amd64_edac.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Per-node driver instances */
  14. static struct mem_ctl_info **mcis;
  15. static struct amd64_pvt **pvts;
  16. static struct ecc_settings **ecc_stngs;
  17. /*
  18. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  19. * later.
  20. */
  21. static int ddr2_dbam_revCG[] = {
  22. [0] = 32,
  23. [1] = 64,
  24. [2] = 128,
  25. [3] = 256,
  26. [4] = 512,
  27. [5] = 1024,
  28. [6] = 2048,
  29. };
  30. static int ddr2_dbam_revD[] = {
  31. [0] = 32,
  32. [1] = 64,
  33. [2 ... 3] = 128,
  34. [4] = 256,
  35. [5] = 512,
  36. [6] = 256,
  37. [7] = 512,
  38. [8 ... 9] = 1024,
  39. [10] = 2048,
  40. };
  41. static int ddr2_dbam[] = { [0] = 128,
  42. [1] = 256,
  43. [2 ... 4] = 512,
  44. [5 ... 6] = 1024,
  45. [7 ... 8] = 2048,
  46. [9 ... 10] = 4096,
  47. [11] = 8192,
  48. };
  49. static int ddr3_dbam[] = { [0] = -1,
  50. [1] = 256,
  51. [2] = 512,
  52. [3 ... 4] = -1,
  53. [5 ... 6] = 1024,
  54. [7 ... 8] = 2048,
  55. [9 ... 10] = 4096,
  56. [11] = 8192,
  57. };
  58. /*
  59. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  60. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  61. * or higher value'.
  62. *
  63. *FIXME: Produce a better mapping/linearisation.
  64. */
  65. struct scrubrate scrubrates[] = {
  66. { 0x01, 1600000000UL},
  67. { 0x02, 800000000UL},
  68. { 0x03, 400000000UL},
  69. { 0x04, 200000000UL},
  70. { 0x05, 100000000UL},
  71. { 0x06, 50000000UL},
  72. { 0x07, 25000000UL},
  73. { 0x08, 12284069UL},
  74. { 0x09, 6274509UL},
  75. { 0x0A, 3121951UL},
  76. { 0x0B, 1560975UL},
  77. { 0x0C, 781440UL},
  78. { 0x0D, 390720UL},
  79. { 0x0E, 195300UL},
  80. { 0x0F, 97650UL},
  81. { 0x10, 48854UL},
  82. { 0x11, 24427UL},
  83. { 0x12, 12213UL},
  84. { 0x13, 6101UL},
  85. { 0x14, 3051UL},
  86. { 0x15, 1523UL},
  87. { 0x16, 761UL},
  88. { 0x00, 0UL}, /* scrubbing off */
  89. };
  90. /*
  91. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  92. * hardware and can involve L2 cache, dcache as well as the main memory. With
  93. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  94. * functionality.
  95. *
  96. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  97. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  98. * bytes/sec for the setting.
  99. *
  100. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  101. * other archs, we might not have access to the caches directly.
  102. */
  103. /*
  104. * scan the scrub rate mapping table for a close or matching bandwidth value to
  105. * issue. If requested is too big, then use last maximum value found.
  106. */
  107. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  108. {
  109. u32 scrubval;
  110. int i;
  111. /*
  112. * map the configured rate (new_bw) to a value specific to the AMD64
  113. * memory controller and apply to register. Search for the first
  114. * bandwidth entry that is greater or equal than the setting requested
  115. * and program that. If at last entry, turn off DRAM scrubbing.
  116. */
  117. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  118. /*
  119. * skip scrub rates which aren't recommended
  120. * (see F10 BKDG, F3x58)
  121. */
  122. if (scrubrates[i].scrubval < min_rate)
  123. continue;
  124. if (scrubrates[i].bandwidth <= new_bw)
  125. break;
  126. /*
  127. * if no suitable bandwidth found, turn off DRAM scrubbing
  128. * entirely by falling back to the last element in the
  129. * scrubrates array.
  130. */
  131. }
  132. scrubval = scrubrates[i].scrubval;
  133. if (scrubval)
  134. amd64_info("Setting scrub rate bandwidth: %u\n",
  135. scrubrates[i].bandwidth);
  136. else
  137. amd64_info("Turning scrubbing off.\n");
  138. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  139. return 0;
  140. }
  141. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  142. {
  143. struct amd64_pvt *pvt = mci->pvt_info;
  144. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  145. }
  146. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  147. {
  148. struct amd64_pvt *pvt = mci->pvt_info;
  149. u32 scrubval = 0;
  150. int status = -1, i;
  151. amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
  152. scrubval = scrubval & 0x001F;
  153. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  154. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  155. if (scrubrates[i].scrubval == scrubval) {
  156. *bw = scrubrates[i].bandwidth;
  157. status = 0;
  158. break;
  159. }
  160. }
  161. return status;
  162. }
  163. /* Map from a CSROW entry to the mask entry that operates on it */
  164. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  165. {
  166. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  167. return csrow;
  168. else
  169. return csrow >> 1;
  170. }
  171. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  172. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  173. {
  174. if (dct == 0)
  175. return pvt->dcsb0[csrow];
  176. else
  177. return pvt->dcsb1[csrow];
  178. }
  179. /*
  180. * Return the 'mask' address the i'th CS entry. This function is needed because
  181. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  182. * different.
  183. */
  184. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  185. {
  186. if (dct == 0)
  187. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  188. else
  189. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  190. }
  191. /*
  192. * In *base and *limit, pass back the full 40-bit base and limit physical
  193. * addresses for the node given by node_id. This information is obtained from
  194. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  195. * base and limit addresses are of type SysAddr, as defined at the start of
  196. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  197. * in the address range they represent.
  198. */
  199. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  200. u64 *base, u64 *limit)
  201. {
  202. *base = pvt->dram_base[node_id];
  203. *limit = pvt->dram_limit[node_id];
  204. }
  205. /*
  206. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  207. * with node_id
  208. */
  209. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  210. u64 sys_addr, int node_id)
  211. {
  212. u64 base, limit, addr;
  213. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  214. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  215. * all ones if the most significant implemented address bit is 1.
  216. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  217. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  218. * Application Programming.
  219. */
  220. addr = sys_addr & 0x000000ffffffffffull;
  221. return (addr >= base) && (addr <= limit);
  222. }
  223. /*
  224. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  225. * mem_ctl_info structure for the node that the SysAddr maps to.
  226. *
  227. * On failure, return NULL.
  228. */
  229. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  230. u64 sys_addr)
  231. {
  232. struct amd64_pvt *pvt;
  233. int node_id;
  234. u32 intlv_en, bits;
  235. /*
  236. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  237. * 3.4.4.2) registers to map the SysAddr to a node ID.
  238. */
  239. pvt = mci->pvt_info;
  240. /*
  241. * The value of this field should be the same for all DRAM Base
  242. * registers. Therefore we arbitrarily choose to read it from the
  243. * register for node 0.
  244. */
  245. intlv_en = pvt->dram_IntlvEn[0];
  246. if (intlv_en == 0) {
  247. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  248. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  249. goto found;
  250. }
  251. goto err_no_match;
  252. }
  253. if (unlikely((intlv_en != 0x01) &&
  254. (intlv_en != 0x03) &&
  255. (intlv_en != 0x07))) {
  256. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  257. return NULL;
  258. }
  259. bits = (((u32) sys_addr) >> 12) & intlv_en;
  260. for (node_id = 0; ; ) {
  261. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  262. break; /* intlv_sel field matches */
  263. if (++node_id >= DRAM_REG_COUNT)
  264. goto err_no_match;
  265. }
  266. /* sanity test for sys_addr */
  267. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  268. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  269. "range for node %d with node interleaving enabled.\n",
  270. __func__, sys_addr, node_id);
  271. return NULL;
  272. }
  273. found:
  274. return edac_mc_find(node_id);
  275. err_no_match:
  276. debugf2("sys_addr 0x%lx doesn't match any node\n",
  277. (unsigned long)sys_addr);
  278. return NULL;
  279. }
  280. /*
  281. * Extract the DRAM CS base address from selected csrow register.
  282. */
  283. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  284. {
  285. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  286. pvt->dcs_shift;
  287. }
  288. /*
  289. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  290. */
  291. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  292. {
  293. u64 dcsm_bits, other_bits;
  294. u64 mask;
  295. /* Extract bits from DRAM CS Mask. */
  296. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  297. other_bits = pvt->dcsm_mask;
  298. other_bits = ~(other_bits << pvt->dcs_shift);
  299. /*
  300. * The extracted bits from DCSM belong in the spaces represented by
  301. * the cleared bits in other_bits.
