i915_gem.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static int
  81. i915_gem_wait_for_error(struct drm_device *dev)
  82. {
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct completion *x = &dev_priv->error_completion;
  85. unsigned long flags;
  86. int ret;
  87. if (!atomic_read(&dev_priv->mm.wedged))
  88. return 0;
  89. /*
  90. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  91. * userspace. If it takes that long something really bad is going on and
  92. * we should simply try to bail out and fail as gracefully as possible.
  93. */
  94. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  95. if (ret == 0) {
  96. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  97. return -EIO;
  98. } else if (ret < 0) {
  99. return ret;
  100. }
  101. if (atomic_read(&dev_priv->mm.wedged)) {
  102. /* GPU is hung, bump the completion count to account for
  103. * the token we just consumed so that we never hit zero and
  104. * end up waiting upon a subsequent completion event that
  105. * will never happen.
  106. */
  107. spin_lock_irqsave(&x->wait.lock, flags);
  108. x->done++;
  109. spin_unlock_irqrestore(&x->wait.lock, flags);
  110. }
  111. return 0;
  112. }
  113. int i915_mutex_lock_interruptible(struct drm_device *dev)
  114. {
  115. int ret;
  116. ret = i915_gem_wait_for_error(dev);
  117. if (ret)
  118. return ret;
  119. ret = mutex_lock_interruptible(&dev->struct_mutex);
  120. if (ret)
  121. return ret;
  122. WARN_ON(i915_verify_lists(dev));
  123. return 0;
  124. }
  125. static inline bool
  126. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  127. {
  128. return obj->gtt_space && !obj->active;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  136. return -ENODEV;
  137. if (args->gtt_start >= args->gtt_end ||
  138. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  139. return -EINVAL;
  140. /* GEM with user mode setting was never supported on ilk and later. */
  141. if (INTEL_INFO(dev)->gen >= 5)
  142. return -ENODEV;
  143. mutex_lock(&dev->struct_mutex);
  144. i915_gem_init_global_gtt(dev, args->gtt_start,
  145. args->gtt_end, args->gtt_end);
  146. mutex_unlock(&dev->struct_mutex);
  147. return 0;
  148. }
  149. int
  150. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  151. struct drm_file *file)
  152. {
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct drm_i915_gem_get_aperture *args = data;
  155. struct drm_i915_gem_object *obj;
  156. size_t pinned;
  157. pinned = 0;
  158. mutex_lock(&dev->struct_mutex);
  159. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  160. if (obj->pin_count)
  161. pinned += obj->gtt_space->size;
  162. mutex_unlock(&dev->struct_mutex);
  163. args->aper_size = dev_priv->mm.gtt_total;
  164. args->aper_available_size = args->aper_size - pinned;
  165. return 0;
  166. }
  167. static int
  168. i915_gem_create(struct drm_file *file,
  169. struct drm_device *dev,
  170. uint64_t size,
  171. uint32_t *handle_p)
  172. {
  173. struct drm_i915_gem_object *obj;
  174. int ret;
  175. u32 handle;
  176. size = roundup(size, PAGE_SIZE);
  177. if (size == 0)
  178. return -EINVAL;
  179. /* Allocate the new object */
  180. obj = i915_gem_alloc_object(dev, size);
  181. if (obj == NULL)
  182. return -ENOMEM;
  183. ret = drm_gem_handle_create(file, &obj->base, &handle);
  184. if (ret) {
  185. drm_gem_object_release(&obj->base);
  186. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  187. kfree(obj);
  188. return ret;
  189. }
  190. /* drop reference from allocate - handle holds it now */
  191. drm_gem_object_unreference(&obj->base);
  192. trace_i915_gem_object_create(obj);
  193. *handle_p = handle;
  194. return 0;
  195. }
  196. int
  197. i915_gem_dumb_create(struct drm_file *file,
  198. struct drm_device *dev,
  199. struct drm_mode_create_dumb *args)
  200. {
  201. /* have to work out size/pitch and return them */
  202. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  203. args->size = args->pitch * args->height;
  204. return i915_gem_create(file, dev,
  205. args->size, &args->handle);
  206. }
  207. int i915_gem_dumb_destroy(struct drm_file *file,
  208. struct drm_device *dev,
  209. uint32_t handle)
  210. {
  211. return drm_gem_handle_delete(file, handle);
  212. }
  213. /**
  214. * Creates a new mm object and returns a handle to it.
  215. */
  216. int
  217. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  218. struct drm_file *file)
  219. {
  220. struct drm_i915_gem_create *args = data;
  221. return i915_gem_create(file, dev,
  222. args->size, &args->handle);
  223. }
  224. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  225. {
  226. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  227. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  228. obj->tiling_mode != I915_TILING_NONE;
  229. }
  230. static inline int
  231. __copy_to_user_swizzled(char __user *cpu_vaddr,
  232. const char *gpu_vaddr, int gpu_offset,
  233. int length)
  234. {
  235. int ret, cpu_offset = 0;
  236. while (length > 0) {
  237. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  238. int this_length = min(cacheline_end - gpu_offset, length);
  239. int swizzled_gpu_offset = gpu_offset ^ 64;
  240. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  241. gpu_vaddr + swizzled_gpu_offset,
  242. this_length);
  243. if (ret)
  244. return ret + length;
  245. cpu_offset += this_length;
  246. gpu_offset += this_length;
  247. length -= this_length;
  248. }
  249. return 0;
  250. }
  251. static inline int
  252. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  253. const char __user *cpu_vaddr,
  254. int length)
  255. {
  256. int ret, cpu_offset = 0;
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  262. cpu_vaddr + cpu_offset,
  263. this_length);
  264. if (ret)
  265. return ret + length;
  266. cpu_offset += this_length;
  267. gpu_offset += this_length;
  268. length -= this_length;
  269. }
  270. return 0;
  271. }
  272. /* Per-page copy function for the shmem pread fastpath.
  273. * Flushes invalid cachelines before reading the target if
  274. * needs_clflush is set. */
  275. static int
  276. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  277. char __user *user_data,
  278. bool page_do_bit17_swizzling, bool needs_clflush)
  279. {
  280. char *vaddr;
  281. int ret;
  282. if (unlikely(page_do_bit17_swizzling))
  283. return -EINVAL;
  284. vaddr = kmap_atomic(page);
  285. if (needs_clflush)
  286. drm_clflush_virt_range(vaddr + shmem_page_offset,
  287. page_length);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + shmem_page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. return ret ? -EFAULT : 0;
  293. }
  294. static void
  295. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  296. bool swizzled)
  297. {
  298. if (unlikely(swizzled)) {
  299. unsigned long start = (unsigned long) addr;
  300. unsigned long end = (unsigned long) addr + length;
  301. /* For swizzling simply ensure that we always flush both
  302. * channels. Lame, but simple and it works. Swizzled
  303. * pwrite/pread is far from a hotpath - current userspace
  304. * doesn't use it at all. */
  305. start = round_down(start, 128);
  306. end = round_up(end, 128);
  307. drm_clflush_virt_range((void *)start, end - start);
  308. } else {
  309. drm_clflush_virt_range(addr, length);
  310. }
  311. }
  312. /* Only difference to the fast-path function is that this can handle bit17
  313. * and uses non-atomic copy and kmap functions. */
  314. static int
  315. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  316. char __user *user_data,
  317. bool page_do_bit17_swizzling, bool needs_clflush)
  318. {
  319. char *vaddr;
  320. int ret;
  321. vaddr = kmap(page);
  322. if (needs_clflush)
  323. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  324. page_length,
  325. page_do_bit17_swizzling);
  326. if (page_do_bit17_swizzling)
  327. ret = __copy_to_user_swizzled(user_data,
  328. vaddr, shmem_page_offset,
  329. page_length);
  330. else
  331. ret = __copy_to_user(user_data,
  332. vaddr + shmem_page_offset,
  333. page_length);
  334. kunmap(page);
  335. return ret ? - EFAULT : 0;
  336. }
  337. static int
  338. i915_gem_shmem_pread(struct drm_device *dev,
  339. struct drm_i915_gem_object *obj,
  340. struct drm_i915_gem_pread *args,
  341. struct drm_file *file)
  342. {
  343. char __user *user_data;
  344. ssize_t remain;
  345. loff_t offset;
  346. int shmem_page_offset, page_length, ret = 0;
  347. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  348. int hit_slowpath = 0;
  349. int prefaulted = 0;
  350. int needs_clflush = 0;
  351. struct scatterlist *sg;
  352. int i;
  353. user_data = (char __user *) (uintptr_t) args->data_ptr;
  354. remain = args->size;
  355. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  356. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  357. /* If we're not in the cpu read domain, set ourself into the gtt
  358. * read domain and manually flush cachelines (if required). This
  359. * optimizes for the case when the gpu will dirty the data
  360. * anyway again before the next pread happens. */
  361. if (obj->cache_level == I915_CACHE_NONE)
  362. needs_clflush = 1;
  363. if (obj->gtt_space) {
  364. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  365. if (ret)
  366. return ret;
  367. }
  368. }
  369. ret = i915_gem_object_get_pages(obj);
  370. if (ret)
  371. return ret;
  372. i915_gem_object_pin_pages(obj);
  373. offset = args->offset;
  374. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  375. struct page *page;
  376. if (i < offset >> PAGE_SHIFT)
  377. continue;
  378. if (remain <= 0)
  379. break;
  380. /* Operation in this page
  381. *
  382. * shmem_page_offset = offset within page in shmem file
  383. * page_length = bytes to copy for this page
  384. */
  385. shmem_page_offset = offset_in_page(offset);
  386. page_length = remain;
  387. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  388. page_length = PAGE_SIZE - shmem_page_offset;
  389. page = sg_page(sg);
  390. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  391. (page_to_phys(page) & (1 << 17)) != 0;
  392. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  393. user_data, page_do_bit17_swizzling,
  394. needs_clflush);
  395. if (ret == 0)
  396. goto next_page;
  397. hit_slowpath = 1;
  398. mutex_unlock(&dev->struct_mutex);
  399. if (!prefaulted) {
  400. ret = fault_in_multipages_writeable(user_data, remain);
  401. /* Userspace is tricking us, but we've already clobbered
  402. * its pages with the prefault and promised to write the
  403. * data up to the first fault. Hence ignore any errors
  404. * and just continue. */
  405. (void)ret;
  406. prefaulted = 1;
  407. }
  408. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  409. user_data, page_do_bit17_swizzling,
  410. needs_clflush);
  411. mutex_lock(&dev->struct_mutex);
  412. next_page:
  413. mark_page_accessed(page);
  414. if (ret)
  415. goto out;
  416. remain -= page_length;
  417. user_data += page_length;
  418. offset += page_length;
  419. }
  420. out:
  421. i915_gem_object_unpin_pages(obj);
  422. if (hit_slowpath) {
  423. /* Fixup: Kill any reinstated backing storage pages */
  424. if (obj->madv == __I915_MADV_PURGED)
  425. i915_gem_object_truncate(obj);
  426. }
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_i915_gem_object *obj;
  440. int ret = 0;
  441. if (args->size == 0)
  442. return 0;
  443. if (!access_ok(VERIFY_WRITE,
  444. (char __user *)(uintptr_t)args->data_ptr,
  445. args->size))
  446. return -EFAULT;
  447. ret = i915_mutex_lock_interruptible(dev);
  448. if (ret)
  449. return ret;
  450. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  451. if (&obj->base == NULL) {
  452. ret = -ENOENT;
  453. goto unlock;
  454. }
  455. /* Bounds check source. */
  456. if (args->offset > obj->base.size ||
  457. args->size > obj->base.size - args->offset) {
  458. ret = -EINVAL;
  459. goto out;
  460. }
  461. /* prime objects have no backing filp to GEM pread/pwrite
  462. * pages from.
  463. */
  464. if (!obj->base.filp) {
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. trace_i915_gem_object_pread(obj, args->offset, args->size);
  469. ret = i915_gem_shmem_pread(dev, obj, args, file);
  470. out:
  471. drm_gem_object_unreference(&obj->base);
  472. unlock:
  473. mutex_unlock(&dev->struct_mutex);
  474. return ret;
  475. }
  476. /* This is the fast write path which cannot handle
  477. * page faults in the source data
  478. */
  479. static inline int
  480. fast_user_write(struct io_mapping *mapping,
  481. loff_t page_base, int page_offset,
  482. char __user *user_data,
  483. int length)
  484. {
  485. void __iomem *vaddr_atomic;
  486. void *vaddr;
  487. unsigned long unwritten;
  488. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  489. /* We can use the cpu mem copy function because this is X86. */
  490. vaddr = (void __force*)vaddr_atomic + page_offset;
  491. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  492. user_data, length);
  493. io_mapping_unmap_atomic(vaddr_atomic);
  494. return unwritten;
  495. }
  496. /**
  497. * This is the fast pwrite path, where we copy the data directly from the
  498. * user into the GTT, uncached.
  499. */
  500. static int
  501. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  502. struct drm_i915_gem_object *obj,
  503. struct drm_i915_gem_pwrite *args,
  504. struct drm_file *file)
  505. {
  506. drm_i915_private_t *dev_priv = dev->dev_private;
  507. ssize_t remain;
  508. loff_t offset, page_base;
  509. char __user *user_data;
  510. int page_offset, page_length, ret;
  511. ret = i915_gem_object_pin(obj, 0, true, true);
  512. if (ret)
  513. goto out;
  514. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  515. if (ret)
  516. goto out_unpin;
  517. ret = i915_gem_object_put_fence(obj);
  518. if (ret)
  519. goto out_unpin;
  520. user_data = (char __user *) (uintptr_t) args->data_ptr;
  521. remain = args->size;
  522. offset = obj->gtt_offset + args->offset;
  523. while (remain > 0) {
  524. /* Operation in this page
  525. *
  526. * page_base = page offset within aperture
  527. * page_offset = offset within page
  528. * page_length = bytes to copy for this page
  529. */
  530. page_base = offset & PAGE_MASK;
  531. page_offset = offset_in_page(offset);
  532. page_length = remain;
  533. if ((page_offset + remain) > PAGE_SIZE)
  534. page_length = PAGE_SIZE - page_offset;
  535. /* If we get a fault while copying data, then (presumably) our
  536. * source page isn't available. Return the error and we'll
  537. * retry in the slow path.
  538. */
  539. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  540. page_offset, user_data, page_length)) {
  541. ret = -EFAULT;
  542. goto out_unpin;
  543. }
  544. remain -= page_length;
  545. user_data += page_length;
  546. offset += page_length;
  547. }
  548. out_unpin:
  549. i915_gem_object_unpin(obj);
  550. out:
  551. return ret;
  552. }
  553. /* Per-page copy function for the shmem pwrite fastpath.
