
  1066. * account when the CPU goes back to idle and evaluates the timer
  1067. * wheel for the next timer event.
  1068. */
  1069. void wake_up_idle_cpu(int cpu)
  1070. {
  1071. struct rq *rq = cpu_rq(cpu);
  1072. if (cpu == smp_processor_id())
  1073. return;
  1074. /*
  1075. * This is safe, as this function is called with the timer
  1076. * wheel base lock of (cpu) held. When the CPU is on the way
  1077. * to idle and has not yet set rq->curr to idle then it will
  1078. * be serialized on the timer wheel base lock and take the new
  1079. * timer into account automatically.
  1080. */
  1081. if (rq->curr != rq->idle)
  1082. return;
  1083. /*
  1084. * We can set TIF_RESCHED on the idle task of the other CPU
  1085. * lockless. The worst case is that the other CPU runs the
  1086. * idle task through an additional NOOP schedule()
  1087. */
  1088. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1089. /* NEED_RESCHED must be visible before we test polling */
  1090. smp_mb();
  1091. if (!tsk_is_polling(rq->idle))
  1092. smp_send_reschedule(cpu);
  1093. }
  1094. #endif
  1095. #else
  1096. static void __resched_task(struct task_struct *p, int tif_bit)
  1097. {
  1098. assert_spin_locked(&task_rq(p)->lock);
  1099. set_tsk_thread_flag(p, tif_bit);
  1100. }
  1101. #endif
  1102. #if BITS_PER_LONG == 32
  1103. # define WMULT_CONST (~0UL)
  1104. #else
  1105. # define WMULT_CONST (1UL << 32)
  1106. #endif
  1107. #define WMULT_SHIFT 32
  1108. /*
  1109. * Shift right and round:
  1110. */
  1111. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1112. static unsigned long
  1113. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1114. struct load_weight *lw)
  1115. {
  1116. u64 tmp;
  1117. if (!lw->inv_weight) {
  1118. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1119. lw->inv_weight = 1;
  1120. else
  1121. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1122. / (lw->weight+1);
  1123. }
  1124. tmp = (u64)delta_exec * weight;
  1125. /*
  1126. * Check whether we'd overflow the 64-bit multiplication:
  1127. */
  1128. if (unlikely(tmp > WMULT_CONST))
  1129. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1130. WMULT_SHIFT/2);
  1131. else
  1132. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1133. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1134. }
  1135. static inline unsigned long
  1136. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1137. {
  1138. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1139. }
  1140. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1141. {
  1142. lw->weight += inc;
  1143. lw->inv_weight = 0;
  1144. }
  1145. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1146. {
  1147. lw->weight -= dec;
  1148. lw->inv_weight = 0;
  1149. }
  1150. /*
  1151. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1152. * of tasks with abnormal "nice" values across CPUs the contribution that
  1153. * each task makes to its run queue's load is weighted according to its
  1154. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1155. * scaled version of the new time slice allocation that they receive on time
  1156. * slice expiry etc.
  1157. */
  1158. #define WEIGHT_IDLEPRIO 2
  1159. #define WMULT_IDLEPRIO (1 << 31)
  1160. /*
  1161. * Nice levels are multiplicative, with a gentle 10% change for every
  1162. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1163. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1164. * that remained on nice 0.
  1165. *
  1166. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1167. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1168. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1169. * If a task goes up by ~10% and another task goes down by ~10% then
  1170. * the relative distance between them is ~25%.)
  1171. */
  1172. static const int prio_to_weight[40] = {
  1173. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1174. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1175. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1176. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1177. /* 0 */ 1024, 820, 655, 526, 423,
  1178. /* 5 */ 335, 272, 215, 172, 137,
  1179. /* 10 */ 110, 87, 70, 56, 45,
  1180. /* 15 */ 36, 29, 23, 18, 15,
  1181. };
  1182. /*
  1183. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1184. *
  1185. * In cases where the weight does not change often, we can use the
  1186. * precalculated inverse to speed up arithmetics by turning divisions
  1187. * into multiplications:
  1188. */
  1189. static const u32 prio_to_wmult[40] = {
  1190. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1191. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1192. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1193. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1194. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1195. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1196. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1197. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1198. };
  1199. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1200. /*
  1201. * runqueue iterator, to support SMP load-balancing between different
  1202. * scheduling classes, without having to expose their internal data
  1203. * structures to the load-balancing proper:
  1204. */
  1205. struct rq_iterator {
  1206. void *arg;
  1207. struct task_struct *(*start)(void *);
  1208. struct task_struct *(*next)(void *);
  1209. };
  1210. #ifdef CONFIG_SMP
  1211. static unsigned long
  1212. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1213. unsigned long max_load_move, struct sched_domain *sd,
  1214. enum cpu_idle_type idle, int *all_pinned,
  1215. int *this_best_prio, struct rq_iterator *iterator);
  1216. static int
  1217. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1218. struct sched_domain *sd, enum cpu_idle_type idle,
  1219. struct rq_iterator *iterator);
  1220. #endif
  1221. #ifdef CONFIG_CGROUP_CPUACCT
  1222. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1223. #else
  1224. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1225. #endif
  1226. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1227. {
  1228. update_load_add(&rq->load, load);
  1229. }
  1230. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1231. {
  1232. update_load_sub(&rq->load, load);
  1233. }
  1234. #ifdef CONFIG_SMP
  1235. static unsigned long source_load(int cpu, int type);
  1236. static unsigned long target_load(int cpu, int type);
  1237. static unsigned long cpu_avg_load_per_task(int cpu);
  1238. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1239. #else /* CONFIG_SMP */
  1240. #ifdef CONFIG_FAIR_GROUP_SCHED
  1241. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1242. {
  1243. }
  1244. #endif
  1245. #endif /* CONFIG_SMP */
  1246. #include "sched_stats.h"
  1247. #include "sched_idletask.c"
  1248. #include "sched_fair.c"
  1249. #include "sched_rt.c"
  1250. #ifdef CONFIG_SCHED_DEBUG
  1251. # include "sched_debug.c"
  1252. #endif
  1253. #define sched_class_highest (&rt_sched_class)
  1254. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1255. {
  1256. update_load_add(&rq->load, p->se.load.weight);
  1257. }
  1258. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1259. {
  1260. update_load_sub(&rq->load, p->se.load.weight);
  1261. }
  1262. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1263. {
  1264. rq->nr_running++;
  1265. inc_load(rq, p);
  1266. }
  1267. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1268. {
  1269. rq->nr_running--;
  1270. dec_load(rq, p);
  1271. }
  1272. static void set_load_weight(struct task_struct *p)
  1273. {
  1274. if (task_has_rt_policy(p)) {
  1275. p->se.load.weight = prio_to_weight[0] * 2;
  1276. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1277. return;
  1278. }
  1279. /*
  1280. * SCHED_IDLE tasks get minimal weight:
  1281. */
  1282. if (p->policy == SCHED_IDLE) {
  1283. p->se.load.weight = WEIGHT_IDLEPRIO;
  1284. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1285. return;
  1286. }
  1287. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1288. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1289. }
  1290. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1291. {
  1292. sched_info_queued(p);
  1293. p->sched_class->enqueue_task(rq, p, wakeup);
  1294. p->se.on_rq = 1;
  1295. }
  1296. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1297. {
  1298. p->sched_class->dequeue_task(rq, p, sleep);
  1299. p->se.on_rq = 0;
  1300. }
  1301. /*
  1302. * __normal_prio - return the priority that is based on the static prio
  1303. */
  1304. static inline int __normal_prio(struct task_struct *p)
  1305. {
  1306. return p->static_prio;
  1307. }
  1308. /*
  1309. * Calculate the expected normal priority: i.e. priority
  1310. * without taking RT-inheritance into account. Might be
  1311. * boosted by interactivity modifiers. Changes upon fork,
  1312. * setprio syscalls, and whenever the interactivity
  1313. * estimator recalculates.
  1314. */
  1315. static inline int normal_prio(struct task_struct *p)
  1316. {
  1317. int prio;
  1318. if (task_has_rt_policy(p))
  1319. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1320. else
  1321. prio = __normal_prio(p);
  1322. return prio;
  1323. }
  1324. /*
  1325. * Calculate the current priority, i.e. the priority
  1326. * taken into account by the scheduler. This value might
  1327. * be boosted by RT tasks, or might be boosted by
  1328. * interactivity modifiers. Will be RT if the task got
  1329. * RT-boosted. If not then it returns p->normal_prio.
  1330. */
  1331. static int effective_prio(struct task_struct *p)
  1332. {
  1333. p->normal_prio = normal_prio(p);
  1334. /*
  1335. * If we are RT tasks or we were boosted to RT priority,
  1336. * keep the priority unchanged. Otherwise, update priority
  1337. * to the normal priority:
  1338. */
  1339. if (!rt_prio(p->prio))
  1340. return p->normal_prio;
  1341. return p->prio;
  1342. }
  1343. /*
  1344. * activate_task - move a task to the runqueue.
  1345. */
  1346. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1347. {
  1348. if (task_contributes_to_load(p))
  1349. rq->nr_uninterruptible--;
  1350. enqueue_task(rq, p, wakeup);
  1351. inc_nr_running(p, rq);
  1352. }
  1353. /*
  1354. * deactivate_task - remove a task from the runqueue.
  1355. */
  1356. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1357. {
  1358. if (task_contributes_to_load(p))
  1359. rq->nr_uninterruptible++;
  1360. dequeue_task(rq, p, sleep);
  1361. dec_nr_running(p, rq);
  1362. }
  1363. /**
  1364. * task_curr - is this task currently executing on a CPU?
  1365. * @p: the task in question.
  1366. */
  1367. inline int task_curr(const struct task_struct *p)
  1368. {
  1369. return cpu_curr(task_cpu(p)) == p;
  1370. }
  1371. /* Used instead of source_load when we know the type == 0 */
  1372. unsigned long weighted_cpuload(const int cpu)
  1373. {
  1374. return cpu_rq(cpu)->load.weight;
  1375. }
  1376. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1377. {
  1378. set_task_rq(p, cpu);
  1379. #ifdef CONFIG_SMP
  1380. /*
  1381. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1382. * successfuly executed on another CPU. We must ensure that updates of
  1383. * per-task data have been completed by this moment.
  1384. */
  1385. smp_wmb();
  1386. task_thread_info(p)->cpu = cpu;
  1387. #endif
  1388. }
  1389. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1390. const struct sched_class *prev_class,
  1391. int oldprio, int running)
  1392. {
  1393. if (prev_class != p->sched_class) {
  1394. if (prev_class->switched_from)
  1395. prev_class->switched_from(rq, p, running);
  1396. p->sched_class->switched_to(rq, p, running);
  1397. } else
  1398. p->sched_class->prio_changed(rq, p, oldprio, running);
  1399. }
  1400. #ifdef CONFIG_SMP
  1401. /*
  1402. * Is this task likely cache-hot:
  1403. */
  1404. static int
  1405. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1406. {
  1407. s64 delta;
  1408. /*
  1409. * Buddy candidates are cache hot:
  1410. */
  1411. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1412. return 1;
  1413. if (p->sched_class != &fair_sched_class)
  1414. return 0;
  1415. if (sysctl_sched_migration_cost == -1)
  1416. return 1;
  1417. if (sysctl_sched_migration_cost == 0)
  1418. return 0;
  1419. delta = now - p->se.exec_start;
  1420. return delta < (s64)sysctl_sched_migration_cost;
  1421. }
  1422. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1423. {
  1424. int old_cpu = task_cpu(p);
  1425. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1426. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1427. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1428. u64 clock_offset;
  1429. clock_offset = old_rq->clock - new_rq->clock;
  1430. #ifdef CONFIG_SCHEDSTATS
  1431. if (p->se.wait_start)
  1432. p->se.wait_start -= clock_offset;
  1433. if (p->se.sleep_start)
  1434. p->se.sleep_start -= clock_offset;
  1435. if (p->se.block_start)
  1436. p->se.block_start -= clock_offset;
  1437. if (old_cpu != new_cpu) {
  1438. schedstat_inc(p, se.nr_migrations);
  1439. if (task_hot(p, old_rq->clock, NULL))
  1440. schedstat_inc(p, se.nr_forced2_migrations);
  1441. }
  1442. #endif
  1443. p->se.vruntime -= old_cfsrq->min_vruntime -
  1444. new_cfsrq->min_vruntime;
  1445. __set_task_cpu(p, new_cpu);
  1446. }
  1447. struct migration_req {
  1448. struct list_head list;
  1449. struct task_struct *task;
  1450. int dest_cpu;
  1451. struct completion done;
  1452. };
  1453. /*
  1454. * The task's runqueue lock must be held.
  1455. * Returns true if you have to wait for migration thread.
  1456. */
  1457. static int
  1458. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1459. {
  1460. struct rq *rq = task_rq(p);
  1461. /*
  1462. * If the task is not on a runqueue (and not running), then
  1463. * it is sufficient to simply update the task's cpu field.
  1464. */
  1465. if (!p->se.on_rq && !task_running(rq, p)) {
  1466. set_task_cpu(p, dest_cpu);
  1467. return 0;
  1468. }
  1469. init_completion(&req->done);
  1470. req->task = p;
  1471. req->dest_cpu = dest_cpu;
  1472. list_add(&req->list, &rq->migration_queue);
  1473. return 1;
  1474. }
  1475. /*
  1476. * wait_task_inactive - wait for a thread to unschedule.
  1477. *
  1478. * The caller must ensure that the task *will* unschedule sometime soon,
  1479. * else this function might spin for a *long* time. This function can't
  1480. * be called with interrupts off, or it may introduce deadlock with
  1481. * smp_call_function() if an IPI is sent by the same process we are
  1482. * waiting to become inactive.
  1483. */
  1484. void wait_task_inactive(struct task_struct *p)
  1485. {
  1486. unsigned long flags;
  1487. int running, on_rq;
  1488. struct rq *rq;
  1489. for (;;) {
  1490. /*
  1491. * We do the initial early heuristics without holding
  1492. * any task-queue locks at all. We'll only try to get
  1493. * the runqueue lock when things look like they will
  1494. * work out!
  1495. */
  1496. rq = task_rq(p);
  1497. /*
  1498. * If the task is actively running on another CPU
  1499. * still, just relax and busy-wait without holding
  1500. * any locks.
  1501. *
  1502. * NOTE! Since we don't hold any locks, it's not
  1503. * even sure that "rq" stays as the right runqueue!
  1504. * But we don't care, since "task_running()" will
  1505. * return false if the runqueue has changed and p
  1506. * is actually now running somewhere else!
  1507. */
  1508. while (task_running(rq, p))
  1509. cpu_relax();
  1510. /*
  1511. * Ok, time to look more closely! We need the rq
  1512. * lock now, to be *sure*. If we're wrong, we'll
  1513. * just go back and repeat.
  1514. */
  1515. rq = task_rq_lock(p, &flags);
  1516. running = task_running(rq, p);
  1517. on_rq = p->se.on_rq;
  1518. task_rq_unlock(rq, &flags);
  1519. /*
  1520. * Was it really running after all now that we
  1521. * checked with the proper locks actually held?
  1522. *
  1523. * Oops. Go back and try again..
  1524. */
  1525. if (unlikely(running)) {
  1526. cpu_relax();
  1527. continue;
  1528. }
  1529. /*
  1530. * It's not enough that it's not actively running,
  1531. * it must be off the runqueue _entirely_, and not
  1532. * preempted!
  1533. *
  1534. * So if it wa still runnable (but just not actively
  1535. * running right now), it's preempted, and we should
  1536. * yield - it could be a while.
  1537. */
  1538. if (unlikely(on_rq)) {
  1539. schedule_timeout_uninterruptible(1);
  1540. continue;
  1541. }
  1542. /*
  1543. * Ahh, all good. It wasn't running, and it wasn't
  1544. * runnable, which means that it will never become
  1545. * running in the future either. We're all done!
  1546. */
  1547. break;
  1548. }
  1549. }
  1550. /***
  1551. * kick_process - kick a running thread to enter/exit the kernel
  1552. * @p: the to-be-kicked thread
  1553. *
  1554. * Cause a process which is running on another CPU to enter
  1555. * kernel-mode, without any delay. (to get signals handled.)
  1556. *
  1557. * NOTE: this function doesnt have to take the runqueue lock,
  1558. * because all it wants to ensure is that the remote task enters
  1559. * the kernel. If the IPI races and the task has been migrated
  1560. * to another CPU then no harm is done and the purpose has been
  1561. * achieved as well.
  1562. */
  1563. void kick_process(struct task_struct *p)
  1564. {
  1565. int cpu;
  1566. preempt_disable();
  1567. cpu = task_cpu(p);
  1568. if ((cpu != smp_processor_id()) && task_curr(p))
  1569. smp_send_reschedule(cpu);
  1570. preempt_enable();
  1571. }
  1572. /*
  1573. * Return a low guess at the load of a migration-source cpu weighted
  1574. * according to the scheduling class and "nice" value.
  1575. *
  1576. * We want to under-estimate the load of migration sources, to
  1577. * balance conservatively.
  1578. */
  1579. static unsigned long source_load(int cpu, int type)
  1580. {
  1581. struct rq *rq = cpu_rq(cpu);
  1582. unsigned long total = weighted_cpuload(cpu);
  1583. if (type == 0)
  1584. return total;
  1585. return min(rq->cpu_load[type-1], total);
  1586. }
  1587. /*
  1588. * Return a high guess at the load of a migration-target cpu weighted
  1589. * according to the scheduling class and "nice" value.
  1590. */
  1591. static unsigned long target_load(int cpu, int type)
  1592. {
  1593. struct rq *rq = cpu_rq(cpu);
  1594. unsigned long total = weighted_cpuload(cpu);
  1595. if (type == 0)
  1596. return total;
  1597. return max(rq->cpu_load[type-1], total);
  1598. }
  1599. /*
  1600. * Return the average load per task on the cpu's run queue
  1601. */
  1602. static unsigned long cpu_avg_load_per_task(int cpu)
  1603. {
  1604. struct rq *rq = cpu_rq(cpu);
  1605. unsigned long total = weighted_cpuload(cpu);
  1606. unsigned long n = rq->nr_running;
  1607. return n ? total / n : SCHED_LOAD_SCALE;
  1608. }
  1609. /*
  1610. * find_idlest_group finds and returns the least busy CPU group within the
  1611. * domain.
  1612. */
  1613. static struct sched_group *
  1614. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1615. {
  1616. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1617. unsigned long min_load = ULONG_MAX, this_load = 0;
  1618. int load_idx = sd->forkexec_idx;
  1619. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1620. do {
  1621. unsigned long load, avg_load;
  1622. int local_group;
  1623. int i;
  1624. /* Skip over this group if it has no CPUs allowed */
  1625. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1626. continue;
  1627. local_group = cpu_isset(this_cpu, group->cpumask);
  1628. /* Tally up the load of all CPUs in the group */
  1629. avg_load = 0;
  1630. for_each_cpu_mask(i, group->cpumask) {
  1631. /* Bias balancing toward cpus of our domain */
  1632. if (local_group)
  1633. load = source_load(i, load_idx);
  1634. else
  1635. load = target_load(i, load_idx);
  1636. avg_load += load;
  1637. }
  1638. /* Adjust by relative CPU power of the group */
  1639. avg_load = sg_div_cpu_power(group,
  1640. avg_load * SCHED_LOAD_SCALE);
  1641. if (local_group) {
  1642. this_load = avg_load;
  1643. this = group;
  1644. } else if (avg_load < min_load) {
  1645. min_load = avg_load;
  1646. idlest = group;
  1647. }
  1648. } while (group = group->next, group != sd->groups);
  1649. if (!idlest || 100*this_load < imbalance*min_load)
  1650. return NULL;
  1651. return idlest;
  1652. }
  1653. /*
  1654. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1655. */
  1656. static int
  1657. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1658. cpumask_t *tmp)
  1659. {
  1660. unsigned long load, min_load = ULONG_MAX;
  1661. int idlest = -1;
  1662. int i;
  1663. /* Traverse only the allowed CPUs */
  1664. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1665. for_each_cpu_mask(i, *tmp) {
  1666. load = weighted_cpuload(i);
  1667. if (load < min_load || (load == min_load && i == this_cpu)) {
  1668. min_load = load;
  1669. idlest = i;
  1670. }
  1671. }
  1672. return idlest;
  1673. }
  1674. /*
  1675. * sched_balance_self: balance the current task (running on cpu) in domains
  1676. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1677. * SD_BALANCE_EXEC.
  1678. *
  1679. * Balance, ie. select the least loaded group.
  1680. *
  1681. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1682. *
  1683. * preempt must be disabled.
  1684. */
  1685. static int sched_balance_self(int cpu, int flag)
  1686. {
  1687. struct task_struct *t = current;
  1688. struct sched_domain *tmp, *sd = NULL;
  1689. for_each_domain(cpu, tmp) {
  1690. /*
  1691. * If power savings logic is enabled for a domain, stop there.
  1692. */
  1693. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1694. break;
  1695. if (tmp->flags & flag)
  1696. sd = tmp;
  1697. }
  1698. while (sd) {
  1699. cpumask_t span, tmpmask;
  1700. struct sched_group *group;
  1701. int new_cpu, weight;
  1702. if (!(sd->flags & flag)) {
  1703. sd = sd->child;
  1704. continue;
  1705. }
  1706. span = sd->span;
  1707. group = find_idlest_group(sd, t, cpu);
  1708. if (!group) {
  1709. sd = sd->child;
  1710. continue;
  1711. }
  1712. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1713. if (new_cpu == -1 || new_cpu == cpu) {
  1714. /* Now try balancing at a lower domain level of cpu */
  1715. sd = sd->child;
  1716. continue;
  1717. }
  1718. /* Now try balancing at a lower domain level of new_cpu */
  1719. cpu = new_cpu;
  1720. sd = NULL;
  1721. weight = cpus_weight(span);
  1722. for_each_domain(cpu, tmp) {
  1723. if (weight <= cpus_weight(tmp->span))
  1724. break;
  1725. if (tmp->flags & flag)
  1726. sd = tmp;
  1727. }
  1728. /* while loop will break here if sd == NULL */
  1729. }
  1730. return cpu;
  1731. }
  1732. #endif /* CONFIG_SMP */
  1733. /***
  1734. * try_to_wake_up - wake up a thread
  1735. * @p: the to-be-woken-up thread
  1736. * @state: the mask of task states that can be woken
  1737. * @sync: do a synchronous wakeup?
  1738. *
  1739. * Put it on the run-queue if it's not already there. The "current"
  1740. * thread is always on the run-queue (except when the actual
  1741. * re-schedule is in progress), and as such you're allowed to do
  1742. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1743. * runnable without the overhead of this.
  1744. *
  1745. * returns failure only if the task is already active.
  1746. */
  1747. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1748. {
  1749. int cpu, orig_cpu, this_cpu, success = 0;
  1750. unsigned long flags;
  1751. long old_state;
  1752. struct rq *rq;
  1753. if (!sched_feat(SYNC_WAKEUPS))
  1754. sync = 0;
  1755. smp_wmb();
  1756. rq = task_rq_lock(p, &flags);
  1757. old_state = p->state;
  1758. if (!(old_state & state))
  1759. goto out;
  1760. if (p->se.on_rq)
  1761. goto out_running;
  1762. cpu = task_cpu(p);
  1763. orig_cpu = cpu;
  1764. this_cpu = smp_processor_id();
  1765. #ifdef CONFIG_SMP
  1766. if (unlikely(task_running(rq, p)))
  1767. goto out_activate;
  1768. cpu = p->sched_class->select_task_rq(p, sync);
  1769. if (cpu != orig_cpu) {
  1770. set_task_cpu(p, cpu);
  1771. task_rq_unlock(rq, &flags);
  1772. /* might preempt at this point */
  1773. rq = task_rq_lock(p, &flags);
  1774. old_state = p->state;
  1775. if (!(old_state & state))
  1776. goto out;
  1777. if (p->se.on_rq)
  1778. goto out_running;
  1779. this_cpu = smp_processor_id();
  1780. cpu = task_cpu(p);
  1781. }
  1782. #ifdef CONFIG_SCHEDSTATS
  1783. schedstat_inc(rq, ttwu_count);
  1784. if (cpu == this_cpu)
  1785. schedstat_inc(rq, ttwu_local);
  1786. else {
  1787. struct sched_domain *sd;
  1788. for_each_domain(this_cpu, sd) {
  1789. if (cpu_isset(cpu, sd->span)) {
  1790. schedstat_inc(sd, ttwu_wake_remote);
  1791. break;
  1792. }
  1793. }
  1794. }
  1795. #endif
  1796. out_activate:
  1797. #endif /* CONFIG_SMP */
  1798. schedstat_inc(p, se.nr_wakeups);
  1799. if (sync)
  1800. schedstat_inc(p, se.nr_wakeups_sync);
  1801. if (orig_cpu != cpu)
  1802. schedstat_inc(p, se.nr_wakeups_migrate);
  1803. if (cpu == this_cpu)
  1804. schedstat_inc(p, se.nr_wakeups_local);
  1805. else
  1806. schedstat_inc(p, se.nr_wakeups_remote);
  1807. update_rq_clock(rq);
  1808. activate_task(rq, p, 1);
  1809. success = 1;
  1810. out_running:
  1811. check_preempt_curr(rq, p);
  1812. p->state = TASK_RUNNING;
  1813. #ifdef CONFIG_SMP
  1814. if (p->sched_class->task_wake_up)
  1815. p->sched_class->task_wake_up(rq, p);
  1816. #endif
  1817. out:
  1818. task_rq_unlock(rq, &flags);
  1819. return success;
  1820. }
  1821. int wake_up_process(struct task_struct *p)
  1822. {
  1823. return try_to_wake_up(p, TASK_ALL, 0);
  1824. }
  1825. EXPORT_SYMBOL(wake_up_process);
  1826. int wake_up_state(struct task_struct *p, unsigned int state)
  1827. {
  1828. return try_to_wake_up(p, state, 0);
  1829. }
  1830. /*
  1831. * Perform scheduler related setup for a newly forked process p.
  1832. * p is forked by current.
  1833. *
  1834. * __sched_fork() is basic setup used by init_idle() too:
  1835. */
  1836. static void __sched_fork(struct task_struct *p)
  1837. {
  1838. p->se.exec_start = 0;
  1839. p->se.sum_exec_runtime = 0;
  1840. p->se.prev_sum_exec_runtime = 0;
  1841. p->se.last_wakeup = 0;
  1842. p->se.avg_overlap = 0;
  1843. #ifdef CONFIG_SCHEDSTATS
  1844. p->se.wait_start = 0;
  1845. p->se.sum_sleep_runtime = 0;
  1846. p->se.sleep_start = 0;
  1847. p->se.block_start = 0;
  1848. p->se.sleep_max = 0;
  1849. p->se.block_max = 0;
  1850. p->se.exec_max = 0;
  1851. p->se.slice_max = 0;
  1852. p->se.wait_max = 0;
  1853. #endif
  1854. INIT_LIST_HEAD(&p->rt.run_list);
  1855. p->se.on_rq = 0;
  1856. INIT_LIST_HEAD(&p->se.group_node);
  1857. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1858. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1859. #endif
  1860. /*
  1861. * We mark the process as running here, but have not actually
  1862. * inserted it onto the runqueue yet. This guarantees that
  1863. * nobody will actually run it, and a signal or other external
  1864. * event cannot wake it up and insert it on the runqueue either.
  1865. */
  1866. p->state = TASK_RUNNING;
  1867. }
  1868. /*
  1869. * fork()/clone()-time setup:
  1870. */
  1871. void sched_fork(struct task_struct *p, int clone_flags)
  1872. {
  1873. int cpu = get_cpu();
  1874. __sched_fork(p);
  1875. #ifdef CONFIG_SMP
  1876. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1877. #endif
  1878. set_task_cpu(p, cpu);
  1879. /*
  1880. * Make sure we do not leak PI boosting priority to the child:
  1881. */
  1882. p->prio = current->normal_prio;
  1883. if (!rt_prio(p->prio))
  1884. p->sched_class = &fair_sched_class;
  1885. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1886. if (likely(sched_info_on()))
  1887. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1888. #endif
  1889. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1890. p->oncpu = 0;
  1891. #endif
  1892. #ifdef CONFIG_PREEMPT
  1893. /* Want to start with kernel preemption disabled. */
  1894. task_thread_info(p)->preempt_count = 1;
  1895. #endif
  1896. put_cpu();
  1897. }
  1898. /*
  1899. * wake_up_new_task - wake up a newly created task for the first time.