  302. */
  303. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  304. return mask;
  305. }
  306. /*
  307. * @input_addr is an InputAddr associated with the node given by mci. Return the
  308. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  309. */
  310. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  311. {
  312. struct amd64_pvt *pvt;
  313. int csrow;
  314. u64 base, mask;
  315. pvt = mci->pvt_info;
  316. /*
  317. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  318. * base/mask register pair, test the condition shown near the start of
  319. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  320. */
  321. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  322. /* This DRAM chip select is disabled on this node */
  323. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  324. continue;
  325. base = base_from_dct_base(pvt, csrow);
  326. mask = ~mask_from_dct_mask(pvt, csrow);
  327. if ((input_addr & mask) == (base & mask)) {
  328. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  329. (unsigned long)input_addr, csrow,
  330. pvt->mc_node_id);
  331. return csrow;
  332. }
  333. }
  334. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  335. (unsigned long)input_addr, pvt->mc_node_id);
  336. return -1;
  337. }
  338. /*
  339. * Return the base value defined by the DRAM Base register for the node
  340. * represented by mci. This function returns the full 40-bit value despite the
  341. * fact that the register only stores bits 39-24 of the value. See section
  342. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  343. */
  344. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  345. {
  346. struct amd64_pvt *pvt = mci->pvt_info;
  347. return pvt->dram_base[pvt->mc_node_id];
  348. }
  349. /*
  350. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  351. * for the node represented by mci. Info is passed back in *hole_base,
  352. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  353. * info is invalid. Info may be invalid for either of the following reasons:
  354. *
  355. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  356. * Address Register does not exist.
  357. *
  358. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  359. * indicating that its contents are not valid.
  360. *
  361. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  362. * complete 32-bit values despite the fact that the bitfields in the DHAR
  363. * only represent bits 31-24 of the base and offset values.
  364. */
  365. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  366. u64 *hole_offset, u64 *hole_size)
  367. {
  368. struct amd64_pvt *pvt = mci->pvt_info;
  369. u64 base;
  370. /* only revE and later have the DRAM Hole Address Register */
  371. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  372. debugf1(" revision %d for node %d does not support DHAR\n",
  373. pvt->ext_model, pvt->mc_node_id);
  374. return 1;
  375. }
  376. /* only valid for Fam10h */
  377. if (boot_cpu_data.x86 == 0x10 &&
  378. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  379. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  380. return 1;
  381. }
  382. if ((pvt->dhar & DHAR_VALID) == 0) {
  383. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  384. pvt->mc_node_id);
  385. return 1;
  386. }
  387. /* This node has Memory Hoisting */
  388. /* +------------------+--------------------+--------------------+-----
  389. * | memory | DRAM hole | relocated |
  390. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  391. * | | | DRAM hole |
  392. * | | | [0x100000000, |
  393. * | | | (0x100000000+ |
  394. * | | | (0xffffffff-x))] |
  395. * +------------------+--------------------+--------------------+-----
  396. *
  397. * Above is a diagram of physical memory showing the DRAM hole and the
  398. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  399. * starts at address x (the base address) and extends through address
  400. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  401. * addresses in the hole so that they start at 0x100000000.
  402. */
  403. base = dhar_base(pvt->dhar);
  404. *hole_base = base;
  405. *hole_size = (0x1ull << 32) - base;
  406. if (boot_cpu_data.x86 > 0xf)
  407. *hole_offset = f10_dhar_offset(pvt->dhar);
  408. else
  409. *hole_offset = k8_dhar_offset(pvt->dhar);
  410. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  411. pvt->mc_node_id, (unsigned long)*hole_base,
  412. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  413. return 0;
  414. }
  415. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  416. /*
  417. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  418. * assumed that sys_addr maps to the node given by mci.
  419. *
  420. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  421. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  422. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  423. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  424. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  425. * These parts of the documentation are unclear. I interpret them as follows:
  426. *
  427. * When node n receives a SysAddr, it processes the SysAddr as follows:
  428. *
  429. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  430. * Limit registers for node n. If the SysAddr is not within the range
  431. * specified by the base and limit values, then node n ignores the Sysaddr
  432. * (since it does not map to node n). Otherwise continue to step 2 below.
  433. *
  434. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  435. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  436. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  437. * hole. If not, skip to step 3 below. Else get the value of the
  438. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  439. * offset defined by this value from the SysAddr.
  440. *
  441. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  442. * Base register for node n. To obtain the DramAddr, subtract the base
  443. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  444. */
  445. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  446. {
  447. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  448. int ret = 0;
  449. dram_base = get_dram_base(mci);
  450. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  451. &hole_size);
  452. if (!ret) {
  453. if ((sys_addr >= (1ull << 32)) &&
  454. (sys_addr < ((1ull << 32) + hole_size))) {
  455. /* use DHAR to translate SysAddr to DramAddr */
  456. dram_addr = sys_addr - hole_offset;
  457. debugf2("using DHAR to translate SysAddr 0x%lx to "
  458. "DramAddr 0x%lx\n",
  459. (unsigned long)sys_addr,
  460. (unsigned long)dram_addr);
  461. return dram_addr;
  462. }
  463. }
  464. /*
  465. * Translate the SysAddr to a DramAddr as shown near the start of
  466. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  467. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  468. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  469. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  470. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  471. * Programmer's Manual Volume 1 Application Programming.
  472. */
  473. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  474. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  475. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  476. (unsigned long)dram_addr);
  477. return dram_addr;
  478. }
  479. /*
  480. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  481. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  482. * for node interleaving.
  483. */
  484. static int num_node_interleave_bits(unsigned intlv_en)
  485. {
  486. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  487. int n;
  488. BUG_ON(intlv_en > 7);
  489. n = intlv_shift_table[intlv_en];
  490. return n;
  491. }
  492. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  493. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  494. {
  495. struct amd64_pvt *pvt;
  496. int intlv_shift;
  497. u64 input_addr;
  498. pvt = mci->pvt_info;
  499. /*
  500. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  501. * concerning translating a DramAddr to an InputAddr.
  502. */
  503. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  504. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  505. (dram_addr & 0xfff);
  506. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  507. intlv_shift, (unsigned long)dram_addr,
  508. (unsigned long)input_addr);
  509. return input_addr;
  510. }
  511. /*
  512. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  513. * assumed that @sys_addr maps to the node given by mci.
  514. */
  515. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  516. {
  517. u64 input_addr;
  518. input_addr =
  519. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  520. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  521. (unsigned long)sys_addr, (unsigned long)input_addr);
  522. return input_addr;
  523. }
  524. /*
  525. * @input_addr is an InputAddr associated with the node represented by mci.
  526. * Translate @input_addr to a DramAddr and return the result.
  527. */
  528. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  529. {
  530. struct amd64_pvt *pvt;
  531. int node_id, intlv_shift;
  532. u64 bits, dram_addr;
  533. u32 intlv_sel;
  534. /*
  535. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  536. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  537. * this procedure. When translating from a DramAddr to an InputAddr, the
  538. * bits used for node interleaving are discarded. Here we recover these
  539. * bits from the IntlvSel field of the DRAM Limit register (section
  540. * 3.4.4.2) for the node that input_addr is associated with.
  541. */
  542. pvt = mci->pvt_info;
  543. node_id = pvt->mc_node_id;
  544. BUG_ON((node_id < 0) || (node_id > 7));
  545. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  546. if (intlv_shift == 0) {
  547. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  548. "same value\n", (unsigned long)input_addr);
  549. return input_addr;
  550. }
  551. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  552. (input_addr & 0xfff);
  553. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  554. dram_addr = bits + (intlv_sel << 12);
  555. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  556. "(%d node interleave bits)\n", (unsigned long)input_addr,
  557. (unsigned long)dram_addr, intlv_shift);
  558. return dram_addr;
  559. }
  560. /*
  561. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  562. * @dram_addr to a SysAddr.
  563. */
  564. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  565. {
  566. struct amd64_pvt *pvt = mci->pvt_info;
  567. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  568. int ret = 0;
  569. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  570. &hole_size);
  571. if (!ret) {
  572. if ((dram_addr >= hole_base) &&
  573. (dram_addr < (hole_base + hole_size))) {
  574. sys_addr = dram_addr + hole_offset;
  575. debugf1("using DHAR to translate DramAddr 0x%lx to "
  576. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  577. (unsigned long)sys_addr);
  578. return sys_addr;
  579. }
  580. }
  581. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  582. sys_addr = dram_addr + base;
  583. /*
  584. * The sys_addr we have computed up to this point is a 40-bit value
  585. * because the k8 deals with 40-bit values. However, the value we are
  586. * supposed to return is a full 64-bit physical address. The AMD
  587. * x86-64 architecture specifies that the most significant implemented
  588. * address bit through bit 63 of a physical address must be either all
  589. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  590. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  591. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  592. * Programming.
  593. */
  594. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  595. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  596. pvt->mc_node_id, (unsigned long)dram_addr,
  597. (unsigned long)sys_addr);
  598. return sys_addr;
  599. }
  600. /*
  601. * @input_addr is an InputAddr associated with the node given by mci. Translate
  602. * @input_addr to a SysAddr.
  603. */
  604. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  605. u64 input_addr)
  606. {
  607. return dram_addr_to_sys_addr(mci,
  608. input_addr_to_dram_addr(mci, input_addr));
  609. }
  610. /*
  611. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  612. * Pass back these values in *input_addr_min and *input_addr_max.