  554. * Flushes invalid cachelines before writing to the target if
  555. * needs_clflush_before is set and flushes out any written cachelines after
  556. * writing if needs_clflush is set. */
  557. static int
  558. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  559. char __user *user_data,
  560. bool page_do_bit17_swizzling,
  561. bool needs_clflush_before,
  562. bool needs_clflush_after)
  563. {
  564. char *vaddr;
  565. int ret;
  566. if (unlikely(page_do_bit17_swizzling))
  567. return -EINVAL;
  568. vaddr = kmap_atomic(page);
  569. if (needs_clflush_before)
  570. drm_clflush_virt_range(vaddr + shmem_page_offset,
  571. page_length);
  572. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  573. user_data,
  574. page_length);
  575. if (needs_clflush_after)
  576. drm_clflush_virt_range(vaddr + shmem_page_offset,
  577. page_length);
  578. kunmap_atomic(vaddr);
  579. return ret ? -EFAULT : 0;
  580. }
  581. /* Only difference to the fast-path function is that this can handle bit17
  582. * and uses non-atomic copy and kmap functions. */
  583. static int
  584. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  585. char __user *user_data,
  586. bool page_do_bit17_swizzling,
  587. bool needs_clflush_before,
  588. bool needs_clflush_after)
  589. {
  590. char *vaddr;
  591. int ret;
  592. vaddr = kmap(page);
  593. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  594. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  595. page_length,
  596. page_do_bit17_swizzling);
  597. if (page_do_bit17_swizzling)
  598. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  599. user_data,
  600. page_length);
  601. else
  602. ret = __copy_from_user(vaddr + shmem_page_offset,
  603. user_data,
  604. page_length);
  605. if (needs_clflush_after)
  606. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  607. page_length,
  608. page_do_bit17_swizzling);
  609. kunmap(page);
  610. return ret ? -EFAULT : 0;
  611. }
  612. static int
  613. i915_gem_shmem_pwrite(struct drm_device *dev,
  614. struct drm_i915_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file)
  617. {
  618. ssize_t remain;
  619. loff_t offset;
  620. char __user *user_data;
  621. int shmem_page_offset, page_length, ret = 0;
  622. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  623. int hit_slowpath = 0;
  624. int needs_clflush_after = 0;
  625. int needs_clflush_before = 0;
  626. int i;
  627. struct scatterlist *sg;
  628. user_data = (char __user *) (uintptr_t) args->data_ptr;
  629. remain = args->size;
  630. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  631. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  632. /* If we're not in the cpu write domain, set ourself into the gtt
  633. * write domain and manually flush cachelines (if required). This
  634. * optimizes for the case when the gpu will use the data
  635. * right away and we therefore have to clflush anyway. */
  636. if (obj->cache_level == I915_CACHE_NONE)
  637. needs_clflush_after = 1;
  638. if (obj->gtt_space) {
  639. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  640. if (ret)
  641. return ret;
  642. }
  643. }
  644. /* Same trick applies for invalidate partially written cachelines before
  645. * writing. */
  646. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  647. && obj->cache_level == I915_CACHE_NONE)
  648. needs_clflush_before = 1;
  649. ret = i915_gem_object_get_pages(obj);
  650. if (ret)
  651. return ret;
  652. i915_gem_object_pin_pages(obj);
  653. offset = args->offset;
  654. obj->dirty = 1;
  655. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  656. struct page *page;
  657. int partial_cacheline_write;
  658. if (i < offset >> PAGE_SHIFT)
  659. continue;
  660. if (remain <= 0)
  661. break;
  662. /* Operation in this page
  663. *
  664. * shmem_page_offset = offset within page in shmem file
  665. * page_length = bytes to copy for this page
  666. */
  667. shmem_page_offset = offset_in_page(offset);
  668. page_length = remain;
  669. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - shmem_page_offset;
  671. /* If we don't overwrite a cacheline completely we need to be
  672. * careful to have up-to-date data by first clflushing. Don't
  673. * overcomplicate things and flush the entire patch. */
  674. partial_cacheline_write = needs_clflush_before &&
  675. ((shmem_page_offset | page_length)
  676. & (boot_cpu_data.x86_clflush_size - 1));
  677. page = sg_page(sg);
  678. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  679. (page_to_phys(page) & (1 << 17)) != 0;
  680. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  681. user_data, page_do_bit17_swizzling,
  682. partial_cacheline_write,
  683. needs_clflush_after);
  684. if (ret == 0)
  685. goto next_page;
  686. hit_slowpath = 1;
  687. mutex_unlock(&dev->struct_mutex);
  688. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  689. user_data, page_do_bit17_swizzling,
  690. partial_cacheline_write,
  691. needs_clflush_after);
  692. mutex_lock(&dev->struct_mutex);
  693. next_page:
  694. set_page_dirty(page);
  695. mark_page_accessed(page);
  696. if (ret)
  697. goto out;
  698. remain -= page_length;
  699. user_data += page_length;
  700. offset += page_length;
  701. }
  702. out:
  703. i915_gem_object_unpin_pages(obj);
  704. if (hit_slowpath) {
  705. /* Fixup: Kill any reinstated backing storage pages */
  706. if (obj->madv == __I915_MADV_PURGED)
  707. i915_gem_object_truncate(obj);
  708. /* and flush dirty cachelines in case the object isn't in the cpu write
  709. * domain anymore. */
  710. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  711. i915_gem_clflush_object(obj);
  712. intel_gtt_chipset_flush();
  713. }
  714. }
  715. if (needs_clflush_after)
  716. intel_gtt_chipset_flush();
  717. return ret;
  718. }
  719. /**
  720. * Writes data to the object referenced by handle.
  721. *
  722. * On error, the contents of the buffer that were to be modified are undefined.
  723. */
  724. int
  725. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  726. struct drm_file *file)
  727. {
  728. struct drm_i915_gem_pwrite *args = data;
  729. struct drm_i915_gem_object *obj;
  730. int ret;
  731. if (args->size == 0)
  732. return 0;
  733. if (!access_ok(VERIFY_READ,
  734. (char __user *)(uintptr_t)args->data_ptr,
  735. args->size))
  736. return -EFAULT;
  737. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  738. args->size);
  739. if (ret)
  740. return -EFAULT;
  741. ret = i915_mutex_lock_interruptible(dev);
  742. if (ret)
  743. return ret;
  744. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  745. if (&obj->base == NULL) {
  746. ret = -ENOENT;
  747. goto unlock;
  748. }
  749. /* Bounds check destination. */
  750. if (args->offset > obj->base.size ||
  751. args->size > obj->base.size - args->offset) {
  752. ret = -EINVAL;
  753. goto out;
  754. }
  755. /* prime objects have no backing filp to GEM pread/pwrite
  756. * pages from.
  757. */
  758. if (!obj->base.filp) {
  759. ret = -EINVAL;
  760. goto out;
  761. }
  762. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  763. ret = -EFAULT;
  764. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  765. * it would end up going through the fenced access, and we'll get
  766. * different detiling behavior between reading and writing.
  767. * pread/pwrite currently are reading and writing from the CPU
  768. * perspective, requiring manual detiling by the client.
  769. */
  770. if (obj->phys_obj) {
  771. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  772. goto out;
  773. }
  774. if (obj->cache_level == I915_CACHE_NONE &&
  775. obj->tiling_mode == I915_TILING_NONE &&
  776. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  777. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  778. /* Note that the gtt paths might fail with non-page-backed user
  779. * pointers (e.g. gtt mappings when moving data between
  780. * textures). Fallback to the shmem path in that case. */
  781. }
  782. if (ret == -EFAULT || ret == -ENOSPC)
  783. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  784. out:
  785. drm_gem_object_unreference(&obj->base);
  786. unlock:
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. int
  791. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  792. bool interruptible)
  793. {
  794. if (atomic_read(&dev_priv->mm.wedged)) {
  795. struct completion *x = &dev_priv->error_completion;
  796. bool recovery_complete;
  797. unsigned long flags;
  798. /* Give the error handler a chance to run. */
  799. spin_lock_irqsave(&x->wait.lock, flags);
  800. recovery_complete = x->done > 0;
  801. spin_unlock_irqrestore(&x->wait.lock, flags);
  802. /* Non-interruptible callers can't handle -EAGAIN, hence return
  803. * -EIO unconditionally for these. */
  804. if (!interruptible)
  805. return -EIO;
  806. /* Recovery complete, but still wedged means reset failure. */
  807. if (recovery_complete)
  808. return -EIO;
  809. return -EAGAIN;
  810. }
  811. return 0;
  812. }
  813. /*
  814. * Compare seqno against outstanding lazy request. Emit a request if they are
  815. * equal.
  816. */
  817. static int
  818. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  819. {
  820. int ret;
  821. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  822. ret = 0;
  823. if (seqno == ring->outstanding_lazy_request)
  824. ret = i915_add_request(ring, NULL, NULL);
  825. return ret;
  826. }
  827. /**
  828. * __wait_seqno - wait until execution of seqno has finished
  829. * @ring: the ring expected to report seqno
  830. * @seqno: duh!
  831. * @interruptible: do an interruptible wait (normally yes)
  832. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  833. *
  834. * Returns 0 if the seqno was found within the alloted time. Else returns the
  835. * errno with remaining time filled in timeout argument.
  836. */
  837. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  838. bool interruptible, struct timespec *timeout)
  839. {
  840. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  841. struct timespec before, now, wait_time={1,0};
  842. unsigned long timeout_jiffies;
  843. long end;
  844. bool wait_forever = true;
  845. int ret;
  846. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  847. return 0;
  848. trace_i915_gem_request_wait_begin(ring, seqno);
  849. if (timeout != NULL) {
  850. wait_time = *timeout;
  851. wait_forever = false;
  852. }
  853. timeout_jiffies = timespec_to_jiffies(&wait_time);
  854. if (WARN_ON(!ring->irq_get(ring)))
  855. return -ENODEV;
  856. /* Record current time in case interrupted by signal, or wedged * */
  857. getrawmonotonic(&before);
  858. #define EXIT_COND \
  859. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  860. atomic_read(&dev_priv->mm.wedged))
  861. do {
  862. if (interruptible)
  863. end = wait_event_interruptible_timeout(ring->irq_queue,
  864. EXIT_COND,
  865. timeout_jiffies);
  866. else
  867. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  868. timeout_jiffies);
  869. ret = i915_gem_check_wedge(dev_priv, interruptible);
  870. if (ret)
  871. end = ret;
  872. } while (end == 0 && wait_forever);
  873. getrawmonotonic(&now);
  874. ring->irq_put(ring);
  875. trace_i915_gem_request_wait_end(ring, seqno);
  876. #undef EXIT_COND
  877. if (timeout) {
  878. struct timespec sleep_time = timespec_sub(now, before);
  879. *timeout = timespec_sub(*timeout, sleep_time);
  880. }
  881. switch (end) {
  882. case -EIO:
  883. case -EAGAIN: /* Wedged */
  884. case -ERESTARTSYS: /* Signal */
  885. return (int)end;
  886. case 0: /* Timeout */
  887. if (timeout)
  888. set_normalized_timespec(timeout, 0, 0);
  889. return -ETIME;
  890. default: /* Completed */
  891. WARN_ON(end < 0); /* We're not aware of other errors */
  892. return 0;
  893. }
  894. }
  895. /**
  896. * Waits for a sequence number to be signaled, and cleans up the
  897. * request and object lists appropriately for that event.
  898. */
  899. int
  900. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  901. {
  902. struct drm_device *dev = ring->dev;
  903. struct drm_i915_private *dev_priv = dev->dev_private;
  904. bool interruptible = dev_priv->mm.interruptible;
  905. int ret;
  906. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  907. BUG_ON(seqno == 0);
  908. ret = i915_gem_check_wedge(dev_priv, interruptible);
  909. if (ret)
  910. return ret;
  911. ret = i915_gem_check_olr(ring, seqno);
  912. if (ret)
  913. return ret;
  914. return __wait_seqno(ring, seqno, interruptible, NULL);
  915. }
  916. /**
  917. * Ensures that all rendering to the object has completed and the object is
  918. * safe to unbind from the GTT or access from the CPU.
  919. */
  920. static __must_check int
  921. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  922. bool readonly)
  923. {
  924. struct intel_ring_buffer *ring = obj->ring;
  925. u32 seqno;
  926. int ret;
  927. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  928. if (seqno == 0)
  929. return 0;
  930. ret = i915_wait_seqno(ring, seqno);
  931. if (ret)
  932. return ret;
  933. i915_gem_retire_requests_ring(ring);
  934. /* Manually manage the write flush as we may have not yet
  935. * retired the buffer.
  936. */
  937. if (obj->last_write_seqno &&
  938. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  939. obj->last_write_seqno = 0;
  940. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  941. }
  942. return 0;
  943. }
  944. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  945. * as the object state may change during this call.
  946. */
  947. static __must_check int
  948. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  949. bool readonly)
  950. {
  951. struct drm_device *dev = obj->base.dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. struct intel_ring_buffer *ring = obj->ring;
  954. u32 seqno;
  955. int ret;
  956. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  957. BUG_ON(!dev_priv->mm.interruptible);
  958. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  959. if (seqno == 0)
  960. return 0;
  961. ret = i915_gem_check_wedge(dev_priv, true);
  962. if (ret)
  963. return ret;
  964. ret = i915_gem_check_olr(ring, seqno);
  965. if (ret)
  966. return ret;
  967. mutex_unlock(&dev->struct_mutex);
  968. ret = __wait_seqno(ring, seqno, true, NULL);
  969. mutex_lock(&dev->struct_mutex);
  970. i915_gem_retire_requests_ring(ring);
  971. /* Manually manage the write flush as we may have not yet
  972. * retired the buffer.
  973. */
  974. if (obj->last_write_seqno &&
  975. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  976. obj->last_write_seqno = 0;
  977. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  978. }
  979. return ret;
  980. }
  981. /**
  982. * Called when user space prepares to use an object with the CPU, either
  983. * through the mmap ioctl's mapping or a GTT mapping.
  984. */
  985. int
  986. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  987. struct drm_file *file)
  988. {
  989. struct drm_i915_gem_set_domain *args = data;
  990. struct drm_i915_gem_object *obj;
  991. uint32_t read_domains = args->read_domains;
  992. uint32_t write_domain = args->write_domain;
  993. int ret;
  994. /* Only handle setting domains to types used by the CPU. */
  995. if (write_domain & I915_GEM_GPU_DOMAINS)
  996. return -EINVAL;
  997. if (read_domains & I915_GEM_GPU_DOMAINS)
  998. return -EINVAL;
  999. /* Having something in the write domain implies it's in the read
  1000. * domain, and only that read domain. Enforce that in the request.
  1001. */
  1002. if (write_domain != 0 && read_domains != write_domain)
  1003. return -EINVAL;
  1004. ret = i915_mutex_lock_interruptible(dev);
  1005. if (ret)
  1006. return ret;
  1007. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1008. if (&obj->base == NULL) {
  1009. ret = -ENOENT;
  1010. goto unlock;
  1011. }
  1012. /* Try to flush the object off the GPU without holding the lock.
  1013. * We will repeat the flush holding the lock in the normal manner
  1014. * to catch cases where we are gazumped.
  1015. */
  1016. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1017. if (ret)
  1018. goto unref;
  1019. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1020. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1021. /* Silently promote "you're not bound, there was nothing to do"
  1022. * to success, since the client was just asking us to
  1023. * make sure everything was done.
