slab.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. */
  8. #ifndef _LINUX_SLAB_H
  9. #define _LINUX_SLAB_H
  10. #include <linux/gfp.h>
  11. #include <linux/types.h>
  12. /*
  13. * Flags to pass to kmem_cache_create().
  14. * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  15. */
  16. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  17. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  18. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  19. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  20. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  21. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  22. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  23. /*
  24. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  25. *
  26. * This delays freeing the SLAB page by a grace period, it does _NOT_
  27. * delay object freeing. This means that if you do kmem_cache_free()
  28. * that memory location is free to be reused at any time. Thus it may
  29. * be possible to see another object there in the same RCU grace period.
  30. *
  31. * This feature only ensures the memory location backing the object
  32. * stays valid, the trick to using this is relying on an independent
  33. * object validation pass. Something like:
  34. *
  35. * rcu_read_lock()
  36. * again:
  37. * obj = lockless_lookup(key);
  38. * if (obj) {
  39. * if (!try_get_ref(obj)) // might fail for free objects
  40. * goto again;
  41. *
  42. * if (obj->key != key) { // not the object we expected
  43. * put_ref(obj);
  44. * goto again;
  45. * }
  46. * }
  47. * rcu_read_unlock();
  48. *
  49. * See also the comment on struct slab_rcu in mm/slab.c.
  50. */
  51. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  52. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  53. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  54. /* Flag to prevent checks on free */
  55. #ifdef CONFIG_DEBUG_OBJECTS
  56. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  57. #else
  58. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  59. #endif
  60. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  61. /* Don't track use of uninitialized memory */
  62. #ifdef CONFIG_KMEMCHECK
  63. # define SLAB_NOTRACK 0x01000000UL
  64. #else
  65. # define SLAB_NOTRACK 0x00000000UL
  66. #endif
  67. #ifdef CONFIG_FAILSLAB
  68. # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
  69. #else
  70. # define SLAB_FAILSLAB 0x00000000UL
  71. #endif
  72. /* The following flags affect the page allocator grouping pages by mobility */
  73. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  74. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  75. /*
  76. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  77. *
  78. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  79. *
  80. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  81. * Both make kfree a no-op.
  82. */
  83. #define ZERO_SIZE_PTR ((void *)16)
  84. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  85. (unsigned long)ZERO_SIZE_PTR)
  86. /*
  87. * Common fields provided in kmem_cache by all slab allocators
  88. * This struct is either used directly by the allocator (SLOB)
  89. * or the allocator must include definitions for all fields
  90. * provided in kmem_cache_common in their definition of kmem_cache.
  91. *
  92. * Once we can do anonymous structs (C11 standard) we could put a
  93. * anonymous struct definition in these allocators so that the
  94. * separate allocations in the kmem_cache structure of SLAB and
  95. * SLUB is no longer needed.
  96. */
  97. #ifdef CONFIG_SLOB
  98. struct kmem_cache {
  99. unsigned int object_size;/* The original size of the object */
  100. unsigned int size; /* The aligned/padded/added on size */
  101. unsigned int align; /* Alignment as calculated */
  102. unsigned long flags; /* Active flags on the slab */
  103. const char *name; /* Slab name for sysfs */
  104. int refcount; /* Use counter */
  105. void (*ctor)(void *); /* Called on object slot creation */
  106. struct list_head list; /* List of all slab caches on the system */
  107. };
  108. #endif
  109. /*
  110. * struct kmem_cache related prototypes
  111. */
  112. void __init kmem_cache_init(void);
  113. int slab_is_available(void);
  114. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  115. unsigned long,
  116. void (*)(void *));
  117. void kmem_cache_destroy(struct kmem_cache *);
  118. int kmem_cache_shrink(struct kmem_cache *);
  119. void kmem_cache_free(struct kmem_cache *, void *);
  120. /*
  121. * Please use this macro to create slab caches. Simply specify the
  122. * name of the structure and maybe some flags that are listed above.
