ste_dma40.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transferred llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. bool cyclic;
  101. };
  102. /**
  103. * struct d40_lcla_pool - LCLA pool settings and data.
  104. *
  105. * @base: The virtual address of LCLA. 18 bit aligned.
  106. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  107. * This pointer is only there for clean-up on error.
  108. * @pages: The number of pages needed for all physical channels.
  109. * Only used later for clean-up on error
  110. * @lock: Lock to protect the content in this struct.
  111. * @alloc_map: big map over which LCLA entry is own by which job.
  112. */
  113. struct d40_lcla_pool {
  114. void *base;
  115. dma_addr_t dma_addr;
  116. void *base_unaligned;
  117. int pages;
  118. spinlock_t lock;
  119. struct d40_desc **alloc_map;
  120. };
  121. /**
  122. * struct d40_phy_res - struct for handling eventlines mapped to physical
  123. * channels.
  124. *
  125. * @lock: A lock protection this entity.
  126. * @num: The physical channel number of this entity.
  127. * @allocated_src: Bit mapped to show which src event line's are mapped to
  128. * this physical channel. Can also be free or physically allocated.
  129. * @allocated_dst: Same as for src but is dst.
  130. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  131. * event line number.
  132. */
  133. struct d40_phy_res {
  134. spinlock_t lock;
  135. int num;
  136. u32 allocated_src;
  137. u32 allocated_dst;
  138. };
  139. struct d40_base;
  140. /**
  141. * struct d40_chan - Struct that describes a channel.
  142. *
  143. * @lock: A spinlock to protect this struct.
  144. * @log_num: The logical number, if any of this channel.
  145. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  146. * current cookie.
  147. * @pending_tx: The number of pending transfers. Used between interrupt handler
  148. * and tasklet.
  149. * @busy: Set to true when transfer is ongoing on this channel.
  150. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  151. * point is NULL, then the channel is not allocated.
  152. * @chan: DMA engine handle.
  153. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  154. * transfer and call client callback.
  155. * @client: Cliented owned descriptor list.
  156. * @active: Active descriptor.
  157. * @queue: Queued jobs.
  158. * @dma_cfg: The client configuration of this dma channel.
  159. * @configured: whether the dma_cfg configuration is valid
  160. * @base: Pointer to the device instance struct.
  161. * @src_def_cfg: Default cfg register setting for src.
  162. * @dst_def_cfg: Default cfg register setting for dst.
  163. * @log_def: Default logical channel settings.
  164. * @lcla: Space for one dst src pair for logical channel transfers.
  165. * @lcpa: Pointer to dst and src lcpa settings.
  166. * @runtime_addr: runtime configured address.
  167. * @runtime_direction: runtime configured direction.
  168. *
  169. * This struct can either "be" a logical or a physical channel.
  170. */
  171. struct d40_chan {
  172. spinlock_t lock;
  173. int log_num;
  174. /* ID of the most recent completed transfer */
  175. int completed;
  176. int pending_tx;
  177. bool busy;
  178. struct d40_phy_res *phy_chan;
  179. struct dma_chan chan;
  180. struct tasklet_struct tasklet;
  181. struct list_head client;
  182. struct list_head pending_queue;
  183. struct list_head active;
  184. struct list_head queue;
  185. struct stedma40_chan_cfg dma_cfg;
  186. bool configured;
  187. struct d40_base *base;
  188. /* Default register configurations */
  189. u32 src_def_cfg;
  190. u32 dst_def_cfg;
  191. struct d40_def_lcsp log_def;
  192. struct d40_log_lli_full *lcpa;
  193. /* Runtime reconfiguration */
  194. dma_addr_t runtime_addr;
  195. enum dma_data_direction runtime_direction;
  196. };
  197. /**
  198. * struct d40_base - The big global struct, one for each probe'd instance.
  199. *
  200. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  201. * @execmd_lock: Lock for execute command usage since several channels share
  202. * the same physical register.
  203. * @dev: The device structure.
  204. * @virtbase: The virtual base address of the DMA's register.
  205. * @rev: silicon revision detected.
  206. * @clk: Pointer to the DMA clock structure.
  207. * @phy_start: Physical memory start of the DMA registers.
  208. * @phy_size: Size of the DMA register map.
  209. * @irq: The IRQ number.
  210. * @num_phy_chans: The number of physical channels. Read from HW. This
  211. * is the number of available channels for this driver, not counting "Secure
  212. * mode" allocated physical channels.
  213. * @num_log_chans: The number of logical channels. Calculated from
  214. * num_phy_chans.
  215. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  216. * @dma_slave: dma_device channels that can do only do slave transfers.
  217. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  218. * @log_chans: Room for all possible logical channels in system.
  219. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  220. * to log_chans entries.
  221. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  222. * to phy_chans entries.
  223. * @plat_data: Pointer to provided platform_data which is the driver
  224. * configuration.
  225. * @phy_res: Vector containing all physical channels.
  226. * @lcla_pool: lcla pool settings and data.
  227. * @lcpa_base: The virtual mapped address of LCPA.
  228. * @phy_lcpa: The physical address of the LCPA.
  229. * @lcpa_size: The size of the LCPA area.
  230. * @desc_slab: cache for descriptors.
  231. */
  232. struct d40_base {
  233. spinlock_t interrupt_lock;
  234. spinlock_t execmd_lock;
  235. struct device *dev;
  236. void __iomem *virtbase;
  237. u8 rev:4;
  238. struct clk *clk;
  239. phys_addr_t phy_start;
  240. resource_size_t phy_size;
  241. int irq;
  242. int num_phy_chans;
  243. int num_log_chans;
  244. struct dma_device dma_both;
  245. struct dma_device dma_slave;
  246. struct dma_device dma_memcpy;
  247. struct d40_chan *phy_chans;
  248. struct d40_chan *log_chans;
  249. struct d40_chan **lookup_log_chans;
  250. struct d40_chan **lookup_phy_chans;
  251. struct stedma40_platform_data *plat_data;
  252. /* Physical half channels */
  253. struct d40_phy_res *phy_res;
  254. struct d40_lcla_pool lcla_pool;
  255. void *lcpa_base;
  256. dma_addr_t phy_lcpa;
  257. resource_size_t lcpa_size;
  258. struct kmem_cache *desc_slab;
  259. };
  260. /**
  261. * struct d40_interrupt_lookup - lookup table for interrupt handler
  262. *
  263. * @src: Interrupt mask register.
  264. * @clr: Interrupt clear register.
  265. * @is_error: true if this is an error interrupt.
  266. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  267. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  268. */
  269. struct d40_interrupt_lookup {
  270. u32 src;
  271. u32 clr;
  272. bool is_error;
  273. int offset;
  274. };
  275. /**
  276. * struct d40_reg_val - simple lookup struct
  277. *
  278. * @reg: The register.
  279. * @val: The value that belongs to the register in reg.
  280. */
  281. struct d40_reg_val {
  282. unsigned int reg;
  283. unsigned int val;
  284. };
  285. static struct device *chan2dev(struct d40_chan *d40c)
  286. {
  287. return &d40c->chan.dev->device;
  288. }
  289. static bool chan_is_physical(struct d40_chan *chan)
  290. {
  291. return chan->log_num == D40_PHY_CHAN;
  292. }
  293. static bool chan_is_logical(struct d40_chan *chan)
  294. {
  295. return !chan_is_physical(chan);
  296. }
  297. static void __iomem *chan_base(struct d40_chan *chan)
  298. {
  299. return chan->base->virtbase + D40_DREG_PCBASE +
  300. chan->phy_chan->num * D40_DREG_PCDELTA;
  301. }
  302. #define d40_err(dev, format, arg...) \
  303. dev_err(dev, "[%s] " format, __func__, ## arg)
  304. #define chan_err(d40c, format, arg...) \
  305. d40_err(chan2dev(d40c), format, ## arg)
  306. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  307. int lli_len)
  308. {
  309. bool is_log = chan_is_logical(d40c);
  310. u32 align;
  311. void *base;
  312. if (is_log)
  313. align = sizeof(struct d40_log_lli);
  314. else
  315. align = sizeof(struct d40_phy_lli);
  316. if (lli_len == 1) {
  317. base = d40d->lli_pool.pre_alloc_lli;
  318. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  319. d40d->lli_pool.base = NULL;
  320. } else {
  321. d40d->lli_pool.size = lli_len * 2 * align;
  322. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  323. d40d->lli_pool.base = base;
  324. if (d40d->lli_pool.base == NULL)
  325. return -ENOMEM;
  326. }
  327. if (is_log) {
  328. d40d->lli_log.src = PTR_ALIGN(base, align);
  329. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  330. d40d->lli_pool.dma_addr = 0;
  331. } else {
  332. d40d->lli_phy.src = PTR_ALIGN(base, align);
  333. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  334. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  335. d40d->lli_phy.src,
  336. d40d->lli_pool.size,
  337. DMA_TO_DEVICE);
  338. if (dma_mapping_error(d40c->base->dev,
  339. d40d->lli_pool.dma_addr)) {
  340. kfree(d40d->lli_pool.base);
  341. d40d->lli_pool.base = NULL;
  342. d40d->lli_pool.dma_addr = 0;
  343. return -ENOMEM;
  344. }
  345. }
  346. return 0;
  347. }
  348. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  349. {
  350. if (d40d->lli_pool.dma_addr)
  351. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  352. d40d->lli_pool.size, DMA_TO_DEVICE);
  353. kfree(d40d->lli_pool.base);
  354. d40d->lli_pool.base = NULL;
  355. d40d->lli_pool.size = 0;
  356. d40d->lli_log.src = NULL;
  357. d40d->lli_log.dst = NULL;
  358. d40d->lli_phy.src = NULL;
  359. d40d->lli_phy.dst = NULL;
  360. }
  361. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  362. struct d40_desc *d40d)
  363. {
  364. unsigned long flags;
  365. int i;
  366. int ret = -EINVAL;
  367. int p;
  368. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  369. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  370. /*
  371. * Allocate both src and dst at the same time, therefore the half
  372. * start on 1 since 0 can't be used since zero is used as end marker.