  1900. *
  1901. * This function will do some initial scheduler statistics housekeeping
  1902. * that must be done for every newly created context, then puts the task
  1903. * on the runqueue and wakes it.
  1904. */
  1905. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1906. {
  1907. unsigned long flags;
  1908. struct rq *rq;
  1909. rq = task_rq_lock(p, &flags);
  1910. BUG_ON(p->state != TASK_RUNNING);
  1911. update_rq_clock(rq);
  1912. p->prio = effective_prio(p);
  1913. if (!p->sched_class->task_new || !current->se.on_rq) {
  1914. activate_task(rq, p, 0);
  1915. } else {
  1916. /*
  1917. * Let the scheduling class do new task startup
  1918. * management (if any):
  1919. */
  1920. p->sched_class->task_new(rq, p);
  1921. inc_nr_running(p, rq);
  1922. }
  1923. check_preempt_curr(rq, p);
  1924. #ifdef CONFIG_SMP
  1925. if (p->sched_class->task_wake_up)
  1926. p->sched_class->task_wake_up(rq, p);
  1927. #endif
  1928. task_rq_unlock(rq, &flags);
  1929. }
  1930. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1931. /**
  1932. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1933. * @notifier: notifier struct to register
  1934. */
  1935. void preempt_notifier_register(struct preempt_notifier *notifier)
  1936. {
  1937. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1938. }
  1939. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1940. /**
  1941. * preempt_notifier_unregister - no longer interested in preemption notifications
  1942. * @notifier: notifier struct to unregister
  1943. *
  1944. * This is safe to call from within a preemption notifier.
  1945. */
  1946. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1947. {
  1948. hlist_del(&notifier->link);
  1949. }
  1950. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1951. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1952. {
  1953. struct preempt_notifier *notifier;
  1954. struct hlist_node *node;
  1955. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1956. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1957. }
  1958. static void
  1959. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1960. struct task_struct *next)
  1961. {
  1962. struct preempt_notifier *notifier;
  1963. struct hlist_node *node;
  1964. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1965. notifier->ops->sched_out(notifier, next);
  1966. }
  1967. #else
  1968. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1969. {
  1970. }
  1971. static void
  1972. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1973. struct task_struct *next)
  1974. {
  1975. }
  1976. #endif
  1977. /**
  1978. * prepare_task_switch - prepare to switch tasks
  1979. * @rq: the runqueue preparing to switch
  1980. * @prev: the current task that is being switched out
  1981. * @next: the task we are going to switch to.
  1982. *
  1983. * This is called with the rq lock held and interrupts off. It must
  1984. * be paired with a subsequent finish_task_switch after the context
  1985. * switch.
  1986. *
  1987. * prepare_task_switch sets up locking and calls architecture specific
  1988. * hooks.
  1989. */
  1990. static inline void
  1991. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1992. struct task_struct *next)
  1993. {
  1994. fire_sched_out_preempt_notifiers(prev, next);
  1995. prepare_lock_switch(rq, next);
  1996. prepare_arch_switch(next);
  1997. }
  1998. /**
  1999. * finish_task_switch - clean up after a task-switch
  2000. * @rq: runqueue associated with task-switch
  2001. * @prev: the thread we just switched away from.
  2002. *
  2003. * finish_task_switch must be called after the context switch, paired
  2004. * with a prepare_task_switch call before the context switch.
  2005. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2006. * and do any other architecture-specific cleanup actions.
  2007. *
  2008. * Note that we may have delayed dropping an mm in context_switch(). If
  2009. * so, we finish that here outside of the runqueue lock. (Doing it
  2010. * with the lock held can cause deadlocks; see schedule() for
  2011. * details.)
  2012. */
  2013. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2014. __releases(rq->lock)
  2015. {
  2016. struct mm_struct *mm = rq->prev_mm;
  2017. long prev_state;
  2018. rq->prev_mm = NULL;
  2019. /*
  2020. * A task struct has one reference for the use as "current".
  2021. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2022. * schedule one last time. The schedule call will never return, and
  2023. * the scheduled task must drop that reference.
  2024. * The test for TASK_DEAD must occur while the runqueue locks are
  2025. * still held, otherwise prev could be scheduled on another cpu, die
  2026. * there before we look at prev->state, and then the reference would
  2027. * be dropped twice.
  2028. * Manfred Spraul <manfred@colorfullife.com>
  2029. */
  2030. prev_state = prev->state;
  2031. finish_arch_switch(prev);
  2032. finish_lock_switch(rq, prev);
  2033. #ifdef CONFIG_SMP
  2034. if (current->sched_class->post_schedule)
  2035. current->sched_class->post_schedule(rq);
  2036. #endif
  2037. fire_sched_in_preempt_notifiers(current);
  2038. if (mm)
  2039. mmdrop(mm);
  2040. if (unlikely(prev_state == TASK_DEAD)) {
  2041. /*
  2042. * Remove function-return probe instances associated with this
  2043. * task and put them back on the free list.
  2044. */
  2045. kprobe_flush_task(prev);
  2046. put_task_struct(prev);
  2047. }
  2048. }
  2049. /**
  2050. * schedule_tail - first thing a freshly forked thread must call.
  2051. * @prev: the thread we just switched away from.
  2052. */
  2053. asmlinkage void schedule_tail(struct task_struct *prev)
  2054. __releases(rq->lock)
  2055. {
  2056. struct rq *rq = this_rq();
  2057. finish_task_switch(rq, prev);
  2058. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2059. /* In this case, finish_task_switch does not reenable preemption */
  2060. preempt_enable();
  2061. #endif
  2062. if (current->set_child_tid)
  2063. put_user(task_pid_vnr(current), current->set_child_tid);
  2064. }
  2065. /*
  2066. * context_switch - switch to the new MM and the new
  2067. * thread's register state.
  2068. */
  2069. static inline void
  2070. context_switch(struct rq *rq, struct task_struct *prev,
  2071. struct task_struct *next)
  2072. {
  2073. struct mm_struct *mm, *oldmm;
  2074. prepare_task_switch(rq, prev, next);
  2075. mm = next->mm;
  2076. oldmm = prev->active_mm;
  2077. /*
  2078. * For paravirt, this is coupled with an exit in switch_to to
  2079. * combine the page table reload and the switch backend into
  2080. * one hypercall.
  2081. */
  2082. arch_enter_lazy_cpu_mode();
  2083. if (unlikely(!mm)) {
  2084. next->active_mm = oldmm;
  2085. atomic_inc(&oldmm->mm_count);
  2086. enter_lazy_tlb(oldmm, next);
  2087. } else
  2088. switch_mm(oldmm, mm, next);
  2089. if (unlikely(!prev->mm)) {
  2090. prev->active_mm = NULL;
  2091. rq->prev_mm = oldmm;
  2092. }
  2093. /*
  2094. * Since the runqueue lock will be released by the next
  2095. * task (which is an invalid locking op but in the case
  2096. * of the scheduler it's an obvious special-case), so we
  2097. * do an early lockdep release here:
  2098. */
  2099. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2100. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2101. #endif
  2102. /* Here we just switch the register state and the stack. */
  2103. switch_to(prev, next, prev);
  2104. barrier();
  2105. /*
  2106. * this_rq must be evaluated again because prev may have moved
  2107. * CPUs since it called schedule(), thus the 'rq' on its stack
  2108. * frame will be invalid.
  2109. */
  2110. finish_task_switch(this_rq(), prev);
  2111. }
  2112. /*
  2113. * nr_running, nr_uninterruptible and nr_context_switches:
  2114. *
  2115. * externally visible scheduler statistics: current number of runnable
  2116. * threads, current number of uninterruptible-sleeping threads, total
  2117. * number of context switches performed since bootup.
  2118. */
  2119. unsigned long nr_running(void)
  2120. {
  2121. unsigned long i, sum = 0;
  2122. for_each_online_cpu(i)
  2123. sum += cpu_rq(i)->nr_running;
  2124. return sum;
  2125. }
  2126. unsigned long nr_uninterruptible(void)
  2127. {
  2128. unsigned long i, sum = 0;
  2129. for_each_possible_cpu(i)
  2130. sum += cpu_rq(i)->nr_uninterruptible;
  2131. /*
  2132. * Since we read the counters lockless, it might be slightly
  2133. * inaccurate. Do not allow it to go below zero though:
  2134. */
  2135. if (unlikely((long)sum < 0))
  2136. sum = 0;
  2137. return sum;
  2138. }
  2139. unsigned long long nr_context_switches(void)
  2140. {
  2141. int i;
  2142. unsigned long long sum = 0;
  2143. for_each_possible_cpu(i)
  2144. sum += cpu_rq(i)->nr_switches;
  2145. return sum;
  2146. }
  2147. unsigned long nr_iowait(void)
  2148. {
  2149. unsigned long i, sum = 0;
  2150. for_each_possible_cpu(i)
  2151. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2152. return sum;
  2153. }
  2154. unsigned long nr_active(void)
  2155. {
  2156. unsigned long i, running = 0, uninterruptible = 0;
  2157. for_each_online_cpu(i) {
  2158. running += cpu_rq(i)->nr_running;
  2159. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2160. }
  2161. if (unlikely((long)uninterruptible < 0))
  2162. uninterruptible = 0;
  2163. return running + uninterruptible;
  2164. }
  2165. /*
  2166. * Update rq->cpu_load[] statistics. This function is usually called every
  2167. * scheduler tick (TICK_NSEC).
  2168. */
  2169. static void update_cpu_load(struct rq *this_rq)
  2170. {
  2171. unsigned long this_load = this_rq->load.weight;
  2172. int i, scale;
  2173. this_rq->nr_load_updates++;
  2174. /* Update our load: */
  2175. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2176. unsigned long old_load, new_load;
  2177. /* scale is effectively 1 << i now, and >> i divides by scale */
  2178. old_load = this_rq->cpu_load[i];
  2179. new_load = this_load;
  2180. /*
  2181. * Round up the averaging division if load is increasing. This
  2182. * prevents us from getting stuck on 9 if the load is 10, for
  2183. * example.
  2184. */
  2185. if (new_load > old_load)
  2186. new_load += scale-1;
  2187. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2188. }
  2189. }
  2190. #ifdef CONFIG_SMP
  2191. /*
  2192. * double_rq_lock - safely lock two runqueues
  2193. *
  2194. * Note this does not disable interrupts like task_rq_lock,
  2195. * you need to do so manually before calling.
  2196. */
  2197. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2198. __acquires(rq1->lock)
  2199. __acquires(rq2->lock)
  2200. {
  2201. BUG_ON(!irqs_disabled());
  2202. if (rq1 == rq2) {
  2203. spin_lock(&rq1->lock);
  2204. __acquire(rq2->lock); /* Fake it out ;) */
  2205. } else {
  2206. if (rq1 < rq2) {
  2207. spin_lock(&rq1->lock);
  2208. spin_lock(&rq2->lock);
  2209. } else {
  2210. spin_lock(&rq2->lock);
  2211. spin_lock(&rq1->lock);
  2212. }
  2213. }
  2214. update_rq_clock(rq1);
  2215. update_rq_clock(rq2);
  2216. }
  2217. /*
  2218. * double_rq_unlock - safely unlock two runqueues
  2219. *
  2220. * Note this does not restore interrupts like task_rq_unlock,
  2221. * you need to do so manually after calling.
  2222. */
  2223. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2224. __releases(rq1->lock)
  2225. __releases(rq2->lock)
  2226. {
  2227. spin_unlock(&rq1->lock);
  2228. if (rq1 != rq2)
  2229. spin_unlock(&rq2->lock);
  2230. else
  2231. __release(rq2->lock);
  2232. }
  2233. /*
  2234. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2235. */
  2236. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2237. __releases(this_rq->lock)
  2238. __acquires(busiest->lock)
  2239. __acquires(this_rq->lock)
  2240. {
  2241. int ret = 0;
  2242. if (unlikely(!irqs_disabled())) {
  2243. /* printk() doesn't work good under rq->lock */
  2244. spin_unlock(&this_rq->lock);
  2245. BUG_ON(1);
  2246. }
  2247. if (unlikely(!spin_trylock(&busiest->lock))) {
  2248. if (busiest < this_rq) {
  2249. spin_unlock(&this_rq->lock);
  2250. spin_lock(&busiest->lock);
  2251. spin_lock(&this_rq->lock);
  2252. ret = 1;
  2253. } else
  2254. spin_lock(&busiest->lock);
  2255. }
  2256. return ret;
  2257. }
  2258. /*
  2259. * If dest_cpu is allowed for this process, migrate the task to it.
  2260. * This is accomplished by forcing the cpu_allowed mask to only
  2261. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2262. * the cpu_allowed mask is restored.
  2263. */
  2264. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2265. {
  2266. struct migration_req req;
  2267. unsigned long flags;
  2268. struct rq *rq;
  2269. rq = task_rq_lock(p, &flags);
  2270. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2271. || unlikely(cpu_is_offline(dest_cpu)))
  2272. goto out;
  2273. /* force the process onto the specified CPU */
  2274. if (migrate_task(p, dest_cpu, &req)) {
  2275. /* Need to wait for migration thread (might exit: take ref). */
  2276. struct task_struct *mt = rq->migration_thread;
  2277. get_task_struct(mt);
  2278. task_rq_unlock(rq, &flags);
  2279. wake_up_process(mt);
  2280. put_task_struct(mt);
  2281. wait_for_completion(&req.done);
  2282. return;
  2283. }
  2284. out:
  2285. task_rq_unlock(rq, &flags);
  2286. }
  2287. /*
  2288. * sched_exec - execve() is a valuable balancing opportunity, because at
  2289. * this point the task has the smallest effective memory and cache footprint.
  2290. */
  2291. void sched_exec(void)
  2292. {
  2293. int new_cpu, this_cpu = get_cpu();
  2294. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2295. put_cpu();
  2296. if (new_cpu != this_cpu)
  2297. sched_migrate_task(current, new_cpu);
  2298. }
  2299. /*
  2300. * pull_task - move a task from a remote runqueue to the local runqueue.
  2301. * Both runqueues must be locked.
  2302. */
  2303. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2304. struct rq *this_rq, int this_cpu)
  2305. {
  2306. deactivate_task(src_rq, p, 0);
  2307. set_task_cpu(p, this_cpu);
  2308. activate_task(this_rq, p, 0);
  2309. /*
  2310. * Note that idle threads have a prio of MAX_PRIO, for this test
  2311. * to be always true for them.
  2312. */
  2313. check_preempt_curr(this_rq, p);
  2314. }
  2315. /*
  2316. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2317. */
  2318. static
  2319. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2320. struct sched_domain *sd, enum cpu_idle_type idle,
  2321. int *all_pinned)
  2322. {
  2323. /*
  2324. * We do not migrate tasks that are:
  2325. * 1) running (obviously), or
  2326. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2327. * 3) are cache-hot on their current CPU.
  2328. */
  2329. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2330. schedstat_inc(p, se.nr_failed_migrations_affine);
  2331. return 0;
  2332. }
  2333. *all_pinned = 0;
  2334. if (task_running(rq, p)) {
  2335. schedstat_inc(p, se.nr_failed_migrations_running);
  2336. return 0;
  2337. }
  2338. /*
  2339. * Aggressive migration if:
  2340. * 1) task is cache cold, or
  2341. * 2) too many balance attempts have failed.
  2342. */
  2343. if (!task_hot(p, rq->clock, sd) ||
  2344. sd->nr_balance_failed > sd->cache_nice_tries) {
  2345. #ifdef CONFIG_SCHEDSTATS
  2346. if (task_hot(p, rq->clock, sd)) {
  2347. schedstat_inc(sd, lb_hot_gained[idle]);
  2348. schedstat_inc(p, se.nr_forced_migrations);
  2349. }
  2350. #endif
  2351. return 1;
  2352. }
  2353. if (task_hot(p, rq->clock, sd)) {
  2354. schedstat_inc(p, se.nr_failed_migrations_hot);
  2355. return 0;
  2356. }
  2357. return 1;
  2358. }
  2359. static unsigned long
  2360. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2361. unsigned long max_load_move, struct sched_domain *sd,
  2362. enum cpu_idle_type idle, int *all_pinned,
  2363. int *this_best_prio, struct rq_iterator *iterator)
  2364. {
  2365. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2366. struct task_struct *p;
  2367. long rem_load_move = max_load_move;
  2368. if (max_load_move == 0)
  2369. goto out;
  2370. pinned = 1;
  2371. /*
  2372. * Start the load-balancing iterator:
  2373. */
  2374. p = iterator->start(iterator->arg);
  2375. next:
  2376. if (!p || loops++ > sysctl_sched_nr_migrate)
  2377. goto out;
  2378. /*
  2379. * To help distribute high priority tasks across CPUs we don't
  2380. * skip a task if it will be the highest priority task (i.e. smallest
  2381. * prio value) on its new queue regardless of its load weight
  2382. */
  2383. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2384. SCHED_LOAD_SCALE_FUZZ;
  2385. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2386. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2387. p = iterator->next(iterator->arg);
  2388. goto next;
  2389. }
  2390. pull_task(busiest, p, this_rq, this_cpu);
  2391. pulled++;
  2392. rem_load_move -= p->se.load.weight;
  2393. /*
  2394. * We only want to steal up to the prescribed amount of weighted load.
  2395. */
  2396. if (rem_load_move > 0) {
  2397. if (p->prio < *this_best_prio)
  2398. *this_best_prio = p->prio;
  2399. p = iterator->next(iterator->arg);
  2400. goto next;
  2401. }
  2402. out:
  2403. /*
  2404. * Right now, this is one of only two places pull_task() is called,
  2405. * so we can safely collect pull_task() stats here rather than
  2406. * inside pull_task().
  2407. */
  2408. schedstat_add(sd, lb_gained[idle], pulled);
  2409. if (all_pinned)
  2410. *all_pinned = pinned;
  2411. return max_load_move - rem_load_move;
  2412. }
  2413. /*
  2414. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2415. * this_rq, as part of a balancing operation within domain "sd".
  2416. * Returns 1 if successful and 0 otherwise.
  2417. *
  2418. * Called with both runqueues locked.
  2419. */
  2420. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2421. unsigned long max_load_move,
  2422. struct sched_domain *sd, enum cpu_idle_type idle,
  2423. int *all_pinned)
  2424. {
  2425. const struct sched_class *class = sched_class_highest;
  2426. unsigned long total_load_moved = 0;
  2427. int this_best_prio = this_rq->curr->prio;
  2428. do {
  2429. total_load_moved +=
  2430. class->load_balance(this_rq, this_cpu, busiest,
  2431. max_load_move - total_load_moved,
  2432. sd, idle, all_pinned, &this_best_prio);
  2433. class = class->next;
  2434. } while (class && max_load_move > total_load_moved);
  2435. return total_load_moved > 0;
  2436. }
  2437. static int
  2438. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2439. struct sched_domain *sd, enum cpu_idle_type idle,
  2440. struct rq_iterator *iterator)
  2441. {
  2442. struct task_struct *p = iterator->start(iterator->arg);
  2443. int pinned = 0;
  2444. while (p) {
  2445. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2446. pull_task(busiest, p, this_rq, this_cpu);
  2447. /*
  2448. * Right now, this is only the second place pull_task()
  2449. * is called, so we can safely collect pull_task()
  2450. * stats here rather than inside pull_task().
  2451. */
  2452. schedstat_inc(sd, lb_gained[idle]);
  2453. return 1;
  2454. }
  2455. p = iterator->next(iterator->arg);
  2456. }
  2457. return 0;
  2458. }
  2459. /*
  2460. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2461. * part of active balancing operations within "domain".
  2462. * Returns 1 if successful and 0 otherwise.
  2463. *
  2464. * Called with both runqueues locked.
  2465. */
  2466. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2467. struct sched_domain *sd, enum cpu_idle_type idle)
  2468. {
  2469. const struct sched_class *class;
  2470. for (class = sched_class_highest; class; class = class->next)
  2471. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2472. return 1;
  2473. return 0;
  2474. }
  2475. /*
  2476. * find_busiest_group finds and returns the busiest CPU group within the
  2477. * domain. It calculates and returns the amount of weighted load which
  2478. * should be moved to restore balance via the imbalance parameter.
  2479. */
  2480. static struct sched_group *
  2481. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2482. unsigned long *imbalance, enum cpu_idle_type idle,
  2483. int *sd_idle, const cpumask_t *cpus, int *balance)
  2484. {
  2485. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2486. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2487. unsigned long max_pull;
  2488. unsigned long busiest_load_per_task, busiest_nr_running;
  2489. unsigned long this_load_per_task, this_nr_running;
  2490. int load_idx, group_imb = 0;
  2491. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2492. int power_savings_balance = 1;
  2493. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2494. unsigned long min_nr_running = ULONG_MAX;
  2495. struct sched_group *group_min = NULL, *group_leader = NULL;
  2496. #endif
  2497. max_load = this_load = total_load = total_pwr = 0;
  2498. busiest_load_per_task = busiest_nr_running = 0;
  2499. this_load_per_task = this_nr_running = 0;
  2500. if (idle == CPU_NOT_IDLE)
  2501. load_idx = sd->busy_idx;
  2502. else if (idle == CPU_NEWLY_IDLE)
  2503. load_idx = sd->newidle_idx;
  2504. else
  2505. load_idx = sd->idle_idx;
  2506. do {
  2507. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2508. int local_group;
  2509. int i;
  2510. int __group_imb = 0;
  2511. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2512. unsigned long sum_nr_running, sum_weighted_load;
  2513. local_group = cpu_isset(this_cpu, group->cpumask);
  2514. if (local_group)
  2515. balance_cpu = first_cpu(group->cpumask);
  2516. /* Tally up the load of all CPUs in the group */
  2517. sum_weighted_load = sum_nr_running = avg_load = 0;
  2518. max_cpu_load = 0;
  2519. min_cpu_load = ~0UL;
  2520. for_each_cpu_mask(i, group->cpumask) {
  2521. struct rq *rq;
  2522. if (!cpu_isset(i, *cpus))
  2523. continue;
  2524. rq = cpu_rq(i);
  2525. if (*sd_idle && rq->nr_running)
  2526. *sd_idle = 0;
  2527. /* Bias balancing toward cpus of our domain */
  2528. if (local_group) {
  2529. if (idle_cpu(i) && !first_idle_cpu) {
  2530. first_idle_cpu = 1;
  2531. balance_cpu = i;
  2532. }
  2533. load = target_load(i, load_idx);
  2534. } else {
  2535. load = source_load(i, load_idx);
  2536. if (load > max_cpu_load)
  2537. max_cpu_load = load;
  2538. if (min_cpu_load > load)
  2539. min_cpu_load = load;
  2540. }
  2541. avg_load += load;
  2542. sum_nr_running += rq->nr_running;
  2543. sum_weighted_load += weighted_cpuload(i);
  2544. }
  2545. /*
  2546. * First idle cpu or the first cpu(busiest) in this sched group
  2547. * is eligible for doing load balancing at this and above
  2548. * domains. In the newly idle case, we will allow all the cpu's
  2549. * to do the newly idle load balance.
  2550. */
  2551. if (idle != CPU_NEWLY_IDLE && local_group &&
  2552. balance_cpu != this_cpu && balance) {
  2553. *balance = 0;
  2554. goto ret;
  2555. }
  2556. total_load += avg_load;
  2557. total_pwr += group->__cpu_power;
  2558. /* Adjust by relative CPU power of the group */
  2559. avg_load = sg_div_cpu_power(group,
  2560. avg_load * SCHED_LOAD_SCALE);
  2561. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2562. __group_imb = 1;
  2563. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2564. if (local_group) {
  2565. this_load = avg_load;
  2566. this = group;
  2567. this_nr_running = sum_nr_running;
  2568. this_load_per_task = sum_weighted_load;
  2569. } else if (avg_load > max_load &&
  2570. (sum_nr_running > group_capacity || __group_imb)) {
  2571. max_load = avg_load;
  2572. busiest = group;
  2573. busiest_nr_running = sum_nr_running;
  2574. busiest_load_per_task = sum_weighted_load;
  2575. group_imb = __group_imb;
  2576. }
  2577. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2578. /*
  2579. * Busy processors will not participate in power savings
  2580. * balance.
  2581. */
  2582. if (idle == CPU_NOT_IDLE ||
  2583. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2584. goto group_next;
  2585. /*
  2586. * If the local group is idle or completely loaded
  2587. * no need to do power savings balance at this domain
  2588. */
  2589. if (local_group && (this_nr_running >= group_capacity ||
  2590. !this_nr_running))
  2591. power_savings_balance = 0;
  2592. /*
  2593. * If a group is already running at full capacity or idle,
  2594. * don't include that group in power savings calculations
  2595. */
  2596. if (!power_savings_balance || sum_nr_running >= group_capacity
  2597. || !sum_nr_running)
  2598. goto group_next;
  2599. /*
  2600. * Calculate the group which has the least non-idle load.
  2601. * This is the group from where we need to pick up the load
  2602. * for saving power
  2603. */
  2604. if ((sum_nr_running < min_nr_running) ||
  2605. (sum_nr_running == min_nr_running &&
  2606. first_cpu(group->cpumask) <
  2607. first_cpu(group_min->cpumask))) {
  2608. group_min = group;
  2609. min_nr_running = sum_nr_running;
  2610. min_load_per_task = sum_weighted_load /
  2611. sum_nr_running;
  2612. }
  2613. /*
  2614. * Calculate the group which is almost near its
  2615. * capacity but still has some space to pick up some load
  2616. * from other group and save more power
  2617. */
  2618. if (sum_nr_running <= group_capacity - 1) {
  2619. if (sum_nr_running > leader_nr_running ||
  2620. (sum_nr_running == leader_nr_running &&
  2621. first_cpu(group->cpumask) >
  2622. first_cpu(group_leader->cpumask))) {
  2623. group_leader = group;
  2624. leader_nr_running = sum_nr_running;
  2625. }
  2626. }
  2627. group_next:
  2628. #endif
  2629. group = group->next;
  2630. } while (group != sd->groups);
  2631. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2632. goto out_balanced;
  2633. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2634. if (this_load >= avg_load ||
  2635. 100*max_load <= sd->imbalance_pct*this_load)
  2636. goto out_balanced;
  2637. busiest_load_per_task /= busiest_nr_running;
  2638. if (group_imb)
  2639. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2640. /*
  2641. * We're trying to get all the cpus to the average_load, so we don't
  2642. * want to push ourselves above the average load, nor do we wish to
  2643. * reduce the max loaded cpu below the average load, as either of these
  2644. * actions would just result in more rebalancing later, and ping-pong
  2645. * tasks around. Thus we look for the minimum possible imbalance.
  2646. * Negative imbalances (*we* are more loaded than anyone else) will
  2647. * be counted as no imbalance for these purposes -- we can't fix that
  2648. * by pulling tasks to us. Be careful of negative numbers as they'll
  2649. * appear as very large values with unsigned longs.
  2650. */
  2651. if (max_load <= busiest_load_per_task)
  2652. goto out_balanced;
  2653. /*
  2654. * In the presence of smp nice balancing, certain scenarios can have
  2655. * max load less than avg load(as we skip the groups at or below
  2656. * its cpu_power, while calculating max_load..)
  2657. */
  2658. if (max_load < avg_load) {
  2659. *imbalance = 0;
  2660. goto small_imbalance;
  2661. }
  2662. /* Don't want to pull so many tasks that a group would go idle */
  2663. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2664. /* How much load to actually move to equalise the imbalance */
  2665. *imbalance = min(max_pull * busiest->__cpu_power,
  2666. (avg_load - this_load) * this->__cpu_power)
  2667. / SCHED_LOAD_SCALE;
  2668. /*
  2669. * if *imbalance is less than the average load per runnable task
  2670. * there is no gaurantee that any tasks will be moved so we'll have
  2671. * a think about bumping its value to force at least one task to be
  2672. * moved
  2673. */
  2674. if (*imbalance < busiest_load_per_task) {
  2675. unsigned long tmp, pwr_now, pwr_move;
  2676. unsigned int imbn;
  2677. small_imbalance:
  2678. pwr_move = pwr_now = 0;
  2679. imbn = 2;
  2680. if (this_nr_running) {
  2681. this_load_per_task /= this_nr_running;
  2682. if (busiest_load_per_task > this_load_per_task)
  2683. imbn = 1;
  2684. } else
  2685. this_load_per_task = SCHED_LOAD_SCALE;
  2686. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2687. busiest_load_per_task * imbn) {
  2688. *imbalance = busiest_load_per_task;
  2689. return busiest;
  2690. }
  2691. /*
  2692. * OK, we don't have enough imbalance to justify moving tasks,
  2693. * however we may be able to increase total CPU power used by
  2694. * moving them.