  613. */
  614. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  615. u64 *input_addr_min, u64 *input_addr_max)
  616. {
  617. struct amd64_pvt *pvt;
  618. u64 base, mask;
  619. pvt = mci->pvt_info;
  620. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  621. base = base_from_dct_base(pvt, csrow);
  622. mask = mask_from_dct_mask(pvt, csrow);
  623. *input_addr_min = base & ~mask;
  624. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  625. }
  626. /* Map the Error address to a PAGE and PAGE OFFSET. */
  627. static inline void error_address_to_page_and_offset(u64 error_address,
  628. u32 *page, u32 *offset)
  629. {
  630. *page = (u32) (error_address >> PAGE_SHIFT);
  631. *offset = ((u32) error_address) & ~PAGE_MASK;
  632. }
  633. /*
  634. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  635. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  636. * of a node that detected an ECC memory error. mci represents the node that
  637. * the error address maps to (possibly different from the node that detected
  638. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  639. * error.
  640. */
  641. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  642. {
  643. int csrow;
  644. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  645. if (csrow == -1)
  646. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  647. "address 0x%lx\n", (unsigned long)sys_addr);
  648. return csrow;
  649. }
  650. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  651. static u16 extract_syndrome(struct err_regs *err)
  652. {
  653. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  654. }
  655. /*
  656. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  657. * are ECC capable.
  658. */
  659. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  660. {
  661. int bit;
  662. enum dev_type edac_cap = EDAC_FLAG_NONE;
  663. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  664. ? 19
  665. : 17;
  666. if (pvt->dclr0 & BIT(bit))
  667. edac_cap = EDAC_FLAG_SECDED;
  668. return edac_cap;
  669. }
  670. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  671. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  672. {
  673. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  674. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  675. (dclr & BIT(16)) ? "un" : "",
  676. (dclr & BIT(19)) ? "yes" : "no");
  677. debugf1(" PAR/ERR parity: %s\n",
  678. (dclr & BIT(8)) ? "enabled" : "disabled");
  679. debugf1(" DCT 128bit mode width: %s\n",
  680. (dclr & BIT(11)) ? "128b" : "64b");
  681. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  682. (dclr & BIT(12)) ? "yes" : "no",
  683. (dclr & BIT(13)) ? "yes" : "no",
  684. (dclr & BIT(14)) ? "yes" : "no",
  685. (dclr & BIT(15)) ? "yes" : "no");
  686. }
  687. /* Display and decode various NB registers for debug purposes. */
  688. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  689. {
  690. int ganged;
  691. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  692. debugf1(" NB two channel DRAM capable: %s\n",
  693. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  694. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  695. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  696. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  697. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  698. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  699. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  700. "offset: 0x%08x\n",
  701. pvt->dhar,
  702. dhar_base(pvt->dhar),
  703. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  704. : f10_dhar_offset(pvt->dhar));
  705. debugf1(" DramHoleValid: %s\n",
  706. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  707. /* everything below this point is Fam10h and above */
  708. if (boot_cpu_data.x86 == 0xf) {
  709. amd64_debug_display_dimm_sizes(0, pvt);
  710. return;
  711. }
  712. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  713. /* Only if NOT ganged does dclr1 have valid info */
  714. if (!dct_ganging_enabled(pvt))
  715. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  716. /*
  717. * Determine if ganged and then dump memory sizes for first controller,
  718. * and if NOT ganged dump info for 2nd controller.
  719. */
  720. ganged = dct_ganging_enabled(pvt);
  721. amd64_debug_display_dimm_sizes(0, pvt);
  722. if (!ganged)
  723. amd64_debug_display_dimm_sizes(1, pvt);
  724. }
  725. /* Read in both of DBAM registers */
  726. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  727. {
  728. amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
  729. if (boot_cpu_data.x86 >= 0x10)
  730. amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
  731. }
  732. /*
  733. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  734. *
  735. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  736. * set the shift factor for the DCSB and DCSM values.
  737. *
  738. * ->dcs_mask_notused, RevE:
  739. *
  740. * To find the max InputAddr for the csrow, start with the base address and set
  741. * all bits that are "don't care" bits in the test at the start of section
  742. * 3.5.4 (p. 84).
  743. *
  744. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  745. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  746. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  747. * gaps.
  748. *
  749. * ->dcs_mask_notused, RevF and later:
  750. *
  751. * To find the max InputAddr for the csrow, start with the base address and set
  752. * all bits that are "don't care" bits in the test at the start of NPT section
  753. * 4.5.4 (p. 87).
  754. *
  755. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  756. * between bit ranges [36:27] and [21:13].
  757. *
  758. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  759. * which are all bits in the above-mentioned gaps.
  760. */
  761. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  762. {
  763. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  764. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  765. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  766. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  767. pvt->dcs_shift = REV_E_DCS_SHIFT;
  768. pvt->cs_count = 8;
  769. pvt->num_dcsm = 8;
  770. } else {
  771. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  772. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  773. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  774. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  775. pvt->cs_count = 8;
  776. pvt->num_dcsm = 4;
  777. }
  778. }
  779. /*
  780. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  781. */
  782. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  783. {
  784. int cs, reg;
  785. amd64_set_dct_base_and_mask(pvt);
  786. for (cs = 0; cs < pvt->cs_count; cs++) {
  787. reg = K8_DCSB0 + (cs * 4);
  788. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
  789. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  790. cs, pvt->dcsb0[cs], reg);
  791. /* If DCT are NOT ganged, then read in DCT1's base */
  792. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  793. reg = F10_DCSB1 + (cs * 4);
  794. if (!amd64_read_pci_cfg(pvt->F2, reg,
  795. &pvt->dcsb1[cs]))
  796. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  797. cs, pvt->dcsb1[cs], reg);
  798. } else {
  799. pvt->dcsb1[cs] = 0;
  800. }
  801. }
  802. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  803. reg = K8_DCSM0 + (cs * 4);
  804. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
  805. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  806. cs, pvt->dcsm0[cs], reg);
  807. /* If DCT are NOT ganged, then read in DCT1's mask */
  808. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  809. reg = F10_DCSM1 + (cs * 4);
  810. if (!amd64_read_pci_cfg(pvt->F2, reg,
  811. &pvt->dcsm1[cs]))
  812. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  813. cs, pvt->dcsm1[cs], reg);
  814. } else {
  815. pvt->dcsm1[cs] = 0;
  816. }
  817. }
  818. }
  819. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  820. {
  821. enum mem_type type;
  822. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  823. if (pvt->dchr0 & DDR3_MODE)
  824. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  825. else
  826. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  827. } else {
  828. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  829. }
  830. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  831. return type;
  832. }
  833. /*
  834. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  835. * and the later RevF memory controllers (DDR vs DDR2)
  836. *
  837. * Return:
  838. * number of memory channels in operation
  839. * Pass back:
  840. * contents of the DCL0_LOW register
  841. */
  842. static int k8_early_channel_count(struct amd64_pvt *pvt)
  843. {
  844. int flag, err = 0;
  845. err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  846. if (err)
  847. return err;
  848. if (pvt->ext_model >= K8_REV_F)
  849. /* RevF (NPT) and later */
  850. flag = pvt->dclr0 & F10_WIDTH_128;
  851. else
  852. /* RevE and earlier */
  853. flag = pvt->dclr0 & REVE_WIDTH_128;
  854. /* not used */
  855. pvt->dclr1 = 0;
  856. return (flag) ? 2 : 1;
  857. }
  858. /* extract the ERROR ADDRESS for the K8 CPUs */
  859. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  860. struct err_regs *info)
  861. {
  862. return (((u64) (info->nbeah & 0xff)) << 32) +
  863. (info->nbeal & ~0x03);
  864. }
  865. /*
  866. * Read the Base and Limit registers for K8 based Memory controllers; extract
  867. * fields from the 'raw' reg into separate data fields
  868. *
  869. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  870. */
  871. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  872. {
  873. u32 low;
  874. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  875. amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
  876. /* Extract parts into separate data entries */
  877. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  878. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  879. pvt->dram_rw_en[dram] = (low & 0x3);
  880. amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
  881. /*
  882. * Extract parts into separate data entries. Limit is the HIGHEST memory
  883. * location of the region, so lower 24 bits need to be all ones
  884. */
  885. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  886. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  887. pvt->dram_DstNode[dram] = (low & 0x7);
  888. }
  889. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  890. struct err_regs *err_info, u64 sys_addr)
  891. {
  892. struct mem_ctl_info *src_mci;
  893. int channel, csrow;
  894. u32 page, offset;
  895. u16 syndrome;
  896. syndrome = extract_syndrome(err_info);
  897. /* CHIPKILL enabled */
  898. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  899. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  900. if (channel < 0) {
  901. /*
  902. * Syndrome didn't map, so we don't know which of the
  903. * 2 DIMMs is in error. So we need to ID 'both' of them
  904. * as suspect.
  905. */
  906. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  907. "error reporting race\n", syndrome);
  908. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  909. return;
  910. }
  911. } else {
  912. /*
  913. * non-chipkill ecc mode
  914. *
  915. * The k8 documentation is unclear about how to determine the
  916. * channel number when using non-chipkill memory. This method
  917. * was obtained from email communication with someone at AMD.
  918. * (Wish the email was placed in this comment - norsk)
  919. */
  920. channel = ((sys_addr & BIT(3)) != 0);
  921. }
  922. /*
  923. * Find out which node the error address belongs to. This may be
  924. * different from the node that detected the error.
