time.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #include <asm/firmware.h>
  67. #include <asm/cputime.h>
  68. #ifdef CONFIG_PPC_ISERIES
  69. #include <asm/iseries/it_lp_queue.h>
  70. #include <asm/iseries/hv_call_xm.h>
  71. #endif
  72. /* powerpc clocksource/clockevent code */
  73. #include <linux/clockchips.h>
  74. #include <linux/clocksource.h>
  75. static cycle_t rtc_read(void);
  76. static struct clocksource clocksource_rtc = {
  77. .name = "rtc",
  78. .rating = 400,
  79. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  80. .mask = CLOCKSOURCE_MASK(64),
  81. .shift = 22,
  82. .mult = 0, /* To be filled in */
  83. .read = rtc_read,
  84. };
  85. static cycle_t timebase_read(void);
  86. static struct clocksource clocksource_timebase = {
  87. .name = "timebase",
  88. .rating = 400,
  89. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  90. .mask = CLOCKSOURCE_MASK(64),
  91. .shift = 22,
  92. .mult = 0, /* To be filled in */
  93. .read = timebase_read,
  94. };
  95. #define DECREMENTER_MAX 0x7fffffff
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static void decrementer_set_mode(enum clock_event_mode mode,
  99. struct clock_event_device *dev);
  100. static struct clock_event_device decrementer_clockevent = {
  101. .name = "decrementer",
  102. .rating = 200,
  103. .shift = 16,
  104. .mult = 0, /* To be filled in */
  105. .irq = 0,
  106. .set_next_event = decrementer_set_next_event,
  107. .set_mode = decrementer_set_mode,
  108. .features = CLOCK_EVT_FEAT_ONESHOT,
  109. };
  110. struct decrementer_clock {
  111. struct clock_event_device event;
  112. u64 next_tb;
  113. };
  114. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  115. #ifdef CONFIG_PPC_ISERIES
  116. static unsigned long __initdata iSeries_recal_titan;
  117. static signed long __initdata iSeries_recal_tb;
  118. /* Forward declaration is only needed for iSereis compiles */
  119. static void __init clocksource_init(void);
  120. #endif
  121. #define XSEC_PER_SEC (1024*1024)
  122. #ifdef CONFIG_PPC64
  123. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  124. #else
  125. /* compute ((xsec << 12) * max) >> 32 */
  126. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  127. #endif
  128. unsigned long tb_ticks_per_jiffy;
  129. unsigned long tb_ticks_per_usec = 100; /* sane default */
  130. EXPORT_SYMBOL(tb_ticks_per_usec);
  131. unsigned long tb_ticks_per_sec;
  132. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  133. u64 tb_to_xs;
  134. unsigned tb_to_us;
  135. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  136. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  137. static u64 ticklen_to_xs; /* 0.64 fraction */
  138. /* If last_tick_len corresponds to about 1/HZ seconds, then
  139. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  140. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  141. DEFINE_SPINLOCK(rtc_lock);
  142. EXPORT_SYMBOL_GPL(rtc_lock);
  143. static u64 tb_to_ns_scale __read_mostly;
  144. static unsigned tb_to_ns_shift __read_mostly;
  145. static unsigned long boot_tb __read_mostly;
  146. extern struct timezone sys_tz;
  147. static long timezone_offset;
  148. unsigned long ppc_proc_freq;
  149. EXPORT_SYMBOL(ppc_proc_freq);
  150. unsigned long ppc_tb_freq;
  151. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  152. static DEFINE_PER_CPU(u64, last_jiffy);
  153. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  154. /*
  155. * Factors for converting from cputime_t (timebase ticks) to
  156. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  157. * These are all stored as 0.64 fixed-point binary fractions.