  2695. */
  2696. pwr_now += busiest->__cpu_power *
  2697. min(busiest_load_per_task, max_load);
  2698. pwr_now += this->__cpu_power *
  2699. min(this_load_per_task, this_load);
  2700. pwr_now /= SCHED_LOAD_SCALE;
  2701. /* Amount of load we'd subtract */
  2702. tmp = sg_div_cpu_power(busiest,
  2703. busiest_load_per_task * SCHED_LOAD_SCALE);
  2704. if (max_load > tmp)
  2705. pwr_move += busiest->__cpu_power *
  2706. min(busiest_load_per_task, max_load - tmp);
  2707. /* Amount of load we'd add */
  2708. if (max_load * busiest->__cpu_power <
  2709. busiest_load_per_task * SCHED_LOAD_SCALE)
  2710. tmp = sg_div_cpu_power(this,
  2711. max_load * busiest->__cpu_power);
  2712. else
  2713. tmp = sg_div_cpu_power(this,
  2714. busiest_load_per_task * SCHED_LOAD_SCALE);
  2715. pwr_move += this->__cpu_power *
  2716. min(this_load_per_task, this_load + tmp);
  2717. pwr_move /= SCHED_LOAD_SCALE;
  2718. /* Move if we gain throughput */
  2719. if (pwr_move > pwr_now)
  2720. *imbalance = busiest_load_per_task;
  2721. }
  2722. return busiest;
  2723. out_balanced:
  2724. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2725. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2726. goto ret;
  2727. if (this == group_leader && group_leader != group_min) {
  2728. *imbalance = min_load_per_task;
  2729. return group_min;
  2730. }
  2731. #endif
  2732. ret:
  2733. *imbalance = 0;
  2734. return NULL;
  2735. }
  2736. /*
  2737. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2738. */
  2739. static struct rq *
  2740. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2741. unsigned long imbalance, const cpumask_t *cpus)
  2742. {
  2743. struct rq *busiest = NULL, *rq;
  2744. unsigned long max_load = 0;
  2745. int i;
  2746. for_each_cpu_mask(i, group->cpumask) {
  2747. unsigned long wl;
  2748. if (!cpu_isset(i, *cpus))
  2749. continue;
  2750. rq = cpu_rq(i);
  2751. wl = weighted_cpuload(i);
  2752. if (rq->nr_running == 1 && wl > imbalance)
  2753. continue;
  2754. if (wl > max_load) {
  2755. max_load = wl;
  2756. busiest = rq;
  2757. }
  2758. }
  2759. return busiest;
  2760. }
  2761. /*
  2762. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2763. * so long as it is large enough.
  2764. */
  2765. #define MAX_PINNED_INTERVAL 512
  2766. /*
  2767. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2768. * tasks if there is an imbalance.
  2769. */
  2770. static int load_balance(int this_cpu, struct rq *this_rq,
  2771. struct sched_domain *sd, enum cpu_idle_type idle,
  2772. int *balance, cpumask_t *cpus)
  2773. {
  2774. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2775. struct sched_group *group;
  2776. unsigned long imbalance;
  2777. struct rq *busiest;
  2778. unsigned long flags;
  2779. cpus_setall(*cpus);
  2780. /*
  2781. * When power savings policy is enabled for the parent domain, idle
  2782. * sibling can pick up load irrespective of busy siblings. In this case,
  2783. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2784. * portraying it as CPU_NOT_IDLE.
  2785. */
  2786. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2787. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2788. sd_idle = 1;
  2789. schedstat_inc(sd, lb_count[idle]);
  2790. redo:
  2791. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2792. cpus, balance);
  2793. if (*balance == 0)
  2794. goto out_balanced;
  2795. if (!group) {
  2796. schedstat_inc(sd, lb_nobusyg[idle]);
  2797. goto out_balanced;
  2798. }
  2799. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2800. if (!busiest) {
  2801. schedstat_inc(sd, lb_nobusyq[idle]);
  2802. goto out_balanced;
  2803. }
  2804. BUG_ON(busiest == this_rq);
  2805. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2806. ld_moved = 0;
  2807. if (busiest->nr_running > 1) {
  2808. /*
  2809. * Attempt to move tasks. If find_busiest_group has found
  2810. * an imbalance but busiest->nr_running <= 1, the group is
  2811. * still unbalanced. ld_moved simply stays zero, so it is
  2812. * correctly treated as an imbalance.
  2813. */
  2814. local_irq_save(flags);
  2815. double_rq_lock(this_rq, busiest);
  2816. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2817. imbalance, sd, idle, &all_pinned);
  2818. double_rq_unlock(this_rq, busiest);
  2819. local_irq_restore(flags);
  2820. /*
  2821. * some other cpu did the load balance for us.
  2822. */
  2823. if (ld_moved && this_cpu != smp_processor_id())
  2824. resched_cpu(this_cpu);
  2825. /* All tasks on this runqueue were pinned by CPU affinity */
  2826. if (unlikely(all_pinned)) {
  2827. cpu_clear(cpu_of(busiest), *cpus);
  2828. if (!cpus_empty(*cpus))
  2829. goto redo;
  2830. goto out_balanced;
  2831. }
  2832. }
  2833. if (!ld_moved) {
  2834. schedstat_inc(sd, lb_failed[idle]);
  2835. sd->nr_balance_failed++;
  2836. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2837. spin_lock_irqsave(&busiest->lock, flags);
  2838. /* don't kick the migration_thread, if the curr
  2839. * task on busiest cpu can't be moved to this_cpu
  2840. */
  2841. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2842. spin_unlock_irqrestore(&busiest->lock, flags);
  2843. all_pinned = 1;
  2844. goto out_one_pinned;
  2845. }
  2846. if (!busiest->active_balance) {
  2847. busiest->active_balance = 1;
  2848. busiest->push_cpu = this_cpu;
  2849. active_balance = 1;
  2850. }
  2851. spin_unlock_irqrestore(&busiest->lock, flags);
  2852. if (active_balance)
  2853. wake_up_process(busiest->migration_thread);
  2854. /*
  2855. * We've kicked active balancing, reset the failure
  2856. * counter.
  2857. */
  2858. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2859. }
  2860. } else
  2861. sd->nr_balance_failed = 0;
  2862. if (likely(!active_balance)) {
  2863. /* We were unbalanced, so reset the balancing interval */
  2864. sd->balance_interval = sd->min_interval;
  2865. } else {
  2866. /*
  2867. * If we've begun active balancing, start to back off. This
  2868. * case may not be covered by the all_pinned logic if there
  2869. * is only 1 task on the busy runqueue (because we don't call
  2870. * move_tasks).
  2871. */
  2872. if (sd->balance_interval < sd->max_interval)
  2873. sd->balance_interval *= 2;
  2874. }
  2875. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2876. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2877. return -1;
  2878. return ld_moved;
  2879. out_balanced:
  2880. schedstat_inc(sd, lb_balanced[idle]);
  2881. sd->nr_balance_failed = 0;
  2882. out_one_pinned:
  2883. /* tune up the balancing interval */
  2884. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2885. (sd->balance_interval < sd->max_interval))
  2886. sd->balance_interval *= 2;
  2887. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2888. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2889. return -1;
  2890. return 0;
  2891. }
  2892. /*
  2893. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2894. * tasks if there is an imbalance.
  2895. *
  2896. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2897. * this_rq is locked.
  2898. */
  2899. static int
  2900. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2901. cpumask_t *cpus)
  2902. {
  2903. struct sched_group *group;
  2904. struct rq *busiest = NULL;
  2905. unsigned long imbalance;
  2906. int ld_moved = 0;
  2907. int sd_idle = 0;
  2908. int all_pinned = 0;
  2909. cpus_setall(*cpus);
  2910. /*
  2911. * When power savings policy is enabled for the parent domain, idle
  2912. * sibling can pick up load irrespective of busy siblings. In this case,
  2913. * let the state of idle sibling percolate up as IDLE, instead of
  2914. * portraying it as CPU_NOT_IDLE.
  2915. */
  2916. if (sd->flags & SD_SHARE_CPUPOWER &&
  2917. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2918. sd_idle = 1;
  2919. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2920. redo:
  2921. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2922. &sd_idle, cpus, NULL);
  2923. if (!group) {
  2924. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2925. goto out_balanced;
  2926. }
  2927. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2928. if (!busiest) {
  2929. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2930. goto out_balanced;
  2931. }
  2932. BUG_ON(busiest == this_rq);
  2933. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2934. ld_moved = 0;
  2935. if (busiest->nr_running > 1) {
  2936. /* Attempt to move tasks */
  2937. double_lock_balance(this_rq, busiest);
  2938. /* this_rq->clock is already updated */
  2939. update_rq_clock(busiest);
  2940. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2941. imbalance, sd, CPU_NEWLY_IDLE,
  2942. &all_pinned);
  2943. spin_unlock(&busiest->lock);
  2944. if (unlikely(all_pinned)) {
  2945. cpu_clear(cpu_of(busiest), *cpus);
  2946. if (!cpus_empty(*cpus))
  2947. goto redo;
  2948. }
  2949. }
  2950. if (!ld_moved) {
  2951. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2952. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2953. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2954. return -1;
  2955. } else
  2956. sd->nr_balance_failed = 0;
  2957. return ld_moved;
  2958. out_balanced:
  2959. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2960. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2961. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2962. return -1;
  2963. sd->nr_balance_failed = 0;
  2964. return 0;
  2965. }
  2966. /*
  2967. * idle_balance is called by schedule() if this_cpu is about to become
  2968. * idle. Attempts to pull tasks from other CPUs.
  2969. */
  2970. static void idle_balance(int this_cpu, struct rq *this_rq)
  2971. {
  2972. struct sched_domain *sd;
  2973. int pulled_task = -1;
  2974. unsigned long next_balance = jiffies + HZ;
  2975. cpumask_t tmpmask;
  2976. for_each_domain(this_cpu, sd) {
  2977. unsigned long interval;
  2978. if (!(sd->flags & SD_LOAD_BALANCE))
  2979. continue;
  2980. if (sd->flags & SD_BALANCE_NEWIDLE)
  2981. /* If we've pulled tasks over stop searching: */
  2982. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2983. sd, &tmpmask);
  2984. interval = msecs_to_jiffies(sd->balance_interval);
  2985. if (time_after(next_balance, sd->last_balance + interval))
  2986. next_balance = sd->last_balance + interval;
  2987. if (pulled_task)
  2988. break;
  2989. }
  2990. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2991. /*
  2992. * We are going idle. next_balance may be set based on
  2993. * a busy processor. So reset next_balance.
  2994. */
  2995. this_rq->next_balance = next_balance;
  2996. }
  2997. }
  2998. /*
  2999. * active_load_balance is run by migration threads. It pushes running tasks
  3000. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3001. * running on each physical CPU where possible, and avoids physical /
  3002. * logical imbalances.
  3003. *
  3004. * Called with busiest_rq locked.
  3005. */
  3006. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3007. {
  3008. int target_cpu = busiest_rq->push_cpu;
  3009. struct sched_domain *sd;
  3010. struct rq *target_rq;
  3011. /* Is there any task to move? */
  3012. if (busiest_rq->nr_running <= 1)
  3013. return;
  3014. target_rq = cpu_rq(target_cpu);
  3015. /*
  3016. * This condition is "impossible", if it occurs
  3017. * we need to fix it. Originally reported by
  3018. * Bjorn Helgaas on a 128-cpu setup.
  3019. */
  3020. BUG_ON(busiest_rq == target_rq);
  3021. /* move a task from busiest_rq to target_rq */
  3022. double_lock_balance(busiest_rq, target_rq);
  3023. update_rq_clock(busiest_rq);
  3024. update_rq_clock(target_rq);
  3025. /* Search for an sd spanning us and the target CPU. */
  3026. for_each_domain(target_cpu, sd) {
  3027. if ((sd->flags & SD_LOAD_BALANCE) &&
  3028. cpu_isset(busiest_cpu, sd->span))
  3029. break;
  3030. }
  3031. if (likely(sd)) {
  3032. schedstat_inc(sd, alb_count);
  3033. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3034. sd, CPU_IDLE))
  3035. schedstat_inc(sd, alb_pushed);
  3036. else
  3037. schedstat_inc(sd, alb_failed);
  3038. }
  3039. spin_unlock(&target_rq->lock);
  3040. }
  3041. #ifdef CONFIG_NO_HZ
  3042. static struct {
  3043. atomic_t load_balancer;
  3044. cpumask_t cpu_mask;
  3045. } nohz ____cacheline_aligned = {
  3046. .load_balancer = ATOMIC_INIT(-1),
  3047. .cpu_mask = CPU_MASK_NONE,
  3048. };
  3049. /*
  3050. * This routine will try to nominate the ilb (idle load balancing)
  3051. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3052. * load balancing on behalf of all those cpus. If all the cpus in the system
  3053. * go into this tickless mode, then there will be no ilb owner (as there is
  3054. * no need for one) and all the cpus will sleep till the next wakeup event
  3055. * arrives...
  3056. *
  3057. * For the ilb owner, tick is not stopped. And this tick will be used
  3058. * for idle load balancing. ilb owner will still be part of
  3059. * nohz.cpu_mask..
  3060. *
  3061. * While stopping the tick, this cpu will become the ilb owner if there
  3062. * is no other owner. And will be the owner till that cpu becomes busy
  3063. * or if all cpus in the system stop their ticks at which point
  3064. * there is no need for ilb owner.
  3065. *
  3066. * When the ilb owner becomes busy, it nominates another owner, during the
  3067. * next busy scheduler_tick()
  3068. */
  3069. int select_nohz_load_balancer(int stop_tick)
  3070. {
  3071. int cpu = smp_processor_id();
  3072. if (stop_tick) {
  3073. cpu_set(cpu, nohz.cpu_mask);
  3074. cpu_rq(cpu)->in_nohz_recently = 1;
  3075. /*
  3076. * If we are going offline and still the leader, give up!
  3077. */
  3078. if (cpu_is_offline(cpu) &&
  3079. atomic_read(&nohz.load_balancer) == cpu) {
  3080. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3081. BUG();
  3082. return 0;
  3083. }
  3084. /* time for ilb owner also to sleep */
  3085. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3086. if (atomic_read(&nohz.load_balancer) == cpu)
  3087. atomic_set(&nohz.load_balancer, -1);
  3088. return 0;
  3089. }
  3090. if (atomic_read(&nohz.load_balancer) == -1) {
  3091. /* make me the ilb owner */
  3092. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3093. return 1;
  3094. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3095. return 1;
  3096. } else {
  3097. if (!cpu_isset(cpu, nohz.cpu_mask))
  3098. return 0;
  3099. cpu_clear(cpu, nohz.cpu_mask);
  3100. if (atomic_read(&nohz.load_balancer) == cpu)
  3101. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3102. BUG();
  3103. }
  3104. return 0;
  3105. }
  3106. #endif
  3107. static DEFINE_SPINLOCK(balancing);
  3108. /*
  3109. * It checks each scheduling domain to see if it is due to be balanced,
  3110. * and initiates a balancing operation if so.
  3111. *
  3112. * Balancing parameters are set up in arch_init_sched_domains.
  3113. */
  3114. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3115. {
  3116. int balance = 1;
  3117. struct rq *rq = cpu_rq(cpu);
  3118. unsigned long interval;
  3119. struct sched_domain *sd;
  3120. /* Earliest time when we have to do rebalance again */
  3121. unsigned long next_balance = jiffies + 60*HZ;
  3122. int update_next_balance = 0;
  3123. cpumask_t tmp;
  3124. for_each_domain(cpu, sd) {
  3125. if (!(sd->flags & SD_LOAD_BALANCE))
  3126. continue;
  3127. interval = sd->balance_interval;
  3128. if (idle != CPU_IDLE)
  3129. interval *= sd->busy_factor;
  3130. /* scale ms to jiffies */
  3131. interval = msecs_to_jiffies(interval);
  3132. if (unlikely(!interval))
  3133. interval = 1;
  3134. if (interval > HZ*NR_CPUS/10)
  3135. interval = HZ*NR_CPUS/10;
  3136. if (sd->flags & SD_SERIALIZE) {
  3137. if (!spin_trylock(&balancing))
  3138. goto out;
  3139. }
  3140. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3141. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3142. /*
  3143. * We've pulled tasks over so either we're no
  3144. * longer idle, or one of our SMT siblings is
  3145. * not idle.
  3146. */
  3147. idle = CPU_NOT_IDLE;
  3148. }
  3149. sd->last_balance = jiffies;
  3150. }
  3151. if (sd->flags & SD_SERIALIZE)
  3152. spin_unlock(&balancing);
  3153. out:
  3154. if (time_after(next_balance, sd->last_balance + interval)) {
  3155. next_balance = sd->last_balance + interval;
  3156. update_next_balance = 1;
  3157. }
  3158. /*
  3159. * Stop the load balance at this level. There is another
  3160. * CPU in our sched group which is doing load balancing more
  3161. * actively.
  3162. */
  3163. if (!balance)
  3164. break;
  3165. }
  3166. /*
  3167. * next_balance will be updated only when there is a need.
  3168. * When the cpu is attached to null domain for ex, it will not be
  3169. * updated.
  3170. */
  3171. if (likely(update_next_balance))
  3172. rq->next_balance = next_balance;
  3173. }
  3174. /*
  3175. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3176. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3177. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3178. */
  3179. static void run_rebalance_domains(struct softirq_action *h)
  3180. {
  3181. int this_cpu = smp_processor_id();
  3182. struct rq *this_rq = cpu_rq(this_cpu);
  3183. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3184. CPU_IDLE : CPU_NOT_IDLE;
  3185. rebalance_domains(this_cpu, idle);
  3186. #ifdef CONFIG_NO_HZ
  3187. /*
  3188. * If this cpu is the owner for idle load balancing, then do the
  3189. * balancing on behalf of the other idle cpus whose ticks are
  3190. * stopped.
  3191. */
  3192. if (this_rq->idle_at_tick &&
  3193. atomic_read(&nohz.load_balancer) == this_cpu) {
  3194. cpumask_t cpus = nohz.cpu_mask;
  3195. struct rq *rq;
  3196. int balance_cpu;
  3197. cpu_clear(this_cpu, cpus);
  3198. for_each_cpu_mask(balance_cpu, cpus) {
  3199. /*
  3200. * If this cpu gets work to do, stop the load balancing
  3201. * work being done for other cpus. Next load
  3202. * balancing owner will pick it up.
  3203. */
  3204. if (need_resched())
  3205. break;
  3206. rebalance_domains(balance_cpu, CPU_IDLE);
  3207. rq = cpu_rq(balance_cpu);
  3208. if (time_after(this_rq->next_balance, rq->next_balance))
  3209. this_rq->next_balance = rq->next_balance;
  3210. }
  3211. }
  3212. #endif
  3213. }
  3214. /*
  3215. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3216. *
  3217. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3218. * idle load balancing owner or decide to stop the periodic load balancing,
  3219. * if the whole system is idle.
  3220. */
  3221. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3222. {
  3223. #ifdef CONFIG_NO_HZ
  3224. /*
  3225. * If we were in the nohz mode recently and busy at the current
  3226. * scheduler tick, then check if we need to nominate new idle
  3227. * load balancer.
  3228. */
  3229. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3230. rq->in_nohz_recently = 0;
  3231. if (atomic_read(&nohz.load_balancer) == cpu) {
  3232. cpu_clear(cpu, nohz.cpu_mask);
  3233. atomic_set(&nohz.load_balancer, -1);
  3234. }
  3235. if (atomic_read(&nohz.load_balancer) == -1) {
  3236. /*
  3237. * simple selection for now: Nominate the
  3238. * first cpu in the nohz list to be the next
  3239. * ilb owner.
  3240. *
  3241. * TBD: Traverse the sched domains and nominate
  3242. * the nearest cpu in the nohz.cpu_mask.
  3243. */
  3244. int ilb = first_cpu(nohz.cpu_mask);
  3245. if (ilb < nr_cpu_ids)
  3246. resched_cpu(ilb);
  3247. }
  3248. }
  3249. /*
  3250. * If this cpu is idle and doing idle load balancing for all the
  3251. * cpus with ticks stopped, is it time for that to stop?
  3252. */
  3253. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3254. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3255. resched_cpu(cpu);
  3256. return;
  3257. }
  3258. /*
  3259. * If this cpu is idle and the idle load balancing is done by
  3260. * someone else, then no need raise the SCHED_SOFTIRQ
  3261. */
  3262. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3263. cpu_isset(cpu, nohz.cpu_mask))
  3264. return;
  3265. #endif
  3266. if (time_after_eq(jiffies, rq->next_balance))
  3267. raise_softirq(SCHED_SOFTIRQ);
  3268. }
  3269. #else /* CONFIG_SMP */
  3270. /*
  3271. * on UP we do not need to balance between CPUs:
  3272. */
  3273. static inline void idle_balance(int cpu, struct rq *rq)
  3274. {
  3275. }
  3276. #endif
  3277. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3278. EXPORT_PER_CPU_SYMBOL(kstat);
  3279. /*
  3280. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3281. * that have not yet been banked in case the task is currently running.
  3282. */
  3283. unsigned long long task_sched_runtime(struct task_struct *p)
  3284. {
  3285. unsigned long flags;
  3286. u64 ns, delta_exec;
  3287. struct rq *rq;
  3288. rq = task_rq_lock(p, &flags);
  3289. ns = p->se.sum_exec_runtime;
  3290. if (task_current(rq, p)) {
  3291. update_rq_clock(rq);
  3292. delta_exec = rq->clock - p->se.exec_start;
  3293. if ((s64)delta_exec > 0)
  3294. ns += delta_exec;
  3295. }
  3296. task_rq_unlock(rq, &flags);
  3297. return ns;
  3298. }
  3299. /*
  3300. * Account user cpu time to a process.
  3301. * @p: the process that the cpu time gets accounted to
  3302. * @cputime: the cpu time spent in user space since the last update
  3303. */
  3304. void account_user_time(struct task_struct *p, cputime_t cputime)
  3305. {
  3306. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3307. cputime64_t tmp;
  3308. p->utime = cputime_add(p->utime, cputime);
  3309. /* Add user time to cpustat. */
  3310. tmp = cputime_to_cputime64(cputime);
  3311. if (TASK_NICE(p) > 0)
  3312. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3313. else
  3314. cpustat->user = cputime64_add(cpustat->user, tmp);
  3315. }
  3316. /*
  3317. * Account guest cpu time to a process.
  3318. * @p: the process that the cpu time gets accounted to
  3319. * @cputime: the cpu time spent in virtual machine since the last update
  3320. */
  3321. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3322. {
  3323. cputime64_t tmp;
  3324. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3325. tmp = cputime_to_cputime64(cputime);
  3326. p->utime = cputime_add(p->utime, cputime);
  3327. p->gtime = cputime_add(p->gtime, cputime);
  3328. cpustat->user = cputime64_add(cpustat->user, tmp);
  3329. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3330. }
  3331. /*
  3332. * Account scaled user cpu time to a process.
  3333. * @p: the process that the cpu time gets accounted to
  3334. * @cputime: the cpu time spent in user space since the last update
  3335. */
  3336. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3337. {
  3338. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3339. }
  3340. /*
  3341. * Account system cpu time to a process.
  3342. * @p: the process that the cpu time gets accounted to
  3343. * @hardirq_offset: the offset to subtract from hardirq_count()
  3344. * @cputime: the cpu time spent in kernel space since the last update
  3345. */
  3346. void account_system_time(struct task_struct *p, int hardirq_offset,
  3347. cputime_t cputime)
  3348. {
  3349. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3350. struct rq *rq = this_rq();
  3351. cputime64_t tmp;
  3352. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3353. account_guest_time(p, cputime);
  3354. return;
  3355. }
  3356. p->stime = cputime_add(p->stime, cputime);
  3357. /* Add system time to cpustat. */
  3358. tmp = cputime_to_cputime64(cputime);
  3359. if (hardirq_count() - hardirq_offset)
  3360. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3361. else if (softirq_count())
  3362. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3363. else if (p != rq->idle)
  3364. cpustat->system = cputime64_add(cpustat->system, tmp);
  3365. else if (atomic_read(&rq->nr_iowait) > 0)
  3366. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3367. else
  3368. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3369. /* Account for system time used */
  3370. acct_update_integrals(p);
  3371. }
  3372. /*
  3373. * Account scaled system cpu time to a process.
  3374. * @p: the process that the cpu time gets accounted to
  3375. * @hardirq_offset: the offset to subtract from hardirq_count()
  3376. * @cputime: the cpu time spent in kernel space since the last update
  3377. */
  3378. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3379. {
  3380. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3381. }
  3382. /*
  3383. * Account for involuntary wait time.
  3384. * @p: the process from which the cpu time has been stolen
  3385. * @steal: the cpu time spent in involuntary wait
  3386. */
  3387. void account_steal_time(struct task_struct *p, cputime_t steal)
  3388. {
  3389. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3390. cputime64_t tmp = cputime_to_cputime64(steal);
  3391. struct rq *rq = this_rq();
  3392. if (p == rq->idle) {
  3393. p->stime = cputime_add(p->stime, steal);
  3394. if (atomic_read(&rq->nr_iowait) > 0)
  3395. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3396. else
  3397. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3398. } else
  3399. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3400. }
  3401. /*
  3402. * This function gets called by the timer code, with HZ frequency.
  3403. * We call it with interrupts disabled.
  3404. *
  3405. * It also gets called by the fork code, when changing the parent's
  3406. * timeslices.
  3407. */
  3408. void scheduler_tick(void)
  3409. {
  3410. int cpu = smp_processor_id();
  3411. struct rq *rq = cpu_rq(cpu);
  3412. struct task_struct *curr = rq->curr;
  3413. sched_clock_tick();
  3414. spin_lock(&rq->lock);
  3415. update_rq_clock(rq);
  3416. update_cpu_load(rq);
  3417. curr->sched_class->task_tick(rq, curr, 0);
  3418. spin_unlock(&rq->lock);
  3419. #ifdef CONFIG_SMP
  3420. rq->idle_at_tick = idle_cpu(cpu);
  3421. trigger_load_balance(rq, cpu);
  3422. #endif
  3423. }
  3424. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3425. void __kprobes add_preempt_count(int val)
  3426. {
  3427. /*
  3428. * Underflow?
  3429. */
  3430. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3431. return;
  3432. preempt_count() += val;
  3433. /*
  3434. * Spinlock count overflowing soon?
  3435. */
  3436. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3437. PREEMPT_MASK - 10);
  3438. }
  3439. EXPORT_SYMBOL(add_preempt_count);
  3440. void __kprobes sub_preempt_count(int val)
  3441. {
  3442. /*
  3443. * Underflow?
  3444. */
  3445. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3446. return;
  3447. /*
  3448. * Is the spinlock portion underflowing?
  3449. */
  3450. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3451. !(preempt_count() & PREEMPT_MASK)))
  3452. return;
  3453. preempt_count() -= val;
  3454. }
  3455. EXPORT_SYMBOL(sub_preempt_count);
  3456. #endif
  3457. /*
  3458. * Print scheduling while atomic bug:
  3459. */
  3460. static noinline void __schedule_bug(struct task_struct *prev)
  3461. {
  3462. struct pt_regs *regs = get_irq_regs();
  3463. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3464. prev->comm, prev->pid, preempt_count());
  3465. debug_show_held_locks(prev);
  3466. if (irqs_disabled())
  3467. print_irqtrace_events(prev);
  3468. if (regs)
  3469. show_regs(regs);
  3470. else
  3471. dump_stack();
  3472. }
  3473. /*
  3474. * Various schedule()-time debugging checks and statistics:
  3475. */
  3476. static inline void schedule_debug(struct task_struct *prev)
  3477. {
  3478. /*
  3479. * Test if we are atomic. Since do_exit() needs to call into
  3480. * schedule() atomically, we ignore that path for now.
  3481. * Otherwise, whine if we are scheduling when we should not be.