  925. */
  926. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  927. if (!src_mci) {
  928. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  929. (unsigned long)sys_addr);
  930. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  931. return;
  932. }
  933. /* Now map the sys_addr to a CSROW */
  934. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  935. if (csrow < 0) {
  936. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  937. } else {
  938. error_address_to_page_and_offset(sys_addr, &page, &offset);
  939. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  940. channel, EDAC_MOD_STR);
  941. }
  942. }
  943. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  944. {
  945. int *dbam_map;
  946. if (pvt->ext_model >= K8_REV_F)
  947. dbam_map = ddr2_dbam;
  948. else if (pvt->ext_model >= K8_REV_D)
  949. dbam_map = ddr2_dbam_revD;
  950. else
  951. dbam_map = ddr2_dbam_revCG;
  952. return dbam_map[cs_mode];
  953. }
  954. /*
  955. * Get the number of DCT channels in use.
  956. *
  957. * Return:
  958. * number of Memory Channels in operation
  959. * Pass back:
  960. * contents of the DCL0_LOW register
  961. */
  962. static int f10_early_channel_count(struct amd64_pvt *pvt)
  963. {
  964. int dbams[] = { DBAM0, DBAM1 };
  965. int i, j, channels = 0;
  966. u32 dbam;
  967. /* If we are in 128 bit mode, then we are using 2 channels */
  968. if (pvt->dclr0 & F10_WIDTH_128) {
  969. channels = 2;
  970. return channels;
  971. }
  972. /*
  973. * Need to check if in unganged mode: In such, there are 2 channels,
  974. * but they are not in 128 bit mode and thus the above 'dclr0' status
  975. * bit will be OFF.
  976. *
  977. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  978. * their CSEnable bit on. If so, then SINGLE DIMM case.
  979. */
  980. debugf0("Data width is not 128 bits - need more decoding\n");
  981. /*
  982. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  983. * is more than just one DIMM present in unganged mode. Need to check
  984. * both controllers since DIMMs can be placed in either one.
  985. */
  986. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  987. if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
  988. goto err_reg;
  989. for (j = 0; j < 4; j++) {
  990. if (DBAM_DIMM(j, dbam) > 0) {
  991. channels++;
  992. break;
  993. }
  994. }
  995. }
  996. if (channels > 2)
  997. channels = 2;
  998. amd64_info("MCT channel count: %d\n", channels);
  999. return channels;
  1000. err_reg:
  1001. return -1;
  1002. }
  1003. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1004. {
  1005. int *dbam_map;
  1006. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1007. dbam_map = ddr3_dbam;
  1008. else
  1009. dbam_map = ddr2_dbam;
  1010. return dbam_map[cs_mode];
  1011. }
  1012. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1013. struct err_regs *info)
  1014. {
  1015. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1016. (info->nbeal & ~0x01);
  1017. }
  1018. /*
  1019. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1020. * fields from the 'raw' reg into separate data fields.
  1021. *
  1022. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1023. */
  1024. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1025. {
  1026. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1027. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1028. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1029. /* read the 'raw' DRAM BASE Address register */
  1030. amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
  1031. amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
  1032. /* Extract parts into separate data entries */
  1033. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1034. if (pvt->dram_rw_en[dram] == 0)
  1035. return;
  1036. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1037. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1038. (((u64)low_base & 0xFFFF0000) << 8);
  1039. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1040. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1041. /* read the 'raw' LIMIT registers */
  1042. amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
  1043. amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
  1044. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1045. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1046. /*
  1047. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1048. * memory location of the region, so low 24 bits need to be all ones.
  1049. */
  1050. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1051. (((u64) low_limit & 0xFFFF0000) << 8) |
  1052. 0x00FFFFFF;
  1053. }
  1054. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1055. {
  1056. if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
  1057. &pvt->dram_ctl_select_low)) {
  1058. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1059. "High range addresses at: 0x%x\n",
  1060. pvt->dram_ctl_select_low,
  1061. dct_sel_baseaddr(pvt));
  1062. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1063. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1064. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1065. if (!dct_ganging_enabled(pvt))
  1066. debugf0(" Address range split per DCT: %s\n",
  1067. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1068. debugf0(" DCT data interleave for ECC: %s, "
  1069. "DRAM cleared since last warm reset: %s\n",
  1070. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1071. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1072. debugf0(" DCT channel interleave: %s, "
  1073. "DCT interleave bits selector: 0x%x\n",
  1074. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1075. dct_sel_interleave_addr(pvt));
  1076. }
  1077. amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
  1078. &pvt->dram_ctl_select_high);
  1079. }
  1080. /*
  1081. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1082. * Interleaving Modes.
  1083. */
  1084. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1085. int hi_range_sel, u32 intlv_en)
  1086. {
  1087. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1088. if (dct_ganging_enabled(pvt))
  1089. cs = 0;
  1090. else if (hi_range_sel)
  1091. cs = dct_sel_high;
  1092. else if (dct_interleave_enabled(pvt)) {
  1093. /*
  1094. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1095. */
  1096. if (dct_sel_interleave_addr(pvt) == 0)
  1097. cs = sys_addr >> 6 & 1;
  1098. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1099. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1100. if (dct_sel_interleave_addr(pvt) & 1)
  1101. cs = (sys_addr >> 9 & 1) ^ temp;
  1102. else
  1103. cs = (sys_addr >> 6 & 1) ^ temp;
  1104. } else if (intlv_en & 4)
  1105. cs = sys_addr >> 15 & 1;
  1106. else if (intlv_en & 2)
  1107. cs = sys_addr >> 14 & 1;
  1108. else if (intlv_en & 1)
  1109. cs = sys_addr >> 13 & 1;
  1110. else
  1111. cs = sys_addr >> 12 & 1;
  1112. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1113. cs = ~dct_sel_high & 1;
  1114. else
  1115. cs = 0;
  1116. return cs;
  1117. }
  1118. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1119. {
  1120. if (intlv_en == 1)
  1121. return 1;
  1122. else if (intlv_en == 3)
  1123. return 2;
  1124. else if (intlv_en == 7)
  1125. return 3;
  1126. return 0;
  1127. }
  1128. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1129. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1130. u32 dct_sel_base_addr,
  1131. u64 dct_sel_base_off,
  1132. u32 hole_valid, u32 hole_off,
  1133. u64 dram_base)
  1134. {
  1135. u64 chan_off;
  1136. if (hi_range_sel) {
  1137. if (!(dct_sel_base_addr & 0xFFFF0000) &&
  1138. hole_valid && (sys_addr >= 0x100000000ULL))
  1139. chan_off = hole_off << 16;
  1140. else
  1141. chan_off = dct_sel_base_off;
  1142. } else {
  1143. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1144. chan_off = hole_off << 16;
  1145. else
  1146. chan_off = dram_base & 0xFFFFF8000000ULL;
  1147. }
  1148. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1149. (chan_off & 0x0000FFFFFF800000ULL);
  1150. }
  1151. /* Hack for the time being - Can we get this from BIOS?? */
  1152. #define CH0SPARE_RANK 0
  1153. #define CH1SPARE_RANK 1
  1154. /*
  1155. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1156. * spare row
  1157. */
  1158. static inline int f10_process_possible_spare(int csrow,
  1159. u32 cs, struct amd64_pvt *pvt)
  1160. {
  1161. u32 swap_done;
  1162. u32 bad_dram_cs;
  1163. /* Depending on channel, isolate respective SPARING info */
  1164. if (cs) {
  1165. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1166. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1167. if (swap_done && (csrow == bad_dram_cs))
  1168. csrow = CH1SPARE_RANK;
  1169. } else {
  1170. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1171. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1172. if (swap_done && (csrow == bad_dram_cs))
  1173. csrow = CH0SPARE_RANK;
  1174. }
  1175. return csrow;
  1176. }
  1177. /*
  1178. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1179. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1180. *
  1181. * Return:
  1182. * -EINVAL: NOT FOUND
  1183. * 0..csrow = Chip-Select Row
  1184. */
  1185. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1186. {
  1187. struct mem_ctl_info *mci;
  1188. struct amd64_pvt *pvt;
  1189. u32 cs_base, cs_mask;
  1190. int cs_found = -EINVAL;
  1191. int csrow;
  1192. mci = mcis[nid];
  1193. if (!mci)
  1194. return cs_found;
  1195. pvt = mci->pvt_info;
  1196. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1197. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1198. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1199. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1200. continue;
  1201. /*
  1202. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1203. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1204. * of the actual address.
  1205. */
  1206. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1207. /*
  1208. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1209. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1210. */
  1211. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1212. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1213. csrow, cs_base, cs_mask);
  1214. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1215. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1216. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1217. "(CSBase & ~CSMask)=0x%x\n",
  1218. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1219. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1220. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1221. debugf1(" MATCH csrow=%d\n", cs_found);
  1222. break;
  1223. }
  1224. }
  1225. return cs_found;
  1226. }
  1227. /* For a given @dram_range, check if @sys_addr falls within it. */
  1228. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1229. u64 sys_addr, int *nid, int *chan_sel)
  1230. {
  1231. int node_id, cs_found = -EINVAL, high_range = 0;
  1232. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1233. u32 hole_valid, tmp, dct_sel_base, channel;
  1234. u64 dram_base, chan_addr, dct_sel_base_off;
  1235. dram_base = pvt->dram_base[dram_range];
  1236. intlv_en = pvt->dram_IntlvEn[dram_range];
  1237. node_id = pvt->dram_DstNode[dram_range];
  1238. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1239. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1240. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1241. /*
  1242. * This assumes that one node's DHAR is the same as all the other
  1243. * nodes' DHAR.
