uaccess.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /* $Id: uaccess.h,v 1.24 2001/10/30 04:32:24 davem Exp $
  2. * uaccess.h: User space memore access functions.
  3. *
  4. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #ifndef _ASM_UACCESS_H
  8. #define _ASM_UACCESS_H
  9. #ifdef __KERNEL__
  10. #include <linux/compiler.h>
  11. #include <linux/sched.h>
  12. #include <linux/string.h>
  13. #include <linux/errno.h>
  14. #include <asm/vac-ops.h>
  15. #include <asm/a.out.h>
  16. #endif
  17. #ifndef __ASSEMBLY__
  18. /* Sparc is not segmented, however we need to be able to fool access_ok()
  19. * when doing system calls from kernel mode legitimately.
  20. *
  21. * "For historical reasons, these macros are grossly misnamed." -Linus
  22. */
  23. #define KERNEL_DS ((mm_segment_t) { 0 })
  24. #define USER_DS ((mm_segment_t) { -1 })
  25. #define VERIFY_READ 0
  26. #define VERIFY_WRITE 1
  27. #define get_ds() (KERNEL_DS)
  28. #define get_fs() (current->thread.current_ds)
  29. #define set_fs(val) ((current->thread.current_ds) = (val))
  30. #define segment_eq(a,b) ((a).seg == (b).seg)
  31. /* We have there a nice not-mapped page at PAGE_OFFSET - PAGE_SIZE, so that this test
  32. * can be fairly lightweight.
  33. * No one can read/write anything from userland in the kernel space by setting
  34. * large size and address near to PAGE_OFFSET - a fault will break his intentions.
  35. */
  36. #define __user_ok(addr, size) ({ (void)(size); (addr) < STACK_TOP; })
  37. #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
  38. #define __access_ok(addr,size) (__user_ok((addr) & get_fs().seg,(size)))
  39. #define access_ok(type, addr, size) \
  40. ({ (void)(type); __access_ok((unsigned long)(addr), size); })
  41. /*
  42. * The exception table consists of pairs of addresses: the first is the
  43. * address of an instruction that is allowed to fault, and the second is
  44. * the address at which the program should continue. No registers are
  45. * modified, so it is entirely up to the continuation code to figure out
  46. * what to do.
  47. *
  48. * All the routines below use bits of fixup code that are out of line
  49. * with the main instruction path. This means when everything is well,
  50. * we don't even have to jump over them. Further, they do not intrude
  51. * on our cache or tlb entries.
  52. *
  53. * There is a special way how to put a range of potentially faulting
  54. * insns (like twenty ldd/std's with now intervening other instructions)
  55. * You specify address of first in insn and 0 in fixup and in the next
  56. * exception_table_entry you specify last potentially faulting insn + 1
  57. * and in fixup the routine which should handle the fault.
  58. * That fixup code will get
  59. * (faulting_insn_address - first_insn_in_the_range_address)/4
  60. * in %g2 (ie. index of the faulting instruction in the range).
  61. */
  62. struct exception_table_entry
  63. {
  64. unsigned long insn, fixup;
  65. };
  66. /* Returns 0 if exception not found and fixup otherwise. */
  67. extern unsigned long search_extables_range(unsigned long addr, unsigned long *g2);
  68. extern void __ret_efault(void);
  69. /* Uh, these should become the main single-value transfer routines..
  70. * They automatically use the right size if we just have the right
  71. * pointer type..
  72. *
  73. * This gets kind of ugly. We want to return _two_ values in "get_user()"
  74. * and yet we don't want to do any pointers, because that is too much
  75. * of a performance impact. Thus we have a few rather ugly macros here,
  76. * and hide all the ugliness from the user.