  158. */
  159. u64 __cputime_jiffies_factor;
  160. EXPORT_SYMBOL(__cputime_jiffies_factor);
  161. u64 __cputime_msec_factor;
  162. EXPORT_SYMBOL(__cputime_msec_factor);
  163. u64 __cputime_sec_factor;
  164. EXPORT_SYMBOL(__cputime_sec_factor);
  165. u64 __cputime_clockt_factor;
  166. EXPORT_SYMBOL(__cputime_clockt_factor);
  167. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  168. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  169. static void calc_cputime_factors(void)
  170. {
  171. struct div_result res;
  172. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  173. __cputime_jiffies_factor = res.result_low;
  174. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  175. __cputime_msec_factor = res.result_low;
  176. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  177. __cputime_sec_factor = res.result_low;
  178. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  179. __cputime_clockt_factor = res.result_low;
  180. }
  181. /*
  182. * Read the PURR on systems that have it, otherwise the timebase.
  183. */
  184. static u64 read_purr(void)
  185. {
  186. if (cpu_has_feature(CPU_FTR_PURR))
  187. return mfspr(SPRN_PURR);
  188. return mftb();
  189. }
  190. /*
  191. * Read the SPURR on systems that have it, otherwise the purr
  192. */
  193. static u64 read_spurr(u64 purr)
  194. {
  195. /*
  196. * cpus without PURR won't have a SPURR
  197. * We already know the former when we use this, so tell gcc
  198. */
  199. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  200. return mfspr(SPRN_SPURR);
  201. return purr;
  202. }
  203. /*
  204. * Account time for a transition between system, hard irq
  205. * or soft irq state.
  206. */
  207. void account_system_vtime(struct task_struct *tsk)
  208. {
  209. u64 now, nowscaled, delta, deltascaled, sys_time;
  210. unsigned long flags;
  211. local_irq_save(flags);
  212. now = read_purr();
  213. nowscaled = read_spurr(now);
  214. delta = now - get_paca()->startpurr;
  215. deltascaled = nowscaled - get_paca()->startspurr;
  216. get_paca()->startpurr = now;
  217. get_paca()->startspurr = nowscaled;
  218. if (!in_interrupt()) {
  219. /* deltascaled includes both user and system time.
  220. * Hence scale it based on the purr ratio to estimate
  221. * the system time */
  222. sys_time = get_paca()->system_time;
  223. if (get_paca()->user_time)
  224. deltascaled = deltascaled * sys_time /
  225. (sys_time + get_paca()->user_time);
  226. delta += sys_time;
  227. get_paca()->system_time = 0;
  228. }
  229. account_system_time(tsk, 0, delta);
  230. account_system_time_scaled(tsk, deltascaled);
  231. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  232. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  233. local_irq_restore(flags);
  234. }
  235. /*
  236. * Transfer the user and system times accumulated in the paca
  237. * by the exception entry and exit code to the generic process
  238. * user and system time records.
  239. * Must be called with interrupts disabled.
  240. */
  241. void account_process_tick(struct task_struct *tsk, int user_tick)
  242. {
  243. cputime_t utime, utimescaled;
  244. utime = get_paca()->user_time;
  245. get_paca()->user_time = 0;
  246. account_user_time(tsk, utime);
  247. utimescaled = cputime_to_scaled(utime);
  248. account_user_time_scaled(tsk, utimescaled);
  249. }
  250. /*
  251. * Stuff for accounting stolen time.
  252. */
  253. struct cpu_purr_data {
  254. int initialized; /* thread is running */
  255. u64 tb; /* last TB value read */
  256. u64 purr; /* last PURR value read */
  257. u64 spurr; /* last SPURR value read */
  258. };
  259. /*
  260. * Each entry in the cpu_purr_data array is manipulated only by its
  261. * "owner" cpu -- usually in the timer interrupt but also occasionally
  262. * in process context for cpu online. As long as cpus do not touch
  263. * each others' cpu_purr_data, disabling local interrupts is
  264. * sufficient to serialize accesses.
