kv_dpm.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "radeon.h"
  25. #include "cikd.h"
  26. #include "r600_dpm.h"
  27. #include "kv_dpm.h"
  28. #include <linux/seq_file.h>
  29. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  30. #define KV_MINIMUM_ENGINE_CLOCK 800
  31. #define SMC_RAM_END 0x40000
  32. static void kv_init_graphics_levels(struct radeon_device *rdev);
  33. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  34. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  35. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  36. static void kv_enable_new_levels(struct radeon_device *rdev);
  37. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  38. struct radeon_ps *new_rps);
  39. static int kv_set_enabled_levels(struct radeon_device *rdev);
  40. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  41. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  42. struct radeon_ps *new_rps,
  43. struct radeon_ps *old_rps);
  44. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  45. int min_temp, int max_temp);
  46. static int kv_init_fps_limits(struct radeon_device *rdev);
  47. static void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  48. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  49. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  50. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  51. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  52. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  53. extern void cik_update_cg(struct radeon_device *rdev,
  54. u32 block, bool enable);
  55. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  56. {
  57. { 0, 4, 1 },
  58. { 1, 4, 1 },
  59. { 2, 5, 1 },
  60. { 3, 4, 2 },
  61. { 4, 1, 1 },
  62. { 5, 5, 2 },
  63. { 6, 6, 1 },
  64. { 7, 9, 2 },
  65. { 0xffffffff }
  66. };
  67. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  68. {
  69. { 0, 4, 1 },
  70. { 0xffffffff }
  71. };
  72. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  73. {
  74. { 0, 4, 1 },
  75. { 0xffffffff }
  76. };
  77. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  78. {
  79. { 0, 4, 1 },
  80. { 0xffffffff }
  81. };
  82. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  83. {
  84. { 0, 4, 1 },
  85. { 0xffffffff }
  86. };
  87. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  88. {
  89. { 0, 4, 1 },
  90. { 1, 4, 1 },
  91. { 2, 5, 1 },
  92. { 3, 4, 1 },
  93. { 4, 1, 1 },
  94. { 5, 5, 1 },
  95. { 6, 6, 1 },
  96. { 7, 9, 1 },
  97. { 8, 4, 1 },
  98. { 9, 2, 1 },
  99. { 10, 3, 1 },
  100. { 11, 6, 1 },
  101. { 12, 8, 2 },
  102. { 13, 1, 1 },
  103. { 14, 2, 1 },
  104. { 15, 3, 1 },
  105. { 16, 1, 1 },
  106. { 17, 4, 1 },
  107. { 18, 3, 1 },
  108. { 19, 1, 1 },
  109. { 20, 8, 1 },
  110. { 21, 5, 1 },
  111. { 22, 1, 1 },
  112. { 23, 1, 1 },
  113. { 24, 4, 1 },
  114. { 27, 6, 1 },
  115. { 28, 1, 1 },
  116. { 0xffffffff }
  117. };
  118. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  119. {
  120. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  121. };
  122. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  123. {
  124. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  125. };
  126. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  127. {
  128. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  129. };
  130. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  131. {
  132. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  133. };
  134. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  135. {
  136. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  137. };
  138. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  139. {
  140. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  141. };
  142. static const struct kv_pt_config_reg didt_config_kv[] =
  143. {
  144. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  145. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  146. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  147. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  148. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  149. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  150. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  151. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  152. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  153. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  154. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  155. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  156. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  157. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  158. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  159. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  160. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  161. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  162. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  163. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  164. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  165. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  166. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  167. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  168. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  169. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  170. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  171. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  172. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  173. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  174. