rt2500pci.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. #ifdef CONFIG_RT2500PCI_LEDS
  209. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. #endif /* CONFIG_RT2500PCI_LEDS */
  237. /*
  238. * Configuration handlers.
  239. */
  240. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  241. const unsigned int filter_flags)
  242. {
  243. u32 reg;
  244. /*
  245. * Start configuration steps.
  246. * Note that the version error will always be dropped
  247. * and broadcast frames will always be accepted since
  248. * there is no filter for it at this time.
  249. */
  250. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  251. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  252. !(filter_flags & FIF_FCSFAIL));
  253. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  254. !(filter_flags & FIF_PLCPFAIL));
  255. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  256. !(filter_flags & FIF_CONTROL));
  257. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  258. !(filter_flags & FIF_PROMISC_IN_BSS));
  259. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  260. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  261. !rt2x00dev->intf_ap_count);
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  264. !(filter_flags & FIF_ALLMULTI));
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  266. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  267. }
  268. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  269. struct rt2x00_intf *intf,
  270. struct rt2x00intf_conf *conf,
  271. const unsigned int flags)
  272. {
  273. struct data_queue *queue =
  274. rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
  275. unsigned int bcn_preload;
  276. u32 reg;
  277. if (flags & CONFIG_UPDATE_TYPE) {
  278. /*
  279. * Enable beacon config
  280. */
  281. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  282. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  283. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  284. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  285. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  286. /*
  287. * Enable synchronisation.
  288. */
  289. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  290. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  291. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  292. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  293. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  294. }
  295. if (flags & CONFIG_UPDATE_MAC)
  296. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  297. conf->mac, sizeof(conf->mac));
  298. if (flags & CONFIG_UPDATE_BSSID)
  299. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  300. conf->bssid, sizeof(conf->bssid));
  301. }
  302. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  303. struct rt2x00lib_erp *erp)
  304. {
  305. int preamble_mask;
  306. u32 reg;
  307. /*
  308. * When short preamble is enabled, we should set bit 0x08
  309. */
  310. preamble_mask = erp->short_preamble << 3;
  311. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  312. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  313. erp->ack_timeout);
  314. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  315. erp->ack_consume_time);
  316. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  317. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  318. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  319. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  320. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  321. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  322. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  323. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  324. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  325. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  326. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  327. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  328. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  329. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  330. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  331. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  332. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  333. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  334. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  335. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  336. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  337. }
  338. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  339. const int basic_rate_mask)
  340. {
  341. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  342. }
  343. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  344. struct rf_channel *rf, const int txpower)
  345. {
  346. u8 r70;
  347. /*
  348. * Set TXpower.
  349. */
  350. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  351. /*
  352. * Switch on tuning bits.
  353. * For RT2523 devices we do not need to update the R1 register.
  354. */
  355. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  356. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  357. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  358. /*
  359. * For RT2525 we should first set the channel to half band higher.
  360. */
  361. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  362. static const u32 vals[] = {
  363. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  364. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  365. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  366. 0x00080d2e, 0x00080d3a
  367. };
  368. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  369. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  370. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  371. if (rf->rf4)
  372. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  373. }
  374. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  375. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  376. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  377. if (rf->rf4)
  378. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  379. /*
  380. * Channel 14 requires the Japan filter bit to be set.
  381. */
  382. r70 = 0x46;
  383. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  384. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  385. msleep(1);
  386. /*
  387. * Switch off tuning bits.
  388. * For RT2523 devices we do not need to update the R1 register.
  389. */
  390. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  391. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  392. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  393. }
  394. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  395. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  396. /*
  397. * Clear false CRC during channel switch.
  398. */
  399. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  400. }
  401. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  402. const int txpower)
  403. {
  404. u32 rf3;
  405. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  406. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  407. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  408. }
  409. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  410. struct antenna_setup *ant)
  411. {
  412. u32 reg;
  413. u8 r14;
  414. u8 r2;
  415. /*
  416. * We should never come here because rt2x00lib is supposed
  417. * to catch this and send us the correct antenna explicitely.
  418. */
  419. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  420. ant->tx == ANTENNA_SW_DIVERSITY);
  421. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  422. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  423. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  424. /*
  425. * Configure the TX antenna.
  426. */
  427. switch (ant->tx) {
  428. case ANTENNA_A:
  429. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  430. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  431. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  432. break;
  433. case ANTENNA_B:
  434. default:
  435. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  436. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  437. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  438. break;
  439. }
  440. /*
  441. * Configure the RX antenna.