  265. */
  266. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  267. static void snapshot_tb_and_purr(void *data)
  268. {
  269. unsigned long flags;
  270. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  271. local_irq_save(flags);
  272. p->tb = get_tb_or_rtc();
  273. p->purr = mfspr(SPRN_PURR);
  274. wmb();
  275. p->initialized = 1;
  276. local_irq_restore(flags);
  277. }
  278. /*
  279. * Called during boot when all cpus have come up.
  280. */
  281. void snapshot_timebases(void)
  282. {
  283. if (!cpu_has_feature(CPU_FTR_PURR))
  284. return;
  285. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  286. }
  287. /*
  288. * Must be called with interrupts disabled.
  289. */
  290. void calculate_steal_time(void)
  291. {
  292. u64 tb, purr;
  293. s64 stolen;
  294. struct cpu_purr_data *pme;
  295. pme = &__get_cpu_var(cpu_purr_data);
  296. if (!pme->initialized)
  297. return; /* !CPU_FTR_PURR or early in early boot */
  298. tb = mftb();
  299. purr = mfspr(SPRN_PURR);
  300. stolen = (tb - pme->tb) - (purr - pme->purr);
  301. if (stolen > 0)
  302. account_steal_time(current, stolen);
  303. pme->tb = tb;
  304. pme->purr = purr;
  305. }
  306. #ifdef CONFIG_PPC_SPLPAR
  307. /*
  308. * Must be called before the cpu is added to the online map when
  309. * a cpu is being brought up at runtime.
  310. */
  311. static void snapshot_purr(void)
  312. {
  313. struct cpu_purr_data *pme;
  314. unsigned long flags;
  315. if (!cpu_has_feature(CPU_FTR_PURR))
  316. return;
  317. local_irq_save(flags);
  318. pme = &__get_cpu_var(cpu_purr_data);
  319. pme->tb = mftb();
  320. pme->purr = mfspr(SPRN_PURR);
  321. pme->initialized = 1;
  322. local_irq_restore(flags);
  323. }
  324. #endif /* CONFIG_PPC_SPLPAR */
  325. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  326. #define calc_cputime_factors()
  327. #define calculate_steal_time() do { } while (0)
  328. #endif
  329. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  330. #define snapshot_purr() do { } while (0)
  331. #endif
  332. /*
  333. * Called when a cpu comes up after the system has finished booting,
  334. * i.e. as a result of a hotplug cpu action.
  335. */
  336. void snapshot_timebase(void)
  337. {
  338. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  339. snapshot_purr();
  340. }
  341. void __delay(unsigned long loops)
  342. {
  343. unsigned long start;
  344. int diff;
  345. if (__USE_RTC()) {
  346. start = get_rtcl();
  347. do {
  348. /* the RTCL register wraps at 1000000000 */
  349. diff = get_rtcl() - start;
  350. if (diff < 0)
  351. diff += 1000000000;
  352. } while (diff < loops);
  353. } else {
  354. start = get_tbl();
  355. while (get_tbl() - start < loops)
  356. HMT_low();
  357. HMT_medium();
  358. }
  359. }
  360. EXPORT_SYMBOL(__delay);
  361. void udelay(unsigned long usecs)
  362. {
  363. __delay(tb_ticks_per_usec * usecs);
  364. }
  365. EXPORT_SYMBOL(udelay);
  366. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  367. u64 new_tb_to_xs)
  368. {
  369. /*
  370. * tb_update_count is used to allow the userspace gettimeofday code
  371. * to assure itself that it sees a consistent view of the tb_to_xs and
  372. * stamp_xsec variables. It reads the tb_update_count, then reads
  373. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  374. * the two values of tb_update_count match and are even then the
  375. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  376. * loops back and reads them again until this criteria is met.
  377. * We expect the caller to have done the first increment of
  378. * vdso_data->tb_update_count already.