  1024. */
  1025. if (ret == -EINVAL)
  1026. ret = 0;
  1027. } else {
  1028. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1029. }
  1030. unref:
  1031. drm_gem_object_unreference(&obj->base);
  1032. unlock:
  1033. mutex_unlock(&dev->struct_mutex);
  1034. return ret;
  1035. }
  1036. /**
  1037. * Called when user space has done writes to this buffer
  1038. */
  1039. int
  1040. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1041. struct drm_file *file)
  1042. {
  1043. struct drm_i915_gem_sw_finish *args = data;
  1044. struct drm_i915_gem_object *obj;
  1045. int ret = 0;
  1046. ret = i915_mutex_lock_interruptible(dev);
  1047. if (ret)
  1048. return ret;
  1049. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1050. if (&obj->base == NULL) {
  1051. ret = -ENOENT;
  1052. goto unlock;
  1053. }
  1054. /* Pinned buffers may be scanout, so flush the cache */
  1055. if (obj->pin_count)
  1056. i915_gem_object_flush_cpu_write_domain(obj);
  1057. drm_gem_object_unreference(&obj->base);
  1058. unlock:
  1059. mutex_unlock(&dev->struct_mutex);
  1060. return ret;
  1061. }
  1062. /**
  1063. * Maps the contents of an object, returning the address it is mapped
  1064. * into.
  1065. *
  1066. * While the mapping holds a reference on the contents of the object, it doesn't
  1067. * imply a ref on the object itself.
  1068. */
  1069. int
  1070. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1071. struct drm_file *file)
  1072. {
  1073. struct drm_i915_gem_mmap *args = data;
  1074. struct drm_gem_object *obj;
  1075. unsigned long addr;
  1076. obj = drm_gem_object_lookup(dev, file, args->handle);
  1077. if (obj == NULL)
  1078. return -ENOENT;
  1079. /* prime objects have no backing filp to GEM mmap
  1080. * pages from.
  1081. */
  1082. if (!obj->filp) {
  1083. drm_gem_object_unreference_unlocked(obj);
  1084. return -EINVAL;
  1085. }
  1086. addr = vm_mmap(obj->filp, 0, args->size,
  1087. PROT_READ | PROT_WRITE, MAP_SHARED,
  1088. args->offset);
  1089. drm_gem_object_unreference_unlocked(obj);
  1090. if (IS_ERR((void *)addr))
  1091. return addr;
  1092. args->addr_ptr = (uint64_t) addr;
  1093. return 0;
  1094. }
  1095. /**
  1096. * i915_gem_fault - fault a page into the GTT
  1097. * vma: VMA in question
  1098. * vmf: fault info
  1099. *
  1100. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1101. * from userspace. The fault handler takes care of binding the object to
  1102. * the GTT (if needed), allocating and programming a fence register (again,
  1103. * only if needed based on whether the old reg is still valid or the object
  1104. * is tiled) and inserting a new PTE into the faulting process.
  1105. *
  1106. * Note that the faulting process may involve evicting existing objects
  1107. * from the GTT and/or fence registers to make room. So performance may
  1108. * suffer if the GTT working set is large or there are few fence registers
  1109. * left.
  1110. */
  1111. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1112. {
  1113. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1114. struct drm_device *dev = obj->base.dev;
  1115. drm_i915_private_t *dev_priv = dev->dev_private;
  1116. pgoff_t page_offset;
  1117. unsigned long pfn;
  1118. int ret = 0;
  1119. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1120. /* We don't use vmf->pgoff since that has the fake offset */
  1121. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1122. PAGE_SHIFT;
  1123. ret = i915_mutex_lock_interruptible(dev);
  1124. if (ret)
  1125. goto out;
  1126. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1127. /* Now bind it into the GTT if needed */
  1128. if (!obj->map_and_fenceable) {
  1129. ret = i915_gem_object_unbind(obj);
  1130. if (ret)
  1131. goto unlock;
  1132. }
  1133. if (!obj->gtt_space) {
  1134. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1135. if (ret)
  1136. goto unlock;
  1137. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1138. if (ret)
  1139. goto unlock;
  1140. }
  1141. if (!obj->has_global_gtt_mapping)
  1142. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1143. ret = i915_gem_object_get_fence(obj);
  1144. if (ret)
  1145. goto unlock;
  1146. if (i915_gem_object_is_inactive(obj))
  1147. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1148. obj->fault_mappable = true;
  1149. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1150. page_offset;
  1151. /* Finally, remap it using the new GTT offset */
  1152. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1153. unlock:
  1154. mutex_unlock(&dev->struct_mutex);
  1155. out:
  1156. switch (ret) {
  1157. case -EIO:
  1158. /* If this -EIO is due to a gpu hang, give the reset code a
  1159. * chance to clean up the mess. Otherwise return the proper
  1160. * SIGBUS. */
  1161. if (!atomic_read(&dev_priv->mm.wedged))
  1162. return VM_FAULT_SIGBUS;
  1163. case -EAGAIN:
  1164. /* Give the error handler a chance to run and move the
  1165. * objects off the GPU active list. Next time we service the
  1166. * fault, we should be able to transition the page into the
  1167. * GTT without touching the GPU (and so avoid further
  1168. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1169. * with coherency, just lost writes.
  1170. */
  1171. set_need_resched();
  1172. case 0:
  1173. case -ERESTARTSYS:
  1174. case -EINTR:
  1175. return VM_FAULT_NOPAGE;
  1176. case -ENOMEM:
  1177. return VM_FAULT_OOM;
  1178. default:
  1179. return VM_FAULT_SIGBUS;
  1180. }
  1181. }
  1182. /**
  1183. * i915_gem_release_mmap - remove physical page mappings
  1184. * @obj: obj in question
  1185. *
  1186. * Preserve the reservation of the mmapping with the DRM core code, but
  1187. * relinquish ownership of the pages back to the system.
  1188. *
  1189. * It is vital that we remove the page mapping if we have mapped a tiled
  1190. * object through the GTT and then lose the fence register due to
  1191. * resource pressure. Similarly if the object has been moved out of the
  1192. * aperture, than pages mapped into userspace must be revoked. Removing the
  1193. * mapping will then trigger a page fault on the next user access, allowing
  1194. * fixup by i915_gem_fault().
  1195. */
  1196. void
  1197. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1198. {
  1199. if (!obj->fault_mappable)
  1200. return;
  1201. if (obj->base.dev->dev_mapping)
  1202. unmap_mapping_range(obj->base.dev->dev_mapping,
  1203. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1204. obj->base.size, 1);
  1205. obj->fault_mappable = false;
  1206. }
  1207. static uint32_t
  1208. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1209. {
  1210. uint32_t gtt_size;
  1211. if (INTEL_INFO(dev)->gen >= 4 ||
  1212. tiling_mode == I915_TILING_NONE)
  1213. return size;
  1214. /* Previous chips need a power-of-two fence region when tiling */
  1215. if (INTEL_INFO(dev)->gen == 3)
  1216. gtt_size = 1024*1024;
  1217. else
  1218. gtt_size = 512*1024;
  1219. while (gtt_size < size)
  1220. gtt_size <<= 1;
  1221. return gtt_size;
  1222. }
  1223. /**
  1224. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1225. * @obj: object to check
  1226. *
  1227. * Return the required GTT alignment for an object, taking into account
  1228. * potential fence register mapping.
  1229. */
  1230. static uint32_t
  1231. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1232. uint32_t size,
  1233. int tiling_mode)
  1234. {
  1235. /*
  1236. * Minimum alignment is 4k (GTT page size), but might be greater
  1237. * if a fence register is needed for the object.
  1238. */
  1239. if (INTEL_INFO(dev)->gen >= 4 ||
  1240. tiling_mode == I915_TILING_NONE)
  1241. return 4096;
  1242. /*
  1243. * Previous chips need to be aligned to the size of the smallest
  1244. * fence register that can contain the object.
  1245. */
  1246. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1247. }
  1248. /**
  1249. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1250. * unfenced object
  1251. * @dev: the device
  1252. * @size: size of the object
  1253. * @tiling_mode: tiling mode of the object
  1254. *
  1255. * Return the required GTT alignment for an object, only taking into account
  1256. * unfenced tiled surface requirements.
  1257. */
  1258. uint32_t
  1259. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1260. uint32_t size,
  1261. int tiling_mode)
  1262. {
  1263. /*
  1264. * Minimum alignment is 4k (GTT page size) for sane hw.
  1265. */
  1266. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1267. tiling_mode == I915_TILING_NONE)
  1268. return 4096;
  1269. /* Previous hardware however needs to be aligned to a power-of-two
  1270. * tile height. The simplest method for determining this is to reuse
  1271. * the power-of-tile object size.
  1272. */
  1273. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1274. }
  1275. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1276. {
  1277. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1278. int ret;
  1279. if (obj->base.map_list.map)
  1280. return 0;
  1281. ret = drm_gem_create_mmap_offset(&obj->base);
  1282. if (ret != -ENOSPC)
  1283. return ret;
  1284. /* Badly fragmented mmap space? The only way we can recover
  1285. * space is by destroying unwanted objects. We can't randomly release
  1286. * mmap_offsets as userspace expects them to be persistent for the
  1287. * lifetime of the objects. The closest we can is to release the
  1288. * offsets on purgeable objects by truncating it and marking it purged,
  1289. * which prevents userspace from ever using that object again.
  1290. */
  1291. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1292. ret = drm_gem_create_mmap_offset(&obj->base);
  1293. if (ret != -ENOSPC)
  1294. return ret;
  1295. i915_gem_shrink_all(dev_priv);
  1296. return drm_gem_create_mmap_offset(&obj->base);
  1297. }
  1298. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1299. {
  1300. if (!obj->base.map_list.map)
  1301. return;
  1302. drm_gem_free_mmap_offset(&obj->base);
  1303. }
  1304. int
  1305. i915_gem_mmap_gtt(struct drm_file *file,
  1306. struct drm_device *dev,
  1307. uint32_t handle,
  1308. uint64_t *offset)
  1309. {
  1310. struct drm_i915_private *dev_priv = dev->dev_private;
  1311. struct drm_i915_gem_object *obj;
  1312. int ret;
  1313. ret = i915_mutex_lock_interruptible(dev);
  1314. if (ret)
  1315. return ret;
  1316. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1317. if (&obj->base == NULL) {
  1318. ret = -ENOENT;
  1319. goto unlock;
  1320. }
  1321. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1322. ret = -E2BIG;
  1323. goto out;
  1324. }
  1325. if (obj->madv != I915_MADV_WILLNEED) {
  1326. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1327. ret = -EINVAL;
  1328. goto out;
  1329. }
  1330. ret = i915_gem_object_create_mmap_offset(obj);
  1331. if (ret)
  1332. goto out;
  1333. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1334. out:
  1335. drm_gem_object_unreference(&obj->base);
  1336. unlock:
  1337. mutex_unlock(&dev->struct_mutex);
  1338. return ret;
  1339. }
  1340. /**
  1341. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1342. * @dev: DRM device
  1343. * @data: GTT mapping ioctl data
  1344. * @file: GEM object info
  1345. *
  1346. * Simply returns the fake offset to userspace so it can mmap it.
  1347. * The mmap call will end up in drm_gem_mmap(), which will set things
  1348. * up so we can get faults in the handler above.
  1349. *
  1350. * The fault handler will take care of binding the object into the GTT
  1351. * (since it may have been evicted to make room for something), allocating
  1352. * a fence register, and mapping the appropriate aperture address into
  1353. * userspace.
  1354. */
  1355. int
  1356. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1357. struct drm_file *file)
  1358. {
  1359. struct drm_i915_gem_mmap_gtt *args = data;
  1360. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1361. }
  1362. /* Immediately discard the backing storage */
  1363. static void
  1364. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1365. {
  1366. struct inode *inode;
  1367. i915_gem_object_free_mmap_offset(obj);
  1368. if (obj->base.filp == NULL)
  1369. return;
  1370. /* Our goal here is to return as much of the memory as
  1371. * is possible back to the system as we are called from OOM.
  1372. * To do this we must instruct the shmfs to drop all of its
  1373. * backing pages, *now*.
  1374. */
  1375. inode = obj->base.filp->f_path.dentry->d_inode;
  1376. shmem_truncate_range(inode, 0, (loff_t)-1);
  1377. obj->madv = __I915_MADV_PURGED;
  1378. }
  1379. static inline int
  1380. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1381. {
  1382. return obj->madv == I915_MADV_DONTNEED;
  1383. }
  1384. static void
  1385. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1386. {
  1387. int page_count = obj->base.size / PAGE_SIZE;
  1388. struct scatterlist *sg;
  1389. int ret, i;
  1390. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1391. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1392. if (ret) {
  1393. /* In the event of a disaster, abandon all caches and
  1394. * hope for the best.
  1395. */
  1396. WARN_ON(ret != -EIO);
  1397. i915_gem_clflush_object(obj);
  1398. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1399. }
  1400. if (i915_gem_object_needs_bit17_swizzle(obj))
  1401. i915_gem_object_save_bit_17_swizzle(obj);
  1402. if (obj->madv == I915_MADV_DONTNEED)
  1403. obj->dirty = 0;
  1404. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1405. struct page *page = sg_page(sg);
  1406. if (obj->dirty)
  1407. set_page_dirty(page);
  1408. if (obj->madv == I915_MADV_WILLNEED)
  1409. mark_page_accessed(page);
  1410. page_cache_release(page);
  1411. }
  1412. obj->dirty = 0;
  1413. sg_free_table(obj->pages);
  1414. kfree(obj->pages);
  1415. }
  1416. static int
  1417. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1418. {
  1419. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1420. if (obj->pages == NULL)
  1421. return 0;
  1422. BUG_ON(obj->gtt_space);
  1423. if (obj->pages_pin_count)
  1424. return -EBUSY;
  1425. ops->put_pages(obj);
  1426. obj->pages = NULL;
  1427. list_del(&obj->gtt_list);
  1428. if (i915_gem_object_is_purgeable(obj))
  1429. i915_gem_object_truncate(obj);
  1430. return 0;
  1431. }
  1432. static long
  1433. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1434. {
  1435. struct drm_i915_gem_object *obj, *next;
  1436. long count = 0;
  1437. list_for_each_entry_safe(obj, next,
  1438. &dev_priv->mm.unbound_list,
  1439. gtt_list) {
  1440. if (i915_gem_object_is_purgeable(obj) &&
  1441. i915_gem_object_put_pages(obj) == 0) {
  1442. count += obj->base.size >> PAGE_SHIFT;
  1443. if (count >= target)
  1444. return count;
  1445. }
  1446. }
  1447. list_for_each_entry_safe(obj, next,
  1448. &dev_priv->mm.inactive_list,
  1449. mm_list) {
  1450. if (i915_gem_object_is_purgeable(obj) &&
  1451. i915_gem_object_unbind(obj) == 0 &&
  1452. i915_gem_object_put_pages(obj) == 0) {
  1453. count += obj->base.size >> PAGE_SHIFT;
  1454. if (count >= target)
  1455. return count;
  1456. }
  1457. }
  1458. return count;
  1459. }
  1460. static void
  1461. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1462. {
  1463. struct drm_i915_gem_object *obj, *next;
  1464. i915_gem_evict_everything(dev_priv->dev);
  1465. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1466. i915_gem_object_put_pages(obj);
  1467. }
  1468. static int
  1469. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1470. {
  1471. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1472. int page_count, i;
  1473. struct address_space *mapping;
  1474. struct sg_table *st;
  1475. struct scatterlist *sg;
  1476. struct page *page;
  1477. gfp_t gfp;
  1478. /* Assert that the object is not currently in any GPU domain. As it
  1479. * wasn't in the GTT, there shouldn't be any way it could have been in
  1480. * a GPU cache
  1481. */
  1482. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1483. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1484. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1485. if (st == NULL)
  1486. return -ENOMEM;
  1487. page_count = obj->base.size / PAGE_SIZE;
  1488. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1489. sg_free_table(st);
  1490. kfree(st);
  1491. return -ENOMEM;
  1492. }
  1493. /* Get the list of pages out of our struct file. They'll be pinned
  1494. * at this point until we release them.