  442. */
  443. switch (ant->rx) {
  444. case ANTENNA_A:
  445. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  446. break;
  447. case ANTENNA_B:
  448. default:
  449. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  450. break;
  451. }
  452. /*
  453. * RT2525E and RT5222 need to flip TX I/Q
  454. */
  455. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  456. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  457. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  458. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  459. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  460. /*
  461. * RT2525E does not need RX I/Q Flip.
  462. */
  463. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  464. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  465. } else {
  466. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  467. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  468. }
  469. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  470. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  471. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  472. }
  473. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  474. struct rt2x00lib_conf *libconf)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  478. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  479. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  480. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  481. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  482. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  483. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  484. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  485. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  486. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  487. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  488. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  489. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  490. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  491. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  492. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  493. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  494. libconf->conf->beacon_int * 16);
  495. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  496. libconf->conf->beacon_int * 16);
  497. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  498. }
  499. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  500. struct rt2x00lib_conf *libconf,
  501. const unsigned int flags)
  502. {
  503. if (flags & CONFIG_UPDATE_PHYMODE)
  504. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  505. if (flags & CONFIG_UPDATE_CHANNEL)
  506. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  507. libconf->conf->power_level);
  508. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  509. rt2500pci_config_txpower(rt2x00dev,
  510. libconf->conf->power_level);
  511. if (flags & CONFIG_UPDATE_ANTENNA)
  512. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  513. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  514. rt2500pci_config_duration(rt2x00dev, libconf);
  515. }
  516. /*
  517. * Link tuning
  518. */
  519. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  520. struct link_qual *qual)
  521. {
  522. u32 reg;
  523. /*
  524. * Update FCS error count from register.
  525. */
  526. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  527. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  528. /*
  529. * Update False CCA count from register.
  530. */
  531. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  532. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  533. }
  534. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  535. {
  536. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  537. rt2x00dev->link.vgc_level = 0x48;
  538. }
  539. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  540. {
  541. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  542. u8 r17;
  543. /*
  544. * To prevent collisions with MAC ASIC on chipsets
  545. * up to version C the link tuning should halt after 20
  546. * seconds while being associated.
  547. */
  548. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  549. rt2x00dev->intf_associated &&
  550. rt2x00dev->link.count > 20)
  551. return;
  552. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  553. /*
  554. * Chipset versions C and lower should directly continue
  555. * to the dynamic CCA tuning. Chipset version D and higher
  556. * should go straight to dynamic CCA tuning when they
  557. * are not associated.
  558. */
  559. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  560. !rt2x00dev->intf_associated)
  561. goto dynamic_cca_tune;
  562. /*
  563. * A too low RSSI will cause too much false CCA which will
  564. * then corrupt the R17 tuning. To remidy this the tuning should
  565. * be stopped (While making sure the R17 value will not exceed limits)
  566. */
  567. if (rssi < -80 && rt2x00dev->link.count > 20) {
  568. if (r17 >= 0x41) {
  569. r17 = rt2x00dev->link.vgc_level;
  570. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  571. }
  572. return;
  573. }
  574. /*
  575. * Special big-R17 for short distance
  576. */
  577. if (rssi >= -58) {
  578. if (r17 != 0x50)
  579. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  580. return;
  581. }
  582. /*
  583. * Special mid-R17 for middle distance
  584. */
  585. if (rssi >= -74) {
  586. if (r17 != 0x41)
  587. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  588. return;
  589. }
  590. /*
  591. * Leave short or middle distance condition, restore r17
  592. * to the dynamic tuning range.
  593. */
  594. if (r17 >= 0x41) {
  595. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  596. return;
  597. }
  598. dynamic_cca_tune:
  599. /*
  600. * R17 is inside the dynamic tuning range,
  601. * start tuning the link based on the false cca counter.
  602. */
  603. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  604. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  605. rt2x00dev->link.vgc_level = r17;
  606. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  607. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  608. rt2x00dev->link.vgc_level = r17;
  609. }
  610. }
  611. /*
  612. * Initialization functions.
  613. */
  614. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  615. struct queue_entry *entry)
  616. {
  617. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  618. u32 word;
  619. rt2x00_desc_read(priv_rx->desc, 1, &word);
  620. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
  621. rt2x00_desc_write(priv_rx->desc, 1, word);
  622. rt2x00_desc_read(priv_rx->desc, 0, &word);
  623. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  624. rt2x00_desc_write(priv_rx->desc, 0, word);
  625. }
  626. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  627. struct queue_entry *entry)
  628. {
  629. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  630. u32 word;
  631. rt2x00_desc_read(priv_tx->desc, 1, &word);
  632. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
  633. rt2x00_desc_write(priv_tx->desc, 1, word);
  634. rt2x00_desc_read(priv_tx->desc, 0, &word);
  635. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  636. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  637. rt2x00_desc_write(priv_tx->desc, 0, word);
  638. }
  639. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  640. {
  641. struct queue_entry_priv_pci_rx *priv_rx;
  642. struct queue_entry_priv_pci_tx *priv_tx;
  643. u32 reg;
  644. /*
  645. * Initialize registers.