  373. */
  374. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  375. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  376. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  377. d40d->lcla_alloc++;
  378. ret = i;
  379. break;
  380. }
  381. }
  382. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  383. return ret;
  384. }
  385. static int d40_lcla_free_all(struct d40_chan *d40c,
  386. struct d40_desc *d40d)
  387. {
  388. unsigned long flags;
  389. int i;
  390. int ret = -EINVAL;
  391. if (chan_is_physical(d40c))
  392. return 0;
  393. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  394. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  395. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  396. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  397. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  398. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  399. d40d->lcla_alloc--;
  400. if (d40d->lcla_alloc == 0) {
  401. ret = 0;
  402. break;
  403. }
  404. }
  405. }
  406. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  407. return ret;
  408. }
  409. static void d40_desc_remove(struct d40_desc *d40d)
  410. {
  411. list_del(&d40d->node);
  412. }
  413. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  414. {
  415. struct d40_desc *desc = NULL;
  416. if (!list_empty(&d40c->client)) {
  417. struct d40_desc *d;
  418. struct d40_desc *_d;
  419. list_for_each_entry_safe(d, _d, &d40c->client, node)
  420. if (async_tx_test_ack(&d->txd)) {
  421. d40_pool_lli_free(d40c, d);
  422. d40_desc_remove(d);
  423. desc = d;
  424. memset(desc, 0, sizeof(*desc));
  425. break;
  426. }
  427. }
  428. if (!desc)
  429. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  430. if (desc)
  431. INIT_LIST_HEAD(&desc->node);
  432. return desc;
  433. }
  434. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  435. {
  436. d40_pool_lli_free(d40c, d40d);
  437. d40_lcla_free_all(d40c, d40d);
  438. kmem_cache_free(d40c->base->desc_slab, d40d);
  439. }
  440. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  441. {
  442. list_add_tail(&desc->node, &d40c->active);
  443. }
  444. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  445. {
  446. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  447. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  448. void __iomem *base = chan_base(chan);
  449. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  450. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  451. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  452. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  453. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  454. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  455. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  456. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  457. }
  458. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  459. {
  460. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  461. struct d40_log_lli_bidir *lli = &desc->lli_log;
  462. int lli_current = desc->lli_current;
  463. int lli_len = desc->lli_len;
  464. bool cyclic = desc->cyclic;
  465. int curr_lcla = -EINVAL;
  466. int first_lcla = 0;
  467. bool linkback;
  468. /*
  469. * We may have partially running cyclic transfers, in case we did't get
  470. * enough LCLA entries.
  471. */
  472. linkback = cyclic && lli_current == 0;
  473. /*
  474. * For linkback, we need one LCLA even with only one link, because we
  475. * can't link back to the one in LCPA space
  476. */
  477. if (linkback || (lli_len - lli_current > 1)) {
  478. curr_lcla = d40_lcla_alloc_one(chan, desc);
  479. first_lcla = curr_lcla;
  480. }
  481. /*
  482. * For linkback, we normally load the LCPA in the loop since we need to
  483. * link it to the second LCLA and not the first. However, if we
  484. * couldn't even get a first LCLA, then we have to run in LCPA and
  485. * reload manually.
  486. */
  487. if (!linkback || curr_lcla == -EINVAL) {
  488. unsigned int flags = 0;
  489. if (curr_lcla == -EINVAL)
  490. flags |= LLI_TERM_INT;
  491. d40_log_lli_lcpa_write(chan->lcpa,
  492. &lli->dst[lli_current],
  493. &lli->src[lli_current],
  494. curr_lcla,
  495. flags);
  496. lli_current++;
  497. }
  498. if (curr_lcla < 0)
  499. goto out;
  500. for (; lli_current < lli_len; lli_current++) {
  501. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  502. 8 * curr_lcla * 2;
  503. struct d40_log_lli *lcla = pool->base + lcla_offset;
  504. unsigned int flags = 0;
  505. int next_lcla;
  506. if (lli_current + 1 < lli_len)
  507. next_lcla = d40_lcla_alloc_one(chan, desc);
  508. else
  509. next_lcla = linkback ? first_lcla : -EINVAL;
  510. if (cyclic || next_lcla == -EINVAL)
  511. flags |= LLI_TERM_INT;
  512. if (linkback && curr_lcla == first_lcla) {
  513. /* First link goes in both LCPA and LCLA */
  514. d40_log_lli_lcpa_write(chan->lcpa,
  515. &lli->dst[lli_current],
  516. &lli->src[lli_current],
  517. next_lcla, flags);
  518. }
  519. /*
  520. * One unused LCLA in the cyclic case if the very first
  521. * next_lcla fails...
  522. */
  523. d40_log_lli_lcla_write(lcla,
  524. &lli->dst[lli_current],
  525. &lli->src[lli_current],
  526. next_lcla, flags);
  527. dma_sync_single_range_for_device(chan->base->dev,
  528. pool->dma_addr, lcla_offset,
  529. 2 * sizeof(struct d40_log_lli),
  530. DMA_TO_DEVICE);
  531. curr_lcla = next_lcla;
  532. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  533. lli_current++;
  534. break;
  535. }
  536. }
  537. out:
  538. desc->lli_current = lli_current;
  539. }
  540. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  541. {
  542. if (chan_is_physical(d40c)) {
  543. d40_phy_lli_load(d40c, d40d);
  544. d40d->lli_current = d40d->lli_len;
  545. } else
  546. d40_log_lli_to_lcxa(d40c, d40d);
  547. }
  548. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  549. {
  550. struct d40_desc *d;
  551. if (list_empty(&d40c->active))
  552. return NULL;
  553. d = list_first_entry(&d40c->active,
  554. struct d40_desc,
  555. node);
  556. return d;
  557. }
  558. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  559. {
  560. list_add_tail(&desc->node, &d40c->pending_queue);
  561. }
  562. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  563. {
  564. struct d40_desc *d;
  565. if (list_empty(&d40c->pending_queue))
  566. return NULL;
  567. d = list_first_entry(&d40c->pending_queue,
  568. struct d40_desc,
  569. node);
  570. return d;
  571. }
  572. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  573. {
  574. struct d40_desc *d;
  575. if (list_empty(&d40c->queue))
  576. return NULL;
  577. d = list_first_entry(&d40c->queue,
  578. struct d40_desc,
  579. node);
  580. return d;
  581. }
  582. static int d40_psize_2_burst_size(bool is_log, int psize)
  583. {
  584. if (is_log) {
  585. if (psize == STEDMA40_PSIZE_LOG_1)
  586. return 1;
  587. } else {
  588. if (psize == STEDMA40_PSIZE_PHY_1)
  589. return 1;
  590. }
  591. return 2 << psize;
  592. }
  593. /*
  594. * The dma only supports transmitting packages up to
  595. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  596. * dma elements required to send the entire sg list
  597. */
  598. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  599. {
  600. int dmalen;
  601. u32 max_w = max(data_width1, data_width2);
  602. u32 min_w = min(data_width1, data_width2);
  603. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  604. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  605. seg_max -= (1 << max_w);
  606. if (!IS_ALIGNED(size, 1 << max_w))
  607. return -EINVAL;
  608. if (size <= seg_max)
  609. dmalen = 1;
  610. else {
  611. dmalen = size / seg_max;
  612. if (dmalen * seg_max < size)
  613. dmalen++;
  614. }
  615. return dmalen;
  616. }
  617. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  618. u32 data_width1, u32 data_width2)
  619. {
  620. struct scatterlist *sg;
  621. int i;
  622. int len = 0;
  623. int ret;
  624. for_each_sg(sgl, sg, sg_len, i) {
  625. ret = d40_size_2_dmalen(sg_dma_len(sg),
  626. data_width1, data_width2);
  627. if (ret < 0)
  628. return ret;
  629. len += ret;
  630. }
  631. return len;
  632. }
  633. /* Support functions for logical channels */
  634. static int d40_channel_execute_command(struct d40_chan *d40c,
  635. enum d40_command command)
  636. {
  637. u32 status;
  638. int i;
  639. void __iomem *active_reg;
  640. int ret = 0;
  641. unsigned long flags;
  642. u32 wmask;
  643. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  644. if (d40c->phy_chan->num % 2 == 0)
  645. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  646. else
  647. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  648. if (command == D40_DMA_SUSPEND_REQ) {
  649. status = (readl(active_reg) &
  650. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  651. D40_CHAN_POS(d40c->phy_chan->num);
  652. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  653. goto done;
  654. }
  655. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  656. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  657. active_reg);
  658. if (command == D40_DMA_SUSPEND_REQ) {
  659. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  660. status = (readl(active_reg) &
  661. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  662. D40_CHAN_POS(d40c->phy_chan->num);
  663. cpu_relax();
  664. /*
  665. * Reduce the number of bus accesses while
  666. * waiting for the DMA to suspend.
  667. */
  668. udelay(3);
  669. if (status == D40_DMA_STOP ||
  670. status == D40_DMA_SUSPENDED)
  671. break;
  672. }
  673. if (i == D40_SUSPEND_MAX_IT) {
  674. chan_err(d40c,
  675. "unable to suspend the chl %d (log: %d) status %x\n",
  676. d40c->phy_chan->num, d40c->log_num,
  677. status);
  678. dump_stack();
  679. ret = -EBUSY;
  680. }
  681. }
  682. done:
  683. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  684. return ret;
  685. }
  686. static void d40_term_all(struct d40_chan *d40c)
  687. {
  688. struct d40_desc *d40d;
  689. /* Release active descriptors */
  690. while ((d40d = d40_first_active_get(d40c))) {
  691. d40_desc_remove(d40d);
  692. d40_desc_free(d40c, d40d);
  693. }
  694. /* Release queued descriptors waiting for transfer */
  695. while ((d40d = d40_first_queued(d40c))) {
  696. d40_desc_remove(d40d);
  697. d40_desc_free(d40c, d40d);
  698. }
  699. /* Release pending descriptors */
  700. while ((d40d = d40_first_pending(d40c))) {
  701. d40_desc_remove(d40d);
  702. d40_desc_free(d40c, d40d);
  703. }
  704. d40c->pending_tx = 0;
  705. d40c->busy = false;
  706. }
  707. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  708. u32 event, int reg)
  709. {
  710. void __iomem *addr = chan_base(d40c) + reg;
  711. int tries;
  712. if (!enable) {
  713. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  714. | ~D40_EVENTLINE_MASK(event), addr);
  715. return;
  716. }
  717. /*
  718. * The hardware sometimes doesn't register the enable when src and dst
  719. * event lines are active on the same logical channel. Retry to ensure
  720. * it does. Usually only one retry is sufficient.