  1244. */
  1245. hole_off = (pvt->dhar & 0x0000FF80);
  1246. hole_valid = (pvt->dhar & 0x1);
  1247. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1248. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1249. hole_off, hole_valid, intlv_sel);
  1250. if (intlv_en &&
  1251. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1252. return -EINVAL;
  1253. dct_sel_base = dct_sel_baseaddr(pvt);
  1254. /*
  1255. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1256. * select between DCT0 and DCT1.
  1257. */
  1258. if (dct_high_range_enabled(pvt) &&
  1259. !dct_ganging_enabled(pvt) &&
  1260. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1261. high_range = 1;
  1262. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1263. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1264. dct_sel_base_off, hole_valid,
  1265. hole_off, dram_base);
  1266. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1267. /* remove Node ID (in case of memory interleaving) */
  1268. tmp = chan_addr & 0xFC0;
  1269. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1270. /* remove channel interleave and hash */
  1271. if (dct_interleave_enabled(pvt) &&
  1272. !dct_high_range_enabled(pvt) &&
  1273. !dct_ganging_enabled(pvt)) {
  1274. if (dct_sel_interleave_addr(pvt) != 1)
  1275. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1276. else {
  1277. tmp = chan_addr & 0xFC0;
  1278. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1279. | tmp;
  1280. }
  1281. }
  1282. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1283. chan_addr, (u32)(chan_addr >> 8));
  1284. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1285. if (cs_found >= 0) {
  1286. *nid = node_id;
  1287. *chan_sel = channel;
  1288. }
  1289. return cs_found;
  1290. }
  1291. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1292. int *node, int *chan_sel)
  1293. {
  1294. int dram_range, cs_found = -EINVAL;
  1295. u64 dram_base, dram_limit;
  1296. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1297. if (!pvt->dram_rw_en[dram_range])
  1298. continue;
  1299. dram_base = pvt->dram_base[dram_range];
  1300. dram_limit = pvt->dram_limit[dram_range];
  1301. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1302. cs_found = f10_match_to_this_node(pvt, dram_range,
  1303. sys_addr, node,
  1304. chan_sel);
  1305. if (cs_found >= 0)
  1306. break;
  1307. }
  1308. }
  1309. return cs_found;
  1310. }
  1311. /*
  1312. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1313. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1314. *
  1315. * The @sys_addr is usually an error address received from the hardware
  1316. * (MCX_ADDR).
  1317. */
  1318. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1319. struct err_regs *err_info,
  1320. u64 sys_addr)
  1321. {
  1322. struct amd64_pvt *pvt = mci->pvt_info;
  1323. u32 page, offset;
  1324. int nid, csrow, chan = 0;
  1325. u16 syndrome;
  1326. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1327. if (csrow < 0) {
  1328. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1329. return;
  1330. }
  1331. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1332. syndrome = extract_syndrome(err_info);
  1333. /*
  1334. * We need the syndromes for channel detection only when we're
  1335. * ganged. Otherwise @chan should already contain the channel at
  1336. * this point.
  1337. */
  1338. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1339. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1340. if (chan >= 0)
  1341. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1342. EDAC_MOD_STR);
  1343. else
  1344. /*
  1345. * Channel unknown, report all channels on this CSROW as failed.
  1346. */
  1347. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1348. edac_mc_handle_ce(mci, page, offset, syndrome,
  1349. csrow, chan, EDAC_MOD_STR);
  1350. }
  1351. /*
  1352. * debug routine to display the memory sizes of all logical DIMMs and its
  1353. * CSROWs as well
  1354. */
  1355. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1356. {
  1357. int dimm, size0, size1, factor = 0;
  1358. u32 dbam;
  1359. u32 *dcsb;
  1360. if (boot_cpu_data.x86 == 0xf) {
  1361. if (pvt->dclr0 & F10_WIDTH_128)
  1362. factor = 1;
  1363. /* K8 families < revF not supported yet */
  1364. if (pvt->ext_model < K8_REV_F)
  1365. return;
  1366. else
  1367. WARN_ON(ctrl != 0);
  1368. }
  1369. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1370. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1371. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1372. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1373. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1374. /* Dump memory sizes for DIMM and its CSROWs */
  1375. for (dimm = 0; dimm < 4; dimm++) {
  1376. size0 = 0;
  1377. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1378. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1379. size1 = 0;
  1380. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1381. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1382. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1383. dimm * 2, size0 << factor,
  1384. dimm * 2 + 1, size1 << factor);
  1385. }
  1386. }
  1387. static struct amd64_family_type amd64_family_types[] = {
  1388. [K8_CPUS] = {
  1389. .ctl_name = "K8",
  1390. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1391. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1392. .ops = {
  1393. .early_channel_count = k8_early_channel_count,
  1394. .get_error_address = k8_get_error_address,
  1395. .read_dram_base_limit = k8_read_dram_base_limit,
  1396. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1397. .dbam_to_cs = k8_dbam_to_chip_select,
  1398. }
  1399. },
  1400. [F10_CPUS] = {
  1401. .ctl_name = "F10h",
  1402. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1403. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1404. .ops = {
  1405. .early_channel_count = f10_early_channel_count,
  1406. .get_error_address = f10_get_error_address,
  1407. .read_dram_base_limit = f10_read_dram_base_limit,
  1408. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1409. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1410. .dbam_to_cs = f10_dbam_to_chip_select,
  1411. }
  1412. },
  1413. };
  1414. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1415. unsigned int device,
  1416. struct pci_dev *related)
  1417. {
  1418. struct pci_dev *dev = NULL;
  1419. dev = pci_get_device(vendor, device, dev);
  1420. while (dev) {
  1421. if ((dev->bus->number == related->bus->number) &&
  1422. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1423. break;
  1424. dev = pci_get_device(vendor, device, dev);
  1425. }
  1426. return dev;
  1427. }
  1428. /*
  1429. * These are tables of eigenvectors (one per line) which can be used for the
  1430. * construction of the syndrome tables. The modified syndrome search algorithm
  1431. * uses those to find the symbol in error and thus the DIMM.
  1432. *
  1433. * Algorithm courtesy of Ross LaFetra from AMD.
  1434. */
  1435. static u16 x4_vectors[] = {
  1436. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1437. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1438. 0x0001, 0x0002, 0x0004, 0x0008,
  1439. 0x1013, 0x3032, 0x4044, 0x8088,
  1440. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1441. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1442. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1443. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1444. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1445. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1446. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1447. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1448. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1449. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1450. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1451. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1452. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1453. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1454. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1455. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1456. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1457. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1458. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1459. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1460. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1461. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1462. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1463. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1464. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1465. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1466. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1467. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1468. 0x4807, 0xc40e, 0x130c, 0x3208,
  1469. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1470. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1471. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1472. };
  1473. static u16 x8_vectors[] = {
  1474. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1475. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1476. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1477. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1478. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1479. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1480. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1481. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1482. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1483. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1484. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1485. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1486. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1487. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1488. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1489. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1490. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1491. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1492. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1493. };
  1494. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1495. int v_dim)
  1496. {
  1497. unsigned int i, err_sym;
  1498. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1499. u16 s = syndrome;
  1500. int v_idx = err_sym * v_dim;
  1501. int v_end = (err_sym + 1) * v_dim;
  1502. /* walk over all 16 bits of the syndrome */
  1503. for (i = 1; i < (1U << 16); i <<= 1) {
  1504. /* if bit is set in that eigenvector... */
  1505. if (v_idx < v_end && vectors[v_idx] & i) {
  1506. u16 ev_comp = vectors[v_idx++];
  1507. /* ... and bit set in the modified syndrome, */
  1508. if (s & i) {
  1509. /* remove it. */
  1510. s ^= ev_comp;
  1511. if (!s)
  1512. return err_sym;
  1513. }
  1514. } else if (s & i)
  1515. /* can't get to zero, move to next symbol */
  1516. break;
  1517. }
  1518. }
  1519. debugf0("syndrome(%x) not found\n", syndrome);
  1520. return -1;
  1521. }
  1522. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1523. {
  1524. if (sym_size == 4)
  1525. switch (err_sym) {
  1526. case 0x20:
  1527. case 0x21:
  1528. return 0;
  1529. break;
  1530. case 0x22:
  1531. case 0x23:
  1532. return 1;
  1533. break;
  1534. default:
  1535. return err_sym >> 4;
  1536. break;
  1537. }
  1538. /* x8 symbols */
  1539. else
  1540. switch (err_sym) {
  1541. /* imaginary bits not in a DIMM */
  1542. case 0x10:
  1543. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1544. err_sym);
  1545. return -1;
  1546. break;
  1547. case 0x11:
  1548. return 0;
  1549. break;
  1550. case 0x12:
  1551. return 1;
  1552. break;
  1553. default:
  1554. return err_sym >> 3;
  1555. break;
  1556. }
  1557. return -1;
  1558. }
  1559. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1560. {
  1561. struct amd64_pvt *pvt = mci->pvt_info;
  1562. int err_sym = -1;
  1563. if (pvt->syn_type == 8)
  1564. err_sym = decode_syndrome(syndrome, x8_vectors,
  1565. ARRAY_SIZE(x8_vectors),
  1566. pvt->syn_type);
  1567. else if (pvt->syn_type == 4)
  1568. err_sym = decode_syndrome(syndrome, x4_vectors,
  1569. ARRAY_SIZE(x4_vectors),
  1570. pvt->syn_type);
  1571. else {
  1572. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1573. return err_sym;
  1574. }
  1575. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1576. }
  1577. /*
  1578. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1579. * ADDRESS and process.