  123. *
  124. * The alignment of the struct determines object alignment. If you
  125. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  126. * then the objects will be properly aligned in SMP configurations.
  127. */
  128. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  129. sizeof(struct __struct), __alignof__(struct __struct),\
  130. (__flags), NULL)
  131. /*
  132. * The largest kmalloc size supported by the slab allocators is
  133. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  134. * less than 32 MB.
  135. *
  136. * WARNING: Its not easy to increase this value since the allocators have
  137. * to do various tricks to work around compiler limitations in order to
  138. * ensure proper constant folding.
  139. */
  140. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  141. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  142. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  143. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  144. /*
  145. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  146. * alignment larger than the alignment of a 64-bit integer.
  147. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
  148. */
  149. #ifdef ARCH_DMA_MINALIGN
  150. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  151. #else
  152. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  153. #endif
  154. /*
  155. * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  156. * Intended for arches that get misalignment faults even for 64 bit integer
  157. * aligned buffers.
  158. */
  159. #ifndef ARCH_SLAB_MINALIGN
  160. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  161. #endif
  162. /*
  163. * Common kmalloc functions provided by all allocators
  164. */
  165. void * __must_check __krealloc(const void *, size_t, gfp_t);
  166. void * __must_check krealloc(const void *, size_t, gfp_t);
  167. void kfree(const void *);
  168. void kzfree(const void *);
  169. size_t ksize(const void *);
  170. /*
  171. * Allocator specific definitions. These are mainly used to establish optimized
  172. * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
  173. * selecting the appropriate general cache at compile time.
  174. *
  175. * Allocators must define at least:
  176. *
  177. * kmem_cache_alloc()
  178. * __kmalloc()
  179. * kmalloc()
  180. *
  181. * Those wishing to support NUMA must also define:
  182. *
  183. * kmem_cache_alloc_node()
  184. * kmalloc_node()
  185. *
  186. * See each allocator definition file for additional comments and
  187. * implementation notes.
  188. */
  189. #ifdef CONFIG_SLUB
  190. #include <linux/slub_def.h>
  191. #elif defined(CONFIG_SLOB)
  192. #include <linux/slob_def.h>
  193. #else
  194. #include <linux/slab_def.h>
  195. #endif
  196. /**
  197. * kmalloc_array - allocate memory for an array.
  198. * @n: number of elements.
  199. * @size: element size.
  200. * @flags: the type of memory to allocate.
  201. *
  202. * The @flags argument may be one of:
  203. *
  204. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  205. *
  206. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  207. *
  208. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  209. * For example, use this inside interrupt handlers.
  210. *
  211. * %GFP_HIGHUSER - Allocate pages from high memory.
  212. *
  213. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  214. *
  215. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  216. *
  217. * %GFP_NOWAIT - Allocation will not sleep.
  218. *
  219. * %GFP_THISNODE - Allocate node-local memory only.
  220. *
  221. * %GFP_DMA - Allocation suitable for DMA.
  222. * Should only be used for kmalloc() caches. Otherwise, use a
  223. * slab created with SLAB_DMA.
  224. *
  225. * Also it is possible to set different flags by OR'ing
  226. * in one or more of the following additional @flags:
  227. *
  228. * %__GFP_COLD - Request cache-cold pages instead of
  229. * trying to return cache-warm pages.
  230. *
  231. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  232. *
  233. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  234. * (think twice before using).
  235. *
  236. * %__GFP_NORETRY - If memory is not immediately available,
  237. * then give up at once.
  238. *
  239. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  240. *
  241. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  242. *
  243. * There are other flags available as well, but these are not intended
  244. * for general use, and so are not documented here. For a full list of
  245. * potential flags, always refer to linux/gfp.h.
  246. */
  247. static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
  248. {
  249. if (size != 0 && n > SIZE_MAX / size)
  250. return NULL;
  251. return __kmalloc(n * size, flags);
  252. }
  253. /**
  254. * kcalloc - allocate memory for an array. The memory is set to zero.