  379. */
  380. vdso_data->tb_orig_stamp = new_tb_stamp;
  381. vdso_data->stamp_xsec = new_stamp_xsec;
  382. vdso_data->tb_to_xs = new_tb_to_xs;
  383. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  384. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  385. vdso_data->stamp_xtime = xtime;
  386. smp_wmb();
  387. ++(vdso_data->tb_update_count);
  388. }
  389. #ifdef CONFIG_SMP
  390. unsigned long profile_pc(struct pt_regs *regs)
  391. {
  392. unsigned long pc = instruction_pointer(regs);
  393. if (in_lock_functions(pc))
  394. return regs->link;
  395. return pc;
  396. }
  397. EXPORT_SYMBOL(profile_pc);
  398. #endif
  399. #ifdef CONFIG_PPC_ISERIES
  400. /*
  401. * This function recalibrates the timebase based on the 49-bit time-of-day
  402. * value in the Titan chip. The Titan is much more accurate than the value
  403. * returned by the service processor for the timebase frequency.
  404. */
  405. static int __init iSeries_tb_recal(void)
  406. {
  407. struct div_result divres;
  408. unsigned long titan, tb;
  409. /* Make sure we only run on iSeries */
  410. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  411. return -ENODEV;
  412. tb = get_tb();
  413. titan = HvCallXm_loadTod();
  414. if ( iSeries_recal_titan ) {
  415. unsigned long tb_ticks = tb - iSeries_recal_tb;
  416. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  417. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  418. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  419. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  420. char sign = '+';
  421. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  422. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  423. if ( tick_diff < 0 ) {
  424. tick_diff = -tick_diff;
  425. sign = '-';
  426. }
  427. if ( tick_diff ) {
  428. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  429. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  430. new_tb_ticks_per_jiffy, sign, tick_diff );
  431. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  432. tb_ticks_per_sec = new_tb_ticks_per_sec;
  433. calc_cputime_factors();
  434. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  435. tb_to_xs = divres.result_low;
  436. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  437. vdso_data->tb_to_xs = tb_to_xs;
  438. }
  439. else {
  440. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  441. " new tb_ticks_per_jiffy = %lu\n"
  442. " old tb_ticks_per_jiffy = %lu\n",
  443. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  444. }
  445. }
  446. }
  447. iSeries_recal_titan = titan;
  448. iSeries_recal_tb = tb;
  449. /* Called here as now we know accurate values for the timebase */
  450. clocksource_init();
  451. return 0;
  452. }
  453. late_initcall(iSeries_tb_recal);
  454. /* Called from platform early init */
  455. void __init iSeries_time_init_early(void)
  456. {
  457. iSeries_recal_tb = get_tb();
  458. iSeries_recal_titan = HvCallXm_loadTod();
  459. }
  460. #endif /* CONFIG_PPC_ISERIES */
  461. /*
  462. * For iSeries shared processors, we have to let the hypervisor
  463. * set the hardware decrementer. We set a virtual decrementer
  464. * in the lppaca and call the hypervisor if the virtual
  465. * decrementer is less than the current value in the hardware
  466. * decrementer. (almost always the new decrementer value will
  467. * be greater than the current hardware decementer so the hypervisor
  468. * call will not be needed)
  469. */
  470. /*
  471. * timer_interrupt - gets called when the decrementer overflows,
  472. * with interrupts disabled.