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  175. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  176. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  177. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  178. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  179. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  180. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  181. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  182. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  183. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  184. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  185. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  186. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  187. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  188. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  189. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  190. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  191. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  192. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  193. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  194. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  195. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  196. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  197. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  198. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  199. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  200. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  201. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  202. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  203. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  204. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  205. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  206. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  207. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  208. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  209. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  210. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  211. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  212. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  213. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  214. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  215. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  216. { 0xFFFFFFFF }
  217. };
  218. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  219. {
  220. struct kv_ps *ps = rps->ps_priv;
  221. return ps;
  222. }
  223. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  224. {
  225. struct kv_power_info *pi = rdev->pm.dpm.priv;
  226. return pi;
  227. }
  228. #if 0
  229. static void kv_program_local_cac_table(struct radeon_device *rdev,
  230. const struct kv_lcac_config_values *local_cac_table,
  231. const struct kv_lcac_config_reg *local_cac_reg)
  232. {
  233. u32 i, count, data;
  234. const struct kv_lcac_config_values *values = local_cac_table;
  235. while (values->block_id != 0xffffffff) {
  236. count = values->signal_id;
  237. for (i = 0; i < count; i++) {
  238. data = ((values->block_id << local_cac_reg->block_shift) &
  239. local_cac_reg->block_mask);
  240. data |= ((i << local_cac_reg->signal_shift) &
  241. local_cac_reg->signal_mask);
  242. data |= ((values->t << local_cac_reg->t_shift) &
  243. local_cac_reg->t_mask);
  244. data |= ((1 << local_cac_reg->enable_shift) &
  245. local_cac_reg->enable_mask);
  246. WREG32_SMC(local_cac_reg->cntl, data);
  247. }
  248. values++;
  249. }
  250. }
  251. #endif
  252. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  253. const struct kv_pt_config_reg *cac_config_regs)
  254. {
  255. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  256. u32 data;
  257. u32 cache = 0;
  258. if (config_regs == NULL)
  259. return -EINVAL;
  260. while (config_regs->offset != 0xFFFFFFFF) {
  261. if (config_regs->type == KV_CONFIGREG_CACHE) {
  262. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  263. } else {
  264. switch (config_regs->type) {
  265. case KV_CONFIGREG_SMC_IND:
  266. data = RREG32_SMC(config_regs->offset);
  267. break;
  268. case KV_CONFIGREG_DIDT_IND:
  269. data = RREG32_DIDT(config_regs->offset);
  270. break;
  271. default:
  272. data = RREG32(config_regs->offset << 2);
  273. break;
  274. }
  275. data &= ~config_regs->mask;
  276. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  277. data |= cache;
  278. cache = 0;
  279. switch (config_regs->type) {
  280. case KV_CONFIGREG_SMC_IND:
  281. WREG32_SMC(config_regs->offset, data);
  282. break;
  283. case KV_CONFIGREG_DIDT_IND:
  284. WREG32_DIDT(config_regs->offset, data);
  285. break;
  286. default:
  287. WREG32(config_regs->offset << 2, data);
  288. break;
  289. }
  290. }
  291. config_regs++;
  292. }
  293. return 0;
  294. }
  295. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  296. {
  297. struct kv_power_info *pi = kv_get_pi(rdev);
  298. u32 data;
  299. if (pi->caps_sq_ramping) {
  300. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  301. if (enable)
  302. data |= DIDT_CTRL_EN;
  303. else
  304. data &= ~DIDT_CTRL_EN;
  305. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  306. }
  307. if (pi->caps_db_ramping) {
  308. data = RREG32_DIDT(DIDT_DB_CTRL0);
  309. if (enable)
  310. data |= DIDT_CTRL_EN;
  311. else
  312. data &= ~DIDT_CTRL_EN;
  313. WREG32_DIDT(DIDT_DB_CTRL0, data);
  314. }
  315. if (pi->caps_td_ramping) {
  316. data = RREG32_DIDT(DIDT_TD_CTRL0);