  3482. */
  3483. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3484. __schedule_bug(prev);
  3485. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3486. schedstat_inc(this_rq(), sched_count);
  3487. #ifdef CONFIG_SCHEDSTATS
  3488. if (unlikely(prev->lock_depth >= 0)) {
  3489. schedstat_inc(this_rq(), bkl_count);
  3490. schedstat_inc(prev, sched_info.bkl_count);
  3491. }
  3492. #endif
  3493. }
  3494. /*
  3495. * Pick up the highest-prio task:
  3496. */
  3497. static inline struct task_struct *
  3498. pick_next_task(struct rq *rq, struct task_struct *prev)
  3499. {
  3500. const struct sched_class *class;
  3501. struct task_struct *p;
  3502. /*
  3503. * Optimization: we know that if all tasks are in
  3504. * the fair class we can call that function directly:
  3505. */
  3506. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3507. p = fair_sched_class.pick_next_task(rq);
  3508. if (likely(p))
  3509. return p;
  3510. }
  3511. class = sched_class_highest;
  3512. for ( ; ; ) {
  3513. p = class->pick_next_task(rq);
  3514. if (p)
  3515. return p;
  3516. /*
  3517. * Will never be NULL as the idle class always
  3518. * returns a non-NULL p:
  3519. */
  3520. class = class->next;
  3521. }
  3522. }
  3523. /*
  3524. * schedule() is the main scheduler function.
  3525. */
  3526. asmlinkage void __sched schedule(void)
  3527. {
  3528. struct task_struct *prev, *next;
  3529. unsigned long *switch_count;
  3530. struct rq *rq;
  3531. int cpu;
  3532. need_resched:
  3533. preempt_disable();
  3534. cpu = smp_processor_id();
  3535. rq = cpu_rq(cpu);
  3536. rcu_qsctr_inc(cpu);
  3537. prev = rq->curr;
  3538. switch_count = &prev->nivcsw;
  3539. release_kernel_lock(prev);
  3540. need_resched_nonpreemptible:
  3541. schedule_debug(prev);
  3542. hrtick_clear(rq);
  3543. /*
  3544. * Do the rq-clock update outside the rq lock:
  3545. */
  3546. local_irq_disable();
  3547. update_rq_clock(rq);
  3548. spin_lock(&rq->lock);
  3549. clear_tsk_need_resched(prev);
  3550. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3551. if (unlikely(signal_pending_state(prev->state, prev)))
  3552. prev->state = TASK_RUNNING;
  3553. else
  3554. deactivate_task(rq, prev, 1);
  3555. switch_count = &prev->nvcsw;
  3556. }
  3557. #ifdef CONFIG_SMP
  3558. if (prev->sched_class->pre_schedule)
  3559. prev->sched_class->pre_schedule(rq, prev);
  3560. #endif
  3561. if (unlikely(!rq->nr_running))
  3562. idle_balance(cpu, rq);
  3563. prev->sched_class->put_prev_task(rq, prev);
  3564. next = pick_next_task(rq, prev);
  3565. if (likely(prev != next)) {
  3566. sched_info_switch(prev, next);
  3567. rq->nr_switches++;
  3568. rq->curr = next;
  3569. ++*switch_count;
  3570. context_switch(rq, prev, next); /* unlocks the rq */
  3571. /*
  3572. * the context switch might have flipped the stack from under
  3573. * us, hence refresh the local variables.
  3574. */
  3575. cpu = smp_processor_id();
  3576. rq = cpu_rq(cpu);
  3577. } else
  3578. spin_unlock_irq(&rq->lock);
  3579. hrtick_set(rq);
  3580. if (unlikely(reacquire_kernel_lock(current) < 0))
  3581. goto need_resched_nonpreemptible;
  3582. preempt_enable_no_resched();
  3583. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3584. goto need_resched;
  3585. }
  3586. EXPORT_SYMBOL(schedule);
  3587. #ifdef CONFIG_PREEMPT
  3588. /*
  3589. * this is the entry point to schedule() from in-kernel preemption
  3590. * off of preempt_enable. Kernel preemptions off return from interrupt
  3591. * occur there and call schedule directly.
  3592. */
  3593. asmlinkage void __sched preempt_schedule(void)
  3594. {
  3595. struct thread_info *ti = current_thread_info();
  3596. /*
  3597. * If there is a non-zero preempt_count or interrupts are disabled,
  3598. * we do not want to preempt the current task. Just return..
  3599. */
  3600. if (likely(ti->preempt_count || irqs_disabled()))
  3601. return;
  3602. do {
  3603. add_preempt_count(PREEMPT_ACTIVE);
  3604. schedule();
  3605. sub_preempt_count(PREEMPT_ACTIVE);
  3606. /*
  3607. * Check again in case we missed a preemption opportunity
  3608. * between schedule and now.
  3609. */
  3610. barrier();
  3611. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3612. }
  3613. EXPORT_SYMBOL(preempt_schedule);
  3614. /*
  3615. * this is the entry point to schedule() from kernel preemption
  3616. * off of irq context.
  3617. * Note, that this is called and return with irqs disabled. This will
  3618. * protect us against recursive calling from irq.
  3619. */
  3620. asmlinkage void __sched preempt_schedule_irq(void)
  3621. {
  3622. struct thread_info *ti = current_thread_info();
  3623. /* Catch callers which need to be fixed */
  3624. BUG_ON(ti->preempt_count || !irqs_disabled());
  3625. do {
  3626. add_preempt_count(PREEMPT_ACTIVE);
  3627. local_irq_enable();
  3628. schedule();
  3629. local_irq_disable();
  3630. sub_preempt_count(PREEMPT_ACTIVE);
  3631. /*
  3632. * Check again in case we missed a preemption opportunity
  3633. * between schedule and now.
  3634. */
  3635. barrier();
  3636. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3637. }
  3638. #endif /* CONFIG_PREEMPT */
  3639. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3640. void *key)
  3641. {
  3642. return try_to_wake_up(curr->private, mode, sync);
  3643. }
  3644. EXPORT_SYMBOL(default_wake_function);
  3645. /*
  3646. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3647. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3648. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3649. *
  3650. * There are circumstances in which we can try to wake a task which has already
  3651. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3652. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3653. */
  3654. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3655. int nr_exclusive, int sync, void *key)
  3656. {
  3657. wait_queue_t *curr, *next;
  3658. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3659. unsigned flags = curr->flags;
  3660. if (curr->func(curr, mode, sync, key) &&
  3661. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3662. break;
  3663. }
  3664. }
  3665. /**
  3666. * __wake_up - wake up threads blocked on a waitqueue.
  3667. * @q: the waitqueue
  3668. * @mode: which threads
  3669. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3670. * @key: is directly passed to the wakeup function
  3671. */
  3672. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3673. int nr_exclusive, void *key)
  3674. {
  3675. unsigned long flags;
  3676. spin_lock_irqsave(&q->lock, flags);
  3677. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3678. spin_unlock_irqrestore(&q->lock, flags);
  3679. }
  3680. EXPORT_SYMBOL(__wake_up);
  3681. /*
  3682. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3683. */
  3684. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3685. {
  3686. __wake_up_common(q, mode, 1, 0, NULL);
  3687. }
  3688. /**
  3689. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3690. * @q: the waitqueue
  3691. * @mode: which threads
  3692. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3693. *
  3694. * The sync wakeup differs that the waker knows that it will schedule
  3695. * away soon, so while the target thread will be woken up, it will not
  3696. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3697. * with each other. This can prevent needless bouncing between CPUs.
  3698. *
  3699. * On UP it can prevent extra preemption.
  3700. */
  3701. void
  3702. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3703. {
  3704. unsigned long flags;
  3705. int sync = 1;
  3706. if (unlikely(!q))
  3707. return;
  3708. if (unlikely(!nr_exclusive))
  3709. sync = 0;
  3710. spin_lock_irqsave(&q->lock, flags);
  3711. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3712. spin_unlock_irqrestore(&q->lock, flags);
  3713. }
  3714. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3715. void complete(struct completion *x)
  3716. {
  3717. unsigned long flags;
  3718. spin_lock_irqsave(&x->wait.lock, flags);
  3719. x->done++;
  3720. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3721. spin_unlock_irqrestore(&x->wait.lock, flags);
  3722. }
  3723. EXPORT_SYMBOL(complete);
  3724. void complete_all(struct completion *x)
  3725. {
  3726. unsigned long flags;
  3727. spin_lock_irqsave(&x->wait.lock, flags);
  3728. x->done += UINT_MAX/2;
  3729. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3730. spin_unlock_irqrestore(&x->wait.lock, flags);
  3731. }
  3732. EXPORT_SYMBOL(complete_all);
  3733. static inline long __sched
  3734. do_wait_for_common(struct completion *x, long timeout, int state)
  3735. {
  3736. if (!x->done) {
  3737. DECLARE_WAITQUEUE(wait, current);
  3738. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3739. __add_wait_queue_tail(&x->wait, &wait);
  3740. do {
  3741. if ((state == TASK_INTERRUPTIBLE &&
  3742. signal_pending(current)) ||
  3743. (state == TASK_KILLABLE &&
  3744. fatal_signal_pending(current))) {
  3745. timeout = -ERESTARTSYS;
  3746. break;
  3747. }
  3748. __set_current_state(state);
  3749. spin_unlock_irq(&x->wait.lock);
  3750. timeout = schedule_timeout(timeout);
  3751. spin_lock_irq(&x->wait.lock);
  3752. } while (!x->done && timeout);
  3753. __remove_wait_queue(&x->wait, &wait);
  3754. if (!x->done)
  3755. return timeout;
  3756. }
  3757. x->done--;
  3758. return timeout ?: 1;
  3759. }
  3760. static long __sched
  3761. wait_for_common(struct completion *x, long timeout, int state)
  3762. {
  3763. might_sleep();
  3764. spin_lock_irq(&x->wait.lock);
  3765. timeout = do_wait_for_common(x, timeout, state);
  3766. spin_unlock_irq(&x->wait.lock);
  3767. return timeout;
  3768. }
  3769. void __sched wait_for_completion(struct completion *x)
  3770. {
  3771. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3772. }
  3773. EXPORT_SYMBOL(wait_for_completion);
  3774. unsigned long __sched
  3775. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3776. {
  3777. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3778. }
  3779. EXPORT_SYMBOL(wait_for_completion_timeout);
  3780. int __sched wait_for_completion_interruptible(struct completion *x)
  3781. {
  3782. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3783. if (t == -ERESTARTSYS)
  3784. return t;
  3785. return 0;
  3786. }
  3787. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3788. unsigned long __sched
  3789. wait_for_completion_interruptible_timeout(struct completion *x,
  3790. unsigned long timeout)
  3791. {
  3792. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3793. }
  3794. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3795. int __sched wait_for_completion_killable(struct completion *x)
  3796. {
  3797. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3798. if (t == -ERESTARTSYS)
  3799. return t;
  3800. return 0;
  3801. }
  3802. EXPORT_SYMBOL(wait_for_completion_killable);
  3803. static long __sched
  3804. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3805. {
  3806. unsigned long flags;
  3807. wait_queue_t wait;
  3808. init_waitqueue_entry(&wait, current);
  3809. __set_current_state(state);
  3810. spin_lock_irqsave(&q->lock, flags);
  3811. __add_wait_queue(q, &wait);
  3812. spin_unlock(&q->lock);
  3813. timeout = schedule_timeout(timeout);
  3814. spin_lock_irq(&q->lock);
  3815. __remove_wait_queue(q, &wait);
  3816. spin_unlock_irqrestore(&q->lock, flags);
  3817. return timeout;
  3818. }
  3819. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3820. {
  3821. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3822. }
  3823. EXPORT_SYMBOL(interruptible_sleep_on);
  3824. long __sched
  3825. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3826. {
  3827. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3828. }
  3829. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3830. void __sched sleep_on(wait_queue_head_t *q)
  3831. {
  3832. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3833. }
  3834. EXPORT_SYMBOL(sleep_on);
  3835. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3836. {
  3837. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3838. }
  3839. EXPORT_SYMBOL(sleep_on_timeout);
  3840. #ifdef CONFIG_RT_MUTEXES
  3841. /*
  3842. * rt_mutex_setprio - set the current priority of a task
  3843. * @p: task
  3844. * @prio: prio value (kernel-internal form)
  3845. *
  3846. * This function changes the 'effective' priority of a task. It does
  3847. * not touch ->normal_prio like __setscheduler().
  3848. *
  3849. * Used by the rt_mutex code to implement priority inheritance logic.
  3850. */
  3851. void rt_mutex_setprio(struct task_struct *p, int prio)
  3852. {
  3853. unsigned long flags;
  3854. int oldprio, on_rq, running;
  3855. struct rq *rq;
  3856. const struct sched_class *prev_class = p->sched_class;
  3857. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3858. rq = task_rq_lock(p, &flags);
  3859. update_rq_clock(rq);
  3860. oldprio = p->prio;
  3861. on_rq = p->se.on_rq;
  3862. running = task_current(rq, p);
  3863. if (on_rq)
  3864. dequeue_task(rq, p, 0);
  3865. if (running)
  3866. p->sched_class->put_prev_task(rq, p);
  3867. if (rt_prio(prio))
  3868. p->sched_class = &rt_sched_class;
  3869. else
  3870. p->sched_class = &fair_sched_class;
  3871. p->prio = prio;
  3872. if (running)
  3873. p->sched_class->set_curr_task(rq);
  3874. if (on_rq) {
  3875. enqueue_task(rq, p, 0);
  3876. check_class_changed(rq, p, prev_class, oldprio, running);
  3877. }
  3878. task_rq_unlock(rq, &flags);
  3879. }
  3880. #endif
  3881. void set_user_nice(struct task_struct *p, long nice)
  3882. {
  3883. int old_prio, delta, on_rq;
  3884. unsigned long flags;
  3885. struct rq *rq;
  3886. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3887. return;
  3888. /*
  3889. * We have to be careful, if called from sys_setpriority(),
  3890. * the task might be in the middle of scheduling on another CPU.
  3891. */
  3892. rq = task_rq_lock(p, &flags);
  3893. update_rq_clock(rq);
  3894. /*
  3895. * The RT priorities are set via sched_setscheduler(), but we still
  3896. * allow the 'normal' nice value to be set - but as expected
  3897. * it wont have any effect on scheduling until the task is
  3898. * SCHED_FIFO/SCHED_RR:
  3899. */
  3900. if (task_has_rt_policy(p)) {
  3901. p->static_prio = NICE_TO_PRIO(nice);
  3902. goto out_unlock;
  3903. }
  3904. on_rq = p->se.on_rq;
  3905. if (on_rq) {
  3906. dequeue_task(rq, p, 0);
  3907. dec_load(rq, p);
  3908. }
  3909. p->static_prio = NICE_TO_PRIO(nice);
  3910. set_load_weight(p);
  3911. old_prio = p->prio;
  3912. p->prio = effective_prio(p);
  3913. delta = p->prio - old_prio;
  3914. if (on_rq) {
  3915. enqueue_task(rq, p, 0);
  3916. inc_load(rq, p);
  3917. /*
  3918. * If the task increased its priority or is running and
  3919. * lowered its priority, then reschedule its CPU:
  3920. */
  3921. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3922. resched_task(rq->curr);
  3923. }
  3924. out_unlock:
  3925. task_rq_unlock(rq, &flags);
  3926. }
  3927. EXPORT_SYMBOL(set_user_nice);
  3928. /*
  3929. * can_nice - check if a task can reduce its nice value
  3930. * @p: task
  3931. * @nice: nice value
  3932. */
  3933. int can_nice(const struct task_struct *p, const int nice)
  3934. {
  3935. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3936. int nice_rlim = 20 - nice;
  3937. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3938. capable(CAP_SYS_NICE));
  3939. }
  3940. #ifdef __ARCH_WANT_SYS_NICE
  3941. /*
  3942. * sys_nice - change the priority of the current process.
  3943. * @increment: priority increment
  3944. *
  3945. * sys_setpriority is a more generic, but much slower function that
  3946. * does similar things.
  3947. */
  3948. asmlinkage long sys_nice(int increment)
  3949. {
  3950. long nice, retval;
  3951. /*
  3952. * Setpriority might change our priority at the same moment.
  3953. * We don't have to worry. Conceptually one call occurs first
  3954. * and we have a single winner.
  3955. */
  3956. if (increment < -40)
  3957. increment = -40;
  3958. if (increment > 40)
  3959. increment = 40;
  3960. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3961. if (nice < -20)
  3962. nice = -20;
  3963. if (nice > 19)
  3964. nice = 19;
  3965. if (increment < 0 && !can_nice(current, nice))
  3966. return -EPERM;
  3967. retval = security_task_setnice(current, nice);
  3968. if (retval)
  3969. return retval;
  3970. set_user_nice(current, nice);
  3971. return 0;
  3972. }
  3973. #endif
  3974. /**
  3975. * task_prio - return the priority value of a given task.
  3976. * @p: the task in question.
  3977. *
  3978. * This is the priority value as seen by users in /proc.
  3979. * RT tasks are offset by -200. Normal tasks are centered
  3980. * around 0, value goes from -16 to +15.
  3981. */
  3982. int task_prio(const struct task_struct *p)
  3983. {
  3984. return p->prio - MAX_RT_PRIO;
  3985. }
  3986. /**
  3987. * task_nice - return the nice value of a given task.
  3988. * @p: the task in question.
  3989. */
  3990. int task_nice(const struct task_struct *p)
  3991. {
  3992. return TASK_NICE(p);
  3993. }
  3994. EXPORT_SYMBOL(task_nice);
  3995. /**
  3996. * idle_cpu - is a given cpu idle currently?
  3997. * @cpu: the processor in question.
  3998. */
  3999. int idle_cpu(int cpu)
  4000. {
  4001. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4002. }
  4003. /**
  4004. * idle_task - return the idle task for a given cpu.
  4005. * @cpu: the processor in question.
  4006. */
  4007. struct task_struct *idle_task(int cpu)
  4008. {
  4009. return cpu_rq(cpu)->idle;
  4010. }
  4011. /**
  4012. * find_process_by_pid - find a process with a matching PID value.
  4013. * @pid: the pid in question.
  4014. */
  4015. static struct task_struct *find_process_by_pid(pid_t pid)
  4016. {
  4017. return pid ? find_task_by_vpid(pid) : current;
  4018. }
  4019. /* Actually do priority change: must hold rq lock. */
  4020. static void
  4021. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4022. {
  4023. BUG_ON(p->se.on_rq);
  4024. p->policy = policy;
  4025. switch (p->policy) {
  4026. case SCHED_NORMAL:
  4027. case SCHED_BATCH:
  4028. case SCHED_IDLE:
  4029. p->sched_class = &fair_sched_class;
  4030. break;
  4031. case SCHED_FIFO:
  4032. case SCHED_RR:
  4033. p->sched_class = &rt_sched_class;
  4034. break;
  4035. }
  4036. p->rt_priority = prio;
  4037. p->normal_prio = normal_prio(p);
  4038. /* we are holding p->pi_lock already */
  4039. p->prio = rt_mutex_getprio(p);
  4040. set_load_weight(p);
  4041. }
  4042. /**
  4043. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4044. * @p: the task in question.
  4045. * @policy: new policy.
  4046. * @param: structure containing the new RT priority.
  4047. *
  4048. * NOTE that the task may be already dead.
  4049. */
  4050. int sched_setscheduler(struct task_struct *p, int policy,
  4051. struct sched_param *param)
  4052. {
  4053. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4054. unsigned long flags;
  4055. const struct sched_class *prev_class = p->sched_class;
  4056. struct rq *rq;
  4057. /* may grab non-irq protected spin_locks */
  4058. BUG_ON(in_interrupt());
  4059. recheck:
  4060. /* double check policy once rq lock held */
  4061. if (policy < 0)
  4062. policy = oldpolicy = p->policy;
  4063. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4064. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4065. policy != SCHED_IDLE)
  4066. return -EINVAL;
  4067. /*
  4068. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4069. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4070. * SCHED_BATCH and SCHED_IDLE is 0.
  4071. */
  4072. if (param->sched_priority < 0 ||
  4073. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4074. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4075. return -EINVAL;
  4076. if (rt_policy(policy) != (param->sched_priority != 0))
  4077. return -EINVAL;
  4078. /*
  4079. * Allow unprivileged RT tasks to decrease priority:
  4080. */
  4081. if (!capable(CAP_SYS_NICE)) {
  4082. if (rt_policy(policy)) {
  4083. unsigned long rlim_rtprio;
  4084. if (!lock_task_sighand(p, &flags))
  4085. return -ESRCH;
  4086. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4087. unlock_task_sighand(p, &flags);
  4088. /* can't set/change the rt policy */
  4089. if (policy != p->policy && !rlim_rtprio)
  4090. return -EPERM;
  4091. /* can't increase priority */
  4092. if (param->sched_priority > p->rt_priority &&
  4093. param->sched_priority > rlim_rtprio)
  4094. return -EPERM;
  4095. }
  4096. /*
  4097. * Like positive nice levels, dont allow tasks to
  4098. * move out of SCHED_IDLE either:
  4099. */
  4100. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4101. return -EPERM;
  4102. /* can't change other user's priorities */
  4103. if ((current->euid != p->euid) &&
  4104. (current->euid != p->uid))
  4105. return -EPERM;
  4106. }
  4107. #ifdef CONFIG_RT_GROUP_SCHED
  4108. /*
  4109. * Do not allow realtime tasks into groups that have no runtime
  4110. * assigned.
  4111. */
  4112. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4113. return -EPERM;
  4114. #endif
  4115. retval = security_task_setscheduler(p, policy, param);
  4116. if (retval)
  4117. return retval;
  4118. /*
  4119. * make sure no PI-waiters arrive (or leave) while we are
  4120. * changing the priority of the task:
  4121. */
  4122. spin_lock_irqsave(&p->pi_lock, flags);
  4123. /*
  4124. * To be able to change p->policy safely, the apropriate
  4125. * runqueue lock must be held.
  4126. */
  4127. rq = __task_rq_lock(p);
  4128. /* recheck policy now with rq lock held */
  4129. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4130. policy = oldpolicy = -1;
  4131. __task_rq_unlock(rq);
  4132. spin_unlock_irqrestore(&p->pi_lock, flags);
  4133. goto recheck;
  4134. }
  4135. update_rq_clock(rq);
  4136. on_rq = p->se.on_rq;
  4137. running = task_current(rq, p);
  4138. if (on_rq)
  4139. deactivate_task(rq, p, 0);
  4140. if (running)
  4141. p->sched_class->put_prev_task(rq, p);
  4142. oldprio = p->prio;
  4143. __setscheduler(rq, p, policy, param->sched_priority);
  4144. if (running)
  4145. p->sched_class->set_curr_task(rq);
  4146. if (on_rq) {
  4147. activate_task(rq, p, 0);
  4148. check_class_changed(rq, p, prev_class, oldprio, running);
  4149. }
  4150. __task_rq_unlock(rq);
  4151. spin_unlock_irqrestore(&p->pi_lock, flags);
  4152. rt_mutex_adjust_pi(p);
  4153. return 0;
  4154. }
  4155. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4156. static int
  4157. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4158. {
  4159. struct sched_param lparam;
  4160. struct task_struct *p;
  4161. int retval;
  4162. if (!param || pid < 0)
  4163. return -EINVAL;
  4164. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4165. return -EFAULT;
  4166. rcu_read_lock();
  4167. retval = -ESRCH;
  4168. p = find_process_by_pid(pid);
  4169. if (p != NULL)
  4170. retval = sched_setscheduler(p, policy, &lparam);
  4171. rcu_read_unlock();
  4172. return retval;
  4173. }
  4174. /**
  4175. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4176. * @pid: the pid in question.
  4177. * @policy: new policy.
  4178. * @param: structure containing the new RT priority.
  4179. */
  4180. asmlinkage long
  4181. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4182. {
  4183. /* negative values for policy are not valid */
  4184. if (policy < 0)
  4185. return -EINVAL;
  4186. return do_sched_setscheduler(pid, policy, param);
  4187. }
  4188. /**
  4189. * sys_sched_setparam - set/change the RT priority of a thread
  4190. * @pid: the pid in question.
  4191. * @param: structure containing the new RT priority.
  4192. */
  4193. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4194. {
  4195. return do_sched_setscheduler(pid, -1, param);
  4196. }
  4197. /**
  4198. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4199. * @pid: the pid in question.
  4200. */
  4201. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4202. {
  4203. struct task_struct *p;
  4204. int retval;
  4205. if (pid < 0)
  4206. return -EINVAL;
  4207. retval = -ESRCH;
  4208. read_lock(&tasklist_lock);
  4209. p = find_process_by_pid(pid);
  4210. if (p) {
  4211. retval = security_task_getscheduler(p);
  4212. if (!retval)
  4213. retval = p->policy;
  4214. }
  4215. read_unlock(&tasklist_lock);
  4216. return retval;
  4217. }
  4218. /**
  4219. * sys_sched_getscheduler - get the RT priority of a thread
  4220. * @pid: the pid in question.
  4221. * @param: structure containing the RT priority.
  4222. */
  4223. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4224. {
  4225. struct sched_param lp;
  4226. struct task_struct *p;
  4227. int retval;
  4228. if (!param || pid < 0)
  4229. return -EINVAL;
  4230. read_lock(&tasklist_lock);
  4231. p = find_process_by_pid(pid);
  4232. retval = -ESRCH;
  4233. if (!p)
  4234. goto out_unlock;
  4235. retval = security_task_getscheduler(p);
  4236. if (retval)
  4237. goto out_unlock;
  4238. lp.sched_priority = p->rt_priority;
  4239. read_unlock(&tasklist_lock);
  4240. /*
  4241. * This one might sleep, we cannot do it with a spinlock held ...
  4242. */
  4243. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4244. return retval;
  4245. out_unlock:
  4246. read_unlock(&tasklist_lock);
  4247. return retval;
  4248. }
  4249. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4250. {
  4251. cpumask_t cpus_allowed;
  4252. cpumask_t new_mask = *in_mask;
  4253. struct task_struct *p;
  4254. int retval;
  4255. get_online_cpus();
  4256. read_lock(&tasklist_lock);
  4257. p = find_process_by_pid(pid);
  4258. if (!p) {
  4259. read_unlock(&tasklist_lock);
  4260. put_online_cpus();
  4261. return -ESRCH;
  4262. }
  4263. /*
  4264. * It is not safe to call set_cpus_allowed with the
  4265. * tasklist_lock held. We will bump the task_struct's
  4266. * usage count and then drop tasklist_lock.
  4267. */
  4268. get_task_struct(p);
  4269. read_unlock(&tasklist_lock);
  4270. retval = -EPERM;
  4271. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4272. !capable(CAP_SYS_NICE))
  4273. goto out_unlock;
  4274. retval = security_task_setscheduler(p, 0, NULL);
  4275. if (retval)
  4276. goto out_unlock;
  4277. cpuset_cpus_allowed(p, &cpus_allowed);
  4278. cpus_and(new_mask, new_mask, cpus_allowed);
  4279. again:
  4280. retval = set_cpus_allowed_ptr(p, &new_mask);
  4281. if (!retval) {
  4282. cpuset_cpus_allowed(p, &cpus_allowed);
  4283. if (!cpus_subset(new_mask, cpus_allowed)) {
  4284. /*
  4285. * We must have raced with a concurrent cpuset
  4286. * update. Just reset the cpus_allowed to the
  4287. * cpuset's cpus_allowed
  4288. */
  4289. new_mask = cpus_allowed;
  4290. goto again;
  4291. }
  4292. }
  4293. out_unlock:
  4294. put_task_struct(p);
  4295. put_online_cpus();
  4296. return retval;
  4297. }
  4298. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4299. cpumask_t *new_mask)
  4300. {
  4301. if (len < sizeof(cpumask_t)) {
  4302. memset(new_mask, 0, sizeof(cpumask_t));
  4303. } else if (len > sizeof(cpumask_t)) {
  4304. len = sizeof(cpumask_t);
  4305. }
  4306. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4307. }
  4308. /**
  4309. * sys_sched_setaffinity - set the cpu affinity of a process
  4310. * @pid: pid of the process
  4311. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4312. * @user_mask_ptr: user-space pointer to the new cpu mask
  4313. */
  4314. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4315. unsigned long __user *user_mask_ptr)
  4316. {
  4317. cpumask_t new_mask;
  4318. int retval;
  4319. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4320. if (retval)
  4321. return retval;
  4322. return sched_setaffinity(pid, &new_mask);
  4323. }
  4324. /*
  4325. * Represents all cpu's present in the system
  4326. * In systems capable of hotplug, this map could dynamically grow
  4327. * as new cpu's are detected in the system via any platform specific
  4328. * method, such as ACPI for e.g.