  473. */
  474. void timer_interrupt(struct pt_regs * regs)
  475. {
  476. struct pt_regs *old_regs;
  477. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  478. struct clock_event_device *evt = &decrementer->event;
  479. u64 now;
  480. /* Ensure a positive value is written to the decrementer, or else
  481. * some CPUs will continuue to take decrementer exceptions */
  482. set_dec(DECREMENTER_MAX);
  483. #ifdef CONFIG_PPC32
  484. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  485. do_IRQ(regs);
  486. #endif
  487. now = get_tb_or_rtc();
  488. if (now < decrementer->next_tb) {
  489. /* not time for this event yet */
  490. now = decrementer->next_tb - now;
  491. if (now <= DECREMENTER_MAX)
  492. set_dec((int)now);
  493. return;
  494. }
  495. old_regs = set_irq_regs(regs);
  496. irq_enter();
  497. calculate_steal_time();
  498. #ifdef CONFIG_PPC_ISERIES
  499. if (firmware_has_feature(FW_FEATURE_ISERIES))
  500. get_lppaca()->int_dword.fields.decr_int = 0;
  501. #endif
  502. if (evt->event_handler)
  503. evt->event_handler(evt);
  504. #ifdef CONFIG_PPC_ISERIES
  505. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  506. process_hvlpevents();
  507. #endif
  508. #ifdef CONFIG_PPC64
  509. /* collect purr register values often, for accurate calculations */
  510. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  511. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  512. cu->current_tb = mfspr(SPRN_PURR);
  513. }
  514. #endif
  515. irq_exit();
  516. set_irq_regs(old_regs);
  517. }
  518. void wakeup_decrementer(void)
  519. {
  520. unsigned long ticks;
  521. /*
  522. * The timebase gets saved on sleep and restored on wakeup,
  523. * so all we need to do is to reset the decrementer.
  524. */
  525. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  526. if (ticks < tb_ticks_per_jiffy)
  527. ticks = tb_ticks_per_jiffy - ticks;
  528. else
  529. ticks = 1;
  530. set_dec(ticks);
  531. }
  532. #ifdef CONFIG_SUSPEND
  533. void generic_suspend_disable_irqs(void)
  534. {
  535. preempt_disable();
  536. /* Disable the decrementer, so that it doesn't interfere
  537. * with suspending.
  538. */
  539. set_dec(0x7fffffff);
  540. local_irq_disable();
  541. set_dec(0x7fffffff);
  542. }
  543. void generic_suspend_enable_irqs(void)
  544. {
  545. wakeup_decrementer();
  546. local_irq_enable();
  547. preempt_enable();
  548. }
  549. /* Overrides the weak version in kernel/power/main.c */
  550. void arch_suspend_disable_irqs(void)
  551. {
  552. if (ppc_md.suspend_disable_irqs)
  553. ppc_md.suspend_disable_irqs();
  554. generic_suspend_disable_irqs();
  555. }
  556. /* Overrides the weak version in kernel/power/main.c */
  557. void arch_suspend_enable_irqs(void)
  558. {
  559. generic_suspend_enable_irqs();
  560. if (ppc_md.suspend_enable_irqs)
  561. ppc_md.suspend_enable_irqs();
  562. }
  563. #endif
  564. #ifdef CONFIG_SMP
  565. void __init smp_space_timers(unsigned int max_cpus)
  566. {
  567. int i;
  568. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  569. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  570. previous_tb -= tb_ticks_per_jiffy;
  571. for_each_possible_cpu(i) {
  572. if (i == boot_cpuid)
  573. continue;
  574. per_cpu(last_jiffy, i) = previous_tb;
  575. }
  576. }
  577. #endif
  578. /*
  579. * Scheduler clock - returns current time in nanosec units.
  580. *
  581. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  582. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  583. * are 64-bit unsigned numbers.