  721. */
  722. tries = 100;
  723. while (--tries) {
  724. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  725. | ~D40_EVENTLINE_MASK(event), addr);
  726. if (readl(addr) & D40_EVENTLINE_MASK(event))
  727. break;
  728. }
  729. if (tries != 99)
  730. dev_dbg(chan2dev(d40c),
  731. "[%s] workaround enable S%cLNK (%d tries)\n",
  732. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  733. 100 - tries);
  734. WARN_ON(!tries);
  735. }
  736. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  737. {
  738. unsigned long flags;
  739. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  740. /* Enable event line connected to device (or memcpy) */
  741. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  742. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  743. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  744. __d40_config_set_event(d40c, do_enable, event,
  745. D40_CHAN_REG_SSLNK);
  746. }
  747. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  748. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  749. __d40_config_set_event(d40c, do_enable, event,
  750. D40_CHAN_REG_SDLNK);
  751. }
  752. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  753. }
  754. static u32 d40_chan_has_events(struct d40_chan *d40c)
  755. {
  756. void __iomem *chanbase = chan_base(d40c);
  757. u32 val;
  758. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  759. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  760. return val;
  761. }
  762. static u32 d40_get_prmo(struct d40_chan *d40c)
  763. {
  764. static const unsigned int phy_map[] = {
  765. [STEDMA40_PCHAN_BASIC_MODE]
  766. = D40_DREG_PRMO_PCHAN_BASIC,
  767. [STEDMA40_PCHAN_MODULO_MODE]
  768. = D40_DREG_PRMO_PCHAN_MODULO,
  769. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  770. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  771. };
  772. static const unsigned int log_map[] = {
  773. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  774. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  775. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  776. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  777. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  778. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  779. };
  780. if (chan_is_physical(d40c))
  781. return phy_map[d40c->dma_cfg.mode_opt];
  782. else
  783. return log_map[d40c->dma_cfg.mode_opt];
  784. }
  785. static void d40_config_write(struct d40_chan *d40c)
  786. {
  787. u32 addr_base;
  788. u32 var;
  789. /* Odd addresses are even addresses + 4 */
  790. addr_base = (d40c->phy_chan->num % 2) * 4;
  791. /* Setup channel mode to logical or physical */
  792. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  793. D40_CHAN_POS(d40c->phy_chan->num);
  794. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  795. /* Setup operational mode option register */
  796. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  797. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  798. if (chan_is_logical(d40c)) {
  799. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  800. & D40_SREG_ELEM_LOG_LIDX_MASK;
  801. void __iomem *chanbase = chan_base(d40c);
  802. /* Set default config for CFG reg */
  803. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  804. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  805. /* Set LIDX for lcla */
  806. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  807. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  808. }
  809. }
  810. static u32 d40_residue(struct d40_chan *d40c)
  811. {
  812. u32 num_elt;
  813. if (chan_is_logical(d40c))
  814. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  815. >> D40_MEM_LCSP2_ECNT_POS;
  816. else {
  817. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  818. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  819. >> D40_SREG_ELEM_PHY_ECNT_POS;
  820. }
  821. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  822. }
  823. static bool d40_tx_is_linked(struct d40_chan *d40c)
  824. {
  825. bool is_link;
  826. if (chan_is_logical(d40c))
  827. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  828. else
  829. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  830. & D40_SREG_LNK_PHYS_LNK_MASK;
  831. return is_link;
  832. }
  833. static int d40_pause(struct d40_chan *d40c)
  834. {
  835. int res = 0;
  836. unsigned long flags;
  837. if (!d40c->busy)
  838. return 0;
  839. spin_lock_irqsave(&d40c->lock, flags);
  840. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  841. if (res == 0) {
  842. if (chan_is_logical(d40c)) {
  843. d40_config_set_event(d40c, false);
  844. /* Resume the other logical channels if any */
  845. if (d40_chan_has_events(d40c))
  846. res = d40_channel_execute_command(d40c,
  847. D40_DMA_RUN);
  848. }
  849. }
  850. spin_unlock_irqrestore(&d40c->lock, flags);
  851. return res;
  852. }
  853. static int d40_resume(struct d40_chan *d40c)
  854. {
  855. int res = 0;
  856. unsigned long flags;
  857. if (!d40c->busy)
  858. return 0;
  859. spin_lock_irqsave(&d40c->lock, flags);
  860. if (d40c->base->rev == 0)
  861. if (chan_is_logical(d40c)) {
  862. res = d40_channel_execute_command(d40c,
  863. D40_DMA_SUSPEND_REQ);
  864. goto no_suspend;
  865. }
  866. /* If bytes left to transfer or linked tx resume job */
  867. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  868. if (chan_is_logical(d40c))
  869. d40_config_set_event(d40c, true);
  870. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  871. }
  872. no_suspend:
  873. spin_unlock_irqrestore(&d40c->lock, flags);
  874. return res;
  875. }
  876. static int d40_terminate_all(struct d40_chan *chan)
  877. {
  878. unsigned long flags;
  879. int ret = 0;
  880. ret = d40_pause(chan);
  881. if (!ret && chan_is_physical(chan))
  882. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  883. spin_lock_irqsave(&chan->lock, flags);
  884. d40_term_all(chan);
  885. spin_unlock_irqrestore(&chan->lock, flags);
  886. return ret;
  887. }
  888. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  889. {
  890. struct d40_chan *d40c = container_of(tx->chan,
  891. struct d40_chan,
  892. chan);
  893. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  894. unsigned long flags;
  895. spin_lock_irqsave(&d40c->lock, flags);
  896. d40c->chan.cookie++;
  897. if (d40c->chan.cookie < 0)
  898. d40c->chan.cookie = 1;
  899. d40d->txd.cookie = d40c->chan.cookie;
  900. d40_desc_queue(d40c, d40d);
  901. spin_unlock_irqrestore(&d40c->lock, flags);
  902. return tx->cookie;
  903. }
  904. static int d40_start(struct d40_chan *d40c)
  905. {
  906. if (d40c->base->rev == 0) {
  907. int err;
  908. if (chan_is_logical(d40c)) {
  909. err = d40_channel_execute_command(d40c,
  910. D40_DMA_SUSPEND_REQ);
  911. if (err)
  912. return err;
  913. }
  914. }
  915. if (chan_is_logical(d40c))
  916. d40_config_set_event(d40c, true);
  917. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  918. }
  919. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  920. {
  921. struct d40_desc *d40d;
  922. int err;
  923. /* Start queued jobs, if any */
  924. d40d = d40_first_queued(d40c);
  925. if (d40d != NULL) {
  926. d40c->busy = true;
  927. /* Remove from queue */
  928. d40_desc_remove(d40d);
  929. /* Add to active queue */
  930. d40_desc_submit(d40c, d40d);
  931. /* Initiate DMA job */
  932. d40_desc_load(d40c, d40d);
  933. /* Start dma job */
  934. err = d40_start(d40c);
  935. if (err)
  936. return NULL;
  937. }
  938. return d40d;
  939. }
  940. /* called from interrupt context */
  941. static void dma_tc_handle(struct d40_chan *d40c)
  942. {
  943. struct d40_desc *d40d;
  944. /* Get first active entry from list */
  945. d40d = d40_first_active_get(d40c);
  946. if (d40d == NULL)
  947. return;
  948. if (d40d->cyclic) {
  949. /*
  950. * If this was a paritially loaded list, we need to reloaded
  951. * it, and only when the list is completed. We need to check
  952. * for done because the interrupt will hit for every link, and
  953. * not just the last one.
  954. */
  955. if (d40d->lli_current < d40d->lli_len
  956. && !d40_tx_is_linked(d40c)
  957. && !d40_residue(d40c)) {
  958. d40_lcla_free_all(d40c, d40d);
  959. d40_desc_load(d40c, d40d);
  960. (void) d40_start(d40c);
  961. if (d40d->lli_current == d40d->lli_len)
  962. d40d->lli_current = 0;
  963. }
  964. } else {
  965. d40_lcla_free_all(d40c, d40d);
  966. if (d40d->lli_current < d40d->lli_len) {
  967. d40_desc_load(d40c, d40d);
  968. /* Start dma job */
  969. (void) d40_start(d40c);
  970. return;
  971. }
  972. if (d40_queue_start(d40c) == NULL)
  973. d40c->busy = false;
  974. }
  975. d40c->pending_tx++;
  976. tasklet_schedule(&d40c->tasklet);
  977. }
  978. static void dma_tasklet(unsigned long data)
  979. {
  980. struct d40_chan *d40c = (struct d40_chan *) data;
  981. struct d40_desc *d40d;
  982. unsigned long flags;
  983. dma_async_tx_callback callback;
  984. void *callback_param;
  985. spin_lock_irqsave(&d40c->lock, flags);
  986. /* Get first active entry from list */
  987. d40d = d40_first_active_get(d40c);
  988. if (d40d == NULL)
  989. goto err;
  990. if (!d40d->cyclic)
  991. d40c->completed = d40d->txd.cookie;
  992. /*
  993. * If terminating a channel pending_tx is set to zero.
  994. * This prevents any finished active jobs to return to the client.