  646. */
  647. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  648. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  649. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  651. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  652. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  653. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  654. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  655. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  656. priv_tx->desc_dma);
  657. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  658. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  659. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  660. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  661. priv_tx->desc_dma);
  662. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  663. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  664. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  665. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  666. priv_tx->desc_dma);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  668. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  669. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  670. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  671. priv_tx->desc_dma);
  672. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  673. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  674. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  675. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  676. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  677. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  678. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  679. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
  680. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  681. return 0;
  682. }
  683. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  684. {
  685. u32 reg;
  686. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  689. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  690. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  691. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  692. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  693. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  694. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  695. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  696. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  697. rt2x00dev->rx->data_size / 128);
  698. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  699. /*
  700. * Always use CWmin and CWmax set in descriptor.
  701. */
  702. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  703. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  704. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  705. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  706. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  707. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  708. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  709. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  710. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  711. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  712. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  713. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  714. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  715. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  716. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  717. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  718. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  719. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  720. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  721. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  722. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  723. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  724. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  725. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  726. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  727. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  728. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  729. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  730. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  731. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  732. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  733. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  734. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  735. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  736. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  737. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  738. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  739. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  740. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  741. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  742. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  743. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  744. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  745. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  746. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  747. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  748. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  749. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  750. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  751. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  752. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  753. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  754. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  755. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  756. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  757. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  758. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  759. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  760. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  761. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  762. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  763. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  764. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  765. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  766. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  767. return -EBUSY;
  768. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  769. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  770. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  771. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  772. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  773. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  774. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  775. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  776. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  777. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  778. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  779. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  780. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  781. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  782. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  783. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  784. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  785. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  786. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  787. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  788. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  789. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  790. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  791. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  792. /*
  793. * We must clear the FCS and FIFO error count.
  794. * These registers are cleared on read,
  795. * so we may pass a useless variable to store the value.
  796. */
  797. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  798. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  799. return 0;
  800. }
  801. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  802. {
  803. unsigned int i;
  804. u16 eeprom;
  805. u8 reg_id;
  806. u8 value;
  807. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  808. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  809. if ((value != 0xff) && (value != 0x00))
  810. goto continue_csr_init;
  811. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  812. udelay(REGISTER_BUSY_DELAY);
  813. }
  814. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  815. return -EACCES;
  816. continue_csr_init:
  817. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  818. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  819. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  820. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  821. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  822. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  823. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  824. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  825. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  826. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  827. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  828. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  829. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  830. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  831. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  832. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  833. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  834. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  835. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  836. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  837. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  838. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  839. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  840. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  841. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  842. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  843. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  844. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  845. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  846. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  847. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  848. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  849. if (eeprom != 0xffff && eeprom != 0x0000) {
  850. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  851. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  852. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  853. }
  854. }
  855. return 0;
  856. }
  857. /*
  858. * Device state switch handlers.
  859. */
  860. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  861. enum dev_state state)
  862. {
  863. u32 reg;
  864. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  865. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  866. state == STATE_RADIO_RX_OFF);
  867. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  868. }
  869. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  870. enum dev_state state)
  871. {
  872. int mask = (state == STATE_RADIO_IRQ_OFF);
  873. u32 reg;
  874. /*
  875. * When interrupts are being enabled, the interrupt registers
  876. * should clear the register to assure a clean state.
  877. */
  878. if (state == STATE_RADIO_IRQ_ON) {
  879. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  880. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  881. }
  882. /*
  883. * Only toggle the interrupts bits we are going to use.
  884. * Non-checked interrupt bits are disabled by default.
  885. */
  886. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  887. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  888. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  889. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  890. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  891. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  892. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  893. }
  894. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  895. {
  896. /*
  897. * Initialize all registers.
  898. */
  899. if (rt2500pci_init_queues(rt2x00dev) ||
  900. rt2500pci_init_registers(rt2x00dev) ||
  901. rt2500pci_init_bbp(rt2x00dev)) {
  902. ERROR(rt2x00dev, "Register initialization failed.\n");
  903. return -EIO;
  904. }
  905. /*
  906. * Enable interrupts.