  584. */
  585. unsigned long long sched_clock(void)
  586. {
  587. if (__USE_RTC())
  588. return get_rtc();
  589. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  590. }
  591. static int __init get_freq(char *name, int cells, unsigned long *val)
  592. {
  593. struct device_node *cpu;
  594. const unsigned int *fp;
  595. int found = 0;
  596. /* The cpu node should have timebase and clock frequency properties */
  597. cpu = of_find_node_by_type(NULL, "cpu");
  598. if (cpu) {
  599. fp = of_get_property(cpu, name, NULL);
  600. if (fp) {
  601. found = 1;
  602. *val = of_read_ulong(fp, cells);
  603. }
  604. of_node_put(cpu);
  605. }
  606. return found;
  607. }
  608. void __init generic_calibrate_decr(void)
  609. {
  610. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  611. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  612. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  613. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  614. "(not found)\n");
  615. }
  616. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  617. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  618. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  619. printk(KERN_ERR "WARNING: Estimating processor frequency "
  620. "(not found)\n");
  621. }
  622. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  623. /* Clear any pending timer interrupts */
  624. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  625. /* Enable decrementer interrupt */
  626. mtspr(SPRN_TCR, TCR_DIE);
  627. #endif
  628. }
  629. int update_persistent_clock(struct timespec now)
  630. {
  631. struct rtc_time tm;
  632. if (!ppc_md.set_rtc_time)
  633. return 0;
  634. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  635. tm.tm_year -= 1900;
  636. tm.tm_mon -= 1;
  637. return ppc_md.set_rtc_time(&tm);
  638. }
  639. unsigned long read_persistent_clock(void)
  640. {
  641. struct rtc_time tm;
  642. static int first = 1;
  643. /* XXX this is a litle fragile but will work okay in the short term */
  644. if (first) {
  645. first = 0;
  646. if (ppc_md.time_init)
  647. timezone_offset = ppc_md.time_init();
  648. /* get_boot_time() isn't guaranteed to be safe to call late */
  649. if (ppc_md.get_boot_time)
  650. return ppc_md.get_boot_time() -timezone_offset;
  651. }
  652. if (!ppc_md.get_rtc_time)
  653. return 0;
  654. ppc_md.get_rtc_time(&tm);
  655. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  656. tm.tm_hour, tm.tm_min, tm.tm_sec);
  657. }
  658. /* clocksource code */
  659. static cycle_t rtc_read(void)
  660. {
  661. return (cycle_t)get_rtc();
  662. }
  663. static cycle_t timebase_read(void)
  664. {
  665. return (cycle_t)get_tb();
  666. }
  667. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  668. {
  669. u64 t2x, stamp_xsec;
  670. if (clock != &clocksource_timebase)
  671. return;
  672. /* Make userspace gettimeofday spin until we're done. */
  673. ++vdso_data->tb_update_count;
  674. smp_mb();
  675. /* XXX this assumes clock->shift == 22 */
  676. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  677. t2x = (u64) clock->mult * 4611686018ULL;
  678. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  679. do_div(stamp_xsec, 1000000000);
  680. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  681. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  682. }
  683. void update_vsyscall_tz(void)
  684. {
  685. /* Make userspace gettimeofday spin until we're done. */
  686. ++vdso_data->tb_update_count;
  687. smp_mb();
  688. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  689. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  690. smp_mb();
  691. ++vdso_data->tb_update_count;
  692. }
  693. static void __init clocksource_init(void)
  694. {
  695. struct clocksource *clock;
  696. if (__USE_RTC())
  697. clock = &clocksource_rtc;
  698. else
  699. clock = &clocksource_timebase;
  700. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  701. if (clocksource_register(clock)) {
  702. printk(KERN_ERR "clocksource: %s is already registered\n",
  703. clock->name);
  704. return;
  705. }
  706. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  707. clock->name, clock->mult, clock->shift);
  708. }
  709. static int decrementer_set_next_event(unsigned long evt,
  710. struct clock_event_device *dev)
  711. {
  712. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  713. set_dec(evt);
  714. return 0;
  715. }
  716. static void decrementer_set_mode(enum clock_event_mode mode,
  717. struct clock_event_device *dev)
  718. {
  719. if (mode != CLOCK_EVT_MODE_ONESHOT)