  4329. */
  4330. cpumask_t cpu_present_map __read_mostly;
  4331. EXPORT_SYMBOL(cpu_present_map);
  4332. #ifndef CONFIG_SMP
  4333. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4334. EXPORT_SYMBOL(cpu_online_map);
  4335. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4336. EXPORT_SYMBOL(cpu_possible_map);
  4337. #endif
  4338. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4339. {
  4340. struct task_struct *p;
  4341. int retval;
  4342. get_online_cpus();
  4343. read_lock(&tasklist_lock);
  4344. retval = -ESRCH;
  4345. p = find_process_by_pid(pid);
  4346. if (!p)
  4347. goto out_unlock;
  4348. retval = security_task_getscheduler(p);
  4349. if (retval)
  4350. goto out_unlock;
  4351. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4352. out_unlock:
  4353. read_unlock(&tasklist_lock);
  4354. put_online_cpus();
  4355. return retval;
  4356. }
  4357. /**
  4358. * sys_sched_getaffinity - get the cpu affinity of a process
  4359. * @pid: pid of the process
  4360. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4361. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4362. */
  4363. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4364. unsigned long __user *user_mask_ptr)
  4365. {
  4366. int ret;
  4367. cpumask_t mask;
  4368. if (len < sizeof(cpumask_t))
  4369. return -EINVAL;
  4370. ret = sched_getaffinity(pid, &mask);
  4371. if (ret < 0)
  4372. return ret;
  4373. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4374. return -EFAULT;
  4375. return sizeof(cpumask_t);
  4376. }
  4377. /**
  4378. * sys_sched_yield - yield the current processor to other threads.
  4379. *
  4380. * This function yields the current CPU to other tasks. If there are no
  4381. * other threads running on this CPU then this function will return.
  4382. */
  4383. asmlinkage long sys_sched_yield(void)
  4384. {
  4385. struct rq *rq = this_rq_lock();
  4386. schedstat_inc(rq, yld_count);
  4387. current->sched_class->yield_task(rq);
  4388. /*
  4389. * Since we are going to call schedule() anyway, there's
  4390. * no need to preempt or enable interrupts:
  4391. */
  4392. __release(rq->lock);
  4393. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4394. _raw_spin_unlock(&rq->lock);
  4395. preempt_enable_no_resched();
  4396. schedule();
  4397. return 0;
  4398. }
  4399. static void __cond_resched(void)
  4400. {
  4401. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4402. __might_sleep(__FILE__, __LINE__);
  4403. #endif
  4404. /*
  4405. * The BKS might be reacquired before we have dropped
  4406. * PREEMPT_ACTIVE, which could trigger a second
  4407. * cond_resched() call.
  4408. */
  4409. do {
  4410. add_preempt_count(PREEMPT_ACTIVE);
  4411. schedule();
  4412. sub_preempt_count(PREEMPT_ACTIVE);
  4413. } while (need_resched());
  4414. }
  4415. int __sched _cond_resched(void)
  4416. {
  4417. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4418. system_state == SYSTEM_RUNNING) {
  4419. __cond_resched();
  4420. return 1;
  4421. }
  4422. return 0;
  4423. }
  4424. EXPORT_SYMBOL(_cond_resched);
  4425. /*
  4426. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4427. * call schedule, and on return reacquire the lock.
  4428. *
  4429. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4430. * operations here to prevent schedule() from being called twice (once via
  4431. * spin_unlock(), once by hand).
  4432. */
  4433. int cond_resched_lock(spinlock_t *lock)
  4434. {
  4435. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4436. int ret = 0;
  4437. if (spin_needbreak(lock) || resched) {
  4438. spin_unlock(lock);
  4439. if (resched && need_resched())
  4440. __cond_resched();
  4441. else
  4442. cpu_relax();
  4443. ret = 1;
  4444. spin_lock(lock);
  4445. }
  4446. return ret;
  4447. }
  4448. EXPORT_SYMBOL(cond_resched_lock);
  4449. int __sched cond_resched_softirq(void)
  4450. {
  4451. BUG_ON(!in_softirq());
  4452. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4453. local_bh_enable();
  4454. __cond_resched();
  4455. local_bh_disable();
  4456. return 1;
  4457. }
  4458. return 0;
  4459. }
  4460. EXPORT_SYMBOL(cond_resched_softirq);
  4461. /**
  4462. * yield - yield the current processor to other threads.
  4463. *
  4464. * This is a shortcut for kernel-space yielding - it marks the
  4465. * thread runnable and calls sys_sched_yield().
  4466. */
  4467. void __sched yield(void)
  4468. {
  4469. set_current_state(TASK_RUNNING);
  4470. sys_sched_yield();
  4471. }
  4472. EXPORT_SYMBOL(yield);
  4473. /*
  4474. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4475. * that process accounting knows that this is a task in IO wait state.
  4476. *
  4477. * But don't do that if it is a deliberate, throttling IO wait (this task
  4478. * has set its backing_dev_info: the queue against which it should throttle)
  4479. */
  4480. void __sched io_schedule(void)
  4481. {
  4482. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4483. delayacct_blkio_start();
  4484. atomic_inc(&rq->nr_iowait);
  4485. schedule();
  4486. atomic_dec(&rq->nr_iowait);
  4487. delayacct_blkio_end();
  4488. }
  4489. EXPORT_SYMBOL(io_schedule);
  4490. long __sched io_schedule_timeout(long timeout)
  4491. {
  4492. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4493. long ret;
  4494. delayacct_blkio_start();
  4495. atomic_inc(&rq->nr_iowait);
  4496. ret = schedule_timeout(timeout);
  4497. atomic_dec(&rq->nr_iowait);
  4498. delayacct_blkio_end();
  4499. return ret;
  4500. }
  4501. /**
  4502. * sys_sched_get_priority_max - return maximum RT priority.
  4503. * @policy: scheduling class.
  4504. *
  4505. * this syscall returns the maximum rt_priority that can be used
  4506. * by a given scheduling class.
  4507. */
  4508. asmlinkage long sys_sched_get_priority_max(int policy)
  4509. {
  4510. int ret = -EINVAL;
  4511. switch (policy) {
  4512. case SCHED_FIFO:
  4513. case SCHED_RR:
  4514. ret = MAX_USER_RT_PRIO-1;
  4515. break;
  4516. case SCHED_NORMAL:
  4517. case SCHED_BATCH:
  4518. case SCHED_IDLE:
  4519. ret = 0;
  4520. break;
  4521. }
  4522. return ret;
  4523. }
  4524. /**
  4525. * sys_sched_get_priority_min - return minimum RT priority.
  4526. * @policy: scheduling class.
  4527. *
  4528. * this syscall returns the minimum rt_priority that can be used
  4529. * by a given scheduling class.
  4530. */
  4531. asmlinkage long sys_sched_get_priority_min(int policy)
  4532. {
  4533. int ret = -EINVAL;
  4534. switch (policy) {
  4535. case SCHED_FIFO:
  4536. case SCHED_RR:
  4537. ret = 1;
  4538. break;
  4539. case SCHED_NORMAL:
  4540. case SCHED_BATCH:
  4541. case SCHED_IDLE:
  4542. ret = 0;
  4543. }
  4544. return ret;
  4545. }
  4546. /**
  4547. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4548. * @pid: pid of the process.
  4549. * @interval: userspace pointer to the timeslice value.
  4550. *
  4551. * this syscall writes the default timeslice value of a given process
  4552. * into the user-space timespec buffer. A value of '0' means infinity.
  4553. */
  4554. asmlinkage
  4555. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4556. {
  4557. struct task_struct *p;
  4558. unsigned int time_slice;
  4559. int retval;
  4560. struct timespec t;
  4561. if (pid < 0)
  4562. return -EINVAL;
  4563. retval = -ESRCH;
  4564. read_lock(&tasklist_lock);
  4565. p = find_process_by_pid(pid);
  4566. if (!p)
  4567. goto out_unlock;
  4568. retval = security_task_getscheduler(p);
  4569. if (retval)
  4570. goto out_unlock;
  4571. /*
  4572. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4573. * tasks that are on an otherwise idle runqueue:
  4574. */
  4575. time_slice = 0;
  4576. if (p->policy == SCHED_RR) {
  4577. time_slice = DEF_TIMESLICE;
  4578. } else if (p->policy != SCHED_FIFO) {
  4579. struct sched_entity *se = &p->se;
  4580. unsigned long flags;
  4581. struct rq *rq;
  4582. rq = task_rq_lock(p, &flags);
  4583. if (rq->cfs.load.weight)
  4584. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4585. task_rq_unlock(rq, &flags);
  4586. }
  4587. read_unlock(&tasklist_lock);
  4588. jiffies_to_timespec(time_slice, &t);
  4589. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4590. return retval;
  4591. out_unlock:
  4592. read_unlock(&tasklist_lock);
  4593. return retval;
  4594. }
  4595. static const char stat_nam[] = "RSDTtZX";
  4596. void sched_show_task(struct task_struct *p)
  4597. {
  4598. unsigned long free = 0;
  4599. unsigned state;
  4600. state = p->state ? __ffs(p->state) + 1 : 0;
  4601. printk(KERN_INFO "%-13.13s %c", p->comm,
  4602. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4603. #if BITS_PER_LONG == 32
  4604. if (state == TASK_RUNNING)
  4605. printk(KERN_CONT " running ");
  4606. else
  4607. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4608. #else
  4609. if (state == TASK_RUNNING)
  4610. printk(KERN_CONT " running task ");
  4611. else
  4612. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4613. #endif
  4614. #ifdef CONFIG_DEBUG_STACK_USAGE
  4615. {
  4616. unsigned long *n = end_of_stack(p);
  4617. while (!*n)
  4618. n++;
  4619. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4620. }
  4621. #endif
  4622. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4623. task_pid_nr(p), task_pid_nr(p->real_parent));
  4624. show_stack(p, NULL);
  4625. }
  4626. void show_state_filter(unsigned long state_filter)
  4627. {
  4628. struct task_struct *g, *p;
  4629. #if BITS_PER_LONG == 32
  4630. printk(KERN_INFO
  4631. " task PC stack pid father\n");
  4632. #else
  4633. printk(KERN_INFO
  4634. " task PC stack pid father\n");
  4635. #endif
  4636. read_lock(&tasklist_lock);
  4637. do_each_thread(g, p) {
  4638. /*
  4639. * reset the NMI-timeout, listing all files on a slow
  4640. * console might take alot of time:
  4641. */
  4642. touch_nmi_watchdog();
  4643. if (!state_filter || (p->state & state_filter))
  4644. sched_show_task(p);
  4645. } while_each_thread(g, p);
  4646. touch_all_softlockup_watchdogs();
  4647. #ifdef CONFIG_SCHED_DEBUG
  4648. sysrq_sched_debug_show();
  4649. #endif
  4650. read_unlock(&tasklist_lock);
  4651. /*
  4652. * Only show locks if all tasks are dumped:
  4653. */
  4654. if (state_filter == -1)
  4655. debug_show_all_locks();
  4656. }
  4657. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4658. {
  4659. idle->sched_class = &idle_sched_class;
  4660. }
  4661. /**
  4662. * init_idle - set up an idle thread for a given CPU
  4663. * @idle: task in question
  4664. * @cpu: cpu the idle task belongs to
  4665. *
  4666. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4667. * flag, to make booting more robust.
  4668. */
  4669. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4670. {
  4671. struct rq *rq = cpu_rq(cpu);
  4672. unsigned long flags;
  4673. __sched_fork(idle);
  4674. idle->se.exec_start = sched_clock();
  4675. idle->prio = idle->normal_prio = MAX_PRIO;
  4676. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4677. __set_task_cpu(idle, cpu);
  4678. spin_lock_irqsave(&rq->lock, flags);
  4679. rq->curr = rq->idle = idle;
  4680. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4681. idle->oncpu = 1;
  4682. #endif
  4683. spin_unlock_irqrestore(&rq->lock, flags);
  4684. /* Set the preempt count _outside_ the spinlocks! */
  4685. #if defined(CONFIG_PREEMPT)
  4686. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4687. #else
  4688. task_thread_info(idle)->preempt_count = 0;
  4689. #endif
  4690. /*
  4691. * The idle tasks have their own, simple scheduling class:
  4692. */
  4693. idle->sched_class = &idle_sched_class;
  4694. }
  4695. /*
  4696. * In a system that switches off the HZ timer nohz_cpu_mask
  4697. * indicates which cpus entered this state. This is used
  4698. * in the rcu update to wait only for active cpus. For system
  4699. * which do not switch off the HZ timer nohz_cpu_mask should
  4700. * always be CPU_MASK_NONE.
  4701. */
  4702. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4703. /*
  4704. * Increase the granularity value when there are more CPUs,
  4705. * because with more CPUs the 'effective latency' as visible
  4706. * to users decreases. But the relationship is not linear,
  4707. * so pick a second-best guess by going with the log2 of the
  4708. * number of CPUs.
  4709. *
  4710. * This idea comes from the SD scheduler of Con Kolivas:
  4711. */
  4712. static inline void sched_init_granularity(void)
  4713. {
  4714. unsigned int factor = 1 + ilog2(num_online_cpus());
  4715. const unsigned long limit = 200000000;
  4716. sysctl_sched_min_granularity *= factor;
  4717. if (sysctl_sched_min_granularity > limit)
  4718. sysctl_sched_min_granularity = limit;
  4719. sysctl_sched_latency *= factor;
  4720. if (sysctl_sched_latency > limit)
  4721. sysctl_sched_latency = limit;
  4722. sysctl_sched_wakeup_granularity *= factor;
  4723. }
  4724. #ifdef CONFIG_SMP
  4725. /*
  4726. * This is how migration works:
  4727. *
  4728. * 1) we queue a struct migration_req structure in the source CPU's
  4729. * runqueue and wake up that CPU's migration thread.
  4730. * 2) we down() the locked semaphore => thread blocks.
  4731. * 3) migration thread wakes up (implicitly it forces the migrated
  4732. * thread off the CPU)
  4733. * 4) it gets the migration request and checks whether the migrated
  4734. * task is still in the wrong runqueue.
  4735. * 5) if it's in the wrong runqueue then the migration thread removes
  4736. * it and puts it into the right queue.
  4737. * 6) migration thread up()s the semaphore.
  4738. * 7) we wake up and the migration is done.
  4739. */
  4740. /*
  4741. * Change a given task's CPU affinity. Migrate the thread to a
  4742. * proper CPU and schedule it away if the CPU it's executing on
  4743. * is removed from the allowed bitmask.
  4744. *
  4745. * NOTE: the caller must have a valid reference to the task, the
  4746. * task must not exit() & deallocate itself prematurely. The
  4747. * call is not atomic; no spinlocks may be held.
  4748. */
  4749. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4750. {
  4751. struct migration_req req;
  4752. unsigned long flags;
  4753. struct rq *rq;
  4754. int ret = 0;
  4755. rq = task_rq_lock(p, &flags);
  4756. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4757. ret = -EINVAL;
  4758. goto out;
  4759. }
  4760. if (p->sched_class->set_cpus_allowed)
  4761. p->sched_class->set_cpus_allowed(p, new_mask);
  4762. else {
  4763. p->cpus_allowed = *new_mask;
  4764. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4765. }
  4766. /* Can the task run on the task's current CPU? If so, we're done */
  4767. if (cpu_isset(task_cpu(p), *new_mask))
  4768. goto out;
  4769. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4770. /* Need help from migration thread: drop lock and wait. */
  4771. task_rq_unlock(rq, &flags);
  4772. wake_up_process(rq->migration_thread);
  4773. wait_for_completion(&req.done);
  4774. tlb_migrate_finish(p->mm);
  4775. return 0;
  4776. }
  4777. out:
  4778. task_rq_unlock(rq, &flags);
  4779. return ret;
  4780. }
  4781. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4782. /*
  4783. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4784. * this because either it can't run here any more (set_cpus_allowed()
  4785. * away from this CPU, or CPU going down), or because we're
  4786. * attempting to rebalance this task on exec (sched_exec).
  4787. *
  4788. * So we race with normal scheduler movements, but that's OK, as long
  4789. * as the task is no longer on this CPU.
  4790. *
  4791. * Returns non-zero if task was successfully migrated.
  4792. */
  4793. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4794. {
  4795. struct rq *rq_dest, *rq_src;
  4796. int ret = 0, on_rq;
  4797. if (unlikely(cpu_is_offline(dest_cpu)))
  4798. return ret;
  4799. rq_src = cpu_rq(src_cpu);
  4800. rq_dest = cpu_rq(dest_cpu);
  4801. double_rq_lock(rq_src, rq_dest);
  4802. /* Already moved. */
  4803. if (task_cpu(p) != src_cpu)
  4804. goto done;
  4805. /* Affinity changed (again). */
  4806. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4807. goto fail;
  4808. on_rq = p->se.on_rq;
  4809. if (on_rq)
  4810. deactivate_task(rq_src, p, 0);
  4811. set_task_cpu(p, dest_cpu);
  4812. if (on_rq) {
  4813. activate_task(rq_dest, p, 0);
  4814. check_preempt_curr(rq_dest, p);
  4815. }
  4816. done:
  4817. ret = 1;
  4818. fail:
  4819. double_rq_unlock(rq_src, rq_dest);
  4820. return ret;
  4821. }
  4822. /*
  4823. * migration_thread - this is a highprio system thread that performs
  4824. * thread migration by bumping thread off CPU then 'pushing' onto
  4825. * another runqueue.
  4826. */
  4827. static int migration_thread(void *data)
  4828. {
  4829. int cpu = (long)data;
  4830. struct rq *rq;
  4831. rq = cpu_rq(cpu);
  4832. BUG_ON(rq->migration_thread != current);
  4833. set_current_state(TASK_INTERRUPTIBLE);
  4834. while (!kthread_should_stop()) {
  4835. struct migration_req *req;
  4836. struct list_head *head;
  4837. spin_lock_irq(&rq->lock);
  4838. if (cpu_is_offline(cpu)) {
  4839. spin_unlock_irq(&rq->lock);
  4840. goto wait_to_die;
  4841. }
  4842. if (rq->active_balance) {
  4843. active_load_balance(rq, cpu);
  4844. rq->active_balance = 0;
  4845. }
  4846. head = &rq->migration_queue;
  4847. if (list_empty(head)) {
  4848. spin_unlock_irq(&rq->lock);
  4849. schedule();
  4850. set_current_state(TASK_INTERRUPTIBLE);
  4851. continue;
  4852. }
  4853. req = list_entry(head->next, struct migration_req, list);
  4854. list_del_init(head->next);
  4855. spin_unlock(&rq->lock);
  4856. __migrate_task(req->task, cpu, req->dest_cpu);
  4857. local_irq_enable();
  4858. complete(&req->done);
  4859. }
  4860. __set_current_state(TASK_RUNNING);
  4861. return 0;
  4862. wait_to_die:
  4863. /* Wait for kthread_stop */
  4864. set_current_state(TASK_INTERRUPTIBLE);
  4865. while (!kthread_should_stop()) {
  4866. schedule();
  4867. set_current_state(TASK_INTERRUPTIBLE);
  4868. }
  4869. __set_current_state(TASK_RUNNING);
  4870. return 0;
  4871. }
  4872. #ifdef CONFIG_HOTPLUG_CPU
  4873. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4874. {
  4875. int ret;
  4876. local_irq_disable();
  4877. ret = __migrate_task(p, src_cpu, dest_cpu);
  4878. local_irq_enable();
  4879. return ret;
  4880. }
  4881. /*
  4882. * Figure out where task on dead CPU should go, use force if necessary.
  4883. * NOTE: interrupts should be disabled by the caller
  4884. */
  4885. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4886. {
  4887. unsigned long flags;
  4888. cpumask_t mask;
  4889. struct rq *rq;
  4890. int dest_cpu;
  4891. do {
  4892. /* On same node? */
  4893. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4894. cpus_and(mask, mask, p->cpus_allowed);
  4895. dest_cpu = any_online_cpu(mask);
  4896. /* On any allowed CPU? */
  4897. if (dest_cpu >= nr_cpu_ids)
  4898. dest_cpu = any_online_cpu(p->cpus_allowed);
  4899. /* No more Mr. Nice Guy. */
  4900. if (dest_cpu >= nr_cpu_ids) {
  4901. cpumask_t cpus_allowed;
  4902. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4903. /*
  4904. * Try to stay on the same cpuset, where the
  4905. * current cpuset may be a subset of all cpus.
  4906. * The cpuset_cpus_allowed_locked() variant of
  4907. * cpuset_cpus_allowed() will not block. It must be
  4908. * called within calls to cpuset_lock/cpuset_unlock.
  4909. */
  4910. rq = task_rq_lock(p, &flags);
  4911. p->cpus_allowed = cpus_allowed;
  4912. dest_cpu = any_online_cpu(p->cpus_allowed);
  4913. task_rq_unlock(rq, &flags);
  4914. /*
  4915. * Don't tell them about moving exiting tasks or
  4916. * kernel threads (both mm NULL), since they never
  4917. * leave kernel.
  4918. */
  4919. if (p->mm && printk_ratelimit()) {
  4920. printk(KERN_INFO "process %d (%s) no "
  4921. "longer affine to cpu%d\n",
  4922. task_pid_nr(p), p->comm, dead_cpu);
  4923. }
  4924. }
  4925. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4926. }
  4927. /*
  4928. * While a dead CPU has no uninterruptible tasks queued at this point,
  4929. * it might still have a nonzero ->nr_uninterruptible counter, because
  4930. * for performance reasons the counter is not stricly tracking tasks to
  4931. * their home CPUs. So we just add the counter to another CPU's counter,
  4932. * to keep the global sum constant after CPU-down:
  4933. */
  4934. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4935. {
  4936. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4937. unsigned long flags;
  4938. local_irq_save(flags);
  4939. double_rq_lock(rq_src, rq_dest);
  4940. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4941. rq_src->nr_uninterruptible = 0;
  4942. double_rq_unlock(rq_src, rq_dest);
  4943. local_irq_restore(flags);
  4944. }
  4945. /* Run through task list and migrate tasks from the dead cpu. */
  4946. static void migrate_live_tasks(int src_cpu)
  4947. {
  4948. struct task_struct *p, *t;
  4949. read_lock(&tasklist_lock);
  4950. do_each_thread(t, p) {
  4951. if (p == current)
  4952. continue;
  4953. if (task_cpu(p) == src_cpu)
  4954. move_task_off_dead_cpu(src_cpu, p);
  4955. } while_each_thread(t, p);
  4956. read_unlock(&tasklist_lock);
  4957. }
  4958. /*
  4959. * Schedules idle task to be the next runnable task on current CPU.
  4960. * It does so by boosting its priority to highest possible.
  4961. * Used by CPU offline code.
  4962. */
  4963. void sched_idle_next(void)
  4964. {
  4965. int this_cpu = smp_processor_id();
  4966. struct rq *rq = cpu_rq(this_cpu);
  4967. struct task_struct *p = rq->idle;
  4968. unsigned long flags;
  4969. /* cpu has to be offline */
  4970. BUG_ON(cpu_online(this_cpu));
  4971. /*
  4972. * Strictly not necessary since rest of the CPUs are stopped by now
  4973. * and interrupts disabled on the current cpu.
  4974. */
  4975. spin_lock_irqsave(&rq->lock, flags);
  4976. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4977. update_rq_clock(rq);
  4978. activate_task(rq, p, 0);
  4979. spin_unlock_irqrestore(&rq->lock, flags);
  4980. }
  4981. /*
  4982. * Ensures that the idle task is using init_mm right before its cpu goes
  4983. * offline.
  4984. */
  4985. void idle_task_exit(void)
  4986. {
  4987. struct mm_struct *mm = current->active_mm;
  4988. BUG_ON(cpu_online(smp_processor_id()));
  4989. if (mm != &init_mm)
  4990. switch_mm(mm, &init_mm, current);
  4991. mmdrop(mm);
  4992. }
  4993. /* called under rq->lock with disabled interrupts */
  4994. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4995. {
  4996. struct rq *rq = cpu_rq(dead_cpu);
  4997. /* Must be exiting, otherwise would be on tasklist. */
  4998. BUG_ON(!p->exit_state);
  4999. /* Cannot have done final schedule yet: would have vanished. */
  5000. BUG_ON(p->state == TASK_DEAD);
  5001. get_task_struct(p);
  5002. /*
  5003. * Drop lock around migration; if someone else moves it,
  5004. * that's OK. No task can be added to this CPU, so iteration is
  5005. * fine.
  5006. */
  5007. spin_unlock_irq(&rq->lock);
  5008. move_task_off_dead_cpu(dead_cpu, p);
  5009. spin_lock_irq(&rq->lock);
  5010. put_task_struct(p);
  5011. }
  5012. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5013. static void migrate_dead_tasks(unsigned int dead_cpu)
  5014. {
  5015. struct rq *rq = cpu_rq(dead_cpu);
  5016. struct task_struct *next;
  5017. for ( ; ; ) {
  5018. if (!rq->nr_running)
  5019. break;
  5020. update_rq_clock(rq);
  5021. next = pick_next_task(rq, rq->curr);
  5022. if (!next)
  5023. break;
  5024. next->sched_class->put_prev_task(rq, next);
  5025. migrate_dead(dead_cpu, next);
  5026. }
  5027. }
  5028. #endif /* CONFIG_HOTPLUG_CPU */
  5029. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5030. static struct ctl_table sd_ctl_dir[] = {
  5031. {
  5032. .procname = "sched_domain",
  5033. .mode = 0555,
  5034. },
  5035. {0, },
  5036. };
  5037. static struct ctl_table sd_ctl_root[] = {
  5038. {
  5039. .ctl_name = CTL_KERN,
  5040. .procname = "kernel",
  5041. .mode = 0555,
  5042. .child = sd_ctl_dir,
  5043. },
  5044. {0, },
  5045. };
  5046. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5047. {
  5048. struct ctl_table *entry =
  5049. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5050. return entry;
  5051. }
  5052. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5053. {
  5054. struct ctl_table *entry;
  5055. /*
  5056. * In the intermediate directories, both the child directory and
  5057. * procname are dynamically allocated and could fail but the mode
  5058. * will always be set. In the lowest directory the names are
  5059. * static strings and all have proc handlers.
  5060. */
  5061. for (entry = *tablep; entry->mode; entry++) {
  5062. if (entry->child)
  5063. sd_free_ctl_entry(&entry->child);
  5064. if (entry->proc_handler == NULL)
  5065. kfree(entry->procname);
  5066. }
  5067. kfree(*tablep);
  5068. *tablep = NULL;
  5069. }
  5070. static void
  5071. set_table_entry(struct ctl_table *entry,
  5072. const char *procname, void *data, int maxlen,
  5073. mode_t mode, proc_handler *proc_handler)
  5074. {
  5075. entry->procname = procname;
  5076. entry->data = data;
  5077. entry->maxlen = maxlen;
  5078. entry->mode = mode;
  5079. entry->proc_handler = proc_handler;
  5080. }
  5081. static struct ctl_table *
  5082. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5083. {
  5084. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5085. if (table == NULL)
  5086. return NULL;
  5087. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5088. sizeof(long), 0644, proc_doulongvec_minmax);
  5089. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5090. sizeof(long), 0644, proc_doulongvec_minmax);
  5091. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5092. sizeof(int), 0644, proc_dointvec_minmax);
  5093. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5094. sizeof(int), 0644, proc_dointvec_minmax);
  5095. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5096. sizeof(int), 0644, proc_dointvec_minmax);
  5097. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5098. sizeof(int), 0644, proc_dointvec_minmax);
  5099. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5100. sizeof(int), 0644, proc_dointvec_minmax);
  5101. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5102. sizeof(int), 0644, proc_dointvec_minmax);
  5103. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5104. sizeof(int), 0644, proc_dointvec_minmax);
  5105. set_table_entry(&table[9], "cache_nice_tries",
  5106. &sd->cache_nice_tries,
  5107. sizeof(int), 0644, proc_dointvec_minmax);
  5108. set_table_entry(&table[10], "flags", &sd->flags,
  5109. sizeof(int), 0644, proc_dointvec_minmax);
  5110. /* &table[11] is terminator */
  5111. return table;
  5112. }
  5113. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5114. {
  5115. struct ctl_table *entry, *table;
  5116. struct sched_domain *sd;
  5117. int domain_num = 0, i;
  5118. char buf[32];
  5119. for_each_domain(cpu, sd)
  5120. domain_num++;
  5121. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5122. if (table == NULL)
  5123. return NULL;
  5124. i = 0;
  5125. for_each_domain(cpu, sd) {
  5126. snprintf(buf, 32, "domain%d", i);
  5127. entry->procname = kstrdup(buf, GFP_KERNEL);
  5128. entry->mode = 0555;
  5129. entry->child = sd_alloc_ctl_domain_table(sd);
  5130. entry++;
  5131. i++;
  5132. }
  5133. return table;
  5134. }
  5135. static struct ctl_table_header *sd_sysctl_header;
  5136. static void register_sched_domain_sysctl(void)
  5137. {
  5138. int i, cpu_num = num_online_cpus();
  5139. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5140. char buf[32];
  5141. WARN_ON(sd_ctl_dir[0].child);
  5142. sd_ctl_dir[0].child = entry;
  5143. if (entry == NULL)
  5144. return;
  5145. for_each_online_cpu(i) {
  5146. snprintf(buf, 32, "cpu%d", i);
  5147. entry->procname = kstrdup(buf, GFP_KERNEL);
  5148. entry->mode = 0555;
  5149. entry->child = sd_alloc_ctl_cpu_table(i);
  5150. entry++;
  5151. }
  5152. WARN_ON(sd_sysctl_header);
  5153. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5154. }
  5155. /* may be called multiple times per register */
  5156. static void unregister_sched_domain_sysctl(void)
  5157. {
  5158. if (sd_sysctl_header)
  5159. unregister_sysctl_table(sd_sysctl_header);
  5160. sd_sysctl_header = NULL;
  5161. if (sd_ctl_dir[0].child)
  5162. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5163. }
  5164. #else
  5165. static void register_sched_domain_sysctl(void)
  5166. {
  5167. }
  5168. static void unregister_sched_domain_sysctl(void)
  5169. {
  5170. }
  5171. #endif
  5172. /*
  5173. * migration_call - callback that gets triggered when a CPU is added.