  995. */
  996. if (d40c->pending_tx == 0) {
  997. spin_unlock_irqrestore(&d40c->lock, flags);
  998. return;
  999. }
  1000. /* Callback to client */
  1001. callback = d40d->txd.callback;
  1002. callback_param = d40d->txd.callback_param;
  1003. if (!d40d->cyclic) {
  1004. if (async_tx_test_ack(&d40d->txd)) {
  1005. d40_pool_lli_free(d40c, d40d);
  1006. d40_desc_remove(d40d);
  1007. d40_desc_free(d40c, d40d);
  1008. } else {
  1009. if (!d40d->is_in_client_list) {
  1010. d40_desc_remove(d40d);
  1011. d40_lcla_free_all(d40c, d40d);
  1012. list_add_tail(&d40d->node, &d40c->client);
  1013. d40d->is_in_client_list = true;
  1014. }
  1015. }
  1016. }
  1017. d40c->pending_tx--;
  1018. if (d40c->pending_tx)
  1019. tasklet_schedule(&d40c->tasklet);
  1020. spin_unlock_irqrestore(&d40c->lock, flags);
  1021. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1022. callback(callback_param);
  1023. return;
  1024. err:
  1025. /* Rescue manoeuvre if receiving double interrupts */
  1026. if (d40c->pending_tx > 0)
  1027. d40c->pending_tx--;
  1028. spin_unlock_irqrestore(&d40c->lock, flags);
  1029. }
  1030. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1031. {
  1032. static const struct d40_interrupt_lookup il[] = {
  1033. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1034. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1035. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1036. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1037. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1038. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1039. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1040. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1041. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1042. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1043. };
  1044. int i;
  1045. u32 regs[ARRAY_SIZE(il)];
  1046. u32 idx;
  1047. u32 row;
  1048. long chan = -1;
  1049. struct d40_chan *d40c;
  1050. unsigned long flags;
  1051. struct d40_base *base = data;
  1052. spin_lock_irqsave(&base->interrupt_lock, flags);
  1053. /* Read interrupt status of both logical and physical channels */
  1054. for (i = 0; i < ARRAY_SIZE(il); i++)
  1055. regs[i] = readl(base->virtbase + il[i].src);
  1056. for (;;) {
  1057. chan = find_next_bit((unsigned long *)regs,
  1058. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1059. /* No more set bits found? */
  1060. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1061. break;
  1062. row = chan / BITS_PER_LONG;
  1063. idx = chan & (BITS_PER_LONG - 1);
  1064. /* ACK interrupt */
  1065. writel(1 << idx, base->virtbase + il[row].clr);
  1066. if (il[row].offset == D40_PHY_CHAN)
  1067. d40c = base->lookup_phy_chans[idx];
  1068. else
  1069. d40c = base->lookup_log_chans[il[row].offset + idx];
  1070. spin_lock(&d40c->lock);
  1071. if (!il[row].is_error)
  1072. dma_tc_handle(d40c);
  1073. else
  1074. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1075. chan, il[row].offset, idx);
  1076. spin_unlock(&d40c->lock);
  1077. }
  1078. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1079. return IRQ_HANDLED;
  1080. }
  1081. static int d40_validate_conf(struct d40_chan *d40c,
  1082. struct stedma40_chan_cfg *conf)
  1083. {
  1084. int res = 0;
  1085. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1086. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1087. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1088. if (!conf->dir) {
  1089. chan_err(d40c, "Invalid direction.\n");
  1090. res = -EINVAL;
  1091. }
  1092. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1093. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1094. d40c->runtime_addr == 0) {
  1095. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1096. conf->dst_dev_type);
  1097. res = -EINVAL;
  1098. }
  1099. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1100. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1101. d40c->runtime_addr == 0) {
  1102. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1103. conf->src_dev_type);
  1104. res = -EINVAL;
  1105. }
  1106. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1107. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1108. chan_err(d40c, "Invalid dst\n");
  1109. res = -EINVAL;
  1110. }
  1111. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1112. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1113. chan_err(d40c, "Invalid src\n");
  1114. res = -EINVAL;
  1115. }
  1116. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1117. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1118. chan_err(d40c, "No event line\n");
  1119. res = -EINVAL;
  1120. }
  1121. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1122. (src_event_group != dst_event_group)) {
  1123. chan_err(d40c, "Invalid event group\n");
  1124. res = -EINVAL;
  1125. }
  1126. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1127. /*
  1128. * DMAC HW supports it. Will be added to this driver,
  1129. * in case any dma client requires it.
  1130. */
  1131. chan_err(d40c, "periph to periph not supported\n");
  1132. res = -EINVAL;
  1133. }
  1134. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1135. (1 << conf->src_info.data_width) !=
  1136. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1137. (1 << conf->dst_info.data_width)) {
  1138. /*
  1139. * The DMAC hardware only supports
  1140. * src (burst x width) == dst (burst x width)
  1141. */
  1142. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1143. res = -EINVAL;
  1144. }
  1145. return res;
  1146. }
  1147. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1148. int log_event_line, bool is_log)
  1149. {
  1150. unsigned long flags;
  1151. spin_lock_irqsave(&phy->lock, flags);
  1152. if (!is_log) {
  1153. /* Physical interrupts are masked per physical full channel */
  1154. if (phy->allocated_src == D40_ALLOC_FREE &&
  1155. phy->allocated_dst == D40_ALLOC_FREE) {
  1156. phy->allocated_dst = D40_ALLOC_PHY;
  1157. phy->allocated_src = D40_ALLOC_PHY;
  1158. goto found;
  1159. } else
  1160. goto not_found;
  1161. }
  1162. /* Logical channel */
  1163. if (is_src) {
  1164. if (phy->allocated_src == D40_ALLOC_PHY)
  1165. goto not_found;
  1166. if (phy->allocated_src == D40_ALLOC_FREE)
  1167. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1168. if (!(phy->allocated_src & (1 << log_event_line))) {
  1169. phy->allocated_src |= 1 << log_event_line;
  1170. goto found;
  1171. } else
  1172. goto not_found;
  1173. } else {
  1174. if (phy->allocated_dst == D40_ALLOC_PHY)
  1175. goto not_found;
  1176. if (phy->allocated_dst == D40_ALLOC_FREE)
  1177. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1178. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1179. phy->allocated_dst |= 1 << log_event_line;
  1180. goto found;
  1181. } else
  1182. goto not_found;
  1183. }
  1184. not_found:
  1185. spin_unlock_irqrestore(&phy->lock, flags);
  1186. return false;
  1187. found:
  1188. spin_unlock_irqrestore(&phy->lock, flags);
  1189. return true;
  1190. }
  1191. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1192. int log_event_line)
  1193. {
  1194. unsigned long flags;
  1195. bool is_free = false;
  1196. spin_lock_irqsave(&phy->lock, flags);
  1197. if (!log_event_line) {
  1198. phy->allocated_dst = D40_ALLOC_FREE;
  1199. phy->allocated_src = D40_ALLOC_FREE;
  1200. is_free = true;
  1201. goto out;
  1202. }
  1203. /* Logical channel */
  1204. if (is_src) {
  1205. phy->allocated_src &= ~(1 << log_event_line);
  1206. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1207. phy->allocated_src = D40_ALLOC_FREE;
  1208. } else {
  1209. phy->allocated_dst &= ~(1 << log_event_line);
  1210. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1211. phy->allocated_dst = D40_ALLOC_FREE;
  1212. }
  1213. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1214. D40_ALLOC_FREE);
  1215. out:
  1216. spin_unlock_irqrestore(&phy->lock, flags);
  1217. return is_free;
  1218. }
  1219. static int d40_allocate_channel(struct d40_chan *d40c)
  1220. {
  1221. int dev_type;
  1222. int event_group;
  1223. int event_line;
  1224. struct d40_phy_res *phys;
  1225. int i;
  1226. int j;
  1227. int log_num;
  1228. bool is_src;
  1229. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1230. phys = d40c->base->phy_res;
  1231. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1232. dev_type = d40c->dma_cfg.src_dev_type;
  1233. log_num = 2 * dev_type;
  1234. is_src = true;
  1235. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1236. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1237. /* dst event lines are used for logical memcpy */
  1238. dev_type = d40c->dma_cfg.dst_dev_type;
  1239. log_num = 2 * dev_type + 1;
  1240. is_src = false;
  1241. } else
  1242. return -EINVAL;
  1243. event_group = D40_TYPE_TO_GROUP(dev_type);
  1244. event_line = D40_TYPE_TO_EVENT(dev_type);
  1245. if (!is_log) {
  1246. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1247. /* Find physical half channel */
  1248. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1249. if (d40_alloc_mask_set(&phys[i], is_src,
  1250. 0, is_log))
  1251. goto found_phy;
  1252. }
  1253. } else
  1254. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1255. int phy_num = j + event_group * 2;
  1256. for (i = phy_num; i < phy_num + 2; i++) {
  1257. if (d40_alloc_mask_set(&phys[i],
  1258. is_src,
  1259. 0,
  1260. is_log))
  1261. goto found_phy;
  1262. }
  1263. }
  1264. return -EINVAL;
  1265. found_phy:
  1266. d40c->phy_chan = &phys[i];
  1267. d40c->log_num = D40_PHY_CHAN;
  1268. goto out;
  1269. }
  1270. if (dev_type == -1)
  1271. return -EINVAL;
  1272. /* Find logical channel */
  1273. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1274. int phy_num = j + event_group * 2;
  1275. /*
  1276. * Spread logical channels across all available physical rather
  1277. * than pack every logical channel at the first available phy
  1278. * channels.