  77. */
  78. #define put_user(x,ptr) ({ \
  79. unsigned long __pu_addr = (unsigned long)(ptr); \
  80. __chk_user_ptr(ptr); \
  81. __put_user_check((__typeof__(*(ptr)))(x),__pu_addr,sizeof(*(ptr))); })
  82. #define get_user(x,ptr) ({ \
  83. unsigned long __gu_addr = (unsigned long)(ptr); \
  84. __chk_user_ptr(ptr); \
  85. __get_user_check((x),__gu_addr,sizeof(*(ptr)),__typeof__(*(ptr))); })
  86. /*
  87. * The "__xxx" versions do not do address space checking, useful when
  88. * doing multiple accesses to the same area (the user has to do the
  89. * checks by hand with "access_ok()")
  90. */
  91. #define __put_user(x,ptr) __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
  92. #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)),__typeof__(*(ptr)))
  93. struct __large_struct { unsigned long buf[100]; };
  94. #define __m(x) ((struct __large_struct __user *)(x))
  95. #define __put_user_check(x,addr,size) ({ \
  96. register int __pu_ret; \
  97. if (__access_ok(addr,size)) { \
  98. switch (size) { \
  99. case 1: __put_user_asm(x,b,addr,__pu_ret); break; \
  100. case 2: __put_user_asm(x,h,addr,__pu_ret); break; \
  101. case 4: __put_user_asm(x,,addr,__pu_ret); break; \
  102. case 8: __put_user_asm(x,d,addr,__pu_ret); break; \
  103. default: __pu_ret = __put_user_bad(); break; \
  104. } } else { __pu_ret = -EFAULT; } __pu_ret; })
  105. #define __put_user_nocheck(x,addr,size) ({ \
  106. register int __pu_ret; \
  107. switch (size) { \
  108. case 1: __put_user_asm(x,b,addr,__pu_ret); break; \
  109. case 2: __put_user_asm(x,h,addr,__pu_ret); break; \
  110. case 4: __put_user_asm(x,,addr,__pu_ret); break; \
  111. case 8: __put_user_asm(x,d,addr,__pu_ret); break; \
  112. default: __pu_ret = __put_user_bad(); break; \
  113. } __pu_ret; })
  114. #define __put_user_asm(x,size,addr,ret) \
  115. __asm__ __volatile__( \
  116. "/* Put user asm, inline. */\n" \
  117. "1:\t" "st"#size " %1, %2\n\t" \
  118. "clr %0\n" \
  119. "2:\n\n\t" \
  120. ".section .fixup,#alloc,#execinstr\n\t" \
  121. ".align 4\n" \
  122. "3:\n\t" \
  123. "b 2b\n\t" \
  124. " mov %3, %0\n\t" \
  125. ".previous\n\n\t" \
  126. ".section __ex_table,#alloc\n\t" \
  127. ".align 4\n\t" \
  128. ".word 1b, 3b\n\t" \
  129. ".previous\n\n\t" \
  130. : "=&r" (ret) : "r" (x), "m" (*__m(addr)), \
  131. "i" (-EFAULT))
  132. extern int __put_user_bad(void);
  133. #define __get_user_check(x,addr,size,type) ({ \
  134. register int __gu_ret; \
  135. register unsigned long __gu_val; \
  136. if (__access_ok(addr,size)) { \
  137. switch (size) { \
  138. case 1: __get_user_asm(__gu_val,ub,addr,__gu_ret); break; \
  139. case 2: __get_user_asm(__gu_val,uh,addr,__gu_ret); break; \
  140. case 4: __get_user_asm(__gu_val,,addr,__gu_ret); break; \
  141. case 8: __get_user_asm(__gu_val,d,addr,__gu_ret); break; \
  142. default: __gu_val = 0; __gu_ret = __get_user_bad(); break; \
  143. } } else { __gu_val = 0; __gu_ret = -EFAULT; } x = (type) __gu_val; __gu_ret; })
  144. #define __get_user_check_ret(x,addr,size,type,retval) ({ \
  145. register unsigned long __gu_val __asm__ ("l1"); \
  146. if (__access_ok(addr,size)) { \
  147. switch (size) { \
  148. case 1: __get_user_asm_ret(__gu_val,ub,addr,retval); break; \
  149. case 2: __get_user_asm_ret(__gu_val,uh,addr,retval); break; \
  150. case 4: __get_user_asm_ret(__gu_val,,addr,retval); break; \
  151. case 8: __get_user_asm_ret(__gu_val,d,addr,retval); break; \
  152. default: if (__get_user_bad()) return retval; \
  153. } x = (type) __gu_val; } else return retval; })
  154. #define __get_user_nocheck(x,addr,size,type) ({ \
  155. register int __gu_ret; \
  156. register unsigned long __gu_val; \
  157. switch (size) { \
  158. case 1: __get_user_asm(__gu_val,ub,addr,__gu_ret); break; \
  159. case 2: __get_user_asm(__gu_val,uh,addr,__gu_ret); break; \
  160. case 4: __get_user_asm(__gu_val,,addr,__gu_ret); break; \
  161. case 8: __get_user_asm(__gu_val,d,addr,__gu_ret); break; \
  162. default: __gu_val = 0; __gu_ret = __get_user_bad(); break; \
  163. } x = (type) __gu_val; __gu_ret; })
  164. #define __get_user_nocheck_ret(x,addr,size,type,retval) ({ \
  165. register unsigned long __gu_val __asm__ ("l1"); \
  166. switch (size) { \
  167. case 1: __get_user_asm_ret(__gu_val,ub,addr,retval); break; \
  168. case 2: __get_user_asm_ret(__gu_val,uh,addr,retval); break; \
  169. case 4: __get_user_asm_ret(__gu_val,,addr,retval); break; \