  1495. *
  1496. * Fail silently without starting the shrinker
  1497. */
  1498. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1499. gfp = mapping_gfp_mask(mapping);
  1500. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1501. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1502. for_each_sg(st->sgl, sg, page_count, i) {
  1503. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1504. if (IS_ERR(page)) {
  1505. i915_gem_purge(dev_priv, page_count);
  1506. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1507. }
  1508. if (IS_ERR(page)) {
  1509. /* We've tried hard to allocate the memory by reaping
  1510. * our own buffer, now let the real VM do its job and
  1511. * go down in flames if truly OOM.
  1512. */
  1513. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1514. gfp |= __GFP_IO | __GFP_WAIT;
  1515. i915_gem_shrink_all(dev_priv);
  1516. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1517. if (IS_ERR(page))
  1518. goto err_pages;
  1519. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1520. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1521. }
  1522. sg_set_page(sg, page, PAGE_SIZE, 0);
  1523. }
  1524. if (i915_gem_object_needs_bit17_swizzle(obj))
  1525. i915_gem_object_do_bit_17_swizzle(obj);
  1526. obj->pages = st;
  1527. return 0;
  1528. err_pages:
  1529. for_each_sg(st->sgl, sg, i, page_count)
  1530. page_cache_release(sg_page(sg));
  1531. sg_free_table(st);
  1532. kfree(st);
  1533. return PTR_ERR(page);
  1534. }
  1535. /* Ensure that the associated pages are gathered from the backing storage
  1536. * and pinned into our object. i915_gem_object_get_pages() may be called
  1537. * multiple times before they are released by a single call to
  1538. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1539. * either as a result of memory pressure (reaping pages under the shrinker)
  1540. * or as the object is itself released.
  1541. */
  1542. int
  1543. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1544. {
  1545. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1546. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1547. int ret;
  1548. if (obj->pages)
  1549. return 0;
  1550. BUG_ON(obj->pages_pin_count);
  1551. ret = ops->get_pages(obj);
  1552. if (ret)
  1553. return ret;
  1554. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1555. return 0;
  1556. }
  1557. void
  1558. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1559. struct intel_ring_buffer *ring,
  1560. u32 seqno)
  1561. {
  1562. struct drm_device *dev = obj->base.dev;
  1563. struct drm_i915_private *dev_priv = dev->dev_private;
  1564. BUG_ON(ring == NULL);
  1565. obj->ring = ring;
  1566. /* Add a reference if we're newly entering the active list. */
  1567. if (!obj->active) {
  1568. drm_gem_object_reference(&obj->base);
  1569. obj->active = 1;
  1570. }
  1571. /* Move from whatever list we were on to the tail of execution. */
  1572. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1573. list_move_tail(&obj->ring_list, &ring->active_list);
  1574. obj->last_read_seqno = seqno;
  1575. if (obj->fenced_gpu_access) {
  1576. obj->last_fenced_seqno = seqno;
  1577. /* Bump MRU to take account of the delayed flush */
  1578. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1579. struct drm_i915_fence_reg *reg;
  1580. reg = &dev_priv->fence_regs[obj->fence_reg];
  1581. list_move_tail(&reg->lru_list,
  1582. &dev_priv->mm.fence_list);
  1583. }
  1584. }
  1585. }
  1586. static void
  1587. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1588. {
  1589. struct drm_device *dev = obj->base.dev;
  1590. struct drm_i915_private *dev_priv = dev->dev_private;
  1591. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1592. BUG_ON(!obj->active);
  1593. if (obj->pin_count) /* are we a framebuffer? */
  1594. intel_mark_fb_idle(obj);
  1595. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1596. list_del_init(&obj->ring_list);
  1597. obj->ring = NULL;
  1598. obj->last_read_seqno = 0;
  1599. obj->last_write_seqno = 0;
  1600. obj->base.write_domain = 0;
  1601. obj->last_fenced_seqno = 0;
  1602. obj->fenced_gpu_access = false;
  1603. obj->active = 0;
  1604. drm_gem_object_unreference(&obj->base);
  1605. WARN_ON(i915_verify_lists(dev));
  1606. }
  1607. static u32
  1608. i915_gem_get_seqno(struct drm_device *dev)
  1609. {
  1610. drm_i915_private_t *dev_priv = dev->dev_private;
  1611. u32 seqno = dev_priv->next_seqno;
  1612. /* reserve 0 for non-seqno */
  1613. if (++dev_priv->next_seqno == 0)
  1614. dev_priv->next_seqno = 1;
  1615. return seqno;
  1616. }
  1617. u32
  1618. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1619. {
  1620. if (ring->outstanding_lazy_request == 0)
  1621. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1622. return ring->outstanding_lazy_request;
  1623. }
  1624. int
  1625. i915_add_request(struct intel_ring_buffer *ring,
  1626. struct drm_file *file,
  1627. struct drm_i915_gem_request *request)
  1628. {
  1629. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1630. uint32_t seqno;
  1631. u32 request_ring_position;
  1632. int was_empty;
  1633. int ret;
  1634. /*
  1635. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1636. * after having emitted the batchbuffer command. Hence we need to fix
  1637. * things up similar to emitting the lazy request. The difference here
  1638. * is that the flush _must_ happen before the next request, no matter
  1639. * what.
  1640. */
  1641. ret = intel_ring_flush_all_caches(ring);
  1642. if (ret)
  1643. return ret;
  1644. if (request == NULL) {
  1645. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1646. if (request == NULL)
  1647. return -ENOMEM;
  1648. }
  1649. seqno = i915_gem_next_request_seqno(ring);
  1650. /* Record the position of the start of the request so that
  1651. * should we detect the updated seqno part-way through the
  1652. * GPU processing the request, we never over-estimate the
  1653. * position of the head.
  1654. */
  1655. request_ring_position = intel_ring_get_tail(ring);
  1656. ret = ring->add_request(ring, &seqno);
  1657. if (ret) {
  1658. kfree(request);
  1659. return ret;
  1660. }
  1661. trace_i915_gem_request_add(ring, seqno);
  1662. request->seqno = seqno;
  1663. request->ring = ring;
  1664. request->tail = request_ring_position;
  1665. request->emitted_jiffies = jiffies;
  1666. was_empty = list_empty(&ring->request_list);
  1667. list_add_tail(&request->list, &ring->request_list);
  1668. request->file_priv = NULL;
  1669. if (file) {
  1670. struct drm_i915_file_private *file_priv = file->driver_priv;
  1671. spin_lock(&file_priv->mm.lock);
  1672. request->file_priv = file_priv;
  1673. list_add_tail(&request->client_list,
  1674. &file_priv->mm.request_list);
  1675. spin_unlock(&file_priv->mm.lock);
  1676. }
  1677. ring->outstanding_lazy_request = 0;
  1678. if (!dev_priv->mm.suspended) {
  1679. if (i915_enable_hangcheck) {
  1680. mod_timer(&dev_priv->hangcheck_timer,
  1681. jiffies +
  1682. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1683. }
  1684. if (was_empty) {
  1685. queue_delayed_work(dev_priv->wq,
  1686. &dev_priv->mm.retire_work, HZ);
  1687. intel_mark_busy(dev_priv->dev);
  1688. }
  1689. }
  1690. return 0;
  1691. }
  1692. static inline void
  1693. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1694. {
  1695. struct drm_i915_file_private *file_priv = request->file_priv;
  1696. if (!file_priv)
  1697. return;
  1698. spin_lock(&file_priv->mm.lock);
  1699. if (request->file_priv) {
  1700. list_del(&request->client_list);
  1701. request->file_priv = NULL;
  1702. }
  1703. spin_unlock(&file_priv->mm.lock);
  1704. }
  1705. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1706. struct intel_ring_buffer *ring)
  1707. {
  1708. while (!list_empty(&ring->request_list)) {
  1709. struct drm_i915_gem_request *request;
  1710. request = list_first_entry(&ring->request_list,
  1711. struct drm_i915_gem_request,
  1712. list);
  1713. list_del(&request->list);
  1714. i915_gem_request_remove_from_client(request);
  1715. kfree(request);
  1716. }
  1717. while (!list_empty(&ring->active_list)) {
  1718. struct drm_i915_gem_object *obj;
  1719. obj = list_first_entry(&ring->active_list,
  1720. struct drm_i915_gem_object,
  1721. ring_list);
  1722. i915_gem_object_move_to_inactive(obj);
  1723. }
  1724. }
  1725. static void i915_gem_reset_fences(struct drm_device *dev)
  1726. {
  1727. struct drm_i915_private *dev_priv = dev->dev_private;
  1728. int i;
  1729. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1730. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1731. i915_gem_write_fence(dev, i, NULL);
  1732. if (reg->obj)
  1733. i915_gem_object_fence_lost(reg->obj);
  1734. reg->pin_count = 0;
  1735. reg->obj = NULL;
  1736. INIT_LIST_HEAD(&reg->lru_list);
  1737. }
  1738. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1739. }
  1740. void i915_gem_reset(struct drm_device *dev)
  1741. {
  1742. struct drm_i915_private *dev_priv = dev->dev_private;
  1743. struct drm_i915_gem_object *obj;
  1744. struct intel_ring_buffer *ring;
  1745. int i;
  1746. for_each_ring(ring, dev_priv, i)
  1747. i915_gem_reset_ring_lists(dev_priv, ring);
  1748. /* Move everything out of the GPU domains to ensure we do any
  1749. * necessary invalidation upon reuse.
  1750. */
  1751. list_for_each_entry(obj,
  1752. &dev_priv->mm.inactive_list,
  1753. mm_list)
  1754. {
  1755. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1756. }
  1757. /* The fence registers are invalidated so clear them out */
  1758. i915_gem_reset_fences(dev);
  1759. }
  1760. /**
  1761. * This function clears the request list as sequence numbers are passed.
  1762. */
  1763. void
  1764. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1765. {
  1766. uint32_t seqno;
  1767. int i;
  1768. if (list_empty(&ring->request_list))
  1769. return;
  1770. WARN_ON(i915_verify_lists(ring->dev));
  1771. seqno = ring->get_seqno(ring, true);
  1772. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1773. if (seqno >= ring->sync_seqno[i])
  1774. ring->sync_seqno[i] = 0;
  1775. while (!list_empty(&ring->request_list)) {
  1776. struct drm_i915_gem_request *request;
  1777. request = list_first_entry(&ring->request_list,
  1778. struct drm_i915_gem_request,
  1779. list);
  1780. if (!i915_seqno_passed(seqno, request->seqno))
  1781. break;
  1782. trace_i915_gem_request_retire(ring, request->seqno);
  1783. /* We know the GPU must have read the request to have
  1784. * sent us the seqno + interrupt, so use the position
  1785. * of tail of the request to update the last known position
  1786. * of the GPU head.
  1787. */
  1788. ring->last_retired_head = request->tail;
  1789. list_del(&request->list);
  1790. i915_gem_request_remove_from_client(request);
  1791. kfree(request);
  1792. }
  1793. /* Move any buffers on the active list that are no longer referenced
  1794. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1795. */
  1796. while (!list_empty(&ring->active_list)) {
  1797. struct drm_i915_gem_object *obj;
  1798. obj = list_first_entry(&ring->active_list,
  1799. struct drm_i915_gem_object,
  1800. ring_list);
  1801. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1802. break;
  1803. i915_gem_object_move_to_inactive(obj);
  1804. }
  1805. if (unlikely(ring->trace_irq_seqno &&
  1806. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1807. ring->irq_put(ring);
  1808. ring->trace_irq_seqno = 0;
  1809. }
  1810. WARN_ON(i915_verify_lists(ring->dev));
  1811. }
  1812. void
  1813. i915_gem_retire_requests(struct drm_device *dev)
  1814. {
  1815. drm_i915_private_t *dev_priv = dev->dev_private;
  1816. struct intel_ring_buffer *ring;
  1817. int i;
  1818. for_each_ring(ring, dev_priv, i)
  1819. i915_gem_retire_requests_ring(ring);
  1820. }
  1821. static void
  1822. i915_gem_retire_work_handler(struct work_struct *work)
  1823. {
  1824. drm_i915_private_t *dev_priv;
  1825. struct drm_device *dev;
  1826. struct intel_ring_buffer *ring;
  1827. bool idle;
  1828. int i;
  1829. dev_priv = container_of(work, drm_i915_private_t,
  1830. mm.retire_work.work);
  1831. dev = dev_priv->dev;
  1832. /* Come back later if the device is busy... */
  1833. if (!mutex_trylock(&dev->struct_mutex)) {
  1834. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1835. return;
  1836. }
  1837. i915_gem_retire_requests(dev);
  1838. /* Send a periodic flush down the ring so we don't hold onto GEM
  1839. * objects indefinitely.
  1840. */
  1841. idle = true;
  1842. for_each_ring(ring, dev_priv, i) {
  1843. if (ring->gpu_caches_dirty)
  1844. i915_add_request(ring, NULL, NULL);
  1845. idle &= list_empty(&ring->request_list);
  1846. }
  1847. if (!dev_priv->mm.suspended && !idle)
  1848. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1849. if (idle)
  1850. intel_mark_idle(dev);
  1851. mutex_unlock(&dev->struct_mutex);
  1852. }
  1853. /**
  1854. * Ensures that an object will eventually get non-busy by flushing any required
  1855. * write domains, emitting any outstanding lazy request and retiring and
  1856. * completed requests.
  1857. */
  1858. static int
  1859. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1860. {
  1861. int ret;
  1862. if (obj->active) {
  1863. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1864. if (ret)
  1865. return ret;
  1866. i915_gem_retire_requests_ring(obj->ring);
  1867. }
  1868. return 0;
  1869. }
  1870. /**
  1871. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1872. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1873. *
  1874. * Returns 0 if successful, else an error is returned with the remaining time in
  1875. * the timeout parameter.