  1279. */
  1280. if (is_src) {
  1281. for (i = phy_num; i < phy_num + 2; i++) {
  1282. if (d40_alloc_mask_set(&phys[i], is_src,
  1283. event_line, is_log))
  1284. goto found_log;
  1285. }
  1286. } else {
  1287. for (i = phy_num + 1; i >= phy_num; i--) {
  1288. if (d40_alloc_mask_set(&phys[i], is_src,
  1289. event_line, is_log))
  1290. goto found_log;
  1291. }
  1292. }
  1293. }
  1294. return -EINVAL;
  1295. found_log:
  1296. d40c->phy_chan = &phys[i];
  1297. d40c->log_num = log_num;
  1298. out:
  1299. if (is_log)
  1300. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1301. else
  1302. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1303. return 0;
  1304. }
  1305. static int d40_config_memcpy(struct d40_chan *d40c)
  1306. {
  1307. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1308. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1309. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1310. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1311. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1312. memcpy[d40c->chan.chan_id];
  1313. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1314. dma_has_cap(DMA_SLAVE, cap)) {
  1315. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1316. } else {
  1317. chan_err(d40c, "No memcpy\n");
  1318. return -EINVAL;
  1319. }
  1320. return 0;
  1321. }
  1322. static int d40_free_dma(struct d40_chan *d40c)
  1323. {
  1324. int res = 0;
  1325. u32 event;
  1326. struct d40_phy_res *phy = d40c->phy_chan;
  1327. bool is_src;
  1328. struct d40_desc *d;
  1329. struct d40_desc *_d;
  1330. /* Terminate all queued and active transfers */
  1331. d40_term_all(d40c);
  1332. /* Release client owned descriptors */
  1333. if (!list_empty(&d40c->client))
  1334. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1335. d40_pool_lli_free(d40c, d);
  1336. d40_desc_remove(d);
  1337. d40_desc_free(d40c, d);
  1338. }
  1339. if (phy == NULL) {
  1340. chan_err(d40c, "phy == null\n");
  1341. return -EINVAL;
  1342. }
  1343. if (phy->allocated_src == D40_ALLOC_FREE &&
  1344. phy->allocated_dst == D40_ALLOC_FREE) {
  1345. chan_err(d40c, "channel already free\n");
  1346. return -EINVAL;
  1347. }
  1348. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1349. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1350. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1351. is_src = false;
  1352. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1353. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1354. is_src = true;
  1355. } else {
  1356. chan_err(d40c, "Unknown direction\n");
  1357. return -EINVAL;
  1358. }
  1359. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1360. if (res) {
  1361. chan_err(d40c, "suspend failed\n");
  1362. return res;
  1363. }
  1364. if (chan_is_logical(d40c)) {
  1365. /* Release logical channel, deactivate the event line */
  1366. d40_config_set_event(d40c, false);
  1367. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1368. /*
  1369. * Check if there are more logical allocation
  1370. * on this phy channel.
  1371. */
  1372. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1373. /* Resume the other logical channels if any */
  1374. if (d40_chan_has_events(d40c)) {
  1375. res = d40_channel_execute_command(d40c,
  1376. D40_DMA_RUN);
  1377. if (res) {
  1378. chan_err(d40c,
  1379. "Executing RUN command\n");
  1380. return res;
  1381. }
  1382. }
  1383. return 0;
  1384. }
  1385. } else {
  1386. (void) d40_alloc_mask_free(phy, is_src, 0);
  1387. }
  1388. /* Release physical channel */
  1389. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1390. if (res) {
  1391. chan_err(d40c, "Failed to stop channel\n");
  1392. return res;
  1393. }
  1394. d40c->phy_chan = NULL;
  1395. d40c->configured = false;
  1396. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1397. return 0;
  1398. }
  1399. static bool d40_is_paused(struct d40_chan *d40c)
  1400. {
  1401. void __iomem *chanbase = chan_base(d40c);
  1402. bool is_paused = false;
  1403. unsigned long flags;
  1404. void __iomem *active_reg;
  1405. u32 status;
  1406. u32 event;
  1407. spin_lock_irqsave(&d40c->lock, flags);
  1408. if (chan_is_physical(d40c)) {
  1409. if (d40c->phy_chan->num % 2 == 0)
  1410. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1411. else
  1412. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1413. status = (readl(active_reg) &
  1414. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1415. D40_CHAN_POS(d40c->phy_chan->num);
  1416. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1417. is_paused = true;
  1418. goto _exit;
  1419. }
  1420. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1421. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1422. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1423. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1424. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1425. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1426. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1427. } else {
  1428. chan_err(d40c, "Unknown direction\n");
  1429. goto _exit;
  1430. }
  1431. status = (status & D40_EVENTLINE_MASK(event)) >>
  1432. D40_EVENTLINE_POS(event);
  1433. if (status != D40_DMA_RUN)
  1434. is_paused = true;
  1435. _exit:
  1436. spin_unlock_irqrestore(&d40c->lock, flags);
  1437. return is_paused;
  1438. }
  1439. static u32 stedma40_residue(struct dma_chan *chan)
  1440. {
  1441. struct d40_chan *d40c =
  1442. container_of(chan, struct d40_chan, chan);
  1443. u32 bytes_left;
  1444. unsigned long flags;
  1445. spin_lock_irqsave(&d40c->lock, flags);
  1446. bytes_left = d40_residue(d40c);
  1447. spin_unlock_irqrestore(&d40c->lock, flags);
  1448. return bytes_left;
  1449. }
  1450. static int
  1451. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1452. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1453. unsigned int sg_len, dma_addr_t src_dev_addr,
  1454. dma_addr_t dst_dev_addr)
  1455. {
  1456. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1457. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1458. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1459. int ret;
  1460. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1461. src_dev_addr,
  1462. desc->lli_log.src,
  1463. chan->log_def.lcsp1,
  1464. src_info->data_width,
  1465. dst_info->data_width);
  1466. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1467. dst_dev_addr,
  1468. desc->lli_log.dst,
  1469. chan->log_def.lcsp3,
  1470. dst_info->data_width,
  1471. src_info->data_width);
  1472. return ret < 0 ? ret : 0;
  1473. }
  1474. static int
  1475. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1476. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1477. unsigned int sg_len, dma_addr_t src_dev_addr,
  1478. dma_addr_t dst_dev_addr)
  1479. {
  1480. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1481. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1482. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1483. unsigned long flags = 0;
  1484. int ret;
  1485. if (desc->cyclic)
  1486. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1487. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1488. desc->lli_phy.src,
  1489. virt_to_phys(desc->lli_phy.src),
  1490. chan->src_def_cfg,
  1491. src_info, dst_info, flags);
  1492. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1493. desc->lli_phy.dst,
  1494. virt_to_phys(desc->lli_phy.dst),
  1495. chan->dst_def_cfg,
  1496. dst_info, src_info, flags);
  1497. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1498. desc->lli_pool.size, DMA_TO_DEVICE);
  1499. return ret < 0 ? ret : 0;
  1500. }
  1501. static struct d40_desc *
  1502. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1503. unsigned int sg_len, unsigned long dma_flags)
  1504. {
  1505. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1506. struct d40_desc *desc;
  1507. int ret;
  1508. desc = d40_desc_get(chan);
  1509. if (!desc)
  1510. return NULL;
  1511. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1512. cfg->dst_info.data_width);
  1513. if (desc->lli_len < 0) {
  1514. chan_err(chan, "Unaligned size\n");
  1515. goto err;
  1516. }
  1517. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1518. if (ret < 0) {
  1519. chan_err(chan, "Could not allocate lli\n");
  1520. goto err;
  1521. }
  1522. desc->lli_current = 0;
  1523. desc->txd.flags = dma_flags;
  1524. desc->txd.tx_submit = d40_tx_submit;
  1525. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1526. return desc;
  1527. err:
  1528. d40_desc_free(chan, desc);
  1529. return NULL;
  1530. }
  1531. static dma_addr_t
  1532. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1533. {
  1534. struct stedma40_platform_data *plat = chan->base->plat_data;
  1535. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1536. dma_addr_t addr = 0;
  1537. if (chan->runtime_addr)
  1538. return chan->runtime_addr;
  1539. if (direction == DMA_FROM_DEVICE)
  1540. addr = plat->dev_rx[cfg->src_dev_type];
  1541. else if (direction == DMA_TO_DEVICE)
  1542. addr = plat->dev_tx[cfg->dst_dev_type];
  1543. return addr;
  1544. }
  1545. static struct dma_async_tx_descriptor *
  1546. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1547. struct scatterlist *sg_dst, unsigned int sg_len,
  1548. enum dma_data_direction direction, unsigned long dma_flags)
  1549. {
  1550. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1551. dma_addr_t src_dev_addr = 0;
  1552. dma_addr_t dst_dev_addr = 0;
  1553. struct d40_desc *desc;
  1554. unsigned long flags;
  1555. int ret;
  1556. if (!chan->phy_chan) {
  1557. chan_err(chan, "Cannot prepare unallocated channel\n");
  1558. return NULL;
  1559. }
  1560. spin_lock_irqsave(&chan->lock, flags);
  1561. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1562. if (desc == NULL)
  1563. goto err;
  1564. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1565. desc->cyclic = true;
  1566. if (direction != DMA_NONE) {
  1567. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1568. if (direction == DMA_FROM_DEVICE)
  1569. src_dev_addr = dev_addr;
  1570. else if (direction == DMA_TO_DEVICE)
  1571. dst_dev_addr = dev_addr;
  1572. }
  1573. if (chan_is_logical(chan))
  1574. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1575. sg_len, src_dev_addr, dst_dev_addr);
  1576. else
  1577. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1578. sg_len, src_dev_addr, dst_dev_addr);
  1579. if (ret) {
  1580. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1581. chan_is_logical(chan) ? "log" : "phy", ret);
  1582. goto err;
  1583. }
  1584. spin_unlock_irqrestore(&chan->lock, flags);
  1585. return &desc->txd;
  1586. err:
  1587. if (desc)
  1588. d40_desc_free(chan, desc);
  1589. spin_unlock_irqrestore(&chan->lock, flags);
  1590. return NULL;
  1591. }
  1592. bool stedma40_filter(struct dma_chan *chan, void *data)
  1593. {
  1594. struct stedma40_chan_cfg *info = data;
  1595. struct d40_chan *d40c =
  1596. container_of(chan, struct d40_chan, chan);
  1597. int err;
  1598. if (data) {
  1599. err = d40_validate_conf(d40c, info);
  1600. if (!err)
  1601. d40c->dma_cfg = *info;
  1602. } else
  1603. err = d40_config_memcpy(d40c);
  1604. if (!err)
  1605. d40c->configured = true;
  1606. return err == 0;
  1607. }
  1608. EXPORT_SYMBOL(stedma40_filter);
  1609. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1610. {
  1611. bool realtime = d40c->dma_cfg.realtime;
  1612. bool highprio = d40c->dma_cfg.high_priority;
  1613. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1614. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1615. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1616. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1617. u32 bit = 1 << event;
  1618. /* Destination event lines are stored in the upper halfword */
  1619. if (!src)
  1620. bit <<= 16;
  1621. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1622. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1623. }
  1624. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1625. {
  1626. if (d40c->base->rev < 3)
  1627. return;
  1628. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1629. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1630. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1631. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1632. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1633. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1634. }
  1635. /* DMA ENGINE functions */
  1636. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1637. {
  1638. int err;
  1639. unsigned long flags;
  1640. struct d40_chan *d40c =
  1641. container_of(chan, struct d40_chan, chan);
  1642. bool is_free_phy;
  1643. spin_lock_irqsave(&d40c->lock, flags);
  1644. d40c->completed = chan->cookie = 1;
  1645. /* If no dma configuration is set use default configuration (memcpy) */
  1646. if (!d40c->configured) {
  1647. err = d40_config_memcpy(d40c);
  1648. if (err) {
  1649. chan_err(d40c, "Failed to configure memcpy channel\n");
  1650. goto fail;
  1651. }
  1652. }
  1653. is_free_phy = (d40c->phy_chan == NULL);
  1654. err = d40_allocate_channel(d40c);
  1655. if (err) {
  1656. chan_err(d40c, "Failed to allocate channel\n");
  1657. goto fail;
  1658. }
  1659. /* Fill in basic CFG register values */
  1660. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1661. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1662. d40_set_prio_realtime(d40c);
  1663. if (chan_is_logical(d40c)) {
  1664. d40_log_cfg(&d40c->dma_cfg,
  1665. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1666. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1667. d40c->lcpa = d40c->base->lcpa_base +
  1668. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1669. else
  1670. d40c->lcpa = d40c->base->lcpa_base +
  1671. d40c->dma_cfg.dst_dev_type *
  1672. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1673. }
  1674. /*
  1675. * Only write channel configuration to the DMA if the physical
  1676. * resource is free. In case of multiple logical channels
  1677. * on the same physical resource, only the first write is necessary.