  907. */
  908. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  909. return 0;
  910. }
  911. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  912. {
  913. u32 reg;
  914. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  915. /*
  916. * Disable synchronisation.
  917. */
  918. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  919. /*
  920. * Cancel RX and TX.
  921. */
  922. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  923. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  924. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  925. /*
  926. * Disable interrupts.
  927. */
  928. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  929. }
  930. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  931. enum dev_state state)
  932. {
  933. u32 reg;
  934. unsigned int i;
  935. char put_to_sleep;
  936. char bbp_state;
  937. char rf_state;
  938. put_to_sleep = (state != STATE_AWAKE);
  939. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  940. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  941. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  942. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  943. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  944. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  945. /*
  946. * Device is not guaranteed to be in the requested state yet.
  947. * We must wait until the register indicates that the
  948. * device has entered the correct state.
  949. */
  950. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  951. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  952. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  953. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  954. if (bbp_state == state && rf_state == state)
  955. return 0;
  956. msleep(10);
  957. }
  958. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  959. "current device state: bbp %d and rf %d.\n",
  960. state, bbp_state, rf_state);
  961. return -EBUSY;
  962. }
  963. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  964. enum dev_state state)
  965. {
  966. int retval = 0;
  967. switch (state) {
  968. case STATE_RADIO_ON:
  969. retval = rt2500pci_enable_radio(rt2x00dev);
  970. break;
  971. case STATE_RADIO_OFF:
  972. rt2500pci_disable_radio(rt2x00dev);
  973. break;
  974. case STATE_RADIO_RX_ON:
  975. case STATE_RADIO_RX_ON_LINK:
  976. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  977. break;
  978. case STATE_RADIO_RX_OFF:
  979. case STATE_RADIO_RX_OFF_LINK:
  980. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  981. break;
  982. case STATE_DEEP_SLEEP:
  983. case STATE_SLEEP:
  984. case STATE_STANDBY:
  985. case STATE_AWAKE:
  986. retval = rt2500pci_set_state(rt2x00dev, state);
  987. break;
  988. default:
  989. retval = -ENOTSUPP;
  990. break;
  991. }
  992. return retval;
  993. }
  994. /*
  995. * TX descriptor initialization
  996. */
  997. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  998. struct sk_buff *skb,
  999. struct txentry_desc *txdesc,
  1000. struct ieee80211_tx_control *control)
  1001. {
  1002. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1003. __le32 *txd = skbdesc->desc;
  1004. u32 word;
  1005. /*
  1006. * Start writing the descriptor words.
  1007. */
  1008. rt2x00_desc_read(txd, 2, &word);
  1009. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1010. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1011. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1012. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1013. rt2x00_desc_write(txd, 2, word);
  1014. rt2x00_desc_read(txd, 3, &word);
  1015. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1016. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1017. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1018. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1019. rt2x00_desc_write(txd, 3, word);
  1020. rt2x00_desc_read(txd, 10, &word);
  1021. rt2x00_set_field32(&word, TXD_W10_RTS,
  1022. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1023. rt2x00_desc_write(txd, 10, word);
  1024. rt2x00_desc_read(txd, 0, &word);
  1025. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1026. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1027. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1028. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1029. rt2x00_set_field32(&word, TXD_W0_ACK,
  1030. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1031. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1032. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1033. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1034. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1035. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1036. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1037. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1038. !!(control->flags &
  1039. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1040. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1041. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1042. rt2x00_desc_write(txd, 0, word);
  1043. }
  1044. /*
  1045. * TX data initialization
  1046. */
  1047. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1048. const unsigned int queue)
  1049. {
  1050. u32 reg;
  1051. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1052. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1053. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1054. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1055. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1056. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1057. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1058. }
  1059. return;
  1060. }
  1061. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1062. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  1063. (queue == IEEE80211_TX_QUEUE_DATA0));
  1064. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  1065. (queue == IEEE80211_TX_QUEUE_DATA1));
  1066. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  1067. (queue == RT2X00_BCN_QUEUE_ATIM));
  1068. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1069. }
  1070. /*
  1071. * RX control handlers
  1072. */
  1073. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1074. struct rxdone_entry_desc *rxdesc)
  1075. {
  1076. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1077. u32 word0;
  1078. u32 word2;
  1079. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1080. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  1081. rxdesc->flags = 0;
  1082. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1083. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1084. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1085. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1086. /*
  1087. * Obtain the status about this packet.