  1876. * -ETIME: object is still busy after timeout
  1877. * -ERESTARTSYS: signal interrupted the wait
  1878. * -ENONENT: object doesn't exist
  1879. * Also possible, but rare:
  1880. * -EAGAIN: GPU wedged
  1881. * -ENOMEM: damn
  1882. * -ENODEV: Internal IRQ fail
  1883. * -E?: The add request failed
  1884. *
  1885. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1886. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1887. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1888. * without holding struct_mutex the object may become re-busied before this
  1889. * function completes. A similar but shorter * race condition exists in the busy
  1890. * ioctl
  1891. */
  1892. int
  1893. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1894. {
  1895. struct drm_i915_gem_wait *args = data;
  1896. struct drm_i915_gem_object *obj;
  1897. struct intel_ring_buffer *ring = NULL;
  1898. struct timespec timeout_stack, *timeout = NULL;
  1899. u32 seqno = 0;
  1900. int ret = 0;
  1901. if (args->timeout_ns >= 0) {
  1902. timeout_stack = ns_to_timespec(args->timeout_ns);
  1903. timeout = &timeout_stack;
  1904. }
  1905. ret = i915_mutex_lock_interruptible(dev);
  1906. if (ret)
  1907. return ret;
  1908. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1909. if (&obj->base == NULL) {
  1910. mutex_unlock(&dev->struct_mutex);
  1911. return -ENOENT;
  1912. }
  1913. /* Need to make sure the object gets inactive eventually. */
  1914. ret = i915_gem_object_flush_active(obj);
  1915. if (ret)
  1916. goto out;
  1917. if (obj->active) {
  1918. seqno = obj->last_read_seqno;
  1919. ring = obj->ring;
  1920. }
  1921. if (seqno == 0)
  1922. goto out;
  1923. /* Do this after OLR check to make sure we make forward progress polling
  1924. * on this IOCTL with a 0 timeout (like busy ioctl)
  1925. */
  1926. if (!args->timeout_ns) {
  1927. ret = -ETIME;
  1928. goto out;
  1929. }
  1930. drm_gem_object_unreference(&obj->base);
  1931. mutex_unlock(&dev->struct_mutex);
  1932. ret = __wait_seqno(ring, seqno, true, timeout);
  1933. if (timeout) {
  1934. WARN_ON(!timespec_valid(timeout));
  1935. args->timeout_ns = timespec_to_ns(timeout);
  1936. }
  1937. return ret;
  1938. out:
  1939. drm_gem_object_unreference(&obj->base);
  1940. mutex_unlock(&dev->struct_mutex);
  1941. return ret;
  1942. }
  1943. /**
  1944. * i915_gem_object_sync - sync an object to a ring.
  1945. *
  1946. * @obj: object which may be in use on another ring.
  1947. * @to: ring we wish to use the object on. May be NULL.
  1948. *
  1949. * This code is meant to abstract object synchronization with the GPU.
  1950. * Calling with NULL implies synchronizing the object with the CPU
  1951. * rather than a particular GPU ring.
  1952. *
  1953. * Returns 0 if successful, else propagates up the lower layer error.
  1954. */
  1955. int
  1956. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1957. struct intel_ring_buffer *to)
  1958. {
  1959. struct intel_ring_buffer *from = obj->ring;
  1960. u32 seqno;
  1961. int ret, idx;
  1962. if (from == NULL || to == from)
  1963. return 0;
  1964. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1965. return i915_gem_object_wait_rendering(obj, false);
  1966. idx = intel_ring_sync_index(from, to);
  1967. seqno = obj->last_read_seqno;
  1968. if (seqno <= from->sync_seqno[idx])
  1969. return 0;
  1970. ret = i915_gem_check_olr(obj->ring, seqno);
  1971. if (ret)
  1972. return ret;
  1973. ret = to->sync_to(to, from, seqno);
  1974. if (!ret)
  1975. from->sync_seqno[idx] = seqno;
  1976. return ret;
  1977. }
  1978. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1979. {
  1980. u32 old_write_domain, old_read_domains;
  1981. /* Act a barrier for all accesses through the GTT */
  1982. mb();
  1983. /* Force a pagefault for domain tracking on next user access */
  1984. i915_gem_release_mmap(obj);
  1985. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1986. return;
  1987. old_read_domains = obj->base.read_domains;
  1988. old_write_domain = obj->base.write_domain;
  1989. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1990. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1991. trace_i915_gem_object_change_domain(obj,
  1992. old_read_domains,
  1993. old_write_domain);
  1994. }
  1995. /**
  1996. * Unbinds an object from the GTT aperture.
  1997. */
  1998. int
  1999. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2000. {
  2001. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2002. int ret = 0;
  2003. if (obj->gtt_space == NULL)
  2004. return 0;
  2005. if (obj->pin_count)
  2006. return -EBUSY;
  2007. BUG_ON(obj->pages == NULL);
  2008. ret = i915_gem_object_finish_gpu(obj);
  2009. if (ret)
  2010. return ret;
  2011. /* Continue on if we fail due to EIO, the GPU is hung so we
  2012. * should be safe and we need to cleanup or else we might
  2013. * cause memory corruption through use-after-free.
  2014. */
  2015. i915_gem_object_finish_gtt(obj);
  2016. /* release the fence reg _after_ flushing */
  2017. ret = i915_gem_object_put_fence(obj);
  2018. if (ret)
  2019. return ret;
  2020. trace_i915_gem_object_unbind(obj);
  2021. if (obj->has_global_gtt_mapping)
  2022. i915_gem_gtt_unbind_object(obj);
  2023. if (obj->has_aliasing_ppgtt_mapping) {
  2024. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2025. obj->has_aliasing_ppgtt_mapping = 0;
  2026. }
  2027. i915_gem_gtt_finish_object(obj);
  2028. list_del(&obj->mm_list);
  2029. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2030. /* Avoid an unnecessary call to unbind on rebind. */
  2031. obj->map_and_fenceable = true;
  2032. drm_mm_put_block(obj->gtt_space);
  2033. obj->gtt_space = NULL;
  2034. obj->gtt_offset = 0;
  2035. return 0;
  2036. }
  2037. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2038. {
  2039. if (list_empty(&ring->active_list))
  2040. return 0;
  2041. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2042. }
  2043. int i915_gpu_idle(struct drm_device *dev)
  2044. {
  2045. drm_i915_private_t *dev_priv = dev->dev_private;
  2046. struct intel_ring_buffer *ring;
  2047. int ret, i;
  2048. /* Flush everything onto the inactive list. */
  2049. for_each_ring(ring, dev_priv, i) {
  2050. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2051. if (ret)
  2052. return ret;
  2053. ret = i915_ring_idle(ring);
  2054. if (ret)
  2055. return ret;
  2056. }
  2057. return 0;
  2058. }
  2059. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2060. struct drm_i915_gem_object *obj)
  2061. {
  2062. drm_i915_private_t *dev_priv = dev->dev_private;
  2063. uint64_t val;
  2064. if (obj) {
  2065. u32 size = obj->gtt_space->size;
  2066. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2067. 0xfffff000) << 32;
  2068. val |= obj->gtt_offset & 0xfffff000;
  2069. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2070. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2071. if (obj->tiling_mode == I915_TILING_Y)
  2072. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2073. val |= I965_FENCE_REG_VALID;
  2074. } else
  2075. val = 0;
  2076. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2077. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2078. }
  2079. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2080. struct drm_i915_gem_object *obj)
  2081. {
  2082. drm_i915_private_t *dev_priv = dev->dev_private;
  2083. uint64_t val;
  2084. if (obj) {
  2085. u32 size = obj->gtt_space->size;
  2086. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2087. 0xfffff000) << 32;
  2088. val |= obj->gtt_offset & 0xfffff000;
  2089. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2090. if (obj->tiling_mode == I915_TILING_Y)
  2091. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2092. val |= I965_FENCE_REG_VALID;
  2093. } else
  2094. val = 0;
  2095. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2096. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2097. }
  2098. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2099. struct drm_i915_gem_object *obj)
  2100. {
  2101. drm_i915_private_t *dev_priv = dev->dev_private;
  2102. u32 val;
  2103. if (obj) {
  2104. u32 size = obj->gtt_space->size;
  2105. int pitch_val;
  2106. int tile_width;
  2107. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2108. (size & -size) != size ||
  2109. (obj->gtt_offset & (size - 1)),
  2110. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2111. obj->gtt_offset, obj->map_and_fenceable, size);
  2112. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2113. tile_width = 128;
  2114. else
  2115. tile_width = 512;
  2116. /* Note: pitch better be a power of two tile widths */
  2117. pitch_val = obj->stride / tile_width;
  2118. pitch_val = ffs(pitch_val) - 1;
  2119. val = obj->gtt_offset;
  2120. if (obj->tiling_mode == I915_TILING_Y)
  2121. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2122. val |= I915_FENCE_SIZE_BITS(size);
  2123. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2124. val |= I830_FENCE_REG_VALID;
  2125. } else
  2126. val = 0;
  2127. if (reg < 8)
  2128. reg = FENCE_REG_830_0 + reg * 4;
  2129. else
  2130. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2131. I915_WRITE(reg, val);
  2132. POSTING_READ(reg);
  2133. }
  2134. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2135. struct drm_i915_gem_object *obj)
  2136. {
  2137. drm_i915_private_t *dev_priv = dev->dev_private;
  2138. uint32_t val;
  2139. if (obj) {
  2140. u32 size = obj->gtt_space->size;
  2141. uint32_t pitch_val;
  2142. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2143. (size & -size) != size ||
  2144. (obj->gtt_offset & (size - 1)),
  2145. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2146. obj->gtt_offset, size);
  2147. pitch_val = obj->stride / 128;
  2148. pitch_val = ffs(pitch_val) - 1;
  2149. val = obj->gtt_offset;
  2150. if (obj->tiling_mode == I915_TILING_Y)
  2151. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2152. val |= I830_FENCE_SIZE_BITS(size);
  2153. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2154. val |= I830_FENCE_REG_VALID;
  2155. } else
  2156. val = 0;
  2157. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2158. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2159. }
  2160. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2161. struct drm_i915_gem_object *obj)
  2162. {
  2163. switch (INTEL_INFO(dev)->gen) {
  2164. case 7:
  2165. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2166. case 5:
  2167. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2168. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2169. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2170. default: break;
  2171. }
  2172. }
  2173. static inline int fence_number(struct drm_i915_private *dev_priv,
  2174. struct drm_i915_fence_reg *fence)
  2175. {
  2176. return fence - dev_priv->fence_regs;
  2177. }
  2178. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2179. struct drm_i915_fence_reg *fence,
  2180. bool enable)
  2181. {
  2182. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2183. int reg = fence_number(dev_priv, fence);
  2184. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2185. if (enable) {
  2186. obj->fence_reg = reg;
  2187. fence->obj = obj;
  2188. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2189. } else {
  2190. obj->fence_reg = I915_FENCE_REG_NONE;
  2191. fence->obj = NULL;
  2192. list_del_init(&fence->lru_list);
  2193. }
  2194. }
  2195. static int
  2196. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2197. {
  2198. if (obj->last_fenced_seqno) {
  2199. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2200. if (ret)
  2201. return ret;
  2202. obj->last_fenced_seqno = 0;
  2203. }
  2204. /* Ensure that all CPU reads are completed before installing a fence
  2205. * and all writes before removing the fence.
  2206. */
  2207. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2208. mb();
  2209. obj->fenced_gpu_access = false;
  2210. return 0;
  2211. }
  2212. int
  2213. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2214. {
  2215. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2216. int ret;
  2217. ret = i915_gem_object_flush_fence(obj);
  2218. if (ret)
  2219. return ret;
  2220. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2221. return 0;
  2222. i915_gem_object_update_fence(obj,
  2223. &dev_priv->fence_regs[obj->fence_reg],
  2224. false);
  2225. i915_gem_object_fence_lost(obj);
  2226. return 0;
  2227. }
  2228. static struct drm_i915_fence_reg *
  2229. i915_find_fence_reg(struct drm_device *dev)
  2230. {
  2231. struct drm_i915_private *dev_priv = dev->dev_private;
  2232. struct drm_i915_fence_reg *reg, *avail;
  2233. int i;
  2234. /* First try to find a free reg */
  2235. avail = NULL;
  2236. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2237. reg = &dev_priv->fence_regs[i];
  2238. if (!reg->obj)
  2239. return reg;
  2240. if (!reg->pin_count)
  2241. avail = reg;
  2242. }
  2243. if (avail == NULL)
  2244. return NULL;
  2245. /* None available, try to steal one or wait for a user to finish */
  2246. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2247. if (reg->pin_count)
  2248. continue;
  2249. return reg;
  2250. }
  2251. return NULL;
  2252. }
  2253. /**
  2254. * i915_gem_object_get_fence - set up fencing for an object
  2255. * @obj: object to map through a fence reg
  2256. *
  2257. * When mapping objects through the GTT, userspace wants to be able to write
  2258. * to them without having to worry about swizzling if the object is tiled.
  2259. * This function walks the fence regs looking for a free one for @obj,
  2260. * stealing one if it can't find any.
  2261. *
  2262. * It then sets up the reg based on the object's properties: address, pitch
  2263. * and tiling format.
  2264. *
  2265. * For an untiled surface, this removes any existing fence.
  2266. */
  2267. int
  2268. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2269. {
  2270. struct drm_device *dev = obj->base.dev;
  2271. struct drm_i915_private *dev_priv = dev->dev_private;
  2272. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2273. struct drm_i915_fence_reg *reg;
  2274. int ret;
  2275. /* Have we updated the tiling parameters upon the object and so
  2276. * will need to serialise the write to the associated fence register?
  2277. */
  2278. if (obj->fence_dirty) {
  2279. ret = i915_gem_object_flush_fence(obj);
  2280. if (ret)
  2281. return ret;
  2282. }
  2283. /* Just update our place in the LRU if our fence is getting reused. */
  2284. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2285. reg = &dev_priv->fence_regs[obj->fence_reg];
  2286. if (!obj->fence_dirty) {
  2287. list_move_tail(&reg->lru_list,
  2288. &dev_priv->mm.fence_list);
  2289. return 0;
  2290. }
  2291. } else if (enable) {
  2292. reg = i915_find_fence_reg(dev);
  2293. if (reg == NULL)
  2294. return -EDEADLK;
  2295. if (reg->obj) {
  2296. struct drm_i915_gem_object *old = reg->obj;
  2297. ret = i915_gem_object_flush_fence(old);
  2298. if (ret)
  2299. return ret;
  2300. i915_gem_object_fence_lost(old);
  2301. }
  2302. } else
  2303. return 0;
  2304. i915_gem_object_update_fence(obj, reg, enable);
  2305. obj->fence_dirty = false;
  2306. return 0;
  2307. }
  2308. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2309. struct drm_mm_node *gtt_space,
  2310. unsigned long cache_level)
  2311. {
  2312. struct drm_mm_node *other;
  2313. /* On non-LLC machines we have to be careful when putting differing
  2314. * types of snoopable memory together to avoid the prefetcher
  2315. * crossing memory domains and dieing.