  1580. */
  1581. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1582. struct err_regs *info)
  1583. {
  1584. struct amd64_pvt *pvt = mci->pvt_info;
  1585. u64 sys_addr;
  1586. /* Ensure that the Error Address is VALID */
  1587. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1588. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1589. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1590. return;
  1591. }
  1592. sys_addr = pvt->ops->get_error_address(mci, info);
  1593. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1594. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1595. }
  1596. /* Handle any Un-correctable Errors (UEs) */
  1597. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1598. struct err_regs *info)
  1599. {
  1600. struct amd64_pvt *pvt = mci->pvt_info;
  1601. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1602. int csrow;
  1603. u64 sys_addr;
  1604. u32 page, offset;
  1605. log_mci = mci;
  1606. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1607. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1608. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1609. return;
  1610. }
  1611. sys_addr = pvt->ops->get_error_address(mci, info);
  1612. /*
  1613. * Find out which node the error address belongs to. This may be
  1614. * different from the node that detected the error.
  1615. */
  1616. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1617. if (!src_mci) {
  1618. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1619. (unsigned long)sys_addr);
  1620. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1621. return;
  1622. }
  1623. log_mci = src_mci;
  1624. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1625. if (csrow < 0) {
  1626. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1627. (unsigned long)sys_addr);
  1628. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1629. } else {
  1630. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1631. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1632. }
  1633. }
  1634. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1635. struct err_regs *info)
  1636. {
  1637. u32 ec = ERROR_CODE(info->nbsl);
  1638. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1639. int ecc_type = (info->nbsh >> 13) & 0x3;
  1640. /* Bail early out if this was an 'observed' error */
  1641. if (PP(ec) == K8_NBSL_PP_OBS)
  1642. return;
  1643. /* Do only ECC errors */
  1644. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1645. return;
  1646. if (ecc_type == 2)
  1647. amd64_handle_ce(mci, info);
  1648. else if (ecc_type == 1)
  1649. amd64_handle_ue(mci, info);
  1650. }
  1651. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1652. {
  1653. struct mem_ctl_info *mci = mcis[node_id];
  1654. struct err_regs regs;
  1655. regs.nbsl = (u32) m->status;
  1656. regs.nbsh = (u32)(m->status >> 32);
  1657. regs.nbeal = (u32) m->addr;
  1658. regs.nbeah = (u32)(m->addr >> 32);
  1659. regs.nbcfg = nbcfg;
  1660. __amd64_decode_bus_error(mci, &regs);
  1661. /*
  1662. * Check the UE bit of the NB status high register, if set generate some
  1663. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1664. * If it was a GART error, skip that process.
  1665. *
  1666. * FIXME: this should go somewhere else, if at all.
  1667. */
  1668. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1669. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1670. }
  1671. /*
  1672. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1673. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1674. */
  1675. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
  1676. u16 f3_id)
  1677. {
  1678. /* Reserve the ADDRESS MAP Device */
  1679. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1680. if (!pvt->F1) {
  1681. amd64_err("error address map device not found: "
  1682. "vendor %x device 0x%x (broken BIOS?)\n",
  1683. PCI_VENDOR_ID_AMD, f1_id);
  1684. return -ENODEV;
  1685. }
  1686. /* Reserve the MISC Device */
  1687. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1688. if (!pvt->F3) {
  1689. pci_dev_put(pvt->F1);
  1690. pvt->F1 = NULL;
  1691. amd64_err("error F3 device not found: "
  1692. "vendor %x device 0x%x (broken BIOS?)\n",
  1693. PCI_VENDOR_ID_AMD, f3_id);
  1694. return -ENODEV;
  1695. }
  1696. debugf1("F1: %s\n", pci_name(pvt->F1));
  1697. debugf1("F2: %s\n", pci_name(pvt->F2));
  1698. debugf1("F3: %s\n", pci_name(pvt->F3));
  1699. return 0;
  1700. }
  1701. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1702. {
  1703. pci_dev_put(pvt->F1);
  1704. pci_dev_put(pvt->F3);
  1705. }
  1706. /*
  1707. * Retrieve the hardware registers of the memory controller (this includes the
  1708. * 'Address Map' and 'Misc' device regs)
  1709. */
  1710. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1711. {
  1712. u64 msr_val;
  1713. u32 tmp;
  1714. int dram;
  1715. /*
  1716. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1717. * those are Read-As-Zero
  1718. */
  1719. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1720. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1721. /* check first whether TOP_MEM2 is enabled */
  1722. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1723. if (msr_val & (1U << 21)) {
  1724. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1725. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1726. } else
  1727. debugf0(" TOP_MEM2 disabled.\n");
  1728. amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
  1729. if (pvt->ops->read_dram_ctl_register)
  1730. pvt->ops->read_dram_ctl_register(pvt);
  1731. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1732. /*
  1733. * Call CPU specific READ function to get the DRAM Base and
  1734. * Limit values from the DCT.
  1735. */
  1736. pvt->ops->read_dram_base_limit(pvt, dram);
  1737. /*
  1738. * Only print out debug info on rows with both R and W Enabled.
  1739. * Normal processing, compiler should optimize this whole 'if'
  1740. * debug output block away.
  1741. */
  1742. if (pvt->dram_rw_en[dram] != 0) {
  1743. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1744. "DRAM-LIMIT: 0x%016llx\n",
  1745. dram,
  1746. pvt->dram_base[dram],
  1747. pvt->dram_limit[dram]);
  1748. debugf1(" IntlvEn=%s %s %s "
  1749. "IntlvSel=%d DstNode=%d\n",
  1750. pvt->dram_IntlvEn[dram] ?
  1751. "Enabled" : "Disabled",
  1752. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1753. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  1754. pvt->dram_IntlvSel[dram],
  1755. pvt->dram_DstNode[dram]);
  1756. }
  1757. }
  1758. amd64_read_dct_base_mask(pvt);
  1759. amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
  1760. amd64_read_dbam_reg(pvt);
  1761. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1762. amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  1763. amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
  1764. if (boot_cpu_data.x86 >= 0x10) {
  1765. if (!dct_ganging_enabled(pvt)) {
  1766. amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
  1767. amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
  1768. }
  1769. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1770. }
  1771. if (boot_cpu_data.x86 == 0x10 &&
  1772. boot_cpu_data.x86_model > 7 &&
  1773. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1774. tmp & BIT(25))
  1775. pvt->syn_type = 8;
  1776. else
  1777. pvt->syn_type = 4;
  1778. amd64_dump_misc_regs(pvt);
  1779. }
  1780. /*
  1781. * NOTE: CPU Revision Dependent code
  1782. *
  1783. * Input:
  1784. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  1785. * k8 private pointer to -->
  1786. * DRAM Bank Address mapping register
  1787. * node_id
  1788. * DCL register where dual_channel_active is
  1789. *
  1790. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1791. *
  1792. * Bits: CSROWs
  1793. * 0-3 CSROWs 0 and 1
  1794. * 4-7 CSROWs 2 and 3
  1795. * 8-11 CSROWs 4 and 5
  1796. * 12-15 CSROWs 6 and 7
  1797. *
  1798. * Values range from: 0 to 15
  1799. * The meaning of the values depends on CPU revision and dual-channel state,
  1800. * see relevant BKDG more info.
  1801. *
  1802. * The memory controller provides for total of only 8 CSROWs in its current
  1803. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1804. * single channel or two (2) DIMMs in dual channel mode.
  1805. *
  1806. * The following code logic collapses the various tables for CSROW based on CPU
  1807. * revision.
  1808. *
  1809. * Returns:
  1810. * The number of PAGE_SIZE pages on the specified CSROW number it
  1811. * encompasses
  1812. *
  1813. */
  1814. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1815. {
  1816. u32 cs_mode, nr_pages;
  1817. /*
  1818. * The math on this doesn't look right on the surface because x/2*4 can
  1819. * be simplified to x*2 but this expression makes use of the fact that
  1820. * it is integral math where 1/2=0. This intermediate value becomes the
  1821. * number of bits to shift the DBAM register to extract the proper CSROW
  1822. * field.
  1823. */
  1824. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1825. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1826. /*
  1827. * If dual channel then double the memory size of single channel.
  1828. * Channel count is 1 or 2
  1829. */
  1830. nr_pages <<= (pvt->channel_count - 1);
  1831. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1832. debugf0(" nr_pages= %u channel-count = %d\n",
  1833. nr_pages, pvt->channel_count);
  1834. return nr_pages;
  1835. }
  1836. /*
  1837. * Initialize the array of csrow attribute instances, based on the values
  1838. * from pci config hardware registers.