  1088. * When frame was received with an OFDM bitrate,
  1089. * the signal is the PLCP value. If it was received with
  1090. * a CCK bitrate the signal is the rate in 100kbit/s.
  1091. */
  1092. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1093. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1094. entry->queue->rt2x00dev->rssi_offset;
  1095. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1096. rxdesc->dev_flags = 0;
  1097. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1098. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1099. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1100. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1101. }
  1102. /*
  1103. * Interrupt functions.
  1104. */
  1105. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1106. const enum ieee80211_tx_queue queue_idx)
  1107. {
  1108. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1109. struct queue_entry_priv_pci_tx *priv_tx;
  1110. struct queue_entry *entry;
  1111. struct txdone_entry_desc txdesc;
  1112. u32 word;
  1113. while (!rt2x00queue_empty(queue)) {
  1114. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1115. priv_tx = entry->priv_data;
  1116. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1117. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1118. !rt2x00_get_field32(word, TXD_W0_VALID))
  1119. break;
  1120. /*
  1121. * Obtain the status about this packet.
  1122. */
  1123. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1124. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1125. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1126. }
  1127. }
  1128. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1129. {
  1130. struct rt2x00_dev *rt2x00dev = dev_instance;
  1131. u32 reg;
  1132. /*
  1133. * Get the interrupt sources & saved to local variable.
  1134. * Write register value back to clear pending interrupts.
  1135. */
  1136. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1137. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1138. if (!reg)
  1139. return IRQ_NONE;
  1140. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1141. return IRQ_HANDLED;
  1142. /*
  1143. * Handle interrupts, walk through all bits
  1144. * and run the tasks, the bits are checked in order of
  1145. * priority.
  1146. */
  1147. /*
  1148. * 1 - Beacon timer expired interrupt.
  1149. */
  1150. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1151. rt2x00lib_beacondone(rt2x00dev);
  1152. /*
  1153. * 2 - Rx ring done interrupt.
  1154. */
  1155. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1156. rt2x00pci_rxdone(rt2x00dev);
  1157. /*
  1158. * 3 - Atim ring transmit done interrupt.
  1159. */
  1160. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1161. rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  1162. /*
  1163. * 4 - Priority ring transmit done interrupt.
  1164. */
  1165. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1166. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1167. /*
  1168. * 5 - Tx ring transmit done interrupt.
  1169. */
  1170. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1171. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1172. return IRQ_HANDLED;
  1173. }
  1174. /*
  1175. * Device probe functions.
  1176. */
  1177. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1178. {
  1179. struct eeprom_93cx6 eeprom;
  1180. u32 reg;
  1181. u16 word;
  1182. u8 *mac;
  1183. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1184. eeprom.data = rt2x00dev;
  1185. eeprom.register_read = rt2500pci_eepromregister_read;
  1186. eeprom.register_write = rt2500pci_eepromregister_write;
  1187. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1188. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1189. eeprom.reg_data_in = 0;
  1190. eeprom.reg_data_out = 0;
  1191. eeprom.reg_data_clock = 0;
  1192. eeprom.reg_chip_select = 0;
  1193. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1194. EEPROM_SIZE / sizeof(u16));
  1195. /*
  1196. * Start validation of the data that has been read.
  1197. */
  1198. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1199. if (!is_valid_ether_addr(mac)) {
  1200. DECLARE_MAC_BUF(macbuf);
  1201. random_ether_addr(mac);
  1202. EEPROM(rt2x00dev, "MAC: %s\n",
  1203. print_mac(macbuf, mac));
  1204. }
  1205. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1206. if (word == 0xffff) {
  1207. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1208. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1209. ANTENNA_SW_DIVERSITY);
  1210. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1211. ANTENNA_SW_DIVERSITY);
  1212. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1213. LED_MODE_DEFAULT);
  1214. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1215. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1216. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1217. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1218. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1219. }
  1220. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1221. if (word == 0xffff) {
  1222. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1223. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1224. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1225. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1226. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1227. }
  1228. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1229. if (word == 0xffff) {
  1230. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1231. DEFAULT_RSSI_OFFSET);
  1232. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1233. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1234. }
  1235. return 0;
  1236. }
  1237. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1238. {
  1239. u32 reg;
  1240. u16 value;
  1241. u16 eeprom;
  1242. /*
  1243. * Read EEPROM word for configuration.
  1244. */
  1245. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1246. /*
  1247. * Identify RF chipset.
  1248. */
  1249. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1250. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1251. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1252. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1253. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1254. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1255. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1256. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1257. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1258. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1259. return -ENODEV;
  1260. }
  1261. /*
  1262. * Identify default antenna configuration.