  2316. */
  2317. if (HAS_LLC(dev))
  2318. return true;
  2319. if (gtt_space == NULL)
  2320. return true;
  2321. if (list_empty(&gtt_space->node_list))
  2322. return true;
  2323. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2324. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2325. return false;
  2326. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2327. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2328. return false;
  2329. return true;
  2330. }
  2331. static void i915_gem_verify_gtt(struct drm_device *dev)
  2332. {
  2333. #if WATCH_GTT
  2334. struct drm_i915_private *dev_priv = dev->dev_private;
  2335. struct drm_i915_gem_object *obj;
  2336. int err = 0;
  2337. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2338. if (obj->gtt_space == NULL) {
  2339. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2340. err++;
  2341. continue;
  2342. }
  2343. if (obj->cache_level != obj->gtt_space->color) {
  2344. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2345. obj->gtt_space->start,
  2346. obj->gtt_space->start + obj->gtt_space->size,
  2347. obj->cache_level,
  2348. obj->gtt_space->color);
  2349. err++;
  2350. continue;
  2351. }
  2352. if (!i915_gem_valid_gtt_space(dev,
  2353. obj->gtt_space,
  2354. obj->cache_level)) {
  2355. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2356. obj->gtt_space->start,
  2357. obj->gtt_space->start + obj->gtt_space->size,
  2358. obj->cache_level);
  2359. err++;
  2360. continue;
  2361. }
  2362. }
  2363. WARN_ON(err);
  2364. #endif
  2365. }
  2366. /**
  2367. * Finds free space in the GTT aperture and binds the object there.
  2368. */
  2369. static int
  2370. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2371. unsigned alignment,
  2372. bool map_and_fenceable,
  2373. bool nonblocking)
  2374. {
  2375. struct drm_device *dev = obj->base.dev;
  2376. drm_i915_private_t *dev_priv = dev->dev_private;
  2377. struct drm_mm_node *free_space;
  2378. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2379. bool mappable, fenceable;
  2380. int ret;
  2381. if (obj->madv != I915_MADV_WILLNEED) {
  2382. DRM_ERROR("Attempting to bind a purgeable object\n");
  2383. return -EINVAL;
  2384. }
  2385. fence_size = i915_gem_get_gtt_size(dev,
  2386. obj->base.size,
  2387. obj->tiling_mode);
  2388. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2389. obj->base.size,
  2390. obj->tiling_mode);
  2391. unfenced_alignment =
  2392. i915_gem_get_unfenced_gtt_alignment(dev,
  2393. obj->base.size,
  2394. obj->tiling_mode);
  2395. if (alignment == 0)
  2396. alignment = map_and_fenceable ? fence_alignment :
  2397. unfenced_alignment;
  2398. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2399. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2400. return -EINVAL;
  2401. }
  2402. size = map_and_fenceable ? fence_size : obj->base.size;
  2403. /* If the object is bigger than the entire aperture, reject it early
  2404. * before evicting everything in a vain attempt to find space.
  2405. */
  2406. if (obj->base.size >
  2407. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2408. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2409. return -E2BIG;
  2410. }
  2411. ret = i915_gem_object_get_pages(obj);
  2412. if (ret)
  2413. return ret;
  2414. search_free:
  2415. if (map_and_fenceable)
  2416. free_space =
  2417. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2418. size, alignment, obj->cache_level,
  2419. 0, dev_priv->mm.gtt_mappable_end,
  2420. false);
  2421. else
  2422. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2423. size, alignment, obj->cache_level,
  2424. false);
  2425. if (free_space != NULL) {
  2426. if (map_and_fenceable)
  2427. obj->gtt_space =
  2428. drm_mm_get_block_range_generic(free_space,
  2429. size, alignment, obj->cache_level,
  2430. 0, dev_priv->mm.gtt_mappable_end,
  2431. false);
  2432. else
  2433. obj->gtt_space =
  2434. drm_mm_get_block_generic(free_space,
  2435. size, alignment, obj->cache_level,
  2436. false);
  2437. }
  2438. if (obj->gtt_space == NULL) {
  2439. ret = i915_gem_evict_something(dev, size, alignment,
  2440. obj->cache_level,
  2441. map_and_fenceable,
  2442. nonblocking);
  2443. if (ret)
  2444. return ret;
  2445. goto search_free;
  2446. }
  2447. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2448. obj->gtt_space,
  2449. obj->cache_level))) {
  2450. drm_mm_put_block(obj->gtt_space);
  2451. obj->gtt_space = NULL;
  2452. return -EINVAL;
  2453. }
  2454. ret = i915_gem_gtt_prepare_object(obj);
  2455. if (ret) {
  2456. drm_mm_put_block(obj->gtt_space);
  2457. obj->gtt_space = NULL;
  2458. return ret;
  2459. }
  2460. if (!dev_priv->mm.aliasing_ppgtt)
  2461. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2462. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2463. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2464. obj->gtt_offset = obj->gtt_space->start;
  2465. fenceable =
  2466. obj->gtt_space->size == fence_size &&
  2467. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2468. mappable =
  2469. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2470. obj->map_and_fenceable = mappable && fenceable;
  2471. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2472. i915_gem_verify_gtt(dev);
  2473. return 0;
  2474. }
  2475. void
  2476. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2477. {
  2478. /* If we don't have a page list set up, then we're not pinned
  2479. * to GPU, and we can ignore the cache flush because it'll happen
  2480. * again at bind time.
  2481. */
  2482. if (obj->pages == NULL)
  2483. return;
  2484. /* If the GPU is snooping the contents of the CPU cache,
  2485. * we do not need to manually clear the CPU cache lines. However,
  2486. * the caches are only snooped when the render cache is
  2487. * flushed/invalidated. As we always have to emit invalidations
  2488. * and flushes when moving into and out of the RENDER domain, correct
  2489. * snooping behaviour occurs naturally as the result of our domain
  2490. * tracking.
  2491. */
  2492. if (obj->cache_level != I915_CACHE_NONE)
  2493. return;
  2494. trace_i915_gem_object_clflush(obj);
  2495. drm_clflush_sg(obj->pages);
  2496. }
  2497. /** Flushes the GTT write domain for the object if it's dirty. */
  2498. static void
  2499. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2500. {
  2501. uint32_t old_write_domain;
  2502. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2503. return;
  2504. /* No actual flushing is required for the GTT write domain. Writes
  2505. * to it immediately go to main memory as far as we know, so there's
  2506. * no chipset flush. It also doesn't land in render cache.
  2507. *
  2508. * However, we do have to enforce the order so that all writes through
  2509. * the GTT land before any writes to the device, such as updates to
  2510. * the GATT itself.
  2511. */
  2512. wmb();
  2513. old_write_domain = obj->base.write_domain;
  2514. obj->base.write_domain = 0;
  2515. trace_i915_gem_object_change_domain(obj,
  2516. obj->base.read_domains,
  2517. old_write_domain);
  2518. }
  2519. /** Flushes the CPU write domain for the object if it's dirty. */
  2520. static void
  2521. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2522. {
  2523. uint32_t old_write_domain;
  2524. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2525. return;
  2526. i915_gem_clflush_object(obj);
  2527. intel_gtt_chipset_flush();
  2528. old_write_domain = obj->base.write_domain;
  2529. obj->base.write_domain = 0;
  2530. trace_i915_gem_object_change_domain(obj,
  2531. obj->base.read_domains,
  2532. old_write_domain);
  2533. }
  2534. /**
  2535. * Moves a single object to the GTT read, and possibly write domain.
  2536. *
  2537. * This function returns when the move is complete, including waiting on
  2538. * flushes to occur.
  2539. */
  2540. int
  2541. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2542. {
  2543. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2544. uint32_t old_write_domain, old_read_domains;
  2545. int ret;
  2546. /* Not valid to be called on unbound objects. */
  2547. if (obj->gtt_space == NULL)
  2548. return -EINVAL;
  2549. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2550. return 0;
  2551. ret = i915_gem_object_wait_rendering(obj, !write);
  2552. if (ret)
  2553. return ret;
  2554. i915_gem_object_flush_cpu_write_domain(obj);
  2555. old_write_domain = obj->base.write_domain;
  2556. old_read_domains = obj->base.read_domains;
  2557. /* It should now be out of any other write domains, and we can update
  2558. * the domain values for our changes.
  2559. */
  2560. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2561. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2562. if (write) {
  2563. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2564. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2565. obj->dirty = 1;
  2566. }
  2567. trace_i915_gem_object_change_domain(obj,
  2568. old_read_domains,
  2569. old_write_domain);
  2570. /* And bump the LRU for this access */
  2571. if (i915_gem_object_is_inactive(obj))
  2572. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2573. return 0;
  2574. }
  2575. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2576. enum i915_cache_level cache_level)
  2577. {
  2578. struct drm_device *dev = obj->base.dev;
  2579. drm_i915_private_t *dev_priv = dev->dev_private;
  2580. int ret;
  2581. if (obj->cache_level == cache_level)
  2582. return 0;
  2583. if (obj->pin_count) {
  2584. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2585. return -EBUSY;
  2586. }
  2587. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2588. ret = i915_gem_object_unbind(obj);
  2589. if (ret)
  2590. return ret;
  2591. }
  2592. if (obj->gtt_space) {
  2593. ret = i915_gem_object_finish_gpu(obj);
  2594. if (ret)
  2595. return ret;
  2596. i915_gem_object_finish_gtt(obj);
  2597. /* Before SandyBridge, you could not use tiling or fence
  2598. * registers with snooped memory, so relinquish any fences
  2599. * currently pointing to our region in the aperture.
  2600. */
  2601. if (INTEL_INFO(dev)->gen < 6) {
  2602. ret = i915_gem_object_put_fence(obj);
  2603. if (ret)
  2604. return ret;
  2605. }
  2606. if (obj->has_global_gtt_mapping)
  2607. i915_gem_gtt_bind_object(obj, cache_level);
  2608. if (obj->has_aliasing_ppgtt_mapping)
  2609. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2610. obj, cache_level);
  2611. obj->gtt_space->color = cache_level;
  2612. }
  2613. if (cache_level == I915_CACHE_NONE) {
  2614. u32 old_read_domains, old_write_domain;
  2615. /* If we're coming from LLC cached, then we haven't
  2616. * actually been tracking whether the data is in the
  2617. * CPU cache or not, since we only allow one bit set
  2618. * in obj->write_domain and have been skipping the clflushes.
  2619. * Just set it to the CPU cache for now.
  2620. */
  2621. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2622. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2623. old_read_domains = obj->base.read_domains;
  2624. old_write_domain = obj->base.write_domain;
  2625. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2626. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2627. trace_i915_gem_object_change_domain(obj,
  2628. old_read_domains,
  2629. old_write_domain);
  2630. }
  2631. obj->cache_level = cache_level;
  2632. i915_gem_verify_gtt(dev);
  2633. return 0;
  2634. }
  2635. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2636. struct drm_file *file)
  2637. {
  2638. struct drm_i915_gem_caching *args = data;
  2639. struct drm_i915_gem_object *obj;
  2640. int ret;
  2641. ret = i915_mutex_lock_interruptible(dev);
  2642. if (ret)
  2643. return ret;
  2644. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2645. if (&obj->base == NULL) {
  2646. ret = -ENOENT;
  2647. goto unlock;
  2648. }
  2649. args->caching = obj->cache_level != I915_CACHE_NONE;
  2650. drm_gem_object_unreference(&obj->base);
  2651. unlock:
  2652. mutex_unlock(&dev->struct_mutex);
  2653. return ret;
  2654. }
  2655. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2656. struct drm_file *file)
  2657. {
  2658. struct drm_i915_gem_caching *args = data;
  2659. struct drm_i915_gem_object *obj;
  2660. enum i915_cache_level level;
  2661. int ret;
  2662. ret = i915_mutex_lock_interruptible(dev);
  2663. if (ret)
  2664. return ret;
  2665. switch (args->caching) {
  2666. case I915_CACHING_NONE:
  2667. level = I915_CACHE_NONE;
  2668. break;
  2669. case I915_CACHING_CACHED:
  2670. level = I915_CACHE_LLC;
  2671. break;
  2672. default:
  2673. return -EINVAL;
  2674. }
  2675. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2676. if (&obj->base == NULL) {
  2677. ret = -ENOENT;
  2678. goto unlock;
  2679. }
  2680. ret = i915_gem_object_set_cache_level(obj, level);
  2681. drm_gem_object_unreference(&obj->base);
  2682. unlock:
  2683. mutex_unlock(&dev->struct_mutex);
  2684. return ret;
  2685. }
  2686. /*
  2687. * Prepare buffer for display plane (scanout, cursors, etc).
  2688. * Can be called from an uninterruptible phase (modesetting) and allows
  2689. * any flushes to be pipelined (for pageflips).
  2690. */
  2691. int
  2692. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2693. u32 alignment,
  2694. struct intel_ring_buffer *pipelined)
  2695. {
  2696. u32 old_read_domains, old_write_domain;
  2697. int ret;
  2698. if (pipelined != obj->ring) {
  2699. ret = i915_gem_object_sync(obj, pipelined);
  2700. if (ret)
  2701. return ret;
  2702. }
  2703. /* The display engine is not coherent with the LLC cache on gen6. As
  2704. * a result, we make sure that the pinning that is about to occur is
  2705. * done with uncached PTEs. This is lowest common denominator for all
  2706. * chipsets.
  2707. *
  2708. * However for gen6+, we could do better by using the GFDT bit instead
  2709. * of uncaching, which would allow us to flush all the LLC-cached data
  2710. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2711. */
  2712. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2713. if (ret)
  2714. return ret;
  2715. /* As the user may map the buffer once pinned in the display plane
  2716. * (e.g. libkms for the bootup splash), we have to ensure that we
  2717. * always use map_and_fenceable for all scanout buffers.
  2718. */
  2719. ret = i915_gem_object_pin(obj, alignment, true, false);
  2720. if (ret)
  2721. return ret;
  2722. i915_gem_object_flush_cpu_write_domain(obj);
  2723. old_write_domain = obj->base.write_domain;
  2724. old_read_domains = obj->base.read_domains;
  2725. /* It should now be out of any other write domains, and we can update
  2726. * the domain values for our changes.
  2727. */
  2728. obj->base.write_domain = 0;
  2729. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2730. trace_i915_gem_object_change_domain(obj,
  2731. old_read_domains,
  2732. old_write_domain);
  2733. return 0;
  2734. }
  2735. int
  2736. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2737. {
  2738. int ret;
  2739. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2740. return 0;
  2741. ret = i915_gem_object_wait_rendering(obj, false);
  2742. if (ret)
  2743. return ret;
  2744. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2745. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2746. return 0;
  2747. }
  2748. /**
  2749. * Moves a single object to the CPU read, and possibly write domain.
  2750. *
  2751. * This function returns when the move is complete, including waiting on
  2752. * flushes to occur.