  255. * @n: number of elements.
  256. * @size: element size.
  257. * @flags: the type of memory to allocate (see kmalloc).
  258. */
  259. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  260. {
  261. return kmalloc_array(n, size, flags | __GFP_ZERO);
  262. }
  263. #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
  264. /**
  265. * kmalloc_node - allocate memory from a specific node
  266. * @size: how many bytes of memory are required.
  267. * @flags: the type of memory to allocate (see kcalloc).
  268. * @node: node to allocate from.
  269. *
  270. * kmalloc() for non-local nodes, used to allocate from a specific node
  271. * if available. Equivalent to kmalloc() in the non-NUMA single-node
  272. * case.
  273. */
  274. static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  275. {
  276. return kmalloc(size, flags);
  277. }
  278. static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  279. {
  280. return __kmalloc(size, flags);
  281. }
  282. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  283. static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
  284. gfp_t flags, int node)
  285. {
  286. return kmem_cache_alloc(cachep, flags);
  287. }
  288. #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
  289. /*
  290. * kmalloc_track_caller is a special version of kmalloc that records the
  291. * calling function of the routine calling it for slab leak tracking instead
  292. * of just the calling function (confusing, eh?).
  293. * It's useful when the call to kmalloc comes from a widely-used standard
  294. * allocator where we care about the real place the memory allocation
  295. * request comes from.
  296. */
  297. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
  298. (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
  299. (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
  300. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  301. #define kmalloc_track_caller(size, flags) \
  302. __kmalloc_track_caller(size, flags, _RET_IP_)
  303. #else
  304. #define kmalloc_track_caller(size, flags) \
  305. __kmalloc(size, flags)
  306. #endif /* DEBUG_SLAB */
  307. #ifdef CONFIG_NUMA
  308. /*
  309. * kmalloc_node_track_caller is a special version of kmalloc_node that
  310. * records the calling function of the routine calling it for slab leak
  311. * tracking instead of just the calling function (confusing, eh?).
  312. * It's useful when the call to kmalloc_node comes from a widely-used
  313. * standard allocator where we care about the real place the memory
  314. * allocation request comes from.
  315. */
  316. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
  317. (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
  318. (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
  319. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  320. #define kmalloc_node_track_caller(size, flags, node) \
  321. __kmalloc_node_track_caller(size, flags, node, \
  322. _RET_IP_)
  323. #else
  324. #define kmalloc_node_track_caller(size, flags, node) \
  325. __kmalloc_node(size, flags, node)
  326. #endif
  327. #else /* CONFIG_NUMA */
  328. #define kmalloc_node_track_caller(size, flags, node) \
  329. kmalloc_track_caller(size, flags)
  330. #endif /* CONFIG_NUMA */
  331. /*
  332. * Shortcuts
  333. */
  334. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  335. {
  336. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  337. }
  338. /**
  339. * kzalloc - allocate memory. The memory is set to zero.
  340. * @size: how many bytes of memory are required.
  341. * @flags: the type of memory to allocate (see kmalloc).
  342. */
  343. static inline void *kzalloc(size_t size, gfp_t flags)
  344. {
  345. return kmalloc(size, flags | __GFP_ZERO);
  346. }
  347. /**
  348. * kzalloc_node - allocate zeroed memory from a particular memory node.
  349. * @size: how many bytes of memory are required.
  350. * @flags: the type of memory to allocate (see kmalloc).
  351. * @node: memory node from which to allocate
  352. */
  353. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  354. {
  355. return kmalloc_node(size, flags | __GFP_ZERO, node);
  356. }
  357. /*
  358. * Determine the size of a slab object
  359. */
  360. static inline unsigned int kmem_cache_size(struct kmem_cache *s)
  361. {
  362. return s->object_size;
  363. }
  364. void __init kmem_cache_init_late(void);
  365. #endif /* _LINUX_SLAB_H */