  1263. */
  1264. rt2x00dev->default_ant.tx =
  1265. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1266. rt2x00dev->default_ant.rx =
  1267. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1268. /*
  1269. * Store led mode, for correct led behaviour.
  1270. */
  1271. #ifdef CONFIG_RT2500PCI_LEDS
  1272. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1273. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1274. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1275. rt2x00dev->led_radio.led_dev.brightness_set =
  1276. rt2500pci_brightness_set;
  1277. rt2x00dev->led_radio.led_dev.blink_set =
  1278. rt2500pci_blink_set;
  1279. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1280. if (value == LED_MODE_TXRX_ACTIVITY) {
  1281. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1282. rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
  1283. rt2x00dev->led_qual.led_dev.brightness_set =
  1284. rt2500pci_brightness_set;
  1285. rt2x00dev->led_qual.led_dev.blink_set =
  1286. rt2500pci_blink_set;
  1287. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1288. }
  1289. #endif /* CONFIG_RT2500PCI_LEDS */
  1290. /*
  1291. * Detect if this device has an hardware controlled radio.
  1292. */
  1293. #ifdef CONFIG_RT2500PCI_RFKILL
  1294. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1295. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1296. #endif /* CONFIG_RT2500PCI_RFKILL */
  1297. /*
  1298. * Check if the BBP tuning should be enabled.
  1299. */
  1300. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1301. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1302. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1303. /*
  1304. * Read the RSSI <-> dBm offset information.
  1305. */
  1306. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1307. rt2x00dev->rssi_offset =
  1308. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1309. return 0;
  1310. }
  1311. /*
  1312. * RF value list for RF2522
  1313. * Supports: 2.4 GHz
  1314. */
  1315. static const struct rf_channel rf_vals_bg_2522[] = {
  1316. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1317. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1318. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1319. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1320. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1321. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1322. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1323. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1324. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1325. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1326. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1327. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1328. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1329. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1330. };
  1331. /*
  1332. * RF value list for RF2523
  1333. * Supports: 2.4 GHz
  1334. */
  1335. static const struct rf_channel rf_vals_bg_2523[] = {
  1336. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1337. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1338. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1339. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1340. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1341. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1342. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1343. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1344. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1345. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1346. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1347. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1348. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1349. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1350. };
  1351. /*
  1352. * RF value list for RF2524
  1353. * Supports: 2.4 GHz
  1354. */
  1355. static const struct rf_channel rf_vals_bg_2524[] = {
  1356. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1357. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1358. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1359. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1360. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1361. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1362. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1363. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1364. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1365. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1366. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1367. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1368. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1369. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1370. };
  1371. /*
  1372. * RF value list for RF2525
  1373. * Supports: 2.4 GHz
  1374. */
  1375. static const struct rf_channel rf_vals_bg_2525[] = {
  1376. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1377. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1378. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1379. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1380. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1381. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1382. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1383. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1384. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1385. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1386. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1387. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1388. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1389. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1390. };
  1391. /*
  1392. * RF value list for RF2525e
  1393. * Supports: 2.4 GHz
  1394. */
  1395. static const struct rf_channel rf_vals_bg_2525e[] = {
  1396. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1397. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1398. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1399. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1400. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1401. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1402. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1403. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1404. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1405. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1406. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1407. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1408. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1409. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1410. };
  1411. /*
  1412. * RF value list for RF5222
  1413. * Supports: 2.4 GHz & 5.2 GHz
  1414. */
  1415. static const struct rf_channel rf_vals_5222[] = {
  1416. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1417. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1418. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1419. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1420. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1421. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1422. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1423. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1424. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1425. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1426. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1427. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1428. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1429. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1430. /* 802.11 UNI / HyperLan 2 */
  1431. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1432. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1433. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1434. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1435. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1436. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1437. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1438. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1439. /* 802.11 HyperLan 2 */
  1440. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1441. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1442. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1443. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1444. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1445. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1446. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1447. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1448. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1449. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1450. /* 802.11 UNII */
  1451. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1452. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1453. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1454. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1455. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1456. };
  1457. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1458. {
  1459. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1460. u8 *txpower;
  1461. unsigned int i;
  1462. /*
  1463. * Initialize all hw fields.
  1464. */
  1465. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1466. rt2x00dev->hw->extra_tx_headroom = 0;
  1467. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1468. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1469. rt2x00dev->hw->queues = 2;
  1470. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1471. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1472. rt2x00_eeprom_addr(rt2x00dev,
  1473. EEPROM_MAC_ADDR_0));
  1474. /*
  1475. * Convert tx_power array in eeprom.