  1839. */
  1840. static int amd64_init_csrows(struct mem_ctl_info *mci)
  1841. {
  1842. struct csrow_info *csrow;
  1843. struct amd64_pvt *pvt;
  1844. u64 input_addr_min, input_addr_max, sys_addr;
  1845. int i, empty = 1;
  1846. pvt = mci->pvt_info;
  1847. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
  1848. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  1849. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1850. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  1851. );
  1852. for (i = 0; i < pvt->cs_count; i++) {
  1853. csrow = &mci->csrows[i];
  1854. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  1855. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1856. pvt->mc_node_id);
  1857. continue;
  1858. }
  1859. debugf1("----CSROW %d VALID for MC node %d\n",
  1860. i, pvt->mc_node_id);
  1861. empty = 0;
  1862. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1863. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1864. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1865. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1866. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1867. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1868. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  1869. /* 8 bytes of resolution */
  1870. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1871. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1872. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1873. (unsigned long)input_addr_min,
  1874. (unsigned long)input_addr_max);
  1875. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1876. (unsigned long)sys_addr, csrow->page_mask);
  1877. debugf1(" nr_pages: %u first_page: 0x%lx "
  1878. "last_page: 0x%lx\n",
  1879. (unsigned)csrow->nr_pages,
  1880. csrow->first_page, csrow->last_page);
  1881. /*
  1882. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1883. */
  1884. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1885. csrow->edac_mode =
  1886. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1887. EDAC_S4ECD4ED : EDAC_SECDED;
  1888. else
  1889. csrow->edac_mode = EDAC_NONE;
  1890. }
  1891. return empty;
  1892. }
  1893. /* get all cores on this DCT */
  1894. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1895. {
  1896. int cpu;
  1897. for_each_online_cpu(cpu)
  1898. if (amd_get_nb_id(cpu) == nid)
  1899. cpumask_set_cpu(cpu, mask);
  1900. }
  1901. /* check MCG_CTL on all the cpus on this node */
  1902. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1903. {
  1904. cpumask_var_t mask;
  1905. int cpu, nbe;
  1906. bool ret = false;
  1907. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1908. amd64_warn("%s: Error allocating mask\n", __func__);
  1909. return false;
  1910. }
  1911. get_cpus_on_this_dct_cpumask(mask, nid);
  1912. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1913. for_each_cpu(cpu, mask) {
  1914. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1915. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  1916. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1917. cpu, reg->q,
  1918. (nbe ? "enabled" : "disabled"));
  1919. if (!nbe)
  1920. goto out;
  1921. }
  1922. ret = true;
  1923. out:
  1924. free_cpumask_var(mask);
  1925. return ret;
  1926. }
  1927. static int amd64_toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1928. {
  1929. cpumask_var_t cmask;
  1930. int cpu;
  1931. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1932. amd64_warn("%s: error allocating mask\n", __func__);
  1933. return false;
  1934. }
  1935. get_cpus_on_this_dct_cpumask(cmask, nid);
  1936. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1937. for_each_cpu(cpu, cmask) {
  1938. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1939. if (on) {
  1940. if (reg->l & K8_MSR_MCGCTL_NBE)
  1941. s->flags.nb_mce_enable = 1;
  1942. reg->l |= K8_MSR_MCGCTL_NBE;
  1943. } else {
  1944. /*
  1945. * Turn off NB MCE reporting only when it was off before
  1946. */
  1947. if (!s->flags.nb_mce_enable)
  1948. reg->l &= ~K8_MSR_MCGCTL_NBE;
  1949. }
  1950. }
  1951. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1952. free_cpumask_var(cmask);
  1953. return 0;
  1954. }
  1955. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  1956. {
  1957. struct amd64_pvt *pvt = mci->pvt_info;
  1958. u8 nid = pvt->mc_node_id;
  1959. struct ecc_settings *s = ecc_stngs[nid];
  1960. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1961. amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
  1962. /* turn on UECCEn and CECCEn bits */
  1963. s->old_nbctl = value & mask;
  1964. s->nbctl_valid = true;
  1965. value |= mask;
  1966. pci_write_config_dword(pvt->F3, K8_NBCTL, value);
  1967. if (amd64_toggle_ecc_err_reporting(s, nid, ON))
  1968. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1969. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  1970. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  1971. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1972. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  1973. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1974. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1975. s->flags.nb_ecc_prev = 0;
  1976. /* Attempt to turn on DRAM ECC Enable */
  1977. value |= K8_NBCFG_ECC_ENABLE;
  1978. pci_write_config_dword(pvt->F3, K8_NBCFG, value);
  1979. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  1980. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1981. amd64_warn("Hardware rejected DRAM ECC enable,"
  1982. "check memory DIMM configuration.\n");
  1983. } else {
  1984. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1985. }
  1986. } else {
  1987. s->flags.nb_ecc_prev = 1;
  1988. }
  1989. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  1990. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1991. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  1992. pvt->ctl_error_info.nbcfg = value;
  1993. }
  1994. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  1995. {
  1996. u8 nid = pvt->mc_node_id;
  1997. struct ecc_settings *s = ecc_stngs[nid];
  1998. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1999. if (!s->nbctl_valid)
  2000. return;
  2001. amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
  2002. value &= ~mask;
  2003. value |= s->old_nbctl;
  2004. pci_write_config_dword(pvt->F3, K8_NBCTL, value);
  2005. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2006. if (!s->flags.nb_ecc_prev) {
  2007. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  2008. value &= ~K8_NBCFG_ECC_ENABLE;
  2009. pci_write_config_dword(pvt->F3, K8_NBCFG, value);
  2010. }
  2011. /* restore the NB Enable MCGCTL bit */
  2012. if (amd64_toggle_ecc_err_reporting(s, nid, OFF))
  2013. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2014. }
  2015. /*
  2016. * EDAC requires that the BIOS have ECC enabled before taking over the
  2017. * processing of ECC errors. This is because the BIOS can properly initialize
  2018. * the memory system completely. A command line option allows to force-enable
  2019. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2020. */
  2021. static const char *ecc_msg =
  2022. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2023. " Either enable ECC checking or force module loading by setting "
  2024. "'ecc_enable_override'.\n"
  2025. " (Note that use of the override may cause unknown side effects.)\n";
  2026. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2027. {
  2028. u32 value;
  2029. u8 ecc_enabled = 0;
  2030. bool nb_mce_en = false;
  2031. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  2032. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2033. amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
  2034. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2035. if (!nb_mce_en)
  2036. amd64_notice("NB MCE bank disabled, "
  2037. "set MSR 0x%08x[4] on node %d to enable.\n",
  2038. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2039. if (!ecc_enabled || !nb_mce_en) {
  2040. if (!ecc_enable_override) {
  2041. amd64_notice("%s", ecc_msg);
  2042. return -ENODEV;
  2043. } else {
  2044. amd64_warn("Forcing ECC on!\n");
  2045. }
  2046. }
  2047. return 0;
  2048. }
  2049. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2050. ARRAY_SIZE(amd64_inj_attrs) +
  2051. 1];
  2052. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2053. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2054. {
  2055. unsigned int i = 0, j = 0;
  2056. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2057. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2058. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2059. sysfs_attrs[i] = amd64_inj_attrs[j];
  2060. sysfs_attrs[i] = terminator;
  2061. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2062. }
  2063. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2064. {
  2065. struct amd64_pvt *pvt = mci->pvt_info;
  2066. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2067. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2068. if (pvt->nbcap & K8_NBCAP_SECDED)
  2069. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2070. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2071. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2072. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2073. mci->mod_name = EDAC_MOD_STR;
  2074. mci->mod_ver = EDAC_AMD64_VERSION;
  2075. mci->ctl_name = pvt->ctl_name;
  2076. mci->dev_name = pci_name(pvt->F2);
  2077. mci->ctl_page_to_phys = NULL;
  2078. /* memory scrubber interface */
  2079. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2080. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2081. }
  2082. /*
  2083. * returns a pointer to the family descriptor on success, NULL otherwise.
  2084. */
  2085. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2086. {
  2087. u8 fam = boot_cpu_data.x86;
  2088. struct amd64_family_type *fam_type = NULL;
  2089. switch (fam) {
  2090. case 0xf:
  2091. fam_type = &amd64_family_types[K8_CPUS];
  2092. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2093. pvt->ctl_name = fam_type->ctl_name;
  2094. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  2095. break;
  2096. case 0x10:
  2097. fam_type = &amd64_family_types[F10_CPUS];
  2098. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2099. pvt->ctl_name = fam_type->ctl_name;
  2100. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  2101. break;
  2102. default:
  2103. amd64_err("Unsupported family!\n");
  2104. return NULL;
  2105. }
  2106. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2107. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  2108. (fam == 0xf ?