  2753. */
  2754. int
  2755. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2756. {
  2757. uint32_t old_write_domain, old_read_domains;
  2758. int ret;
  2759. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2760. return 0;
  2761. ret = i915_gem_object_wait_rendering(obj, !write);
  2762. if (ret)
  2763. return ret;
  2764. i915_gem_object_flush_gtt_write_domain(obj);
  2765. old_write_domain = obj->base.write_domain;
  2766. old_read_domains = obj->base.read_domains;
  2767. /* Flush the CPU cache if it's still invalid. */
  2768. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2769. i915_gem_clflush_object(obj);
  2770. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2771. }
  2772. /* It should now be out of any other write domains, and we can update
  2773. * the domain values for our changes.
  2774. */
  2775. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2776. /* If we're writing through the CPU, then the GPU read domains will
  2777. * need to be invalidated at next use.
  2778. */
  2779. if (write) {
  2780. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2781. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2782. }
  2783. trace_i915_gem_object_change_domain(obj,
  2784. old_read_domains,
  2785. old_write_domain);
  2786. return 0;
  2787. }
  2788. /* Throttle our rendering by waiting until the ring has completed our requests
  2789. * emitted over 20 msec ago.
  2790. *
  2791. * Note that if we were to use the current jiffies each time around the loop,
  2792. * we wouldn't escape the function with any frames outstanding if the time to
  2793. * render a frame was over 20ms.
  2794. *
  2795. * This should get us reasonable parallelism between CPU and GPU but also
  2796. * relatively low latency when blocking on a particular request to finish.
  2797. */
  2798. static int
  2799. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2800. {
  2801. struct drm_i915_private *dev_priv = dev->dev_private;
  2802. struct drm_i915_file_private *file_priv = file->driver_priv;
  2803. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2804. struct drm_i915_gem_request *request;
  2805. struct intel_ring_buffer *ring = NULL;
  2806. u32 seqno = 0;
  2807. int ret;
  2808. if (atomic_read(&dev_priv->mm.wedged))
  2809. return -EIO;
  2810. spin_lock(&file_priv->mm.lock);
  2811. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2812. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2813. break;
  2814. ring = request->ring;
  2815. seqno = request->seqno;
  2816. }
  2817. spin_unlock(&file_priv->mm.lock);
  2818. if (seqno == 0)
  2819. return 0;
  2820. ret = __wait_seqno(ring, seqno, true, NULL);
  2821. if (ret == 0)
  2822. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2823. return ret;
  2824. }
  2825. int
  2826. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2827. uint32_t alignment,
  2828. bool map_and_fenceable,
  2829. bool nonblocking)
  2830. {
  2831. int ret;
  2832. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2833. return -EBUSY;
  2834. if (obj->gtt_space != NULL) {
  2835. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2836. (map_and_fenceable && !obj->map_and_fenceable)) {
  2837. WARN(obj->pin_count,
  2838. "bo is already pinned with incorrect alignment:"
  2839. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2840. " obj->map_and_fenceable=%d\n",
  2841. obj->gtt_offset, alignment,
  2842. map_and_fenceable,
  2843. obj->map_and_fenceable);
  2844. ret = i915_gem_object_unbind(obj);
  2845. if (ret)
  2846. return ret;
  2847. }
  2848. }
  2849. if (obj->gtt_space == NULL) {
  2850. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2851. map_and_fenceable,
  2852. nonblocking);
  2853. if (ret)
  2854. return ret;
  2855. }
  2856. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2857. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2858. obj->pin_count++;
  2859. obj->pin_mappable |= map_and_fenceable;
  2860. return 0;
  2861. }
  2862. void
  2863. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2864. {
  2865. BUG_ON(obj->pin_count == 0);
  2866. BUG_ON(obj->gtt_space == NULL);
  2867. if (--obj->pin_count == 0)
  2868. obj->pin_mappable = false;
  2869. }
  2870. int
  2871. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2872. struct drm_file *file)
  2873. {
  2874. struct drm_i915_gem_pin *args = data;
  2875. struct drm_i915_gem_object *obj;
  2876. int ret;
  2877. ret = i915_mutex_lock_interruptible(dev);
  2878. if (ret)
  2879. return ret;
  2880. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2881. if (&obj->base == NULL) {
  2882. ret = -ENOENT;
  2883. goto unlock;
  2884. }
  2885. if (obj->madv != I915_MADV_WILLNEED) {
  2886. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2887. ret = -EINVAL;
  2888. goto out;
  2889. }
  2890. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2891. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2892. args->handle);
  2893. ret = -EINVAL;
  2894. goto out;
  2895. }
  2896. obj->user_pin_count++;
  2897. obj->pin_filp = file;
  2898. if (obj->user_pin_count == 1) {
  2899. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2900. if (ret)
  2901. goto out;
  2902. }
  2903. /* XXX - flush the CPU caches for pinned objects
  2904. * as the X server doesn't manage domains yet
  2905. */
  2906. i915_gem_object_flush_cpu_write_domain(obj);
  2907. args->offset = obj->gtt_offset;
  2908. out:
  2909. drm_gem_object_unreference(&obj->base);
  2910. unlock:
  2911. mutex_unlock(&dev->struct_mutex);
  2912. return ret;
  2913. }
  2914. int
  2915. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2916. struct drm_file *file)
  2917. {
  2918. struct drm_i915_gem_pin *args = data;
  2919. struct drm_i915_gem_object *obj;
  2920. int ret;
  2921. ret = i915_mutex_lock_interruptible(dev);
  2922. if (ret)
  2923. return ret;
  2924. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2925. if (&obj->base == NULL) {
  2926. ret = -ENOENT;
  2927. goto unlock;
  2928. }
  2929. if (obj->pin_filp != file) {
  2930. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2931. args->handle);
  2932. ret = -EINVAL;
  2933. goto out;
  2934. }
  2935. obj->user_pin_count--;
  2936. if (obj->user_pin_count == 0) {
  2937. obj->pin_filp = NULL;
  2938. i915_gem_object_unpin(obj);
  2939. }
  2940. out:
  2941. drm_gem_object_unreference(&obj->base);
  2942. unlock:
  2943. mutex_unlock(&dev->struct_mutex);
  2944. return ret;
  2945. }
  2946. int
  2947. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2948. struct drm_file *file)
  2949. {
  2950. struct drm_i915_gem_busy *args = data;
  2951. struct drm_i915_gem_object *obj;
  2952. int ret;
  2953. ret = i915_mutex_lock_interruptible(dev);
  2954. if (ret)
  2955. return ret;
  2956. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2957. if (&obj->base == NULL) {
  2958. ret = -ENOENT;
  2959. goto unlock;
  2960. }
  2961. /* Count all active objects as busy, even if they are currently not used
  2962. * by the gpu. Users of this interface expect objects to eventually
  2963. * become non-busy without any further actions, therefore emit any
  2964. * necessary flushes here.
  2965. */
  2966. ret = i915_gem_object_flush_active(obj);
  2967. args->busy = obj->active;
  2968. if (obj->ring) {
  2969. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2970. args->busy |= intel_ring_flag(obj->ring) << 16;
  2971. }
  2972. drm_gem_object_unreference(&obj->base);
  2973. unlock:
  2974. mutex_unlock(&dev->struct_mutex);
  2975. return ret;
  2976. }
  2977. int
  2978. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2979. struct drm_file *file_priv)
  2980. {
  2981. return i915_gem_ring_throttle(dev, file_priv);
  2982. }
  2983. int
  2984. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2985. struct drm_file *file_priv)
  2986. {
  2987. struct drm_i915_gem_madvise *args = data;
  2988. struct drm_i915_gem_object *obj;
  2989. int ret;
  2990. switch (args->madv) {
  2991. case I915_MADV_DONTNEED:
  2992. case I915_MADV_WILLNEED:
  2993. break;
  2994. default:
  2995. return -EINVAL;
  2996. }
  2997. ret = i915_mutex_lock_interruptible(dev);
  2998. if (ret)
  2999. return ret;
  3000. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3001. if (&obj->base == NULL) {
  3002. ret = -ENOENT;
  3003. goto unlock;
  3004. }
  3005. if (obj->pin_count) {
  3006. ret = -EINVAL;
  3007. goto out;
  3008. }
  3009. if (obj->madv != __I915_MADV_PURGED)
  3010. obj->madv = args->madv;
  3011. /* if the object is no longer attached, discard its backing storage */
  3012. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3013. i915_gem_object_truncate(obj);
  3014. args->retained = obj->madv != __I915_MADV_PURGED;
  3015. out:
  3016. drm_gem_object_unreference(&obj->base);
  3017. unlock:
  3018. mutex_unlock(&dev->struct_mutex);
  3019. return ret;
  3020. }
  3021. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3022. const struct drm_i915_gem_object_ops *ops)
  3023. {
  3024. INIT_LIST_HEAD(&obj->mm_list);
  3025. INIT_LIST_HEAD(&obj->gtt_list);
  3026. INIT_LIST_HEAD(&obj->ring_list);
  3027. INIT_LIST_HEAD(&obj->exec_list);
  3028. obj->ops = ops;
  3029. obj->fence_reg = I915_FENCE_REG_NONE;
  3030. obj->madv = I915_MADV_WILLNEED;
  3031. /* Avoid an unnecessary call to unbind on the first bind. */
  3032. obj->map_and_fenceable = true;
  3033. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3034. }
  3035. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3036. .get_pages = i915_gem_object_get_pages_gtt,
  3037. .put_pages = i915_gem_object_put_pages_gtt,
  3038. };
  3039. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3040. size_t size)
  3041. {
  3042. struct drm_i915_gem_object *obj;
  3043. struct address_space *mapping;
  3044. u32 mask;
  3045. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3046. if (obj == NULL)
  3047. return NULL;
  3048. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3049. kfree(obj);
  3050. return NULL;
  3051. }
  3052. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3053. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3054. /* 965gm cannot relocate objects above 4GiB. */
  3055. mask &= ~__GFP_HIGHMEM;
  3056. mask |= __GFP_DMA32;
  3057. }
  3058. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3059. mapping_set_gfp_mask(mapping, mask);
  3060. i915_gem_object_init(obj, &i915_gem_object_ops);
  3061. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3062. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3063. if (HAS_LLC(dev)) {
  3064. /* On some devices, we can have the GPU use the LLC (the CPU
  3065. * cache) for about a 10% performance improvement
  3066. * compared to uncached. Graphics requests other than
  3067. * display scanout are coherent with the CPU in
  3068. * accessing this cache. This means in this mode we
  3069. * don't need to clflush on the CPU side, and on the
  3070. * GPU side we only need to flush internal caches to
  3071. * get data visible to the CPU.
  3072. *
  3073. * However, we maintain the display planes as UC, and so
  3074. * need to rebind when first used as such.
  3075. */
  3076. obj->cache_level = I915_CACHE_LLC;
  3077. } else
  3078. obj->cache_level = I915_CACHE_NONE;
  3079. return obj;
  3080. }
  3081. int i915_gem_init_object(struct drm_gem_object *obj)
  3082. {
  3083. BUG();
  3084. return 0;
  3085. }
  3086. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3087. {
  3088. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3089. struct drm_device *dev = obj->base.dev;
  3090. drm_i915_private_t *dev_priv = dev->dev_private;
  3091. trace_i915_gem_object_destroy(obj);
  3092. if (obj->phys_obj)
  3093. i915_gem_detach_phys_object(dev, obj);
  3094. obj->pin_count = 0;
  3095. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3096. bool was_interruptible;
  3097. was_interruptible = dev_priv->mm.interruptible;
  3098. dev_priv->mm.interruptible = false;
  3099. WARN_ON(i915_gem_object_unbind(obj));
  3100. dev_priv->mm.interruptible = was_interruptible;
  3101. }
  3102. obj->pages_pin_count = 0;
  3103. i915_gem_object_put_pages(obj);
  3104. i915_gem_object_free_mmap_offset(obj);
  3105. BUG_ON(obj->pages);
  3106. if (obj->base.import_attach)
  3107. drm_prime_gem_destroy(&obj->base, NULL);
  3108. drm_gem_object_release(&obj->base);
  3109. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3110. kfree(obj->bit_17);
  3111. kfree(obj);
  3112. }
  3113. int
  3114. i915_gem_idle(struct drm_device *dev)
  3115. {
  3116. drm_i915_private_t *dev_priv = dev->dev_private;
  3117. int ret;
  3118. mutex_lock(&dev->struct_mutex);
  3119. if (dev_priv->mm.suspended) {
  3120. mutex_unlock(&dev->struct_mutex);
  3121. return 0;
  3122. }
  3123. ret = i915_gpu_idle(dev);
  3124. if (ret) {
  3125. mutex_unlock(&dev->struct_mutex);
  3126. return ret;
  3127. }
  3128. i915_gem_retire_requests(dev);
  3129. /* Under UMS, be paranoid and evict. */
  3130. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3131. i915_gem_evict_everything(dev);
  3132. i915_gem_reset_fences(dev);
  3133. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3134. * We need to replace this with a semaphore, or something.
  3135. * And not confound mm.suspended!