  1476. */
  1477. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1478. for (i = 0; i < 14; i++)
  1479. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1480. /*
  1481. * Initialize hw_mode information.
  1482. */
  1483. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1484. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1485. spec->tx_power_a = NULL;
  1486. spec->tx_power_bg = txpower;
  1487. spec->tx_power_default = DEFAULT_TXPOWER;
  1488. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1489. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1490. spec->channels = rf_vals_bg_2522;
  1491. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1492. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1493. spec->channels = rf_vals_bg_2523;
  1494. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1495. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1496. spec->channels = rf_vals_bg_2524;
  1497. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1498. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1499. spec->channels = rf_vals_bg_2525;
  1500. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1501. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1502. spec->channels = rf_vals_bg_2525e;
  1503. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1504. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1505. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1506. spec->channels = rf_vals_5222;
  1507. }
  1508. }
  1509. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1510. {
  1511. int retval;
  1512. /*
  1513. * Allocate eeprom data.
  1514. */
  1515. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1516. if (retval)
  1517. return retval;
  1518. retval = rt2500pci_init_eeprom(rt2x00dev);
  1519. if (retval)
  1520. return retval;
  1521. /*
  1522. * Initialize hw specifications.
  1523. */
  1524. rt2500pci_probe_hw_mode(rt2x00dev);
  1525. /*
  1526. * This device requires the atim queue
  1527. */
  1528. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1529. /*
  1530. * Set the rssi offset.
  1531. */
  1532. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1533. return 0;
  1534. }
  1535. /*
  1536. * IEEE80211 stack callback functions.
  1537. */
  1538. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1539. u32 short_retry, u32 long_retry)
  1540. {
  1541. struct rt2x00_dev *rt2x00dev = hw->priv;
  1542. u32 reg;
  1543. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1544. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1545. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1546. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1547. return 0;
  1548. }
  1549. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1550. {
  1551. struct rt2x00_dev *rt2x00dev = hw->priv;
  1552. u64 tsf;
  1553. u32 reg;
  1554. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1555. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1556. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1557. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1558. return tsf;
  1559. }
  1560. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1561. struct ieee80211_tx_control *control)
  1562. {
  1563. struct rt2x00_dev *rt2x00dev = hw->priv;
  1564. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1565. struct queue_entry_priv_pci_tx *priv_tx;
  1566. struct skb_frame_desc *skbdesc;
  1567. u32 reg;
  1568. if (unlikely(!intf->beacon))
  1569. return -ENOBUFS;
  1570. priv_tx = intf->beacon->priv_data;
  1571. /*
  1572. * Fill in skb descriptor
  1573. */
  1574. skbdesc = get_skb_frame_desc(skb);
  1575. memset(skbdesc, 0, sizeof(*skbdesc));
  1576. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1577. skbdesc->data = skb->data;
  1578. skbdesc->data_len = skb->len;
  1579. skbdesc->desc = priv_tx->desc;
  1580. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1581. skbdesc->entry = intf->beacon;
  1582. /*
  1583. * Disable beaconing while we are reloading the beacon data,
  1584. * otherwise we might be sending out invalid data.
  1585. */
  1586. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1587. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1588. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1589. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1590. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1591. /*
  1592. * mac80211 doesn't provide the control->queue variable
  1593. * for beacons. Set our own queue identification so
  1594. * it can be used during descriptor initialization.
  1595. */
  1596. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1597. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1598. /*
  1599. * Enable beacon generation.
  1600. * Write entire beacon with descriptor to register,
  1601. * and kick the beacon generator.