  1678. */
  1679. if (is_free_phy)
  1680. d40_config_write(d40c);
  1681. fail:
  1682. spin_unlock_irqrestore(&d40c->lock, flags);
  1683. return err;
  1684. }
  1685. static void d40_free_chan_resources(struct dma_chan *chan)
  1686. {
  1687. struct d40_chan *d40c =
  1688. container_of(chan, struct d40_chan, chan);
  1689. int err;
  1690. unsigned long flags;
  1691. if (d40c->phy_chan == NULL) {
  1692. chan_err(d40c, "Cannot free unallocated channel\n");
  1693. return;
  1694. }
  1695. spin_lock_irqsave(&d40c->lock, flags);
  1696. err = d40_free_dma(d40c);
  1697. if (err)
  1698. chan_err(d40c, "Failed to free channel\n");
  1699. spin_unlock_irqrestore(&d40c->lock, flags);
  1700. }
  1701. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1702. dma_addr_t dst,
  1703. dma_addr_t src,
  1704. size_t size,
  1705. unsigned long dma_flags)
  1706. {
  1707. struct scatterlist dst_sg;
  1708. struct scatterlist src_sg;
  1709. sg_init_table(&dst_sg, 1);
  1710. sg_init_table(&src_sg, 1);
  1711. sg_dma_address(&dst_sg) = dst;
  1712. sg_dma_address(&src_sg) = src;
  1713. sg_dma_len(&dst_sg) = size;
  1714. sg_dma_len(&src_sg) = size;
  1715. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1716. }
  1717. static struct dma_async_tx_descriptor *
  1718. d40_prep_memcpy_sg(struct dma_chan *chan,
  1719. struct scatterlist *dst_sg, unsigned int dst_nents,
  1720. struct scatterlist *src_sg, unsigned int src_nents,
  1721. unsigned long dma_flags)
  1722. {
  1723. if (dst_nents != src_nents)
  1724. return NULL;
  1725. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1726. }
  1727. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1728. struct scatterlist *sgl,
  1729. unsigned int sg_len,
  1730. enum dma_data_direction direction,
  1731. unsigned long dma_flags)
  1732. {
  1733. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1734. return NULL;
  1735. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1736. }
  1737. static struct dma_async_tx_descriptor *
  1738. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1739. size_t buf_len, size_t period_len,
  1740. enum dma_data_direction direction)
  1741. {
  1742. unsigned int periods = buf_len / period_len;
  1743. struct dma_async_tx_descriptor *txd;
  1744. struct scatterlist *sg;
  1745. int i;
  1746. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
  1747. for (i = 0; i < periods; i++) {
  1748. sg_dma_address(&sg[i]) = dma_addr;
  1749. sg_dma_len(&sg[i]) = period_len;
  1750. dma_addr += period_len;
  1751. }
  1752. sg[periods].offset = 0;
  1753. sg[periods].length = 0;
  1754. sg[periods].page_link =
  1755. ((unsigned long)sg | 0x01) & ~0x02;
  1756. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1757. DMA_PREP_INTERRUPT);
  1758. kfree(sg);
  1759. return txd;
  1760. }
  1761. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1762. dma_cookie_t cookie,
  1763. struct dma_tx_state *txstate)
  1764. {
  1765. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1766. dma_cookie_t last_used;
  1767. dma_cookie_t last_complete;
  1768. int ret;
  1769. if (d40c->phy_chan == NULL) {
  1770. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1771. return -EINVAL;
  1772. }
  1773. last_complete = d40c->completed;
  1774. last_used = chan->cookie;
  1775. if (d40_is_paused(d40c))
  1776. ret = DMA_PAUSED;
  1777. else
  1778. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1779. dma_set_tx_state(txstate, last_complete, last_used,
  1780. stedma40_residue(chan));
  1781. return ret;
  1782. }
  1783. static void d40_issue_pending(struct dma_chan *chan)
  1784. {
  1785. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1786. unsigned long flags;
  1787. if (d40c->phy_chan == NULL) {
  1788. chan_err(d40c, "Channel is not allocated!\n");
  1789. return;
  1790. }
  1791. spin_lock_irqsave(&d40c->lock, flags);
  1792. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1793. /* Busy means that queued jobs are already being processed */
  1794. if (!d40c->busy)
  1795. (void) d40_queue_start(d40c);
  1796. spin_unlock_irqrestore(&d40c->lock, flags);
  1797. }
  1798. /* Runtime reconfiguration extension */
  1799. static void d40_set_runtime_config(struct dma_chan *chan,
  1800. struct dma_slave_config *config)
  1801. {
  1802. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1803. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1804. enum dma_slave_buswidth config_addr_width;
  1805. dma_addr_t config_addr;
  1806. u32 config_maxburst;
  1807. enum stedma40_periph_data_width addr_width;
  1808. int psize;
  1809. if (config->direction == DMA_FROM_DEVICE) {
  1810. dma_addr_t dev_addr_rx =
  1811. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1812. config_addr = config->src_addr;
  1813. if (dev_addr_rx)
  1814. dev_dbg(d40c->base->dev,
  1815. "channel has a pre-wired RX address %08x "
  1816. "overriding with %08x\n",
  1817. dev_addr_rx, config_addr);
  1818. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1819. dev_dbg(d40c->base->dev,
  1820. "channel was not configured for peripheral "
  1821. "to memory transfer (%d) overriding\n",
  1822. cfg->dir);
  1823. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1824. config_addr_width = config->src_addr_width;
  1825. config_maxburst = config->src_maxburst;
  1826. } else if (config->direction == DMA_TO_DEVICE) {
  1827. dma_addr_t dev_addr_tx =
  1828. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1829. config_addr = config->dst_addr;
  1830. if (dev_addr_tx)
  1831. dev_dbg(d40c->base->dev,
  1832. "channel has a pre-wired TX address %08x "
  1833. "overriding with %08x\n",
  1834. dev_addr_tx, config_addr);
  1835. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1836. dev_dbg(d40c->base->dev,
  1837. "channel was not configured for memory "
  1838. "to peripheral transfer (%d) overriding\n",
  1839. cfg->dir);
  1840. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1841. config_addr_width = config->dst_addr_width;
  1842. config_maxburst = config->dst_maxburst;
  1843. } else {
  1844. dev_err(d40c->base->dev,
  1845. "unrecognized channel direction %d\n",
  1846. config->direction);
  1847. return;
  1848. }
  1849. switch (config_addr_width) {
  1850. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1851. addr_width = STEDMA40_BYTE_WIDTH;
  1852. break;
  1853. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1854. addr_width = STEDMA40_HALFWORD_WIDTH;
  1855. break;
  1856. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1857. addr_width = STEDMA40_WORD_WIDTH;
  1858. break;
  1859. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1860. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1861. break;
  1862. default:
  1863. dev_err(d40c->base->dev,
  1864. "illegal peripheral address width "
  1865. "requested (%d)\n",
  1866. config->src_addr_width);
  1867. return;
  1868. }
  1869. if (chan_is_logical(d40c)) {
  1870. if (config_maxburst >= 16)
  1871. psize = STEDMA40_PSIZE_LOG_16;
  1872. else if (config_maxburst >= 8)
  1873. psize = STEDMA40_PSIZE_LOG_8;
  1874. else if (config_maxburst >= 4)
  1875. psize = STEDMA40_PSIZE_LOG_4;
  1876. else
  1877. psize = STEDMA40_PSIZE_LOG_1;
  1878. } else {
  1879. if (config_maxburst >= 16)
  1880. psize = STEDMA40_PSIZE_PHY_16;
  1881. else if (config_maxburst >= 8)
  1882. psize = STEDMA40_PSIZE_PHY_8;
  1883. else if (config_maxburst >= 4)
  1884. psize = STEDMA40_PSIZE_PHY_4;
  1885. else if (config_maxburst >= 2)
  1886. psize = STEDMA40_PSIZE_PHY_2;
  1887. else
  1888. psize = STEDMA40_PSIZE_PHY_1;
  1889. }
  1890. /* Set up all the endpoint configs */
  1891. cfg->src_info.data_width = addr_width;
  1892. cfg->src_info.psize = psize;
  1893. cfg->src_info.big_endian = false;
  1894. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1895. cfg->dst_info.data_width = addr_width;
  1896. cfg->dst_info.psize = psize;
  1897. cfg->dst_info.big_endian = false;
  1898. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1899. /* Fill in register values */
  1900. if (chan_is_logical(d40c))
  1901. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1902. else
  1903. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1904. &d40c->dst_def_cfg, false);
  1905. /* These settings will take precedence later */
  1906. d40c->runtime_addr = config_addr;
  1907. d40c->runtime_direction = config->direction;
  1908. dev_dbg(d40c->base->dev,
  1909. "configured channel %s for %s, data width %d, "
  1910. "maxburst %d bytes, LE, no flow control\n",
  1911. dma_chan_name(chan),
  1912. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1913. config_addr_width,
  1914. config_maxburst);
  1915. }
  1916. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1917. unsigned long arg)
  1918. {
  1919. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1920. if (d40c->phy_chan == NULL) {
  1921. chan_err(d40c, "Channel is not allocated!\n");
  1922. return -EINVAL;
  1923. }
  1924. switch (cmd) {
  1925. case DMA_TERMINATE_ALL:
  1926. return d40_terminate_all(d40c);
  1927. case DMA_PAUSE:
  1928. return d40_pause(d40c);
  1929. case DMA_RESUME:
  1930. return d40_resume(d40c);
  1931. case DMA_SLAVE_CONFIG:
  1932. d40_set_runtime_config(chan,
  1933. (struct dma_slave_config *) arg);
  1934. return 0;
  1935. default:
  1936. break;
  1937. }
  1938. /* Other commands are unimplemented */
  1939. return -ENXIO;
  1940. }
  1941. /* Initialization functions */
  1942. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1943. struct d40_chan *chans, int offset,