  5174. * Here we can start up the necessary migration thread for the new CPU.
  5175. */
  5176. static int __cpuinit
  5177. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5178. {
  5179. struct task_struct *p;
  5180. int cpu = (long)hcpu;
  5181. unsigned long flags;
  5182. struct rq *rq;
  5183. switch (action) {
  5184. case CPU_UP_PREPARE:
  5185. case CPU_UP_PREPARE_FROZEN:
  5186. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5187. if (IS_ERR(p))
  5188. return NOTIFY_BAD;
  5189. kthread_bind(p, cpu);
  5190. /* Must be high prio: stop_machine expects to yield to it. */
  5191. rq = task_rq_lock(p, &flags);
  5192. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5193. task_rq_unlock(rq, &flags);
  5194. cpu_rq(cpu)->migration_thread = p;
  5195. break;
  5196. case CPU_ONLINE:
  5197. case CPU_ONLINE_FROZEN:
  5198. /* Strictly unnecessary, as first user will wake it. */
  5199. wake_up_process(cpu_rq(cpu)->migration_thread);
  5200. /* Update our root-domain */
  5201. rq = cpu_rq(cpu);
  5202. spin_lock_irqsave(&rq->lock, flags);
  5203. if (rq->rd) {
  5204. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5205. cpu_set(cpu, rq->rd->online);
  5206. }
  5207. spin_unlock_irqrestore(&rq->lock, flags);
  5208. break;
  5209. #ifdef CONFIG_HOTPLUG_CPU
  5210. case CPU_UP_CANCELED:
  5211. case CPU_UP_CANCELED_FROZEN:
  5212. if (!cpu_rq(cpu)->migration_thread)
  5213. break;
  5214. /* Unbind it from offline cpu so it can run. Fall thru. */
  5215. kthread_bind(cpu_rq(cpu)->migration_thread,
  5216. any_online_cpu(cpu_online_map));
  5217. kthread_stop(cpu_rq(cpu)->migration_thread);
  5218. cpu_rq(cpu)->migration_thread = NULL;
  5219. break;
  5220. case CPU_DEAD:
  5221. case CPU_DEAD_FROZEN:
  5222. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5223. migrate_live_tasks(cpu);
  5224. rq = cpu_rq(cpu);
  5225. kthread_stop(rq->migration_thread);
  5226. rq->migration_thread = NULL;
  5227. /* Idle task back to normal (off runqueue, low prio) */
  5228. spin_lock_irq(&rq->lock);
  5229. update_rq_clock(rq);
  5230. deactivate_task(rq, rq->idle, 0);
  5231. rq->idle->static_prio = MAX_PRIO;
  5232. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5233. rq->idle->sched_class = &idle_sched_class;
  5234. migrate_dead_tasks(cpu);
  5235. spin_unlock_irq(&rq->lock);
  5236. cpuset_unlock();
  5237. migrate_nr_uninterruptible(rq);
  5238. BUG_ON(rq->nr_running != 0);
  5239. /*
  5240. * No need to migrate the tasks: it was best-effort if
  5241. * they didn't take sched_hotcpu_mutex. Just wake up
  5242. * the requestors.
  5243. */
  5244. spin_lock_irq(&rq->lock);
  5245. while (!list_empty(&rq->migration_queue)) {
  5246. struct migration_req *req;
  5247. req = list_entry(rq->migration_queue.next,
  5248. struct migration_req, list);
  5249. list_del_init(&req->list);
  5250. complete(&req->done);
  5251. }
  5252. spin_unlock_irq(&rq->lock);
  5253. break;
  5254. case CPU_DYING:
  5255. case CPU_DYING_FROZEN:
  5256. /* Update our root-domain */
  5257. rq = cpu_rq(cpu);
  5258. spin_lock_irqsave(&rq->lock, flags);
  5259. if (rq->rd) {
  5260. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5261. cpu_clear(cpu, rq->rd->online);
  5262. }
  5263. spin_unlock_irqrestore(&rq->lock, flags);
  5264. break;
  5265. #endif
  5266. }
  5267. return NOTIFY_OK;
  5268. }
  5269. /* Register at highest priority so that task migration (migrate_all_tasks)
  5270. * happens before everything else.
  5271. */
  5272. static struct notifier_block __cpuinitdata migration_notifier = {
  5273. .notifier_call = migration_call,
  5274. .priority = 10
  5275. };
  5276. void __init migration_init(void)
  5277. {
  5278. void *cpu = (void *)(long)smp_processor_id();
  5279. int err;
  5280. /* Start one for the boot CPU: */
  5281. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5282. BUG_ON(err == NOTIFY_BAD);
  5283. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5284. register_cpu_notifier(&migration_notifier);
  5285. }
  5286. #endif
  5287. #ifdef CONFIG_SMP
  5288. #ifdef CONFIG_SCHED_DEBUG
  5289. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5290. cpumask_t *groupmask)
  5291. {
  5292. struct sched_group *group = sd->groups;
  5293. char str[256];
  5294. cpulist_scnprintf(str, sizeof(str), sd->span);
  5295. cpus_clear(*groupmask);
  5296. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5297. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5298. printk("does not load-balance\n");
  5299. if (sd->parent)
  5300. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5301. " has parent");
  5302. return -1;
  5303. }
  5304. printk(KERN_CONT "span %s\n", str);
  5305. if (!cpu_isset(cpu, sd->span)) {
  5306. printk(KERN_ERR "ERROR: domain->span does not contain "
  5307. "CPU%d\n", cpu);
  5308. }
  5309. if (!cpu_isset(cpu, group->cpumask)) {
  5310. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5311. " CPU%d\n", cpu);
  5312. }
  5313. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5314. do {
  5315. if (!group) {
  5316. printk("\n");
  5317. printk(KERN_ERR "ERROR: group is NULL\n");
  5318. break;
  5319. }
  5320. if (!group->__cpu_power) {
  5321. printk(KERN_CONT "\n");
  5322. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5323. "set\n");
  5324. break;
  5325. }
  5326. if (!cpus_weight(group->cpumask)) {
  5327. printk(KERN_CONT "\n");
  5328. printk(KERN_ERR "ERROR: empty group\n");
  5329. break;
  5330. }
  5331. if (cpus_intersects(*groupmask, group->cpumask)) {
  5332. printk(KERN_CONT "\n");
  5333. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5334. break;
  5335. }
  5336. cpus_or(*groupmask, *groupmask, group->cpumask);
  5337. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5338. printk(KERN_CONT " %s", str);
  5339. group = group->next;
  5340. } while (group != sd->groups);
  5341. printk(KERN_CONT "\n");
  5342. if (!cpus_equal(sd->span, *groupmask))
  5343. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5344. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5345. printk(KERN_ERR "ERROR: parent span is not a superset "
  5346. "of domain->span\n");
  5347. return 0;
  5348. }
  5349. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5350. {
  5351. cpumask_t *groupmask;
  5352. int level = 0;
  5353. if (!sd) {
  5354. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5355. return;
  5356. }
  5357. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5358. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5359. if (!groupmask) {
  5360. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5361. return;
  5362. }
  5363. for (;;) {
  5364. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5365. break;
  5366. level++;
  5367. sd = sd->parent;
  5368. if (!sd)
  5369. break;
  5370. }
  5371. kfree(groupmask);
  5372. }
  5373. #else
  5374. # define sched_domain_debug(sd, cpu) do { } while (0)
  5375. #endif
  5376. static int sd_degenerate(struct sched_domain *sd)
  5377. {
  5378. if (cpus_weight(sd->span) == 1)
  5379. return 1;
  5380. /* Following flags need at least 2 groups */
  5381. if (sd->flags & (SD_LOAD_BALANCE |
  5382. SD_BALANCE_NEWIDLE |
  5383. SD_BALANCE_FORK |
  5384. SD_BALANCE_EXEC |
  5385. SD_SHARE_CPUPOWER |
  5386. SD_SHARE_PKG_RESOURCES)) {
  5387. if (sd->groups != sd->groups->next)
  5388. return 0;
  5389. }
  5390. /* Following flags don't use groups */
  5391. if (sd->flags & (SD_WAKE_IDLE |
  5392. SD_WAKE_AFFINE |
  5393. SD_WAKE_BALANCE))
  5394. return 0;
  5395. return 1;
  5396. }
  5397. static int
  5398. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5399. {
  5400. unsigned long cflags = sd->flags, pflags = parent->flags;
  5401. if (sd_degenerate(parent))
  5402. return 1;
  5403. if (!cpus_equal(sd->span, parent->span))
  5404. return 0;
  5405. /* Does parent contain flags not in child? */
  5406. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5407. if (cflags & SD_WAKE_AFFINE)
  5408. pflags &= ~SD_WAKE_BALANCE;
  5409. /* Flags needing groups don't count if only 1 group in parent */
  5410. if (parent->groups == parent->groups->next) {
  5411. pflags &= ~(SD_LOAD_BALANCE |
  5412. SD_BALANCE_NEWIDLE |
  5413. SD_BALANCE_FORK |
  5414. SD_BALANCE_EXEC |
  5415. SD_SHARE_CPUPOWER |
  5416. SD_SHARE_PKG_RESOURCES);
  5417. }
  5418. if (~cflags & pflags)
  5419. return 0;
  5420. return 1;
  5421. }
  5422. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5423. {
  5424. unsigned long flags;
  5425. const struct sched_class *class;
  5426. spin_lock_irqsave(&rq->lock, flags);
  5427. if (rq->rd) {
  5428. struct root_domain *old_rd = rq->rd;
  5429. for (class = sched_class_highest; class; class = class->next) {
  5430. if (class->leave_domain)
  5431. class->leave_domain(rq);
  5432. }
  5433. cpu_clear(rq->cpu, old_rd->span);
  5434. cpu_clear(rq->cpu, old_rd->online);
  5435. if (atomic_dec_and_test(&old_rd->refcount))
  5436. kfree(old_rd);
  5437. }
  5438. atomic_inc(&rd->refcount);
  5439. rq->rd = rd;
  5440. cpu_set(rq->cpu, rd->span);
  5441. if (cpu_isset(rq->cpu, cpu_online_map))
  5442. cpu_set(rq->cpu, rd->online);
  5443. for (class = sched_class_highest; class; class = class->next) {
  5444. if (class->join_domain)
  5445. class->join_domain(rq);
  5446. }
  5447. spin_unlock_irqrestore(&rq->lock, flags);
  5448. }
  5449. static void init_rootdomain(struct root_domain *rd)
  5450. {
  5451. memset(rd, 0, sizeof(*rd));
  5452. cpus_clear(rd->span);
  5453. cpus_clear(rd->online);
  5454. }
  5455. static void init_defrootdomain(void)
  5456. {
  5457. init_rootdomain(&def_root_domain);
  5458. atomic_set(&def_root_domain.refcount, 1);
  5459. }
  5460. static struct root_domain *alloc_rootdomain(void)
  5461. {
  5462. struct root_domain *rd;
  5463. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5464. if (!rd)
  5465. return NULL;
  5466. init_rootdomain(rd);
  5467. return rd;
  5468. }
  5469. /*
  5470. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5471. * hold the hotplug lock.
  5472. */
  5473. static void
  5474. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5475. {
  5476. struct rq *rq = cpu_rq(cpu);
  5477. struct sched_domain *tmp;
  5478. /* Remove the sched domains which do not contribute to scheduling. */
  5479. for (tmp = sd; tmp; tmp = tmp->parent) {
  5480. struct sched_domain *parent = tmp->parent;
  5481. if (!parent)
  5482. break;
  5483. if (sd_parent_degenerate(tmp, parent)) {
  5484. tmp->parent = parent->parent;
  5485. if (parent->parent)
  5486. parent->parent->child = tmp;
  5487. }
  5488. }
  5489. if (sd && sd_degenerate(sd)) {
  5490. sd = sd->parent;
  5491. if (sd)
  5492. sd->child = NULL;
  5493. }
  5494. sched_domain_debug(sd, cpu);
  5495. rq_attach_root(rq, rd);
  5496. rcu_assign_pointer(rq->sd, sd);
  5497. }
  5498. /* cpus with isolated domains */
  5499. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5500. /* Setup the mask of cpus configured for isolated domains */
  5501. static int __init isolated_cpu_setup(char *str)
  5502. {
  5503. int ints[NR_CPUS], i;
  5504. str = get_options(str, ARRAY_SIZE(ints), ints);
  5505. cpus_clear(cpu_isolated_map);
  5506. for (i = 1; i <= ints[0]; i++)
  5507. if (ints[i] < NR_CPUS)
  5508. cpu_set(ints[i], cpu_isolated_map);
  5509. return 1;
  5510. }
  5511. __setup("isolcpus=", isolated_cpu_setup);
  5512. /*
  5513. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5514. * to a function which identifies what group(along with sched group) a CPU
  5515. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5516. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5517. *
  5518. * init_sched_build_groups will build a circular linked list of the groups
  5519. * covered by the given span, and will set each group's ->cpumask correctly,
  5520. * and ->cpu_power to 0.
  5521. */
  5522. static void
  5523. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5524. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5525. struct sched_group **sg,
  5526. cpumask_t *tmpmask),
  5527. cpumask_t *covered, cpumask_t *tmpmask)
  5528. {
  5529. struct sched_group *first = NULL, *last = NULL;
  5530. int i;
  5531. cpus_clear(*covered);
  5532. for_each_cpu_mask(i, *span) {
  5533. struct sched_group *sg;
  5534. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5535. int j;
  5536. if (cpu_isset(i, *covered))
  5537. continue;
  5538. cpus_clear(sg->cpumask);
  5539. sg->__cpu_power = 0;
  5540. for_each_cpu_mask(j, *span) {
  5541. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5542. continue;
  5543. cpu_set(j, *covered);
  5544. cpu_set(j, sg->cpumask);
  5545. }
  5546. if (!first)
  5547. first = sg;
  5548. if (last)
  5549. last->next = sg;
  5550. last = sg;
  5551. }
  5552. last->next = first;
  5553. }
  5554. #define SD_NODES_PER_DOMAIN 16
  5555. #ifdef CONFIG_NUMA
  5556. /**
  5557. * find_next_best_node - find the next node to include in a sched_domain
  5558. * @node: node whose sched_domain we're building
  5559. * @used_nodes: nodes already in the sched_domain
  5560. *
  5561. * Find the next node to include in a given scheduling domain. Simply
  5562. * finds the closest node not already in the @used_nodes map.
  5563. *
  5564. * Should use nodemask_t.
  5565. */
  5566. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5567. {
  5568. int i, n, val, min_val, best_node = 0;
  5569. min_val = INT_MAX;
  5570. for (i = 0; i < nr_node_ids; i++) {
  5571. /* Start at @node */
  5572. n = (node + i) % nr_node_ids;
  5573. if (!nr_cpus_node(n))
  5574. continue;
  5575. /* Skip already used nodes */
  5576. if (node_isset(n, *used_nodes))
  5577. continue;
  5578. /* Simple min distance search */
  5579. val = node_distance(node, n);
  5580. if (val < min_val) {
  5581. min_val = val;
  5582. best_node = n;
  5583. }
  5584. }
  5585. node_set(best_node, *used_nodes);
  5586. return best_node;
  5587. }
  5588. /**
  5589. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5590. * @node: node whose cpumask we're constructing
  5591. * @span: resulting cpumask
  5592. *
  5593. * Given a node, construct a good cpumask for its sched_domain to span. It
  5594. * should be one that prevents unnecessary balancing, but also spreads tasks
  5595. * out optimally.
  5596. */
  5597. static void sched_domain_node_span(int node, cpumask_t *span)
  5598. {
  5599. nodemask_t used_nodes;
  5600. node_to_cpumask_ptr(nodemask, node);
  5601. int i;
  5602. cpus_clear(*span);
  5603. nodes_clear(used_nodes);
  5604. cpus_or(*span, *span, *nodemask);
  5605. node_set(node, used_nodes);
  5606. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5607. int next_node = find_next_best_node(node, &used_nodes);
  5608. node_to_cpumask_ptr_next(nodemask, next_node);
  5609. cpus_or(*span, *span, *nodemask);
  5610. }
  5611. }
  5612. #endif
  5613. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5614. /*
  5615. * SMT sched-domains:
  5616. */
  5617. #ifdef CONFIG_SCHED_SMT
  5618. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5619. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5620. static int
  5621. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5622. cpumask_t *unused)
  5623. {
  5624. if (sg)
  5625. *sg = &per_cpu(sched_group_cpus, cpu);
  5626. return cpu;
  5627. }
  5628. #endif
  5629. /*
  5630. * multi-core sched-domains:
  5631. */
  5632. #ifdef CONFIG_SCHED_MC
  5633. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5634. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5635. #endif
  5636. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5637. static int
  5638. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5639. cpumask_t *mask)
  5640. {
  5641. int group;
  5642. *mask = per_cpu(cpu_sibling_map, cpu);
  5643. cpus_and(*mask, *mask, *cpu_map);
  5644. group = first_cpu(*mask);
  5645. if (sg)
  5646. *sg = &per_cpu(sched_group_core, group);
  5647. return group;
  5648. }
  5649. #elif defined(CONFIG_SCHED_MC)
  5650. static int
  5651. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5652. cpumask_t *unused)
  5653. {
  5654. if (sg)
  5655. *sg = &per_cpu(sched_group_core, cpu);
  5656. return cpu;
  5657. }
  5658. #endif
  5659. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5660. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5661. static int
  5662. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5663. cpumask_t *mask)
  5664. {
  5665. int group;
  5666. #ifdef CONFIG_SCHED_MC
  5667. *mask = cpu_coregroup_map(cpu);
  5668. cpus_and(*mask, *mask, *cpu_map);
  5669. group = first_cpu(*mask);
  5670. #elif defined(CONFIG_SCHED_SMT)
  5671. *mask = per_cpu(cpu_sibling_map, cpu);
  5672. cpus_and(*mask, *mask, *cpu_map);
  5673. group = first_cpu(*mask);
  5674. #else
  5675. group = cpu;
  5676. #endif
  5677. if (sg)
  5678. *sg = &per_cpu(sched_group_phys, group);
  5679. return group;
  5680. }
  5681. #ifdef CONFIG_NUMA
  5682. /*
  5683. * The init_sched_build_groups can't handle what we want to do with node
  5684. * groups, so roll our own. Now each node has its own list of groups which
  5685. * gets dynamically allocated.
  5686. */
  5687. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5688. static struct sched_group ***sched_group_nodes_bycpu;
  5689. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5690. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5691. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5692. struct sched_group **sg, cpumask_t *nodemask)
  5693. {
  5694. int group;
  5695. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5696. cpus_and(*nodemask, *nodemask, *cpu_map);
  5697. group = first_cpu(*nodemask);
  5698. if (sg)
  5699. *sg = &per_cpu(sched_group_allnodes, group);
  5700. return group;
  5701. }
  5702. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5703. {
  5704. struct sched_group *sg = group_head;
  5705. int j;
  5706. if (!sg)
  5707. return;
  5708. do {
  5709. for_each_cpu_mask(j, sg->cpumask) {
  5710. struct sched_domain *sd;
  5711. sd = &per_cpu(phys_domains, j);
  5712. if (j != first_cpu(sd->groups->cpumask)) {
  5713. /*
  5714. * Only add "power" once for each
  5715. * physical package.
  5716. */
  5717. continue;
  5718. }
  5719. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5720. }
  5721. sg = sg->next;
  5722. } while (sg != group_head);
  5723. }
  5724. #endif
  5725. #ifdef CONFIG_NUMA
  5726. /* Free memory allocated for various sched_group structures */
  5727. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5728. {
  5729. int cpu, i;
  5730. for_each_cpu_mask(cpu, *cpu_map) {
  5731. struct sched_group **sched_group_nodes
  5732. = sched_group_nodes_bycpu[cpu];
  5733. if (!sched_group_nodes)
  5734. continue;
  5735. for (i = 0; i < nr_node_ids; i++) {
  5736. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5737. *nodemask = node_to_cpumask(i);
  5738. cpus_and(*nodemask, *nodemask, *cpu_map);
  5739. if (cpus_empty(*nodemask))
  5740. continue;
  5741. if (sg == NULL)
  5742. continue;
  5743. sg = sg->next;
  5744. next_sg:
  5745. oldsg = sg;
  5746. sg = sg->next;
  5747. kfree(oldsg);
  5748. if (oldsg != sched_group_nodes[i])
  5749. goto next_sg;
  5750. }
  5751. kfree(sched_group_nodes);
  5752. sched_group_nodes_bycpu[cpu] = NULL;
  5753. }
  5754. }
  5755. #else
  5756. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5757. {
  5758. }
  5759. #endif
  5760. /*
  5761. * Initialize sched groups cpu_power.
  5762. *
  5763. * cpu_power indicates the capacity of sched group, which is used while
  5764. * distributing the load between different sched groups in a sched domain.
  5765. * Typically cpu_power for all the groups in a sched domain will be same unless
  5766. * there are asymmetries in the topology. If there are asymmetries, group
  5767. * having more cpu_power will pickup more load compared to the group having
  5768. * less cpu_power.
  5769. *
  5770. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5771. * the maximum number of tasks a group can handle in the presence of other idle
  5772. * or lightly loaded groups in the same sched domain.
  5773. */
  5774. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5775. {
  5776. struct sched_domain *child;
  5777. struct sched_group *group;
  5778. WARN_ON(!sd || !sd->groups);
  5779. if (cpu != first_cpu(sd->groups->cpumask))
  5780. return;
  5781. child = sd->child;
  5782. sd->groups->__cpu_power = 0;
  5783. /*
  5784. * For perf policy, if the groups in child domain share resources
  5785. * (for example cores sharing some portions of the cache hierarchy
  5786. * or SMT), then set this domain groups cpu_power such that each group
  5787. * can handle only one task, when there are other idle groups in the
  5788. * same sched domain.
  5789. */
  5790. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5791. (child->flags &
  5792. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5793. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5794. return;
  5795. }
  5796. /*
  5797. * add cpu_power of each child group to this groups cpu_power
  5798. */
  5799. group = child->groups;
  5800. do {
  5801. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5802. group = group->next;
  5803. } while (group != child->groups);
  5804. }
  5805. /*
  5806. * Initializers for schedule domains
  5807. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5808. */
  5809. #define SD_INIT(sd, type) sd_init_##type(sd)
  5810. #define SD_INIT_FUNC(type) \
  5811. static noinline void sd_init_##type(struct sched_domain *sd) \
  5812. { \
  5813. memset(sd, 0, sizeof(*sd)); \
  5814. *sd = SD_##type##_INIT; \
  5815. sd->level = SD_LV_##type; \
  5816. }
  5817. SD_INIT_FUNC(CPU)
  5818. #ifdef CONFIG_NUMA
  5819. SD_INIT_FUNC(ALLNODES)
  5820. SD_INIT_FUNC(NODE)
  5821. #endif
  5822. #ifdef CONFIG_SCHED_SMT
  5823. SD_INIT_FUNC(SIBLING)
  5824. #endif
  5825. #ifdef CONFIG_SCHED_MC
  5826. SD_INIT_FUNC(MC)
  5827. #endif
  5828. /*
  5829. * To minimize stack usage kmalloc room for cpumasks and share the
  5830. * space as the usage in build_sched_domains() dictates. Used only
  5831. * if the amount of space is significant.
  5832. */
  5833. struct allmasks {
  5834. cpumask_t tmpmask; /* make this one first */
  5835. union {
  5836. cpumask_t nodemask;
  5837. cpumask_t this_sibling_map;
  5838. cpumask_t this_core_map;
  5839. };
  5840. cpumask_t send_covered;
  5841. #ifdef CONFIG_NUMA
  5842. cpumask_t domainspan;
  5843. cpumask_t covered;
  5844. cpumask_t notcovered;
  5845. #endif
  5846. };
  5847. #if NR_CPUS > 128
  5848. #define SCHED_CPUMASK_ALLOC 1
  5849. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5850. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5851. #else
  5852. #define SCHED_CPUMASK_ALLOC 0
  5853. #define SCHED_CPUMASK_FREE(v)
  5854. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5855. #endif
  5856. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5857. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5858. static int default_relax_domain_level = -1;
  5859. static int __init setup_relax_domain_level(char *str)
  5860. {
  5861. unsigned long val;
  5862. val = simple_strtoul(str, NULL, 0);
  5863. if (val < SD_LV_MAX)
  5864. default_relax_domain_level = val;
  5865. return 1;
  5866. }
  5867. __setup("relax_domain_level=", setup_relax_domain_level);
  5868. static void set_domain_attribute(struct sched_domain *sd,
  5869. struct sched_domain_attr *attr)
  5870. {
  5871. int request;
  5872. if (!attr || attr->relax_domain_level < 0) {
  5873. if (default_relax_domain_level < 0)
  5874. return;
  5875. else
  5876. request = default_relax_domain_level;
  5877. } else
  5878. request = attr->relax_domain_level;
  5879. if (request < sd->level) {
  5880. /* turn off idle balance on this domain */
  5881. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5882. } else {
  5883. /* turn on idle balance on this domain */
  5884. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5885. }
  5886. }
  5887. /*
  5888. * Build sched domains for a given set of cpus and attach the sched domains
  5889. * to the individual cpus
  5890. */
  5891. static int __build_sched_domains(const cpumask_t *cpu_map,
  5892. struct sched_domain_attr *attr)
  5893. {
  5894. int i;
  5895. struct root_domain *rd;
  5896. SCHED_CPUMASK_DECLARE(allmasks);
  5897. cpumask_t *tmpmask;
  5898. #ifdef CONFIG_NUMA
  5899. struct sched_group **sched_group_nodes = NULL;
  5900. int sd_allnodes = 0;
  5901. /*
  5902. * Allocate the per-node list of sched groups
  5903. */
  5904. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  5905. GFP_KERNEL);
  5906. if (!sched_group_nodes) {
  5907. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5908. return -ENOMEM;
  5909. }
  5910. #endif
  5911. rd = alloc_rootdomain();
  5912. if (!rd) {
  5913. printk(KERN_WARNING "Cannot alloc root domain\n");
  5914. #ifdef CONFIG_NUMA
  5915. kfree(sched_group_nodes);
  5916. #endif
  5917. return -ENOMEM;
  5918. }
  5919. #if SCHED_CPUMASK_ALLOC
  5920. /* get space for all scratch cpumask variables */
  5921. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5922. if (!allmasks) {
  5923. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5924. kfree(rd);
  5925. #ifdef CONFIG_NUMA
  5926. kfree(sched_group_nodes);
  5927. #endif
  5928. return -ENOMEM;
  5929. }
  5930. #endif
  5931. tmpmask = (cpumask_t *)allmasks;
  5932. #ifdef CONFIG_NUMA
  5933. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5934. #endif
  5935. /*
  5936. * Set up domains for cpus specified by the cpu_map.