  1602. */
  1603. memcpy(priv_tx->data, skb->data, skb->len);
  1604. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1605. return 0;
  1606. }
  1607. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1608. {
  1609. struct rt2x00_dev *rt2x00dev = hw->priv;
  1610. u32 reg;
  1611. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1612. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1613. }
  1614. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1615. .tx = rt2x00mac_tx,
  1616. .start = rt2x00mac_start,
  1617. .stop = rt2x00mac_stop,
  1618. .add_interface = rt2x00mac_add_interface,
  1619. .remove_interface = rt2x00mac_remove_interface,
  1620. .config = rt2x00mac_config,
  1621. .config_interface = rt2x00mac_config_interface,
  1622. .configure_filter = rt2x00mac_configure_filter,
  1623. .get_stats = rt2x00mac_get_stats,
  1624. .set_retry_limit = rt2500pci_set_retry_limit,
  1625. .bss_info_changed = rt2x00mac_bss_info_changed,
  1626. .conf_tx = rt2x00mac_conf_tx,
  1627. .get_tx_stats = rt2x00mac_get_tx_stats,
  1628. .get_tsf = rt2500pci_get_tsf,
  1629. .beacon_update = rt2500pci_beacon_update,
  1630. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1631. };
  1632. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1633. .irq_handler = rt2500pci_interrupt,
  1634. .probe_hw = rt2500pci_probe_hw,
  1635. .initialize = rt2x00pci_initialize,
  1636. .uninitialize = rt2x00pci_uninitialize,
  1637. .init_rxentry = rt2500pci_init_rxentry,
  1638. .init_txentry = rt2500pci_init_txentry,
  1639. .set_device_state = rt2500pci_set_device_state,
  1640. .rfkill_poll = rt2500pci_rfkill_poll,
  1641. .link_stats = rt2500pci_link_stats,
  1642. .reset_tuner = rt2500pci_reset_tuner,
  1643. .link_tuner = rt2500pci_link_tuner,
  1644. .write_tx_desc = rt2500pci_write_tx_desc,
  1645. .write_tx_data = rt2x00pci_write_tx_data,
  1646. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1647. .fill_rxdone = rt2500pci_fill_rxdone,
  1648. .config_filter = rt2500pci_config_filter,
  1649. .config_intf = rt2500pci_config_intf,
  1650. .config_erp = rt2500pci_config_erp,
  1651. .config = rt2500pci_config,
  1652. };
  1653. static const struct data_queue_desc rt2500pci_queue_rx = {
  1654. .entry_num = RX_ENTRIES,
  1655. .data_size = DATA_FRAME_SIZE,
  1656. .desc_size = RXD_DESC_SIZE,
  1657. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1658. };
  1659. static const struct data_queue_desc rt2500pci_queue_tx = {
  1660. .entry_num = TX_ENTRIES,
  1661. .data_size = DATA_FRAME_SIZE,
  1662. .desc_size = TXD_DESC_SIZE,
  1663. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1664. };
  1665. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1666. .entry_num = BEACON_ENTRIES,
  1667. .data_size = MGMT_FRAME_SIZE,
  1668. .desc_size = TXD_DESC_SIZE,
  1669. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1670. };
  1671. static const struct data_queue_desc rt2500pci_queue_atim = {
  1672. .entry_num = ATIM_ENTRIES,
  1673. .data_size = DATA_FRAME_SIZE,
  1674. .desc_size = TXD_DESC_SIZE,
  1675. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1676. };
  1677. static const struct rt2x00_ops rt2500pci_ops = {
  1678. .name = KBUILD_MODNAME,
  1679. .max_sta_intf = 1,
  1680. .max_ap_intf = 1,
  1681. .eeprom_size = EEPROM_SIZE,
  1682. .rf_size = RF_SIZE,
  1683. .rx = &rt2500pci_queue_rx,
  1684. .tx = &rt2500pci_queue_tx,
  1685. .bcn = &rt2500pci_queue_bcn,
  1686. .atim = &rt2500pci_queue_atim,
  1687. .lib = &rt2500pci_rt2x00_ops,
  1688. .hw = &rt2500pci_mac80211_ops,
  1689. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1690. .debugfs = &rt2500pci_rt2x00debug,
  1691. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1692. };
  1693. /*
  1694. * RT2500pci module information.
  1695. */
  1696. static struct pci_device_id rt2500pci_device_table[] = {
  1697. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1698. { 0, }
  1699. };
  1700. MODULE_AUTHOR(DRV_PROJECT);
  1701. MODULE_VERSION(DRV_VERSION);
  1702. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1703. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1704. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1705. MODULE_LICENSE("GPL");
  1706. static struct pci_driver rt2500pci_driver = {
  1707. .name = KBUILD_MODNAME,
  1708. .id_table = rt2500pci_device_table,
  1709. .probe = rt2x00pci_probe,
  1710. .remove = __devexit_p(rt2x00pci_remove),
  1711. .suspend = rt2x00pci_suspend,
  1712. .resume = rt2x00pci_resume,
  1713. };
  1714. static int __init rt2500pci_init(void)
  1715. {
  1716. return pci_register_driver(&rt2500pci_driver);
  1717. }
  1718. static void __exit rt2500pci_exit(void)
  1719. {
  1720. pci_unregister_driver(&rt2500pci_driver);
  1721. }
  1722. module_init(rt2500pci_init);
  1723. module_exit(rt2500pci_exit);