  1944. int num_chans)
  1945. {
  1946. int i = 0;
  1947. struct d40_chan *d40c;
  1948. INIT_LIST_HEAD(&dma->channels);
  1949. for (i = offset; i < offset + num_chans; i++) {
  1950. d40c = &chans[i];
  1951. d40c->base = base;
  1952. d40c->chan.device = dma;
  1953. spin_lock_init(&d40c->lock);
  1954. d40c->log_num = D40_PHY_CHAN;
  1955. INIT_LIST_HEAD(&d40c->active);
  1956. INIT_LIST_HEAD(&d40c->queue);
  1957. INIT_LIST_HEAD(&d40c->pending_queue);
  1958. INIT_LIST_HEAD(&d40c->client);
  1959. tasklet_init(&d40c->tasklet, dma_tasklet,
  1960. (unsigned long) d40c);
  1961. list_add_tail(&d40c->chan.device_node,
  1962. &dma->channels);
  1963. }
  1964. }
  1965. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  1966. {
  1967. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  1968. dev->device_prep_slave_sg = d40_prep_slave_sg;
  1969. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  1970. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  1971. /*
  1972. * This controller can only access address at even
  1973. * 32bit boundaries, i.e. 2^2
  1974. */
  1975. dev->copy_align = 2;
  1976. }
  1977. if (dma_has_cap(DMA_SG, dev->cap_mask))
  1978. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  1979. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  1980. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  1981. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  1982. dev->device_free_chan_resources = d40_free_chan_resources;
  1983. dev->device_issue_pending = d40_issue_pending;
  1984. dev->device_tx_status = d40_tx_status;
  1985. dev->device_control = d40_control;
  1986. dev->dev = base->dev;
  1987. }
  1988. static int __init d40_dmaengine_init(struct d40_base *base,
  1989. int num_reserved_chans)
  1990. {
  1991. int err ;
  1992. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1993. 0, base->num_log_chans);
  1994. dma_cap_zero(base->dma_slave.cap_mask);
  1995. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1996. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  1997. d40_ops_init(base, &base->dma_slave);
  1998. err = dma_async_device_register(&base->dma_slave);
  1999. if (err) {
  2000. d40_err(base->dev, "Failed to register slave channels\n");
  2001. goto failure1;
  2002. }
  2003. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2004. base->num_log_chans, base->plat_data->memcpy_len);
  2005. dma_cap_zero(base->dma_memcpy.cap_mask);
  2006. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2007. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2008. d40_ops_init(base, &base->dma_memcpy);
  2009. err = dma_async_device_register(&base->dma_memcpy);
  2010. if (err) {
  2011. d40_err(base->dev,
  2012. "Failed to regsiter memcpy only channels\n");
  2013. goto failure2;
  2014. }
  2015. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2016. 0, num_reserved_chans);
  2017. dma_cap_zero(base->dma_both.cap_mask);
  2018. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2019. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2020. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2021. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2022. d40_ops_init(base, &base->dma_both);
  2023. err = dma_async_device_register(&base->dma_both);
  2024. if (err) {
  2025. d40_err(base->dev,
  2026. "Failed to register logical and physical capable channels\n");
  2027. goto failure3;
  2028. }
  2029. return 0;
  2030. failure3:
  2031. dma_async_device_unregister(&base->dma_memcpy);
  2032. failure2:
  2033. dma_async_device_unregister(&base->dma_slave);
  2034. failure1:
  2035. return err;
  2036. }
  2037. /* Initialization functions. */
  2038. static int __init d40_phy_res_init(struct d40_base *base)
  2039. {
  2040. int i;
  2041. int num_phy_chans_avail = 0;
  2042. u32 val[2];
  2043. int odd_even_bit = -2;
  2044. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2045. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2046. for (i = 0; i < base->num_phy_chans; i++) {
  2047. base->phy_res[i].num = i;
  2048. odd_even_bit += 2 * ((i % 2) == 0);
  2049. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2050. /* Mark security only channels as occupied */
  2051. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2052. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2053. } else {
  2054. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2055. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2056. num_phy_chans_avail++;
  2057. }
  2058. spin_lock_init(&base->phy_res[i].lock);
  2059. }
  2060. /* Mark disabled channels as occupied */
  2061. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2062. int chan = base->plat_data->disabled_channels[i];
  2063. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2064. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2065. num_phy_chans_avail--;
  2066. }
  2067. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2068. num_phy_chans_avail, base->num_phy_chans);
  2069. /* Verify settings extended vs standard */
  2070. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2071. for (i = 0; i < base->num_phy_chans; i++) {
  2072. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2073. (val[0] & 0x3) != 1)
  2074. dev_info(base->dev,
  2075. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2076. __func__, i, val[0] & 0x3);
  2077. val[0] = val[0] >> 2;
  2078. }
  2079. return num_phy_chans_avail;
  2080. }
  2081. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2082. {
  2083. static const struct d40_reg_val dma_id_regs[] = {
  2084. /* Peripheral Id */
  2085. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2086. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2087. /*
  2088. * D40_DREG_PERIPHID2 Depends on HW revision:
  2089. * DB8500ed has 0x0008,
  2090. * ? has 0x0018,
  2091. * DB8500v1 has 0x0028
  2092. * DB8500v2 has 0x0038
  2093. */
  2094. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2095. /* PCell Id */
  2096. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2097. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2098. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2099. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2100. };
  2101. struct stedma40_platform_data *plat_data;
  2102. struct clk *clk = NULL;
  2103. void __iomem *virtbase = NULL;
  2104. struct resource *res = NULL;
  2105. struct d40_base *base = NULL;
  2106. int num_log_chans = 0;
  2107. int num_phy_chans;
  2108. int i;
  2109. u32 val;
  2110. u32 rev;
  2111. clk = clk_get(&pdev->dev, NULL);
  2112. if (IS_ERR(clk)) {
  2113. d40_err(&pdev->dev, "No matching clock found\n");
  2114. goto failure;
  2115. }
  2116. clk_enable(clk);
  2117. /* Get IO for DMAC base address */
  2118. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2119. if (!res)
  2120. goto failure;
  2121. if (request_mem_region(res->start, resource_size(res),
  2122. D40_NAME " I/O base") == NULL)
  2123. goto failure;
  2124. virtbase = ioremap(res->start, resource_size(res));
  2125. if (!virtbase)
  2126. goto failure;
  2127. /* HW version check */
  2128. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2129. if (dma_id_regs[i].val !=
  2130. readl(virtbase + dma_id_regs[i].reg)) {
  2131. d40_err(&pdev->dev,
  2132. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2133. dma_id_regs[i].val,
  2134. dma_id_regs[i].reg,
  2135. readl(virtbase + dma_id_regs[i].reg));
  2136. goto failure;
  2137. }
  2138. }
  2139. /* Get silicon revision and designer */
  2140. val = readl(virtbase + D40_DREG_PERIPHID2);
  2141. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2142. D40_HW_DESIGNER) {
  2143. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2144. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2145. D40_HW_DESIGNER);
  2146. goto failure;
  2147. }
  2148. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2149. D40_DREG_PERIPHID2_REV_POS;
  2150. /* The number of physical channels on this HW */
  2151. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2152. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2153. rev, res->start);
  2154. plat_data = pdev->dev.platform_data;
  2155. /* Count the number of logical channels in use */
  2156. for (i = 0; i < plat_data->dev_len; i++)
  2157. if (plat_data->dev_rx[i] != 0)
  2158. num_log_chans++;
  2159. for (i = 0; i < plat_data->dev_len; i++)
  2160. if (plat_data->dev_tx[i] != 0)
  2161. num_log_chans++;
  2162. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2163. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2164. sizeof(struct d40_chan), GFP_KERNEL);
  2165. if (base == NULL) {
  2166. d40_err(&pdev->dev, "Out of memory\n");
  2167. goto failure;
  2168. }
  2169. base->rev = rev;
  2170. base->clk = clk;
  2171. base->num_phy_chans = num_phy_chans;
  2172. base->num_log_chans = num_log_chans;
  2173. base->phy_start = res->start;
  2174. base->phy_size = resource_size(res);
  2175. base->virtbase = virtbase;
  2176. base->plat_data = plat_data;
  2177. base->dev = &pdev->dev;
  2178. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2179. base->log_chans = &base->phy_chans[num_phy_chans];
  2180. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2181. GFP_KERNEL);
  2182. if (!base->phy_res)
  2183. goto failure;
  2184. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2185. sizeof(struct d40_chan *),
  2186. GFP_KERNEL);
  2187. if (!base->lookup_phy_chans)
  2188. goto failure;
  2189. if (num_log_chans + plat_data->memcpy_len) {
  2190. /*