  2109. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2110. : "revE or earlier ")
  2111. : ""), pvt->mc_node_id);
  2112. return fam_type;
  2113. }
  2114. static int amd64_probe_one_instance(struct pci_dev *F2)
  2115. {
  2116. struct amd64_pvt *pvt = NULL;
  2117. struct amd64_family_type *fam_type = NULL;
  2118. int err = 0, ret;
  2119. ret = -ENOMEM;
  2120. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2121. if (!pvt)
  2122. goto err_exit;
  2123. pvt->mc_node_id = get_node_id(F2);
  2124. pvt->F2 = F2;
  2125. ret = -EINVAL;
  2126. fam_type = amd64_per_family_init(pvt);
  2127. if (!fam_type)
  2128. goto err_free;
  2129. ret = -ENODEV;
  2130. err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
  2131. fam_type->f3_id);
  2132. if (err)
  2133. goto err_free;
  2134. ret = -EINVAL;
  2135. err = amd64_check_ecc_enabled(pvt);
  2136. if (err)
  2137. goto err_put;
  2138. /*
  2139. * Save the pointer to the private data for use in 2nd initialization
  2140. * stage
  2141. */
  2142. pvts[pvt->mc_node_id] = pvt;
  2143. return 0;
  2144. err_put:
  2145. amd64_free_mc_sibling_devices(pvt);
  2146. err_free:
  2147. kfree(pvt);
  2148. err_exit:
  2149. return ret;
  2150. }
  2151. /*
  2152. * This is the finishing stage of the init code. Needs to be performed after all
  2153. * MCs' hardware have been prepped for accessing extended config space.
  2154. */
  2155. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2156. {
  2157. int node_id = pvt->mc_node_id;
  2158. struct mem_ctl_info *mci;
  2159. int ret = -ENODEV;
  2160. amd64_read_mc_registers(pvt);
  2161. /*
  2162. * We need to determine how many memory channels there are. Then use
  2163. * that information for calculating the size of the dynamic instance
  2164. * tables in the 'mci' structure
  2165. */
  2166. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2167. if (pvt->channel_count < 0)
  2168. goto err_exit;
  2169. ret = -ENOMEM;
  2170. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2171. if (!mci)
  2172. goto err_exit;
  2173. mci->pvt_info = pvt;
  2174. mci->dev = &pvt->F2->dev;
  2175. amd64_setup_mci_misc_attributes(mci);
  2176. if (amd64_init_csrows(mci))
  2177. mci->edac_cap = EDAC_FLAG_NONE;
  2178. amd64_enable_ecc_error_reporting(mci);
  2179. amd64_set_mc_sysfs_attributes(mci);
  2180. ret = -ENODEV;
  2181. if (edac_mc_add_mc(mci)) {
  2182. debugf1("failed edac_mc_add_mc()\n");
  2183. goto err_add_mc;
  2184. }
  2185. mcis[node_id] = mci;
  2186. pvts[node_id] = NULL;
  2187. /* register stuff with EDAC MCE */
  2188. if (report_gart_errors)
  2189. amd_report_gart_errors(true);
  2190. amd_register_ecc_decoder(amd64_decode_bus_error);
  2191. return 0;
  2192. err_add_mc:
  2193. edac_mc_free(mci);
  2194. err_exit:
  2195. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2196. amd64_restore_ecc_error_reporting(pvt);
  2197. amd64_free_mc_sibling_devices(pvt);
  2198. kfree(pvts[pvt->mc_node_id]);
  2199. pvts[node_id] = NULL;
  2200. return ret;
  2201. }
  2202. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2203. const struct pci_device_id *mc_type)
  2204. {
  2205. int ret = 0;
  2206. u8 nid = get_node_id(pdev);
  2207. struct ecc_settings *s;
  2208. ret = pci_enable_device(pdev);
  2209. if (ret < 0) {
  2210. debugf0("ret=%d\n", ret);
  2211. return -EIO;
  2212. }
  2213. ret = -ENOMEM;
  2214. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2215. if (!s)
  2216. return ret;
  2217. ecc_stngs[nid] = s;
  2218. ret = amd64_probe_one_instance(pdev);
  2219. if (ret < 0)
  2220. amd64_err("Error probing instance: %d\n", nid);
  2221. return ret;
  2222. }
  2223. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2224. {
  2225. struct mem_ctl_info *mci;
  2226. struct amd64_pvt *pvt;
  2227. /* Remove from EDAC CORE tracking list */
  2228. mci = edac_mc_del_mc(&pdev->dev);
  2229. if (!mci)
  2230. return;
  2231. pvt = mci->pvt_info;
  2232. amd64_restore_ecc_error_reporting(pvt);
  2233. amd64_free_mc_sibling_devices(pvt);
  2234. /* unregister from EDAC MCE */
  2235. amd_report_gart_errors(false);
  2236. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2237. kfree(ecc_stngs[pvt->mc_node_id]);
  2238. ecc_stngs[pvt->mc_node_id] = NULL;
  2239. /* Free the EDAC CORE resources */
  2240. mci->pvt_info = NULL;
  2241. mcis[pvt->mc_node_id] = NULL;
  2242. kfree(pvt);
  2243. edac_mc_free(mci);
  2244. }
  2245. /*
  2246. * This table is part of the interface for loading drivers for PCI devices. The
  2247. * PCI core identifies what devices are on a system during boot, and then
  2248. * inquiry this table to see if this driver is for a given device found.
  2249. */
  2250. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2251. {
  2252. .vendor = PCI_VENDOR_ID_AMD,
  2253. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2254. .subvendor = PCI_ANY_ID,
  2255. .subdevice = PCI_ANY_ID,
  2256. .class = 0,
  2257. .class_mask = 0,
  2258. },
  2259. {
  2260. .vendor = PCI_VENDOR_ID_AMD,
  2261. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2262. .subvendor = PCI_ANY_ID,
  2263. .subdevice = PCI_ANY_ID,
  2264. .class = 0,
  2265. .class_mask = 0,
  2266. },
  2267. {0, }
  2268. };
  2269. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2270. static struct pci_driver amd64_pci_driver = {
  2271. .name = EDAC_MOD_STR,
  2272. .probe = amd64_init_one_instance,
  2273. .remove = __devexit_p(amd64_remove_one_instance),
  2274. .id_table = amd64_pci_table,
  2275. };
  2276. static void amd64_setup_pci_device(void)
  2277. {
  2278. struct mem_ctl_info *mci;
  2279. struct amd64_pvt *pvt;
  2280. if (amd64_ctl_pci)
  2281. return;
  2282. mci = mcis[0];
  2283. if (mci) {
  2284. pvt = mci->pvt_info;
  2285. amd64_ctl_pci =
  2286. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2287. if (!amd64_ctl_pci) {
  2288. pr_warning("%s(): Unable to create PCI control\n",
  2289. __func__);
  2290. pr_warning("%s(): PCI error report via EDAC not set\n",
  2291. __func__);
  2292. }
  2293. }
  2294. }
  2295. static int __init amd64_edac_init(void)
  2296. {
  2297. int nb, err = -ENODEV;
  2298. bool load_ok = false;
  2299. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2300. opstate_init();
  2301. if (amd_cache_northbridges() < 0)
  2302. goto err_ret;
  2303. err = -ENOMEM;
  2304. pvts = kzalloc(amd_nb_num() * sizeof(pvts[0]), GFP_KERNEL);
  2305. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2306. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2307. if (!(pvts && mcis && ecc_stngs))
  2308. goto err_ret;
  2309. msrs = msrs_alloc();
  2310. if (!msrs)
  2311. goto err_ret;
  2312. err = pci_register_driver(&amd64_pci_driver);
  2313. if (err)
  2314. goto err_pci;
  2315. /*
  2316. * At this point, the array 'pvts[]' contains pointers to alloc'd
  2317. * amd64_pvt structs. These will be used in the 2nd stage init function
  2318. * to finish initialization of the MC instances.
  2319. */
  2320. err = -ENODEV;
  2321. for (nb = 0; nb < amd_nb_num(); nb++) {
  2322. if (!pvts[nb])
  2323. continue;
  2324. err = amd64_init_2nd_stage(pvts[nb]);
  2325. if (err)
  2326. goto err_2nd_stage;
  2327. load_ok = true;
  2328. }
  2329. if (load_ok) {
  2330. amd64_setup_pci_device();
  2331. return 0;
  2332. }
  2333. err_2nd_stage:
  2334. pci_unregister_driver(&amd64_pci_driver);
  2335. err_pci:
  2336. msrs_free(msrs);
  2337. msrs = NULL;
  2338. err_ret:
  2339. return err;
  2340. }
  2341. static void __exit amd64_edac_exit(void)
  2342. {
  2343. if (amd64_ctl_pci)
  2344. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2345. pci_unregister_driver(&amd64_pci_driver);
  2346. kfree(ecc_stngs);
  2347. ecc_stngs = NULL;
  2348. kfree(mcis);
  2349. mcis = NULL;
  2350. kfree(pvts);
  2351. pvts = NULL;
  2352. msrs_free(msrs);
  2353. msrs = NULL;
  2354. }
  2355. module_init(amd64_edac_init);
  2356. module_exit(amd64_edac_exit);
  2357. MODULE_LICENSE("GPL");
  2358. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2359. "Dave Peterson, Thayne Harbaugh");
  2360. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2361. EDAC_AMD64_VERSION);
  2362. module_param(edac_op_state, int, 0444);
  2363. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");