  5937. */
  5938. for_each_cpu_mask(i, *cpu_map) {
  5939. struct sched_domain *sd = NULL, *p;
  5940. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5941. *nodemask = node_to_cpumask(cpu_to_node(i));
  5942. cpus_and(*nodemask, *nodemask, *cpu_map);
  5943. #ifdef CONFIG_NUMA
  5944. if (cpus_weight(*cpu_map) >
  5945. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5946. sd = &per_cpu(allnodes_domains, i);
  5947. SD_INIT(sd, ALLNODES);
  5948. set_domain_attribute(sd, attr);
  5949. sd->span = *cpu_map;
  5950. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5951. p = sd;
  5952. sd_allnodes = 1;
  5953. } else
  5954. p = NULL;
  5955. sd = &per_cpu(node_domains, i);
  5956. SD_INIT(sd, NODE);
  5957. set_domain_attribute(sd, attr);
  5958. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5959. sd->parent = p;
  5960. if (p)
  5961. p->child = sd;
  5962. cpus_and(sd->span, sd->span, *cpu_map);
  5963. #endif
  5964. p = sd;
  5965. sd = &per_cpu(phys_domains, i);
  5966. SD_INIT(sd, CPU);
  5967. set_domain_attribute(sd, attr);
  5968. sd->span = *nodemask;
  5969. sd->parent = p;
  5970. if (p)
  5971. p->child = sd;
  5972. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5973. #ifdef CONFIG_SCHED_MC
  5974. p = sd;
  5975. sd = &per_cpu(core_domains, i);
  5976. SD_INIT(sd, MC);
  5977. set_domain_attribute(sd, attr);
  5978. sd->span = cpu_coregroup_map(i);
  5979. cpus_and(sd->span, sd->span, *cpu_map);
  5980. sd->parent = p;
  5981. p->child = sd;
  5982. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5983. #endif
  5984. #ifdef CONFIG_SCHED_SMT
  5985. p = sd;
  5986. sd = &per_cpu(cpu_domains, i);
  5987. SD_INIT(sd, SIBLING);
  5988. set_domain_attribute(sd, attr);
  5989. sd->span = per_cpu(cpu_sibling_map, i);
  5990. cpus_and(sd->span, sd->span, *cpu_map);
  5991. sd->parent = p;
  5992. p->child = sd;
  5993. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5994. #endif
  5995. }
  5996. #ifdef CONFIG_SCHED_SMT
  5997. /* Set up CPU (sibling) groups */
  5998. for_each_cpu_mask(i, *cpu_map) {
  5999. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6000. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6001. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6002. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6003. if (i != first_cpu(*this_sibling_map))
  6004. continue;
  6005. init_sched_build_groups(this_sibling_map, cpu_map,
  6006. &cpu_to_cpu_group,
  6007. send_covered, tmpmask);
  6008. }
  6009. #endif
  6010. #ifdef CONFIG_SCHED_MC
  6011. /* Set up multi-core groups */
  6012. for_each_cpu_mask(i, *cpu_map) {
  6013. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6014. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6015. *this_core_map = cpu_coregroup_map(i);
  6016. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6017. if (i != first_cpu(*this_core_map))
  6018. continue;
  6019. init_sched_build_groups(this_core_map, cpu_map,
  6020. &cpu_to_core_group,
  6021. send_covered, tmpmask);
  6022. }
  6023. #endif
  6024. /* Set up physical groups */
  6025. for (i = 0; i < nr_node_ids; i++) {
  6026. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6027. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6028. *nodemask = node_to_cpumask(i);
  6029. cpus_and(*nodemask, *nodemask, *cpu_map);
  6030. if (cpus_empty(*nodemask))
  6031. continue;
  6032. init_sched_build_groups(nodemask, cpu_map,
  6033. &cpu_to_phys_group,
  6034. send_covered, tmpmask);
  6035. }
  6036. #ifdef CONFIG_NUMA
  6037. /* Set up node groups */
  6038. if (sd_allnodes) {
  6039. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6040. init_sched_build_groups(cpu_map, cpu_map,
  6041. &cpu_to_allnodes_group,
  6042. send_covered, tmpmask);
  6043. }
  6044. for (i = 0; i < nr_node_ids; i++) {
  6045. /* Set up node groups */
  6046. struct sched_group *sg, *prev;
  6047. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6048. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6049. SCHED_CPUMASK_VAR(covered, allmasks);
  6050. int j;
  6051. *nodemask = node_to_cpumask(i);
  6052. cpus_clear(*covered);
  6053. cpus_and(*nodemask, *nodemask, *cpu_map);
  6054. if (cpus_empty(*nodemask)) {
  6055. sched_group_nodes[i] = NULL;
  6056. continue;
  6057. }
  6058. sched_domain_node_span(i, domainspan);
  6059. cpus_and(*domainspan, *domainspan, *cpu_map);
  6060. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6061. if (!sg) {
  6062. printk(KERN_WARNING "Can not alloc domain group for "
  6063. "node %d\n", i);
  6064. goto error;
  6065. }
  6066. sched_group_nodes[i] = sg;
  6067. for_each_cpu_mask(j, *nodemask) {
  6068. struct sched_domain *sd;
  6069. sd = &per_cpu(node_domains, j);
  6070. sd->groups = sg;
  6071. }
  6072. sg->__cpu_power = 0;
  6073. sg->cpumask = *nodemask;
  6074. sg->next = sg;
  6075. cpus_or(*covered, *covered, *nodemask);
  6076. prev = sg;
  6077. for (j = 0; j < nr_node_ids; j++) {
  6078. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6079. int n = (i + j) % nr_node_ids;
  6080. node_to_cpumask_ptr(pnodemask, n);
  6081. cpus_complement(*notcovered, *covered);
  6082. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6083. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6084. if (cpus_empty(*tmpmask))
  6085. break;
  6086. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6087. if (cpus_empty(*tmpmask))
  6088. continue;
  6089. sg = kmalloc_node(sizeof(struct sched_group),
  6090. GFP_KERNEL, i);
  6091. if (!sg) {
  6092. printk(KERN_WARNING
  6093. "Can not alloc domain group for node %d\n", j);
  6094. goto error;
  6095. }
  6096. sg->__cpu_power = 0;
  6097. sg->cpumask = *tmpmask;
  6098. sg->next = prev->next;
  6099. cpus_or(*covered, *covered, *tmpmask);
  6100. prev->next = sg;
  6101. prev = sg;
  6102. }
  6103. }
  6104. #endif
  6105. /* Calculate CPU power for physical packages and nodes */
  6106. #ifdef CONFIG_SCHED_SMT
  6107. for_each_cpu_mask(i, *cpu_map) {
  6108. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6109. init_sched_groups_power(i, sd);
  6110. }
  6111. #endif
  6112. #ifdef CONFIG_SCHED_MC
  6113. for_each_cpu_mask(i, *cpu_map) {
  6114. struct sched_domain *sd = &per_cpu(core_domains, i);
  6115. init_sched_groups_power(i, sd);
  6116. }
  6117. #endif
  6118. for_each_cpu_mask(i, *cpu_map) {
  6119. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6120. init_sched_groups_power(i, sd);
  6121. }
  6122. #ifdef CONFIG_NUMA
  6123. for (i = 0; i < nr_node_ids; i++)
  6124. init_numa_sched_groups_power(sched_group_nodes[i]);
  6125. if (sd_allnodes) {
  6126. struct sched_group *sg;
  6127. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6128. tmpmask);
  6129. init_numa_sched_groups_power(sg);
  6130. }
  6131. #endif
  6132. /* Attach the domains */
  6133. for_each_cpu_mask(i, *cpu_map) {
  6134. struct sched_domain *sd;
  6135. #ifdef CONFIG_SCHED_SMT
  6136. sd = &per_cpu(cpu_domains, i);
  6137. #elif defined(CONFIG_SCHED_MC)
  6138. sd = &per_cpu(core_domains, i);
  6139. #else
  6140. sd = &per_cpu(phys_domains, i);
  6141. #endif
  6142. cpu_attach_domain(sd, rd, i);
  6143. }
  6144. SCHED_CPUMASK_FREE((void *)allmasks);
  6145. return 0;
  6146. #ifdef CONFIG_NUMA
  6147. error:
  6148. free_sched_groups(cpu_map, tmpmask);
  6149. SCHED_CPUMASK_FREE((void *)allmasks);
  6150. return -ENOMEM;
  6151. #endif
  6152. }
  6153. static int build_sched_domains(const cpumask_t *cpu_map)
  6154. {
  6155. return __build_sched_domains(cpu_map, NULL);
  6156. }
  6157. static cpumask_t *doms_cur; /* current sched domains */
  6158. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6159. static struct sched_domain_attr *dattr_cur;
  6160. /* attribues of custom domains in 'doms_cur' */
  6161. /*
  6162. * Special case: If a kmalloc of a doms_cur partition (array of
  6163. * cpumask_t) fails, then fallback to a single sched domain,
  6164. * as determined by the single cpumask_t fallback_doms.
  6165. */
  6166. static cpumask_t fallback_doms;
  6167. void __attribute__((weak)) arch_update_cpu_topology(void)
  6168. {
  6169. }
  6170. /*
  6171. * Free current domain masks.
  6172. * Called after all cpus are attached to NULL domain.
  6173. */
  6174. static void free_sched_domains(void)
  6175. {
  6176. ndoms_cur = 0;
  6177. if (doms_cur != &fallback_doms)
  6178. kfree(doms_cur);
  6179. doms_cur = &fallback_doms;
  6180. }
  6181. /*
  6182. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6183. * For now this just excludes isolated cpus, but could be used to
  6184. * exclude other special cases in the future.
  6185. */
  6186. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6187. {
  6188. int err;
  6189. arch_update_cpu_topology();
  6190. ndoms_cur = 1;
  6191. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6192. if (!doms_cur)
  6193. doms_cur = &fallback_doms;
  6194. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6195. dattr_cur = NULL;
  6196. err = build_sched_domains(doms_cur);
  6197. register_sched_domain_sysctl();
  6198. return err;
  6199. }
  6200. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6201. cpumask_t *tmpmask)
  6202. {
  6203. free_sched_groups(cpu_map, tmpmask);
  6204. }
  6205. /*
  6206. * Detach sched domains from a group of cpus specified in cpu_map
  6207. * These cpus will now be attached to the NULL domain
  6208. */
  6209. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6210. {
  6211. cpumask_t tmpmask;
  6212. int i;
  6213. unregister_sched_domain_sysctl();
  6214. for_each_cpu_mask(i, *cpu_map)
  6215. cpu_attach_domain(NULL, &def_root_domain, i);
  6216. synchronize_sched();
  6217. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6218. }
  6219. /* handle null as "default" */
  6220. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6221. struct sched_domain_attr *new, int idx_new)
  6222. {
  6223. struct sched_domain_attr tmp;
  6224. /* fast path */
  6225. if (!new && !cur)
  6226. return 1;
  6227. tmp = SD_ATTR_INIT;
  6228. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6229. new ? (new + idx_new) : &tmp,
  6230. sizeof(struct sched_domain_attr));
  6231. }
  6232. /*
  6233. * Partition sched domains as specified by the 'ndoms_new'
  6234. * cpumasks in the array doms_new[] of cpumasks. This compares
  6235. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6236. * It destroys each deleted domain and builds each new domain.
  6237. *
  6238. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6239. * The masks don't intersect (don't overlap.) We should setup one
  6240. * sched domain for each mask. CPUs not in any of the cpumasks will
  6241. * not be load balanced. If the same cpumask appears both in the
  6242. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6243. * it as it is.
  6244. *
  6245. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6246. * ownership of it and will kfree it when done with it. If the caller
  6247. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6248. * and partition_sched_domains() will fallback to the single partition
  6249. * 'fallback_doms'.
  6250. *
  6251. * Call with hotplug lock held
  6252. */
  6253. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6254. struct sched_domain_attr *dattr_new)
  6255. {
  6256. int i, j;
  6257. mutex_lock(&sched_domains_mutex);
  6258. /* always unregister in case we don't destroy any domains */
  6259. unregister_sched_domain_sysctl();
  6260. if (doms_new == NULL) {
  6261. ndoms_new = 1;
  6262. doms_new = &fallback_doms;
  6263. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6264. dattr_new = NULL;
  6265. }
  6266. /* Destroy deleted domains */
  6267. for (i = 0; i < ndoms_cur; i++) {
  6268. for (j = 0; j < ndoms_new; j++) {
  6269. if (cpus_equal(doms_cur[i], doms_new[j])
  6270. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6271. goto match1;
  6272. }
  6273. /* no match - a current sched domain not in new doms_new[] */
  6274. detach_destroy_domains(doms_cur + i);
  6275. match1:
  6276. ;
  6277. }
  6278. /* Build new domains */
  6279. for (i = 0; i < ndoms_new; i++) {
  6280. for (j = 0; j < ndoms_cur; j++) {
  6281. if (cpus_equal(doms_new[i], doms_cur[j])
  6282. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6283. goto match2;
  6284. }
  6285. /* no match - add a new doms_new */
  6286. __build_sched_domains(doms_new + i,
  6287. dattr_new ? dattr_new + i : NULL);
  6288. match2:
  6289. ;
  6290. }
  6291. /* Remember the new sched domains */
  6292. if (doms_cur != &fallback_doms)
  6293. kfree(doms_cur);
  6294. kfree(dattr_cur); /* kfree(NULL) is safe */
  6295. doms_cur = doms_new;
  6296. dattr_cur = dattr_new;
  6297. ndoms_cur = ndoms_new;
  6298. register_sched_domain_sysctl();
  6299. mutex_unlock(&sched_domains_mutex);
  6300. }
  6301. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6302. int arch_reinit_sched_domains(void)
  6303. {
  6304. int err;
  6305. get_online_cpus();
  6306. mutex_lock(&sched_domains_mutex);
  6307. detach_destroy_domains(&cpu_online_map);
  6308. free_sched_domains();
  6309. err = arch_init_sched_domains(&cpu_online_map);
  6310. mutex_unlock(&sched_domains_mutex);
  6311. put_online_cpus();
  6312. return err;
  6313. }
  6314. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6315. {
  6316. int ret;
  6317. if (buf[0] != '0' && buf[0] != '1')
  6318. return -EINVAL;
  6319. if (smt)
  6320. sched_smt_power_savings = (buf[0] == '1');
  6321. else
  6322. sched_mc_power_savings = (buf[0] == '1');
  6323. ret = arch_reinit_sched_domains();
  6324. return ret ? ret : count;
  6325. }
  6326. #ifdef CONFIG_SCHED_MC
  6327. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6328. {
  6329. return sprintf(page, "%u\n", sched_mc_power_savings);
  6330. }
  6331. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6332. const char *buf, size_t count)
  6333. {
  6334. return sched_power_savings_store(buf, count, 0);
  6335. }
  6336. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6337. sched_mc_power_savings_store);
  6338. #endif
  6339. #ifdef CONFIG_SCHED_SMT
  6340. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6341. {
  6342. return sprintf(page, "%u\n", sched_smt_power_savings);
  6343. }
  6344. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6345. const char *buf, size_t count)
  6346. {
  6347. return sched_power_savings_store(buf, count, 1);
  6348. }
  6349. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6350. sched_smt_power_savings_store);
  6351. #endif
  6352. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6353. {
  6354. int err = 0;
  6355. #ifdef CONFIG_SCHED_SMT
  6356. if (smt_capable())
  6357. err = sysfs_create_file(&cls->kset.kobj,
  6358. &attr_sched_smt_power_savings.attr);
  6359. #endif
  6360. #ifdef CONFIG_SCHED_MC
  6361. if (!err && mc_capable())
  6362. err = sysfs_create_file(&cls->kset.kobj,
  6363. &attr_sched_mc_power_savings.attr);
  6364. #endif
  6365. return err;
  6366. }
  6367. #endif
  6368. /*
  6369. * Force a reinitialization of the sched domains hierarchy. The domains
  6370. * and groups cannot be updated in place without racing with the balancing
  6371. * code, so we temporarily attach all running cpus to the NULL domain
  6372. * which will prevent rebalancing while the sched domains are recalculated.
  6373. */
  6374. static int update_sched_domains(struct notifier_block *nfb,
  6375. unsigned long action, void *hcpu)
  6376. {
  6377. switch (action) {
  6378. case CPU_UP_PREPARE:
  6379. case CPU_UP_PREPARE_FROZEN:
  6380. case CPU_DOWN_PREPARE:
  6381. case CPU_DOWN_PREPARE_FROZEN:
  6382. detach_destroy_domains(&cpu_online_map);
  6383. free_sched_domains();
  6384. return NOTIFY_OK;
  6385. case CPU_UP_CANCELED:
  6386. case CPU_UP_CANCELED_FROZEN:
  6387. case CPU_DOWN_FAILED:
  6388. case CPU_DOWN_FAILED_FROZEN:
  6389. case CPU_ONLINE:
  6390. case CPU_ONLINE_FROZEN:
  6391. case CPU_DEAD:
  6392. case CPU_DEAD_FROZEN:
  6393. /*
  6394. * Fall through and re-initialise the domains.
  6395. */
  6396. break;
  6397. default:
  6398. return NOTIFY_DONE;
  6399. }
  6400. #ifndef CONFIG_CPUSETS
  6401. /*
  6402. * Create default domain partitioning if cpusets are disabled.
  6403. * Otherwise we let cpusets rebuild the domains based on the
  6404. * current setup.
  6405. */
  6406. /* The hotplug lock is already held by cpu_up/cpu_down */
  6407. arch_init_sched_domains(&cpu_online_map);
  6408. #endif
  6409. return NOTIFY_OK;
  6410. }
  6411. void __init sched_init_smp(void)
  6412. {
  6413. cpumask_t non_isolated_cpus;
  6414. #if defined(CONFIG_NUMA)
  6415. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6416. GFP_KERNEL);
  6417. BUG_ON(sched_group_nodes_bycpu == NULL);
  6418. #endif
  6419. get_online_cpus();
  6420. mutex_lock(&sched_domains_mutex);
  6421. arch_init_sched_domains(&cpu_online_map);
  6422. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6423. if (cpus_empty(non_isolated_cpus))
  6424. cpu_set(smp_processor_id(), non_isolated_cpus);
  6425. mutex_unlock(&sched_domains_mutex);
  6426. put_online_cpus();
  6427. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6428. hotcpu_notifier(update_sched_domains, 0);
  6429. init_hrtick();
  6430. /* Move init over to a non-isolated CPU */
  6431. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6432. BUG();
  6433. sched_init_granularity();
  6434. }
  6435. #else
  6436. void __init sched_init_smp(void)
  6437. {
  6438. sched_init_granularity();
  6439. }
  6440. #endif /* CONFIG_SMP */
  6441. int in_sched_functions(unsigned long addr)
  6442. {
  6443. return in_lock_functions(addr) ||
  6444. (addr >= (unsigned long)__sched_text_start
  6445. && addr < (unsigned long)__sched_text_end);
  6446. }
  6447. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6448. {
  6449. cfs_rq->tasks_timeline = RB_ROOT;
  6450. INIT_LIST_HEAD(&cfs_rq->tasks);
  6451. #ifdef CONFIG_FAIR_GROUP_SCHED
  6452. cfs_rq->rq = rq;
  6453. #endif
  6454. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6455. }
  6456. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6457. {
  6458. struct rt_prio_array *array;
  6459. int i;
  6460. array = &rt_rq->active;
  6461. for (i = 0; i < MAX_RT_PRIO; i++) {
  6462. INIT_LIST_HEAD(array->queue + i);
  6463. __clear_bit(i, array->bitmap);
  6464. }
  6465. /* delimiter for bitsearch: */
  6466. __set_bit(MAX_RT_PRIO, array->bitmap);
  6467. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6468. rt_rq->highest_prio = MAX_RT_PRIO;
  6469. #endif
  6470. #ifdef CONFIG_SMP
  6471. rt_rq->rt_nr_migratory = 0;
  6472. rt_rq->overloaded = 0;
  6473. #endif
  6474. rt_rq->rt_time = 0;
  6475. rt_rq->rt_throttled = 0;
  6476. rt_rq->rt_runtime = 0;
  6477. spin_lock_init(&rt_rq->rt_runtime_lock);
  6478. #ifdef CONFIG_RT_GROUP_SCHED
  6479. rt_rq->rt_nr_boosted = 0;
  6480. rt_rq->rq = rq;
  6481. #endif
  6482. }
  6483. #ifdef CONFIG_FAIR_GROUP_SCHED
  6484. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6485. struct sched_entity *se, int cpu, int add,
  6486. struct sched_entity *parent)
  6487. {
  6488. struct rq *rq = cpu_rq(cpu);
  6489. tg->cfs_rq[cpu] = cfs_rq;
  6490. init_cfs_rq(cfs_rq, rq);
  6491. cfs_rq->tg = tg;
  6492. if (add)
  6493. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6494. tg->se[cpu] = se;
  6495. /* se could be NULL for init_task_group */
  6496. if (!se)
  6497. return;
  6498. if (!parent)
  6499. se->cfs_rq = &rq->cfs;
  6500. else
  6501. se->cfs_rq = parent->my_q;
  6502. se->my_q = cfs_rq;
  6503. se->load.weight = tg->shares;
  6504. se->load.inv_weight = 0;
  6505. se->parent = parent;
  6506. }
  6507. #endif
  6508. #ifdef CONFIG_RT_GROUP_SCHED
  6509. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6510. struct sched_rt_entity *rt_se, int cpu, int add,
  6511. struct sched_rt_entity *parent)
  6512. {
  6513. struct rq *rq = cpu_rq(cpu);
  6514. tg->rt_rq[cpu] = rt_rq;
  6515. init_rt_rq(rt_rq, rq);
  6516. rt_rq->tg = tg;
  6517. rt_rq->rt_se = rt_se;
  6518. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6519. if (add)
  6520. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6521. tg->rt_se[cpu] = rt_se;
  6522. if (!rt_se)
  6523. return;
  6524. if (!parent)
  6525. rt_se->rt_rq = &rq->rt;
  6526. else
  6527. rt_se->rt_rq = parent->my_q;
  6528. rt_se->my_q = rt_rq;
  6529. rt_se->parent = parent;
  6530. INIT_LIST_HEAD(&rt_se->run_list);
  6531. }
  6532. #endif
  6533. void __init sched_init(void)
  6534. {
  6535. int i, j;
  6536. unsigned long alloc_size = 0, ptr;
  6537. #ifdef CONFIG_FAIR_GROUP_SCHED
  6538. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6539. #endif
  6540. #ifdef CONFIG_RT_GROUP_SCHED
  6541. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6542. #endif
  6543. #ifdef CONFIG_USER_SCHED
  6544. alloc_size *= 2;
  6545. #endif
  6546. /*
  6547. * As sched_init() is called before page_alloc is setup,
  6548. * we use alloc_bootmem().
  6549. */
  6550. if (alloc_size) {
  6551. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6552. #ifdef CONFIG_FAIR_GROUP_SCHED
  6553. init_task_group.se = (struct sched_entity **)ptr;
  6554. ptr += nr_cpu_ids * sizeof(void **);
  6555. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6556. ptr += nr_cpu_ids * sizeof(void **);
  6557. #ifdef CONFIG_USER_SCHED
  6558. root_task_group.se = (struct sched_entity **)ptr;
  6559. ptr += nr_cpu_ids * sizeof(void **);
  6560. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6561. ptr += nr_cpu_ids * sizeof(void **);
  6562. #endif
  6563. #endif
  6564. #ifdef CONFIG_RT_GROUP_SCHED
  6565. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6566. ptr += nr_cpu_ids * sizeof(void **);
  6567. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6568. ptr += nr_cpu_ids * sizeof(void **);
  6569. #ifdef CONFIG_USER_SCHED
  6570. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6571. ptr += nr_cpu_ids * sizeof(void **);
  6572. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6573. ptr += nr_cpu_ids * sizeof(void **);
  6574. #endif
  6575. #endif
  6576. }
  6577. #ifdef CONFIG_SMP
  6578. init_defrootdomain();
  6579. #endif
  6580. init_rt_bandwidth(&def_rt_bandwidth,
  6581. global_rt_period(), global_rt_runtime());
  6582. #ifdef CONFIG_RT_GROUP_SCHED
  6583. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6584. global_rt_period(), global_rt_runtime());
  6585. #ifdef CONFIG_USER_SCHED
  6586. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6587. global_rt_period(), RUNTIME_INF);
  6588. #endif
  6589. #endif
  6590. #ifdef CONFIG_GROUP_SCHED
  6591. list_add(&init_task_group.list, &task_groups);
  6592. INIT_LIST_HEAD(&init_task_group.children);
  6593. #ifdef CONFIG_USER_SCHED
  6594. INIT_LIST_HEAD(&root_task_group.children);
  6595. init_task_group.parent = &root_task_group;
  6596. list_add(&init_task_group.siblings, &root_task_group.children);
  6597. #endif
  6598. #endif
  6599. for_each_possible_cpu(i) {
  6600. struct rq *rq;
  6601. rq = cpu_rq(i);
  6602. spin_lock_init(&rq->lock);
  6603. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6604. rq->nr_running = 0;
  6605. init_cfs_rq(&rq->cfs, rq);
  6606. init_rt_rq(&rq->rt, rq);
  6607. #ifdef CONFIG_FAIR_GROUP_SCHED
  6608. init_task_group.shares = init_task_group_load;
  6609. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6610. #ifdef CONFIG_CGROUP_SCHED
  6611. /*
  6612. * How much cpu bandwidth does init_task_group get?
  6613. *
  6614. * In case of task-groups formed thr' the cgroup filesystem, it
  6615. * gets 100% of the cpu resources in the system. This overall
  6616. * system cpu resource is divided among the tasks of
  6617. * init_task_group and its child task-groups in a fair manner,
  6618. * based on each entity's (task or task-group's) weight
  6619. * (se->load.weight).
  6620. *
  6621. * In other words, if init_task_group has 10 tasks of weight
  6622. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6623. * then A0's share of the cpu resource is:
  6624. *
  6625. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6626. *
  6627. * We achieve this by letting init_task_group's tasks sit
  6628. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6629. */
  6630. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6631. #elif defined CONFIG_USER_SCHED
  6632. root_task_group.shares = NICE_0_LOAD;
  6633. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6634. /*
  6635. * In case of task-groups formed thr' the user id of tasks,
  6636. * init_task_group represents tasks belonging to root user.
  6637. * Hence it forms a sibling of all subsequent groups formed.
  6638. * In this case, init_task_group gets only a fraction of overall
  6639. * system cpu resource, based on the weight assigned to root
  6640. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6641. * by letting tasks of init_task_group sit in a separate cfs_rq
  6642. * (init_cfs_rq) and having one entity represent this group of
  6643. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6644. */
  6645. init_tg_cfs_entry(&init_task_group,
  6646. &per_cpu(init_cfs_rq, i),
  6647. &per_cpu(init_sched_entity, i), i, 1,
  6648. root_task_group.se[i]);
  6649. #endif
  6650. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6651. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6652. #ifdef CONFIG_RT_GROUP_SCHED
  6653. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6654. #ifdef CONFIG_CGROUP_SCHED
  6655. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6656. #elif defined CONFIG_USER_SCHED
  6657. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6658. init_tg_rt_entry(&init_task_group,
  6659. &per_cpu(init_rt_rq, i),
  6660. &per_cpu(init_sched_rt_entity, i), i, 1,
  6661. root_task_group.rt_se[i]);
  6662. #endif
  6663. #endif
  6664. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6665. rq->cpu_load[j] = 0;
  6666. #ifdef CONFIG_SMP
  6667. rq->sd = NULL;
  6668. rq->rd = NULL;
  6669. rq->active_balance = 0;
  6670. rq->next_balance = jiffies;
  6671. rq->push_cpu = 0;
  6672. rq->cpu = i;
  6673. rq->migration_thread = NULL;
  6674. INIT_LIST_HEAD(&rq->migration_queue);
  6675. rq_attach_root(rq, &def_root_domain);
  6676. #endif
  6677. init_rq_hrtick(rq);
  6678. atomic_set(&rq->nr_iowait, 0);
  6679. }
  6680. set_load_weight(&init_task);
  6681. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6682. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6683. #endif
  6684. #ifdef CONFIG_SMP
  6685. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6686. #endif
  6687. #ifdef CONFIG_RT_MUTEXES
  6688. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6689. #endif
  6690. /*
  6691. * The boot idle thread does lazy MMU switching as well:
  6692. */
  6693. atomic_inc(&init_mm.mm_count);
  6694. enter_lazy_tlb(&init_mm, current);
  6695. /*
  6696. * Make us the idle thread. Technically, schedule() should not be
  6697. * called from this thread, however somewhere below it might be,
  6698. * but because we are the idle thread, we just pick up running again
  6699. * when this runqueue becomes "idle".