  170. case 8: __get_user_asm_ret(__gu_val,d,addr,retval); break; \
  171. default: if (__get_user_bad()) return retval; \
  172. } x = (type) __gu_val; })
  173. #define __get_user_asm(x,size,addr,ret) \
  174. __asm__ __volatile__( \
  175. "/* Get user asm, inline. */\n" \
  176. "1:\t" "ld"#size " %2, %1\n\t" \
  177. "clr %0\n" \
  178. "2:\n\n\t" \
  179. ".section .fixup,#alloc,#execinstr\n\t" \
  180. ".align 4\n" \
  181. "3:\n\t" \
  182. "clr %1\n\t" \
  183. "b 2b\n\t" \
  184. " mov %3, %0\n\n\t" \
  185. ".previous\n\t" \
  186. ".section __ex_table,#alloc\n\t" \
  187. ".align 4\n\t" \
  188. ".word 1b, 3b\n\n\t" \
  189. ".previous\n\t" \
  190. : "=&r" (ret), "=&r" (x) : "m" (*__m(addr)), \
  191. "i" (-EFAULT))
  192. #define __get_user_asm_ret(x,size,addr,retval) \
  193. if (__builtin_constant_p(retval) && retval == -EFAULT) \
  194. __asm__ __volatile__( \
  195. "/* Get user asm ret, inline. */\n" \
  196. "1:\t" "ld"#size " %1, %0\n\n\t" \
  197. ".section __ex_table,#alloc\n\t" \
  198. ".align 4\n\t" \
  199. ".word 1b,__ret_efault\n\n\t" \
  200. ".previous\n\t" \
  201. : "=&r" (x) : "m" (*__m(addr))); \
  202. else \
  203. __asm__ __volatile__( \
  204. "/* Get user asm ret, inline. */\n" \
  205. "1:\t" "ld"#size " %1, %0\n\n\t" \
  206. ".section .fixup,#alloc,#execinstr\n\t" \
  207. ".align 4\n" \
  208. "3:\n\t" \
  209. "ret\n\t" \
  210. " restore %%g0, %2, %%o0\n\n\t" \
  211. ".previous\n\t" \
  212. ".section __ex_table,#alloc\n\t" \
  213. ".align 4\n\t" \
  214. ".word 1b, 3b\n\n\t" \
  215. ".previous\n\t" \
  216. : "=&r" (x) : "m" (*__m(addr)), "i" (retval))
  217. extern int __get_user_bad(void);
  218. extern unsigned long __copy_user(void __user *to, const void __user *from, unsigned long size);
  219. static inline unsigned long copy_to_user(void __user *to, const void *from, unsigned long n)
  220. {
  221. if (n && __access_ok((unsigned long) to, n))
  222. return __copy_user(to, (__force void __user *) from, n);
  223. else
  224. return n;
  225. }
  226. static inline unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n)
  227. {
  228. return __copy_user(to, (__force void __user *) from, n);
  229. }
  230. static inline unsigned long copy_from_user(void *to, const void __user *from, unsigned long n)
  231. {
  232. if (n && __access_ok((unsigned long) from, n))
  233. return __copy_user((__force void __user *) to, from, n);
  234. else
  235. return n;
  236. }
  237. static inline unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n)
  238. {
  239. return __copy_user((__force void __user *) to, from, n);
  240. }
  241. #define __copy_to_user_inatomic __copy_to_user
  242. #define __copy_from_user_inatomic __copy_from_user
  243. static inline unsigned long __clear_user(void __user *addr, unsigned long size)
  244. {
  245. unsigned long ret;
  246. __asm__ __volatile__ (
  247. ".section __ex_table,#alloc\n\t"
  248. ".align 4\n\t"
  249. ".word 1f,3\n\t"
  250. ".previous\n\t"
  251. "mov %2, %%o1\n"
  252. "1:\n\t"
  253. "call __bzero\n\t"
  254. " mov %1, %%o0\n\t"
  255. "mov %%o0, %0\n"
  256. : "=r" (ret) : "r" (addr), "r" (size) :
  257. "o0", "o1", "o2", "o3", "o4", "o5", "o7",
  258. "g1", "g2", "g3", "g4", "g5", "g7", "cc");
  259. return ret;
  260. }
  261. static inline unsigned long clear_user(void __user *addr, unsigned long n)
  262. {
  263. if (n && __access_ok((unsigned long) addr, n))
  264. return __clear_user(addr, n);
  265. else
  266. return n;
  267. }
  268. extern long __strncpy_from_user(char *dest, const char __user *src, long count);
  269. static inline long strncpy_from_user(char *dest, const char __user *src, long count)
  270. {
  271. if (__access_ok((unsigned long) src, count))
  272. return __strncpy_from_user(dest, src, count);
  273. else
  274. return -EFAULT;
  275. }
  276. extern long __strlen_user(const char __user *);
  277. extern long __strnlen_user(const char __user *, long len);
  278. static inline long strlen_user(const char __user *str)
  279. {
  280. if (!access_ok(VERIFY_READ, str, 0))
  281. return 0;
  282. else
  283. return __strlen_user(str);
  284. }
  285. static inline long strnlen_user(const char __user *str, long len)
  286. {
  287. if (!access_ok(VERIFY_READ, str, 0))
  288. return 0;
  289. else
  290. return __strnlen_user(str, len);
  291. }
  292. #endif /* __ASSEMBLY__ */
  293. #endif /* _ASM_UACCESS_H */