  720. decrementer_set_next_event(DECREMENTER_MAX, dev);
  721. }
  722. static void register_decrementer_clockevent(int cpu)
  723. {
  724. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  725. *dec = decrementer_clockevent;
  726. dec->cpumask = cpumask_of_cpu(cpu);
  727. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  728. dec->name, dec->mult, dec->shift, cpu);
  729. clockevents_register_device(dec);
  730. }
  731. static void __init init_decrementer_clockevent(void)
  732. {
  733. int cpu = smp_processor_id();
  734. decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
  735. decrementer_clockevent.shift);
  736. decrementer_clockevent.max_delta_ns =
  737. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  738. decrementer_clockevent.min_delta_ns =
  739. clockevent_delta2ns(2, &decrementer_clockevent);
  740. register_decrementer_clockevent(cpu);
  741. }
  742. void secondary_cpu_time_init(void)
  743. {
  744. /* FIME: Should make unrelatred change to move snapshot_timebase
  745. * call here ! */
  746. register_decrementer_clockevent(smp_processor_id());
  747. }
  748. /* This function is only called on the boot processor */
  749. void __init time_init(void)
  750. {
  751. unsigned long flags;
  752. struct div_result res;
  753. u64 scale, x;
  754. unsigned shift;
  755. if (__USE_RTC()) {
  756. /* 601 processor: dec counts down by 128 every 128ns */
  757. ppc_tb_freq = 1000000000;
  758. tb_last_jiffy = get_rtcl();
  759. } else {
  760. /* Normal PowerPC with timebase register */
  761. ppc_md.calibrate_decr();
  762. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  763. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  764. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  765. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  766. tb_last_jiffy = get_tb();
  767. }
  768. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  769. tb_ticks_per_sec = ppc_tb_freq;
  770. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  771. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  772. calc_cputime_factors();
  773. /*
  774. * Calculate the length of each tick in ns. It will not be
  775. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  776. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  777. * rounded up.
  778. */
  779. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  780. do_div(x, ppc_tb_freq);
  781. tick_nsec = x;
  782. last_tick_len = x << TICKLEN_SCALE;
  783. /*
  784. * Compute ticklen_to_xs, which is a factor which gets multiplied
  785. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  786. * It is computed as:
  787. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  788. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  789. * which turns out to be N = 51 - SHIFT_HZ.
  790. * This gives the result as a 0.64 fixed-point fraction.
  791. * That value is reduced by an offset amounting to 1 xsec per
  792. * 2^31 timebase ticks to avoid problems with time going backwards
  793. * by 1 xsec when we do timer_recalc_offset due to losing the
  794. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  795. * since there are 2^20 xsec in a second.
  796. */
  797. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  798. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  799. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  800. ticklen_to_xs = res.result_low;
  801. /* Compute tb_to_xs from tick_nsec */
  802. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  803. /*
  804. * Compute scale factor for sched_clock.
  805. * The calibrate_decr() function has set tb_ticks_per_sec,
  806. * which is the timebase frequency.
  807. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  808. * the 128-bit result as a 64.64 fixed-point number.
  809. * We then shift that number right until it is less than 1.0,
  810. * giving us the scale factor and shift count to use in
  811. * sched_clock().
  812. */
  813. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  814. scale = res.result_low;
  815. for (shift = 0; res.result_high != 0; ++shift) {
  816. scale = (scale >> 1) | (res.result_high << 63);
  817. res.result_high >>= 1;
  818. }
  819. tb_to_ns_scale = scale;
  820. tb_to_ns_shift = shift;
  821. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  822. boot_tb = get_tb_or_rtc();
  823. write_seqlock_irqsave(&xtime_lock, flags);
  824. /* If platform provided a timezone (pmac), we correct the time */
  825. if (timezone_offset) {
  826. sys_tz.tz_minuteswest = -timezone_offset / 60;
  827. sys_tz.tz_dsttime = 0;
  828. }
  829. vdso_data->tb_orig_stamp = tb_last_jiffy;