  6700. */
  6701. init_idle(current, smp_processor_id());
  6702. /*
  6703. * During early bootup we pretend to be a normal task:
  6704. */
  6705. current->sched_class = &fair_sched_class;
  6706. scheduler_running = 1;
  6707. }
  6708. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6709. void __might_sleep(char *file, int line)
  6710. {
  6711. #ifdef in_atomic
  6712. static unsigned long prev_jiffy; /* ratelimiting */
  6713. if ((in_atomic() || irqs_disabled()) &&
  6714. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6715. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6716. return;
  6717. prev_jiffy = jiffies;
  6718. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6719. " context at %s:%d\n", file, line);
  6720. printk("in_atomic():%d, irqs_disabled():%d\n",
  6721. in_atomic(), irqs_disabled());
  6722. debug_show_held_locks(current);
  6723. if (irqs_disabled())
  6724. print_irqtrace_events(current);
  6725. dump_stack();
  6726. }
  6727. #endif
  6728. }
  6729. EXPORT_SYMBOL(__might_sleep);
  6730. #endif
  6731. #ifdef CONFIG_MAGIC_SYSRQ
  6732. static void normalize_task(struct rq *rq, struct task_struct *p)
  6733. {
  6734. int on_rq;
  6735. update_rq_clock(rq);
  6736. on_rq = p->se.on_rq;
  6737. if (on_rq)
  6738. deactivate_task(rq, p, 0);
  6739. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6740. if (on_rq) {
  6741. activate_task(rq, p, 0);
  6742. resched_task(rq->curr);
  6743. }
  6744. }
  6745. void normalize_rt_tasks(void)
  6746. {
  6747. struct task_struct *g, *p;
  6748. unsigned long flags;
  6749. struct rq *rq;
  6750. read_lock_irqsave(&tasklist_lock, flags);
  6751. do_each_thread(g, p) {
  6752. /*
  6753. * Only normalize user tasks:
  6754. */
  6755. if (!p->mm)
  6756. continue;
  6757. p->se.exec_start = 0;
  6758. #ifdef CONFIG_SCHEDSTATS
  6759. p->se.wait_start = 0;
  6760. p->se.sleep_start = 0;
  6761. p->se.block_start = 0;
  6762. #endif
  6763. if (!rt_task(p)) {
  6764. /*
  6765. * Renice negative nice level userspace
  6766. * tasks back to 0:
  6767. */
  6768. if (TASK_NICE(p) < 0 && p->mm)
  6769. set_user_nice(p, 0);
  6770. continue;
  6771. }
  6772. spin_lock(&p->pi_lock);
  6773. rq = __task_rq_lock(p);
  6774. normalize_task(rq, p);
  6775. __task_rq_unlock(rq);
  6776. spin_unlock(&p->pi_lock);
  6777. } while_each_thread(g, p);
  6778. read_unlock_irqrestore(&tasklist_lock, flags);
  6779. }
  6780. #endif /* CONFIG_MAGIC_SYSRQ */
  6781. #ifdef CONFIG_IA64
  6782. /*
  6783. * These functions are only useful for the IA64 MCA handling.
  6784. *
  6785. * They can only be called when the whole system has been
  6786. * stopped - every CPU needs to be quiescent, and no scheduling
  6787. * activity can take place. Using them for anything else would
  6788. * be a serious bug, and as a result, they aren't even visible
  6789. * under any other configuration.
  6790. */
  6791. /**
  6792. * curr_task - return the current task for a given cpu.
  6793. * @cpu: the processor in question.
  6794. *
  6795. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6796. */
  6797. struct task_struct *curr_task(int cpu)
  6798. {
  6799. return cpu_curr(cpu);
  6800. }
  6801. /**
  6802. * set_curr_task - set the current task for a given cpu.
  6803. * @cpu: the processor in question.
  6804. * @p: the task pointer to set.
  6805. *
  6806. * Description: This function must only be used when non-maskable interrupts
  6807. * are serviced on a separate stack. It allows the architecture to switch the
  6808. * notion of the current task on a cpu in a non-blocking manner. This function
  6809. * must be called with all CPU's synchronized, and interrupts disabled, the
  6810. * and caller must save the original value of the current task (see
  6811. * curr_task() above) and restore that value before reenabling interrupts and
  6812. * re-starting the system.
  6813. *
  6814. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6815. */
  6816. void set_curr_task(int cpu, struct task_struct *p)
  6817. {
  6818. cpu_curr(cpu) = p;
  6819. }
  6820. #endif
  6821. #ifdef CONFIG_FAIR_GROUP_SCHED
  6822. static void free_fair_sched_group(struct task_group *tg)
  6823. {
  6824. int i;
  6825. for_each_possible_cpu(i) {
  6826. if (tg->cfs_rq)
  6827. kfree(tg->cfs_rq[i]);
  6828. if (tg->se)
  6829. kfree(tg->se[i]);
  6830. }
  6831. kfree(tg->cfs_rq);
  6832. kfree(tg->se);
  6833. }
  6834. static
  6835. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6836. {
  6837. struct cfs_rq *cfs_rq;
  6838. struct sched_entity *se, *parent_se;
  6839. struct rq *rq;
  6840. int i;
  6841. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6842. if (!tg->cfs_rq)
  6843. goto err;
  6844. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6845. if (!tg->se)
  6846. goto err;
  6847. tg->shares = NICE_0_LOAD;
  6848. for_each_possible_cpu(i) {
  6849. rq = cpu_rq(i);
  6850. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6851. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6852. if (!cfs_rq)
  6853. goto err;
  6854. se = kmalloc_node(sizeof(struct sched_entity),
  6855. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6856. if (!se)
  6857. goto err;
  6858. parent_se = parent ? parent->se[i] : NULL;
  6859. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6860. }
  6861. return 1;
  6862. err:
  6863. return 0;
  6864. }
  6865. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6866. {
  6867. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6868. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6869. }
  6870. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6871. {
  6872. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6873. }
  6874. #else
  6875. static inline void free_fair_sched_group(struct task_group *tg)
  6876. {
  6877. }
  6878. static inline
  6879. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6880. {
  6881. return 1;
  6882. }
  6883. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6884. {
  6885. }
  6886. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6887. {
  6888. }
  6889. #endif
  6890. #ifdef CONFIG_RT_GROUP_SCHED
  6891. static void free_rt_sched_group(struct task_group *tg)
  6892. {
  6893. int i;
  6894. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6895. for_each_possible_cpu(i) {
  6896. if (tg->rt_rq)
  6897. kfree(tg->rt_rq[i]);
  6898. if (tg->rt_se)
  6899. kfree(tg->rt_se[i]);
  6900. }
  6901. kfree(tg->rt_rq);
  6902. kfree(tg->rt_se);
  6903. }
  6904. static
  6905. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6906. {
  6907. struct rt_rq *rt_rq;
  6908. struct sched_rt_entity *rt_se, *parent_se;
  6909. struct rq *rq;
  6910. int i;
  6911. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6912. if (!tg->rt_rq)
  6913. goto err;
  6914. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6915. if (!tg->rt_se)
  6916. goto err;
  6917. init_rt_bandwidth(&tg->rt_bandwidth,
  6918. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6919. for_each_possible_cpu(i) {
  6920. rq = cpu_rq(i);
  6921. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6922. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6923. if (!rt_rq)
  6924. goto err;
  6925. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6926. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6927. if (!rt_se)
  6928. goto err;
  6929. parent_se = parent ? parent->rt_se[i] : NULL;
  6930. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6931. }
  6932. return 1;
  6933. err:
  6934. return 0;
  6935. }
  6936. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6937. {
  6938. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6939. &cpu_rq(cpu)->leaf_rt_rq_list);
  6940. }
  6941. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6942. {
  6943. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6944. }
  6945. #else
  6946. static inline void free_rt_sched_group(struct task_group *tg)
  6947. {
  6948. }
  6949. static inline
  6950. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6951. {
  6952. return 1;
  6953. }
  6954. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6955. {
  6956. }
  6957. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6958. {
  6959. }
  6960. #endif
  6961. #ifdef CONFIG_GROUP_SCHED
  6962. static void free_sched_group(struct task_group *tg)
  6963. {
  6964. free_fair_sched_group(tg);
  6965. free_rt_sched_group(tg);
  6966. kfree(tg);
  6967. }
  6968. /* allocate runqueue etc for a new task group */
  6969. struct task_group *sched_create_group(struct task_group *parent)
  6970. {
  6971. struct task_group *tg;
  6972. unsigned long flags;
  6973. int i;
  6974. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6975. if (!tg)
  6976. return ERR_PTR(-ENOMEM);
  6977. if (!alloc_fair_sched_group(tg, parent))
  6978. goto err;
  6979. if (!alloc_rt_sched_group(tg, parent))
  6980. goto err;
  6981. spin_lock_irqsave(&task_group_lock, flags);
  6982. for_each_possible_cpu(i) {
  6983. register_fair_sched_group(tg, i);
  6984. register_rt_sched_group(tg, i);
  6985. }
  6986. list_add_rcu(&tg->list, &task_groups);
  6987. WARN_ON(!parent); /* root should already exist */
  6988. tg->parent = parent;
  6989. list_add_rcu(&tg->siblings, &parent->children);
  6990. INIT_LIST_HEAD(&tg->children);
  6991. spin_unlock_irqrestore(&task_group_lock, flags);
  6992. return tg;
  6993. err:
  6994. free_sched_group(tg);
  6995. return ERR_PTR(-ENOMEM);
  6996. }
  6997. /* rcu callback to free various structures associated with a task group */
  6998. static void free_sched_group_rcu(struct rcu_head *rhp)
  6999. {
  7000. /* now it should be safe to free those cfs_rqs */
  7001. free_sched_group(container_of(rhp, struct task_group, rcu));
  7002. }
  7003. /* Destroy runqueue etc associated with a task group */
  7004. void sched_destroy_group(struct task_group *tg)
  7005. {
  7006. unsigned long flags;
  7007. int i;
  7008. spin_lock_irqsave(&task_group_lock, flags);
  7009. for_each_possible_cpu(i) {
  7010. unregister_fair_sched_group(tg, i);
  7011. unregister_rt_sched_group(tg, i);
  7012. }
  7013. list_del_rcu(&tg->list);
  7014. list_del_rcu(&tg->siblings);
  7015. spin_unlock_irqrestore(&task_group_lock, flags);
  7016. /* wait for possible concurrent references to cfs_rqs complete */
  7017. call_rcu(&tg->rcu, free_sched_group_rcu);
  7018. }
  7019. /* change task's runqueue when it moves between groups.
  7020. * The caller of this function should have put the task in its new group
  7021. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7022. * reflect its new group.
  7023. */
  7024. void sched_move_task(struct task_struct *tsk)
  7025. {
  7026. int on_rq, running;
  7027. unsigned long flags;
  7028. struct rq *rq;
  7029. rq = task_rq_lock(tsk, &flags);
  7030. update_rq_clock(rq);
  7031. running = task_current(rq, tsk);
  7032. on_rq = tsk->se.on_rq;
  7033. if (on_rq)
  7034. dequeue_task(rq, tsk, 0);
  7035. if (unlikely(running))
  7036. tsk->sched_class->put_prev_task(rq, tsk);
  7037. set_task_rq(tsk, task_cpu(tsk));
  7038. #ifdef CONFIG_FAIR_GROUP_SCHED
  7039. if (tsk->sched_class->moved_group)
  7040. tsk->sched_class->moved_group(tsk);
  7041. #endif
  7042. if (unlikely(running))
  7043. tsk->sched_class->set_curr_task(rq);
  7044. if (on_rq)
  7045. enqueue_task(rq, tsk, 0);
  7046. task_rq_unlock(rq, &flags);
  7047. }
  7048. #endif
  7049. #ifdef CONFIG_FAIR_GROUP_SCHED
  7050. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7051. {
  7052. struct cfs_rq *cfs_rq = se->cfs_rq;
  7053. struct rq *rq = cfs_rq->rq;
  7054. int on_rq;
  7055. spin_lock_irq(&rq->lock);
  7056. on_rq = se->on_rq;
  7057. if (on_rq)
  7058. dequeue_entity(cfs_rq, se, 0);
  7059. se->load.weight = shares;
  7060. se->load.inv_weight = 0;
  7061. if (on_rq)
  7062. enqueue_entity(cfs_rq, se, 0);
  7063. spin_unlock_irq(&rq->lock);
  7064. }
  7065. static DEFINE_MUTEX(shares_mutex);
  7066. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7067. {
  7068. int i;
  7069. unsigned long flags;
  7070. /*
  7071. * We can't change the weight of the root cgroup.
  7072. */
  7073. if (!tg->se[0])
  7074. return -EINVAL;
  7075. if (shares < MIN_SHARES)
  7076. shares = MIN_SHARES;
  7077. else if (shares > MAX_SHARES)
  7078. shares = MAX_SHARES;
  7079. mutex_lock(&shares_mutex);
  7080. if (tg->shares == shares)
  7081. goto done;
  7082. spin_lock_irqsave(&task_group_lock, flags);
  7083. for_each_possible_cpu(i)
  7084. unregister_fair_sched_group(tg, i);
  7085. list_del_rcu(&tg->siblings);
  7086. spin_unlock_irqrestore(&task_group_lock, flags);
  7087. /* wait for any ongoing reference to this group to finish */
  7088. synchronize_sched();
  7089. /*
  7090. * Now we are free to modify the group's share on each cpu
  7091. * w/o tripping rebalance_share or load_balance_fair.
  7092. */
  7093. tg->shares = shares;
  7094. for_each_possible_cpu(i)
  7095. set_se_shares(tg->se[i], shares);
  7096. /*
  7097. * Enable load balance activity on this group, by inserting it back on
  7098. * each cpu's rq->leaf_cfs_rq_list.
  7099. */
  7100. spin_lock_irqsave(&task_group_lock, flags);
  7101. for_each_possible_cpu(i)
  7102. register_fair_sched_group(tg, i);
  7103. list_add_rcu(&tg->siblings, &tg->parent->children);
  7104. spin_unlock_irqrestore(&task_group_lock, flags);
  7105. done:
  7106. mutex_unlock(&shares_mutex);
  7107. return 0;
  7108. }
  7109. unsigned long sched_group_shares(struct task_group *tg)
  7110. {
  7111. return tg->shares;
  7112. }
  7113. #endif
  7114. #ifdef CONFIG_RT_GROUP_SCHED
  7115. /*
  7116. * Ensure that the real time constraints are schedulable.
  7117. */
  7118. static DEFINE_MUTEX(rt_constraints_mutex);
  7119. static unsigned long to_ratio(u64 period, u64 runtime)
  7120. {
  7121. if (runtime == RUNTIME_INF)
  7122. return 1ULL << 16;
  7123. return div64_u64(runtime << 16, period);
  7124. }
  7125. #ifdef CONFIG_CGROUP_SCHED
  7126. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7127. {
  7128. struct task_group *tgi, *parent = tg ? tg->parent : NULL;
  7129. unsigned long total = 0;
  7130. if (!parent) {
  7131. if (global_rt_period() < period)
  7132. return 0;
  7133. return to_ratio(period, runtime) <
  7134. to_ratio(global_rt_period(), global_rt_runtime());
  7135. }
  7136. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7137. return 0;
  7138. rcu_read_lock();
  7139. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7140. if (tgi == tg)
  7141. continue;
  7142. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7143. tgi->rt_bandwidth.rt_runtime);
  7144. }
  7145. rcu_read_unlock();
  7146. return total + to_ratio(period, runtime) <
  7147. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7148. parent->rt_bandwidth.rt_runtime);
  7149. }
  7150. #elif defined CONFIG_USER_SCHED
  7151. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7152. {
  7153. struct task_group *tgi;
  7154. unsigned long total = 0;
  7155. unsigned long global_ratio =
  7156. to_ratio(global_rt_period(), global_rt_runtime());
  7157. rcu_read_lock();
  7158. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7159. if (tgi == tg)
  7160. continue;
  7161. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7162. tgi->rt_bandwidth.rt_runtime);
  7163. }
  7164. rcu_read_unlock();
  7165. return total + to_ratio(period, runtime) < global_ratio;
  7166. }
  7167. #endif
  7168. /* Must be called with tasklist_lock held */
  7169. static inline int tg_has_rt_tasks(struct task_group *tg)
  7170. {
  7171. struct task_struct *g, *p;
  7172. do_each_thread(g, p) {
  7173. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7174. return 1;
  7175. } while_each_thread(g, p);
  7176. return 0;
  7177. }
  7178. static int tg_set_bandwidth(struct task_group *tg,
  7179. u64 rt_period, u64 rt_runtime)
  7180. {
  7181. int i, err = 0;
  7182. mutex_lock(&rt_constraints_mutex);
  7183. read_lock(&tasklist_lock);
  7184. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7185. err = -EBUSY;
  7186. goto unlock;
  7187. }
  7188. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7189. err = -EINVAL;
  7190. goto unlock;
  7191. }
  7192. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7193. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7194. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7195. for_each_possible_cpu(i) {
  7196. struct rt_rq *rt_rq = tg->rt_rq[i];
  7197. spin_lock(&rt_rq->rt_runtime_lock);
  7198. rt_rq->rt_runtime = rt_runtime;
  7199. spin_unlock(&rt_rq->rt_runtime_lock);
  7200. }
  7201. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7202. unlock:
  7203. read_unlock(&tasklist_lock);
  7204. mutex_unlock(&rt_constraints_mutex);
  7205. return err;
  7206. }
  7207. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7208. {
  7209. u64 rt_runtime, rt_period;
  7210. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7211. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7212. if (rt_runtime_us < 0)
  7213. rt_runtime = RUNTIME_INF;
  7214. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7215. }
  7216. long sched_group_rt_runtime(struct task_group *tg)
  7217. {
  7218. u64 rt_runtime_us;
  7219. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7220. return -1;
  7221. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7222. do_div(rt_runtime_us, NSEC_PER_USEC);
  7223. return rt_runtime_us;
  7224. }
  7225. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7226. {
  7227. u64 rt_runtime, rt_period;
  7228. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7229. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7230. if (rt_period == 0)
  7231. return -EINVAL;
  7232. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7233. }
  7234. long sched_group_rt_period(struct task_group *tg)
  7235. {
  7236. u64 rt_period_us;
  7237. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7238. do_div(rt_period_us, NSEC_PER_USEC);
  7239. return rt_period_us;
  7240. }
  7241. static int sched_rt_global_constraints(void)
  7242. {
  7243. int ret = 0;
  7244. mutex_lock(&rt_constraints_mutex);
  7245. if (!__rt_schedulable(NULL, 1, 0))
  7246. ret = -EINVAL;
  7247. mutex_unlock(&rt_constraints_mutex);
  7248. return ret;
  7249. }
  7250. #else
  7251. static int sched_rt_global_constraints(void)
  7252. {
  7253. unsigned long flags;
  7254. int i;
  7255. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7256. for_each_possible_cpu(i) {
  7257. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7258. spin_lock(&rt_rq->rt_runtime_lock);
  7259. rt_rq->rt_runtime = global_rt_runtime();
  7260. spin_unlock(&rt_rq->rt_runtime_lock);
  7261. }
  7262. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7263. return 0;
  7264. }
  7265. #endif
  7266. int sched_rt_handler(struct ctl_table *table, int write,
  7267. struct file *filp, void __user *buffer, size_t *lenp,
  7268. loff_t *ppos)
  7269. {
  7270. int ret;
  7271. int old_period, old_runtime;
  7272. static DEFINE_MUTEX(mutex);
  7273. mutex_lock(&mutex);
  7274. old_period = sysctl_sched_rt_period;
  7275. old_runtime = sysctl_sched_rt_runtime;
  7276. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7277. if (!ret && write) {
  7278. ret = sched_rt_global_constraints();
  7279. if (ret) {
  7280. sysctl_sched_rt_period = old_period;
  7281. sysctl_sched_rt_runtime = old_runtime;
  7282. } else {
  7283. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7284. def_rt_bandwidth.rt_period =
  7285. ns_to_ktime(global_rt_period());
  7286. }
  7287. }
  7288. mutex_unlock(&mutex);
  7289. return ret;
  7290. }
  7291. #ifdef CONFIG_CGROUP_SCHED
  7292. /* return corresponding task_group object of a cgroup */
  7293. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7294. {
  7295. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7296. struct task_group, css);
  7297. }
  7298. static struct cgroup_subsys_state *
  7299. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7300. {
  7301. struct task_group *tg, *parent;
  7302. if (!cgrp->parent) {
  7303. /* This is early initialization for the top cgroup */
  7304. init_task_group.css.cgroup = cgrp;
  7305. return &init_task_group.css;
  7306. }
  7307. parent = cgroup_tg(cgrp->parent);
  7308. tg = sched_create_group(parent);
  7309. if (IS_ERR(tg))
  7310. return ERR_PTR(-ENOMEM);
  7311. /* Bind the cgroup to task_group object we just created */
  7312. tg->css.cgroup = cgrp;
  7313. return &tg->css;
  7314. }
  7315. static void
  7316. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7317. {
  7318. struct task_group *tg = cgroup_tg(cgrp);
  7319. sched_destroy_group(tg);
  7320. }
  7321. static int
  7322. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7323. struct task_struct *tsk)
  7324. {
  7325. #ifdef CONFIG_RT_GROUP_SCHED
  7326. /* Don't accept realtime tasks when there is no way for them to run */
  7327. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7328. return -EINVAL;
  7329. #else
  7330. /* We don't support RT-tasks being in separate groups */
  7331. if (tsk->sched_class != &fair_sched_class)
  7332. return -EINVAL;
  7333. #endif
  7334. return 0;
  7335. }
  7336. static void
  7337. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7338. struct cgroup *old_cont, struct task_struct *tsk)
  7339. {
  7340. sched_move_task(tsk);
  7341. }
  7342. #ifdef CONFIG_FAIR_GROUP_SCHED
  7343. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7344. u64 shareval)
  7345. {
  7346. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7347. }
  7348. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7349. {
  7350. struct task_group *tg = cgroup_tg(cgrp);
  7351. return (u64) tg->shares;
  7352. }
  7353. #endif
  7354. #ifdef CONFIG_RT_GROUP_SCHED
  7355. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7356. s64 val)
  7357. {
  7358. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7359. }
  7360. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7361. {
  7362. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7363. }
  7364. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7365. u64 rt_period_us)
  7366. {
  7367. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7368. }
  7369. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7370. {
  7371. return sched_group_rt_period(cgroup_tg(cgrp));
  7372. }
  7373. #endif
  7374. static struct cftype cpu_files[] = {
  7375. #ifdef CONFIG_FAIR_GROUP_SCHED
  7376. {
  7377. .name = "shares",
  7378. .read_u64 = cpu_shares_read_u64,
  7379. .write_u64 = cpu_shares_write_u64,
  7380. },
  7381. #endif
  7382. #ifdef CONFIG_RT_GROUP_SCHED
  7383. {
  7384. .name = "rt_runtime_us",
  7385. .read_s64 = cpu_rt_runtime_read,
  7386. .write_s64 = cpu_rt_runtime_write,
  7387. },
  7388. {
  7389. .name = "rt_period_us",
  7390. .read_u64 = cpu_rt_period_read_uint,
  7391. .write_u64 = cpu_rt_period_write_uint,
  7392. },
  7393. #endif
  7394. };
  7395. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7396. {
  7397. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7398. }
  7399. struct cgroup_subsys cpu_cgroup_subsys = {
  7400. .name = "cpu",
  7401. .create = cpu_cgroup_create,
  7402. .destroy = cpu_cgroup_destroy,
  7403. .can_attach = cpu_cgroup_can_attach,
  7404. .attach = cpu_cgroup_attach,
  7405. .populate = cpu_cgroup_populate,
  7406. .subsys_id = cpu_cgroup_subsys_id,
  7407. .early_init = 1,
  7408. };
  7409. #endif /* CONFIG_CGROUP_SCHED */
  7410. #ifdef CONFIG_CGROUP_CPUACCT
  7411. /*
  7412. * CPU accounting code for task groups.
  7413. *
  7414. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7415. * (balbir@in.ibm.com).
  7416. */
  7417. /* track cpu usage of a group of tasks */
  7418. struct cpuacct {
  7419. struct cgroup_subsys_state css;
  7420. /* cpuusage holds pointer to a u64-type object on every cpu */
  7421. u64 *cpuusage;
  7422. };
  7423. struct cgroup_subsys cpuacct_subsys;
  7424. /* return cpu accounting group corresponding to this container */
  7425. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7426. {
  7427. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7428. struct cpuacct, css);
  7429. }
  7430. /* return cpu accounting group to which this task belongs */
  7431. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7432. {
  7433. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7434. struct cpuacct, css);
  7435. }
  7436. /* create a new cpu accounting group */
  7437. static struct cgroup_subsys_state *cpuacct_create(
  7438. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7439. {
  7440. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7441. if (!ca)
  7442. return ERR_PTR(-ENOMEM);
  7443. ca->cpuusage = alloc_percpu(u64);
  7444. if (!ca->cpuusage) {
  7445. kfree(ca);
  7446. return ERR_PTR(-ENOMEM);
  7447. }
  7448. return &ca->css;
  7449. }
  7450. /* destroy an existing cpu accounting group */
  7451. static void
  7452. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7453. {
  7454. struct cpuacct *ca = cgroup_ca(cgrp);
  7455. free_percpu(ca->cpuusage);
  7456. kfree(ca);
  7457. }
  7458. /* return total cpu usage (in nanoseconds) of a group */
  7459. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7460. {
  7461. struct cpuacct *ca = cgroup_ca(cgrp);
  7462. u64 totalcpuusage = 0;
  7463. int i;
  7464. for_each_possible_cpu(i) {
  7465. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7466. /*
  7467. * Take rq->lock to make 64-bit addition safe on 32-bit
  7468. * platforms.
  7469. */
  7470. spin_lock_irq(&cpu_rq(i)->lock);
  7471. totalcpuusage += *cpuusage;
  7472. spin_unlock_irq(&cpu_rq(i)->lock);
  7473. }
  7474. return totalcpuusage;
  7475. }
  7476. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7477. u64 reset)
  7478. {
  7479. struct cpuacct *ca = cgroup_ca(cgrp);
  7480. int err = 0;
  7481. int i;
  7482. if (reset) {
  7483. err = -EINVAL;
  7484. goto out;
  7485. }
  7486. for_each_possible_cpu(i) {
  7487. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7488. spin_lock_irq(&cpu_rq(i)->lock);
  7489. *cpuusage = 0;
  7490. spin_unlock_irq(&cpu_rq(i)->lock);
  7491. }
  7492. out:
  7493. return err;
  7494. }
  7495. static struct cftype files[] = {
  7496. {
  7497. .name = "usage",
  7498. .read_u64 = cpuusage_read,
  7499. .write_u64 = cpuusage_write,
  7500. },
  7501. };
  7502. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7503. {
  7504. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7505. }
  7506. /*
  7507. * charge this task's execution time to its accounting group.
  7508. *
  7509. * called with rq->lock held.
  7510. */
  7511. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7512. {
  7513. struct cpuacct *ca;
  7514. if (!cpuacct_subsys.active)
  7515. return;
  7516. ca = task_ca(tsk);
  7517. if (ca) {
  7518. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7519. *cpuusage += cputime;
  7520. }
  7521. }
  7522. struct cgroup_subsys cpuacct_subsys = {
  7523. .name = "cpuacct",
  7524. .create = cpuacct_create,
  7525. .destroy = cpuacct_destroy,
  7526. .populate = cpuacct_populate,
  7527. .subsys_id = cpuacct_subsys_id,
  7528. };
  7529. #endif /* CONFIG_CGROUP_CPUACCT */