  2191. * The max number of logical channels are event lines for all
  2192. * src devices and dst devices
  2193. */
  2194. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2195. sizeof(struct d40_chan *),
  2196. GFP_KERNEL);
  2197. if (!base->lookup_log_chans)
  2198. goto failure;
  2199. }
  2200. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2201. sizeof(struct d40_desc *) *
  2202. D40_LCLA_LINK_PER_EVENT_GRP,
  2203. GFP_KERNEL);
  2204. if (!base->lcla_pool.alloc_map)
  2205. goto failure;
  2206. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2207. 0, SLAB_HWCACHE_ALIGN,
  2208. NULL);
  2209. if (base->desc_slab == NULL)
  2210. goto failure;
  2211. return base;
  2212. failure:
  2213. if (!IS_ERR(clk)) {
  2214. clk_disable(clk);
  2215. clk_put(clk);
  2216. }
  2217. if (virtbase)
  2218. iounmap(virtbase);
  2219. if (res)
  2220. release_mem_region(res->start,
  2221. resource_size(res));
  2222. if (virtbase)
  2223. iounmap(virtbase);
  2224. if (base) {
  2225. kfree(base->lcla_pool.alloc_map);
  2226. kfree(base->lookup_log_chans);
  2227. kfree(base->lookup_phy_chans);
  2228. kfree(base->phy_res);
  2229. kfree(base);
  2230. }
  2231. return NULL;
  2232. }
  2233. static void __init d40_hw_init(struct d40_base *base)
  2234. {
  2235. static const struct d40_reg_val dma_init_reg[] = {
  2236. /* Clock every part of the DMA block from start */
  2237. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2238. /* Interrupts on all logical channels */
  2239. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2240. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2241. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2242. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2243. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2244. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2245. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2246. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2247. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2248. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2249. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2250. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2251. };
  2252. int i;
  2253. u32 prmseo[2] = {0, 0};
  2254. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2255. u32 pcmis = 0;
  2256. u32 pcicr = 0;
  2257. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2258. writel(dma_init_reg[i].val,
  2259. base->virtbase + dma_init_reg[i].reg);
  2260. /* Configure all our dma channels to default settings */
  2261. for (i = 0; i < base->num_phy_chans; i++) {
  2262. activeo[i % 2] = activeo[i % 2] << 2;
  2263. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2264. == D40_ALLOC_PHY) {
  2265. activeo[i % 2] |= 3;
  2266. continue;
  2267. }
  2268. /* Enable interrupt # */
  2269. pcmis = (pcmis << 1) | 1;
  2270. /* Clear interrupt # */
  2271. pcicr = (pcicr << 1) | 1;
  2272. /* Set channel to physical mode */
  2273. prmseo[i % 2] = prmseo[i % 2] << 2;
  2274. prmseo[i % 2] |= 1;
  2275. }
  2276. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2277. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2278. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2279. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2280. /* Write which interrupt to enable */
  2281. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2282. /* Write which interrupt to clear */
  2283. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2284. }
  2285. static int __init d40_lcla_allocate(struct d40_base *base)
  2286. {
  2287. struct d40_lcla_pool *pool = &base->lcla_pool;
  2288. unsigned long *page_list;
  2289. int i, j;
  2290. int ret = 0;
  2291. /*
  2292. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2293. * To full fill this hardware requirement without wasting 256 kb
  2294. * we allocate pages until we get an aligned one.
  2295. */
  2296. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2297. GFP_KERNEL);
  2298. if (!page_list) {
  2299. ret = -ENOMEM;
  2300. goto failure;
  2301. }
  2302. /* Calculating how many pages that are required */
  2303. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2304. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2305. page_list[i] = __get_free_pages(GFP_KERNEL,
  2306. base->lcla_pool.pages);
  2307. if (!page_list[i]) {
  2308. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2309. base->lcla_pool.pages);
  2310. for (j = 0; j < i; j++)
  2311. free_pages(page_list[j], base->lcla_pool.pages);
  2312. goto failure;
  2313. }
  2314. if ((virt_to_phys((void *)page_list[i]) &
  2315. (LCLA_ALIGNMENT - 1)) == 0)
  2316. break;
  2317. }
  2318. for (j = 0; j < i; j++)
  2319. free_pages(page_list[j], base->lcla_pool.pages);
  2320. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2321. base->lcla_pool.base = (void *)page_list[i];
  2322. } else {
  2323. /*
  2324. * After many attempts and no succees with finding the correct
  2325. * alignment, try with allocating a big buffer.
  2326. */
  2327. dev_warn(base->dev,
  2328. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2329. __func__, base->lcla_pool.pages);
  2330. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2331. base->num_phy_chans +
  2332. LCLA_ALIGNMENT,
  2333. GFP_KERNEL);
  2334. if (!base->lcla_pool.base_unaligned) {
  2335. ret = -ENOMEM;
  2336. goto failure;
  2337. }
  2338. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2339. LCLA_ALIGNMENT);
  2340. }
  2341. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2342. SZ_1K * base->num_phy_chans,
  2343. DMA_TO_DEVICE);
  2344. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2345. pool->dma_addr = 0;
  2346. ret = -ENOMEM;
  2347. goto failure;
  2348. }
  2349. writel(virt_to_phys(base->lcla_pool.base),
  2350. base->virtbase + D40_DREG_LCLA);
  2351. failure:
  2352. kfree(page_list);
  2353. return ret;
  2354. }
  2355. static int __init d40_probe(struct platform_device *pdev)
  2356. {
  2357. int err;
  2358. int ret = -ENOENT;
  2359. struct d40_base *base;
  2360. struct resource *res = NULL;
  2361. int num_reserved_chans;
  2362. u32 val;
  2363. base = d40_hw_detect_init(pdev);
  2364. if (!base)
  2365. goto failure;
  2366. num_reserved_chans = d40_phy_res_init(base);
  2367. platform_set_drvdata(pdev, base);
  2368. spin_lock_init(&base->interrupt_lock);
  2369. spin_lock_init(&base->execmd_lock);
  2370. /* Get IO for logical channel parameter address */
  2371. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2372. if (!res) {
  2373. ret = -ENOENT;
  2374. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2375. goto failure;
  2376. }
  2377. base->lcpa_size = resource_size(res);
  2378. base->phy_lcpa = res->start;
  2379. if (request_mem_region(res->start, resource_size(res),
  2380. D40_NAME " I/O lcpa") == NULL) {
  2381. ret = -EBUSY;
  2382. d40_err(&pdev->dev,
  2383. "Failed to request LCPA region 0x%x-0x%x\n",
  2384. res->start, res->end);
  2385. goto failure;
  2386. }
  2387. /* We make use of ESRAM memory for this. */
  2388. val = readl(base->virtbase + D40_DREG_LCPA);
  2389. if (res->start != val && val != 0) {
  2390. dev_warn(&pdev->dev,
  2391. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2392. __func__, val, res->start);
  2393. } else
  2394. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2395. base->lcpa_base = ioremap(res->start, resource_size(res));
  2396. if (!base->lcpa_base) {
  2397. ret = -ENOMEM;
  2398. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2399. goto failure;
  2400. }
  2401. ret = d40_lcla_allocate(base);
  2402. if (ret) {
  2403. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2404. goto failure;
  2405. }
  2406. spin_lock_init(&base->lcla_pool.lock);
  2407. base->irq = platform_get_irq(pdev, 0);
  2408. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2409. if (ret) {
  2410. d40_err(&pdev->dev, "No IRQ defined\n");
  2411. goto failure;
  2412. }
  2413. err = d40_dmaengine_init(base, num_reserved_chans);
  2414. if (err)
  2415. goto failure;
  2416. d40_hw_init(base);
  2417. dev_info(base->dev, "initialized\n");
  2418. return 0;
  2419. failure:
  2420. if (base) {
  2421. if (base->desc_slab)
  2422. kmem_cache_destroy(base->desc_slab);
  2423. if (base->virtbase)
  2424. iounmap(base->virtbase);
  2425. if (base->lcla_pool.dma_addr)
  2426. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2427. SZ_1K * base->num_phy_chans,
  2428. DMA_TO_DEVICE);
  2429. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2430. free_pages((unsigned long)base->lcla_pool.base,
  2431. base->lcla_pool.pages);
  2432. kfree(base->lcla_pool.base_unaligned);
  2433. if (base->phy_lcpa)
  2434. release_mem_region(base->phy_lcpa,
  2435. base->lcpa_size);
  2436. if (base->phy_start)
  2437. release_mem_region(base->phy_start,
  2438. base->phy_size);
  2439. if (base->clk) {
  2440. clk_disable(base->clk);
  2441. clk_put(base->clk);
  2442. }
  2443. kfree(base->lcla_pool.alloc_map);
  2444. kfree(base->lookup_log_chans);
  2445. kfree(base->lookup_phy_chans);
  2446. kfree(base->phy_res);
  2447. kfree(base);
  2448. }
  2449. d40_err(&pdev->dev, "probe failed\n");
  2450. return ret;
  2451. }
  2452. static struct platform_driver d40_driver = {
  2453. .driver = {
  2454. .owner = THIS_MODULE,
  2455. .name = D40_NAME,
  2456. },
  2457. };
  2458. static int __init stedma40_init(void)
  2459. {
  2460. return platform_driver_probe(&d40_driver, d40_probe);
  2461. }
  2462. subsys_initcall(stedma40_init);