  3136. */
  3137. dev_priv->mm.suspended = 1;
  3138. del_timer_sync(&dev_priv->hangcheck_timer);
  3139. i915_kernel_lost_context(dev);
  3140. i915_gem_cleanup_ringbuffer(dev);
  3141. mutex_unlock(&dev->struct_mutex);
  3142. /* Cancel the retire work handler, which should be idle now. */
  3143. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3144. return 0;
  3145. }
  3146. void i915_gem_l3_remap(struct drm_device *dev)
  3147. {
  3148. drm_i915_private_t *dev_priv = dev->dev_private;
  3149. u32 misccpctl;
  3150. int i;
  3151. if (!IS_IVYBRIDGE(dev))
  3152. return;
  3153. if (!dev_priv->mm.l3_remap_info)
  3154. return;
  3155. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3156. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3157. POSTING_READ(GEN7_MISCCPCTL);
  3158. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3159. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3160. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3161. DRM_DEBUG("0x%x was already programmed to %x\n",
  3162. GEN7_L3LOG_BASE + i, remap);
  3163. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3164. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3165. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3166. }
  3167. /* Make sure all the writes land before disabling dop clock gating */
  3168. POSTING_READ(GEN7_L3LOG_BASE);
  3169. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3170. }
  3171. void i915_gem_init_swizzling(struct drm_device *dev)
  3172. {
  3173. drm_i915_private_t *dev_priv = dev->dev_private;
  3174. if (INTEL_INFO(dev)->gen < 5 ||
  3175. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3176. return;
  3177. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3178. DISP_TILE_SURFACE_SWIZZLING);
  3179. if (IS_GEN5(dev))
  3180. return;
  3181. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3182. if (IS_GEN6(dev))
  3183. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3184. else
  3185. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3186. }
  3187. void i915_gem_init_ppgtt(struct drm_device *dev)
  3188. {
  3189. drm_i915_private_t *dev_priv = dev->dev_private;
  3190. uint32_t pd_offset;
  3191. struct intel_ring_buffer *ring;
  3192. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3193. uint32_t __iomem *pd_addr;
  3194. uint32_t pd_entry;
  3195. int i;
  3196. if (!dev_priv->mm.aliasing_ppgtt)
  3197. return;
  3198. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3199. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3200. dma_addr_t pt_addr;
  3201. if (dev_priv->mm.gtt->needs_dmar)
  3202. pt_addr = ppgtt->pt_dma_addr[i];
  3203. else
  3204. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3205. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3206. pd_entry |= GEN6_PDE_VALID;
  3207. writel(pd_entry, pd_addr + i);
  3208. }
  3209. readl(pd_addr);
  3210. pd_offset = ppgtt->pd_offset;
  3211. pd_offset /= 64; /* in cachelines, */
  3212. pd_offset <<= 16;
  3213. if (INTEL_INFO(dev)->gen == 6) {
  3214. uint32_t ecochk, gab_ctl, ecobits;
  3215. ecobits = I915_READ(GAC_ECO_BITS);
  3216. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3217. gab_ctl = I915_READ(GAB_CTL);
  3218. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3219. ecochk = I915_READ(GAM_ECOCHK);
  3220. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3221. ECOCHK_PPGTT_CACHE64B);
  3222. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3223. } else if (INTEL_INFO(dev)->gen >= 7) {
  3224. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3225. /* GFX_MODE is per-ring on gen7+ */
  3226. }
  3227. for_each_ring(ring, dev_priv, i) {
  3228. if (INTEL_INFO(dev)->gen >= 7)
  3229. I915_WRITE(RING_MODE_GEN7(ring),
  3230. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3231. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3232. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3233. }
  3234. }
  3235. static bool
  3236. intel_enable_blt(struct drm_device *dev)
  3237. {
  3238. if (!HAS_BLT(dev))
  3239. return false;
  3240. /* The blitter was dysfunctional on early prototypes */
  3241. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3242. DRM_INFO("BLT not supported on this pre-production hardware;"
  3243. " graphics performance will be degraded.\n");
  3244. return false;
  3245. }
  3246. return true;
  3247. }
  3248. int
  3249. i915_gem_init_hw(struct drm_device *dev)
  3250. {
  3251. drm_i915_private_t *dev_priv = dev->dev_private;
  3252. int ret;
  3253. if (!intel_enable_gtt())
  3254. return -EIO;
  3255. i915_gem_l3_remap(dev);
  3256. i915_gem_init_swizzling(dev);
  3257. ret = intel_init_render_ring_buffer(dev);
  3258. if (ret)
  3259. return ret;
  3260. if (HAS_BSD(dev)) {
  3261. ret = intel_init_bsd_ring_buffer(dev);
  3262. if (ret)
  3263. goto cleanup_render_ring;
  3264. }
  3265. if (intel_enable_blt(dev)) {
  3266. ret = intel_init_blt_ring_buffer(dev);
  3267. if (ret)
  3268. goto cleanup_bsd_ring;
  3269. }
  3270. dev_priv->next_seqno = 1;
  3271. /*
  3272. * XXX: There was some w/a described somewhere suggesting loading
  3273. * contexts before PPGTT.
  3274. */
  3275. i915_gem_context_init(dev);
  3276. i915_gem_init_ppgtt(dev);
  3277. return 0;
  3278. cleanup_bsd_ring:
  3279. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3280. cleanup_render_ring:
  3281. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3282. return ret;
  3283. }
  3284. static bool
  3285. intel_enable_ppgtt(struct drm_device *dev)
  3286. {
  3287. if (i915_enable_ppgtt >= 0)
  3288. return i915_enable_ppgtt;
  3289. #ifdef CONFIG_INTEL_IOMMU
  3290. /* Disable ppgtt on SNB if VT-d is on. */
  3291. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3292. return false;
  3293. #endif
  3294. return true;
  3295. }
  3296. int i915_gem_init(struct drm_device *dev)
  3297. {
  3298. struct drm_i915_private *dev_priv = dev->dev_private;
  3299. unsigned long gtt_size, mappable_size;
  3300. int ret;
  3301. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3302. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3303. mutex_lock(&dev->struct_mutex);
  3304. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3305. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3306. * aperture accordingly when using aliasing ppgtt. */
  3307. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3308. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3309. ret = i915_gem_init_aliasing_ppgtt(dev);
  3310. if (ret) {
  3311. mutex_unlock(&dev->struct_mutex);
  3312. return ret;
  3313. }
  3314. } else {
  3315. /* Let GEM Manage all of the aperture.
  3316. *
  3317. * However, leave one page at the end still bound to the scratch
  3318. * page. There are a number of places where the hardware
  3319. * apparently prefetches past the end of the object, and we've
  3320. * seen multiple hangs with the GPU head pointer stuck in a
  3321. * batchbuffer bound at the last page of the aperture. One page
  3322. * should be enough to keep any prefetching inside of the
  3323. * aperture.
  3324. */
  3325. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3326. gtt_size);
  3327. }
  3328. ret = i915_gem_init_hw(dev);
  3329. mutex_unlock(&dev->struct_mutex);
  3330. if (ret) {
  3331. i915_gem_cleanup_aliasing_ppgtt(dev);
  3332. return ret;
  3333. }
  3334. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3335. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3336. dev_priv->dri1.allow_batchbuffer = 1;
  3337. return 0;
  3338. }
  3339. void
  3340. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3341. {
  3342. drm_i915_private_t *dev_priv = dev->dev_private;
  3343. struct intel_ring_buffer *ring;
  3344. int i;
  3345. for_each_ring(ring, dev_priv, i)
  3346. intel_cleanup_ring_buffer(ring);
  3347. }
  3348. int
  3349. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3350. struct drm_file *file_priv)
  3351. {
  3352. drm_i915_private_t *dev_priv = dev->dev_private;
  3353. int ret;
  3354. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3355. return 0;
  3356. if (atomic_read(&dev_priv->mm.wedged)) {
  3357. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3358. atomic_set(&dev_priv->mm.wedged, 0);
  3359. }
  3360. mutex_lock(&dev->struct_mutex);
  3361. dev_priv->mm.suspended = 0;
  3362. ret = i915_gem_init_hw(dev);
  3363. if (ret != 0) {
  3364. mutex_unlock(&dev->struct_mutex);
  3365. return ret;
  3366. }
  3367. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3368. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3369. mutex_unlock(&dev->struct_mutex);
  3370. ret = drm_irq_install(dev);
  3371. if (ret)
  3372. goto cleanup_ringbuffer;
  3373. return 0;
  3374. cleanup_ringbuffer:
  3375. mutex_lock(&dev->struct_mutex);
  3376. i915_gem_cleanup_ringbuffer(dev);
  3377. dev_priv->mm.suspended = 1;
  3378. mutex_unlock(&dev->struct_mutex);
  3379. return ret;
  3380. }
  3381. int
  3382. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3383. struct drm_file *file_priv)
  3384. {
  3385. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3386. return 0;
  3387. drm_irq_uninstall(dev);
  3388. return i915_gem_idle(dev);
  3389. }
  3390. void
  3391. i915_gem_lastclose(struct drm_device *dev)
  3392. {
  3393. int ret;
  3394. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3395. return;
  3396. ret = i915_gem_idle(dev);
  3397. if (ret)
  3398. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3399. }
  3400. static void
  3401. init_ring_lists(struct intel_ring_buffer *ring)
  3402. {
  3403. INIT_LIST_HEAD(&ring->active_list);
  3404. INIT_LIST_HEAD(&ring->request_list);
  3405. }
  3406. void
  3407. i915_gem_load(struct drm_device *dev)
  3408. {
  3409. int i;
  3410. drm_i915_private_t *dev_priv = dev->dev_private;
  3411. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3412. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3413. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3414. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3415. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3416. for (i = 0; i < I915_NUM_RINGS; i++)
  3417. init_ring_lists(&dev_priv->ring[i]);
  3418. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3419. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3420. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3421. i915_gem_retire_work_handler);
  3422. init_completion(&dev_priv->error_completion);
  3423. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3424. if (IS_GEN3(dev)) {
  3425. I915_WRITE(MI_ARB_STATE,
  3426. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3427. }
  3428. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3429. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3430. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3431. dev_priv->fence_reg_start = 3;
  3432. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3433. dev_priv->num_fence_regs = 16;
  3434. else
  3435. dev_priv->num_fence_regs = 8;
  3436. /* Initialize fence registers to zero */
  3437. i915_gem_reset_fences(dev);
  3438. i915_gem_detect_bit_6_swizzle(dev);
  3439. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3440. dev_priv->mm.interruptible = true;
  3441. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3442. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3443. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3444. }
  3445. /*
  3446. * Create a physically contiguous memory object for this object
  3447. * e.g. for cursor + overlay regs
  3448. */
  3449. static int i915_gem_init_phys_object(struct drm_device *dev,
  3450. int id, int size, int align)
  3451. {
  3452. drm_i915_private_t *dev_priv = dev->dev_private;
  3453. struct drm_i915_gem_phys_object *phys_obj;
  3454. int ret;
  3455. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3456. return 0;
  3457. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3458. if (!phys_obj)
  3459. return -ENOMEM;
  3460. phys_obj->id = id;
  3461. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3462. if (!phys_obj->handle) {
  3463. ret = -ENOMEM;
  3464. goto kfree_obj;
  3465. }
  3466. #ifdef CONFIG_X86
  3467. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3468. #endif
  3469. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3470. return 0;
  3471. kfree_obj:
  3472. kfree(phys_obj);
  3473. return ret;
  3474. }
  3475. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3476. {
  3477. drm_i915_private_t *dev_priv = dev->dev_private;
  3478. struct drm_i915_gem_phys_object *phys_obj;
  3479. if (!dev_priv->mm.phys_objs[id - 1])
  3480. return;
  3481. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3482. if (phys_obj->cur_obj) {
  3483. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3484. }
  3485. #ifdef CONFIG_X86
  3486. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3487. #endif
  3488. drm_pci_free(dev, phys_obj->handle);
  3489. kfree(phys_obj);
  3490. dev_priv->mm.phys_objs[id - 1] = NULL;
  3491. }
  3492. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3493. {
  3494. int i;
  3495. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3496. i915_gem_free_phys_object(dev, i);
  3497. }
  3498. void i915_gem_detach_phys_object(struct drm_device *dev,
  3499. struct drm_i915_gem_object *obj)
  3500. {
  3501. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3502. char *vaddr;
  3503. int i;
  3504. int page_count;
  3505. if (!obj->phys_obj)
  3506. return;
  3507. vaddr = obj->phys_obj->handle->vaddr;
  3508. page_count = obj->base.size / PAGE_SIZE;
  3509. for (i = 0; i < page_count; i++) {
  3510. struct page *page = shmem_read_mapping_page(mapping, i);
  3511. if (!IS_ERR(page)) {
  3512. char *dst = kmap_atomic(page);
  3513. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3514. kunmap_atomic(dst);
  3515. drm_clflush_pages(&page, 1);
  3516. set_page_dirty(page);
  3517. mark_page_accessed(page);
  3518. page_cache_release(page);
  3519. }
  3520. }
  3521. intel_gtt_chipset_flush();
  3522. obj->phys_obj->cur_obj = NULL;
  3523. obj->phys_obj = NULL;
  3524. }
  3525. int
  3526. i915_gem_attach_phys_object(struct drm_device *dev,
  3527. struct drm_i915_gem_object *obj,
  3528. int id,
  3529. int align)
  3530. {
  3531. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3532. drm_i915_private_t *dev_priv = dev->dev_private;
  3533. int ret = 0;
  3534. int page_count;
  3535. int i;
  3536. if (id > I915_MAX_PHYS_OBJECT)
  3537. return -EINVAL;
  3538. if (obj->phys_obj) {
  3539. if (obj->phys_obj->id == id)
  3540. return 0;
  3541. i915_gem_detach_phys_object(dev, obj);
  3542. }
  3543. /* create a new object */
  3544. if (!dev_priv->mm.phys_objs[id - 1]) {
  3545. ret = i915_gem_init_phys_object(dev, id,
  3546. obj->base.size, align);
  3547. if (ret) {
  3548. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3549. id, obj->base.size);
  3550. return ret;
  3551. }
  3552. }
  3553. /* bind to the object */
  3554. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3555. obj->phys_obj->cur_obj = obj;
  3556. page_count = obj->base.size / PAGE_SIZE;
  3557. for (i = 0; i < page_count; i++) {
  3558. struct page *page;
  3559. char *dst, *src;
  3560. page = shmem_read_mapping_page(mapping, i);
  3561. if (IS_ERR(page))
  3562. return PTR_ERR(page);
  3563. src = kmap_atomic(page);
  3564. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3565. memcpy(dst, src, PAGE_SIZE);
  3566. kunmap_atomic(src);
  3567. mark_page_accessed(page);
  3568. page_cache_release(page);
  3569. }
  3570. return 0;
  3571. }
  3572. static int
  3573. i915_gem_phys_pwrite(struct drm_device *dev,
  3574. struct drm_i915_gem_object *obj,
  3575. struct drm_i915_gem_pwrite *args,
  3576. struct drm_file *file_priv)
  3577. {
  3578. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3579. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3580. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3581. unsigned long unwritten;
  3582. /* The physical object once assigned is fixed for the lifetime
  3583. * of the obj, so we can safely drop the lock and continue
  3584. * to access vaddr.
  3585. */
  3586. mutex_unlock(&dev->struct_mutex);
  3587. unwritten = copy_from_user(vaddr, user_data, args->size);
  3588. mutex_lock(&dev->struct_mutex);
  3589. if (unwritten)
  3590. return -EFAULT;
  3591. }
  3592. intel_gtt_chipset_flush();
  3593. return 0;
  3594. }
  3595. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3596. {
  3597. struct drm_i915_file_private *file_priv = file->driver_priv;
  3598. /* Clean up our request list when the client is going away, so that
  3599. * later retire_requests won't dereference our soon-to-be-gone
  3600. * file_priv.
  3601. */
  3602. spin_lock(&file_priv->mm.lock);
  3603. while (!list_empty(&file_priv->mm.request_list)) {
  3604. struct drm_i915_gem_request *request;
  3605. request = list_first_entry(&file_priv->mm.request_list,
  3606. struct drm_i915_gem_request,
  3607. client_list);
  3608. list_del(&request->client_list);
  3609. request->file_priv = NULL;
  3610. }
  3611. spin_unlock(&file_priv->mm.lock);
  3612. }
  3613. static int
  3614. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3615. {
  3616. struct drm_i915_private *dev_priv =
  3617. container_of(shrinker,
  3618. struct drm_i915_private,
  3619. mm.inactive_shrinker);
  3620. struct drm_device *dev = dev_priv->dev;
  3621. struct drm_i915_gem_object *obj;
  3622. int nr_to_scan = sc->nr_to_scan;
  3623. int cnt;
  3624. if (!mutex_trylock(&dev->struct_mutex))
  3625. return 0;
  3626. if (nr_to_scan) {
  3627. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3628. if (nr_to_scan > 0)
  3629. i915_gem_shrink_all(dev_priv);
  3630. }
  3631. cnt = 0;
  3632. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3633. if (obj->pages_pin_count == 0)
  3634. cnt += obj->base.size >> PAGE_SHIFT;
  3635. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3636. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3637. cnt += obj->base.size >> PAGE_SHIFT;
  3638. mutex_unlock(&dev->struct_mutex);
  3639. return cnt;
  3640. }