  830. vdso_data->tb_update_count = 0;
  831. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  832. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  833. vdso_data->tb_to_xs = tb_to_xs;
  834. write_sequnlock_irqrestore(&xtime_lock, flags);
  835. /* Register the clocksource, if we're not running on iSeries */
  836. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  837. clocksource_init();
  838. init_decrementer_clockevent();
  839. }
  840. #define FEBRUARY 2
  841. #define STARTOFTIME 1970
  842. #define SECDAY 86400L
  843. #define SECYR (SECDAY * 365)
  844. #define leapyear(year) ((year) % 4 == 0 && \
  845. ((year) % 100 != 0 || (year) % 400 == 0))
  846. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  847. #define days_in_month(a) (month_days[(a) - 1])
  848. static int month_days[12] = {
  849. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  850. };
  851. /*
  852. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  853. */
  854. void GregorianDay(struct rtc_time * tm)
  855. {
  856. int leapsToDate;
  857. int lastYear;
  858. int day;
  859. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  860. lastYear = tm->tm_year - 1;
  861. /*
  862. * Number of leap corrections to apply up to end of last year
  863. */
  864. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  865. /*
  866. * This year is a leap year if it is divisible by 4 except when it is
  867. * divisible by 100 unless it is divisible by 400
  868. *
  869. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  870. */
  871. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  872. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  873. tm->tm_mday;
  874. tm->tm_wday = day % 7;
  875. }
  876. void to_tm(int tim, struct rtc_time * tm)
  877. {
  878. register int i;
  879. register long hms, day;
  880. day = tim / SECDAY;
  881. hms = tim % SECDAY;
  882. /* Hours, minutes, seconds are easy */
  883. tm->tm_hour = hms / 3600;
  884. tm->tm_min = (hms % 3600) / 60;
  885. tm->tm_sec = (hms % 3600) % 60;
  886. /* Number of years in days */
  887. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  888. day -= days_in_year(i);
  889. tm->tm_year = i;
  890. /* Number of months in days left */
  891. if (leapyear(tm->tm_year))
  892. days_in_month(FEBRUARY) = 29;
  893. for (i = 1; day >= days_in_month(i); i++)
  894. day -= days_in_month(i);
  895. days_in_month(FEBRUARY) = 28;
  896. tm->tm_mon = i;
  897. /* Days are what is left over (+1) from all that. */
  898. tm->tm_mday = day + 1;
  899. /*
  900. * Determine the day of week
  901. */
  902. GregorianDay(tm);
  903. }
  904. /* Auxiliary function to compute scaling factors */
  905. /* Actually the choice of a timebase running at 1/4 the of the bus
  906. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  907. * It makes this computation very precise (27-28 bits typically) which
  908. * is optimistic considering the stability of most processor clock
  909. * oscillators and the precision with which the timebase frequency
  910. * is measured but does not harm.
  911. */
  912. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  913. {
  914. unsigned mlt=0, tmp, err;
  915. /* No concern for performance, it's done once: use a stupid
  916. * but safe and compact method to find the multiplier.
  917. */
  918. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  919. if (mulhwu(inscale, mlt|tmp) < outscale)
  920. mlt |= tmp;
  921. }
  922. /* We might still be off by 1 for the best approximation.
  923. * A side effect of this is that if outscale is too large
  924. * the returned value will be zero.
  925. * Many corner cases have been checked and seem to work,
  926. * some might have been forgotten in the test however.
  927. */
  928. err = inscale * (mlt+1);
  929. if (err <= inscale/2)
  930. mlt++;
  931. return mlt;
  932. }
  933. /*
  934. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  935. * result.
  936. */
  937. void div128_by_32(u64 dividend_high, u64 dividend_low,
  938. unsigned divisor, struct div_result *dr)
  939. {
  940. unsigned long a, b, c, d;
  941. unsigned long w, x, y, z;
  942. u64 ra, rb, rc;
  943. a = dividend_high >> 32;
  944. b = dividend_high & 0xffffffff;
  945. c = dividend_low >> 32;
  946. d = dividend_low & 0xffffffff;
  947. w = a / divisor;
  948. ra = ((u64)(a - (w * divisor)) << 32) + b;
  949. rb = ((u64) do_div(ra, divisor) << 32) + c;
  950. x = ra;
  951. rc = ((u64) do_div(rb, divisor) << 32) + d;
  952. y = rb;
  953. do_div(rc, divisor);
  954. z = rc;
  955. dr->result_high = ((u64)w << 32) + x;
  956. dr->result_low = ((u64)y << 32) + z;
  957. }