  317. if (enable)
  318. data |= DIDT_CTRL_EN;
  319. else
  320. data &= ~DIDT_CTRL_EN;
  321. WREG32_DIDT(DIDT_TD_CTRL0, data);
  322. }
  323. if (pi->caps_tcp_ramping) {
  324. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  325. if (enable)
  326. data |= DIDT_CTRL_EN;
  327. else
  328. data &= ~DIDT_CTRL_EN;
  329. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  330. }
  331. }
  332. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  333. {
  334. struct kv_power_info *pi = kv_get_pi(rdev);
  335. int ret;
  336. if (pi->caps_sq_ramping ||
  337. pi->caps_db_ramping ||
  338. pi->caps_td_ramping ||
  339. pi->caps_tcp_ramping) {
  340. cik_enter_rlc_safe_mode(rdev);
  341. if (enable) {
  342. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  343. if (ret) {
  344. cik_exit_rlc_safe_mode(rdev);
  345. return ret;
  346. }
  347. }
  348. kv_do_enable_didt(rdev, enable);
  349. cik_exit_rlc_safe_mode(rdev);
  350. }
  351. return 0;
  352. }
  353. #if 0
  354. static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
  355. {
  356. struct kv_power_info *pi = kv_get_pi(rdev);
  357. if (pi->caps_cac) {
  358. WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
  359. WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
  360. kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  361. WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
  362. WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
  363. kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  364. WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
  365. WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
  366. kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  367. WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
  368. WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
  369. kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  370. WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
  371. WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
  372. kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  373. WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
  374. WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
  375. kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  376. }
  377. }
  378. #endif
  379. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  380. {
  381. struct kv_power_info *pi = kv_get_pi(rdev);
  382. int ret = 0;
  383. if (pi->caps_cac) {
  384. if (enable) {
  385. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  386. if (ret)
  387. pi->cac_enabled = false;
  388. else
  389. pi->cac_enabled = true;
  390. } else if (pi->cac_enabled) {
  391. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  392. pi->cac_enabled = false;
  393. }
  394. }
  395. return ret;
  396. }
  397. static int kv_process_firmware_header(struct radeon_device *rdev)
  398. {
  399. struct kv_power_info *pi = kv_get_pi(rdev);
  400. u32 tmp;
  401. int ret;
  402. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  403. offsetof(SMU7_Firmware_Header, DpmTable),
  404. &tmp, pi->sram_end);
  405. if (ret == 0)
  406. pi->dpm_table_start = tmp;
  407. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  408. offsetof(SMU7_Firmware_Header, SoftRegisters),
  409. &tmp, pi->sram_end);
  410. if (ret == 0)
  411. pi->soft_regs_start = tmp;
  412. return ret;
  413. }
  414. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  415. {
  416. struct kv_power_info *pi = kv_get_pi(rdev);
  417. int ret;
  418. pi->graphics_voltage_change_enable = 1;
  419. ret = kv_copy_bytes_to_smc(rdev,
  420. pi->dpm_table_start +
  421. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  422. &pi->graphics_voltage_change_enable,
  423. sizeof(u8), pi->sram_end);
  424. return ret;
  425. }
  426. static int kv_set_dpm_interval(struct radeon_device *rdev)
  427. {
  428. struct kv_power_info *pi = kv_get_pi(rdev);
  429. int ret;
  430. pi->graphics_interval = 1;
  431. ret = kv_copy_bytes_to_smc(rdev,
  432. pi->dpm_table_start +
  433. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  434. &pi->graphics_interval,
  435. sizeof(u8), pi->sram_end);
  436. return ret;
  437. }
  438. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  439. {
  440. struct kv_power_info *pi = kv_get_pi(rdev);
  441. int ret;
  442. ret = kv_copy_bytes_to_smc(rdev,
  443. pi->dpm_table_start +
  444. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  445. &pi->graphics_boot_level,
  446. sizeof(u8), pi->sram_end);
  447. return ret;
  448. }
  449. static void kv_program_vc(struct radeon_device *rdev)
  450. {
  451. WREG32_SMC(CG_FTV_0, 0x3FFFC000);
  452. }
  453. static void kv_clear_vc(struct radeon_device *rdev)
  454. {
  455. WREG32_SMC(CG_FTV_0, 0);
  456. }
  457. static int kv_set_divider_value(struct radeon_device *rdev,
  458. u32 index, u32 sclk)
  459. {
  460. struct kv_power_info *pi = kv_get_pi(rdev);
  461. struct atom_clock_dividers dividers;
  462. int ret;
  463. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  464. sclk, false, &dividers);
  465. if (ret)
  466. return ret;
  467. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  468. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  469. return 0;
  470. }
  471. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  472. u16 voltage)
  473. {
  474. return 6200 - (voltage * 25);
  475. }
  476. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  477. u32 vid_2bit)
  478. {
  479. struct kv_power_info *pi = kv_get_pi(rdev);
  480. u32 vid_8bit = sumo_convert_vid2_to_vid7(rdev,
  481. &pi->sys_info.vid_mapping_table,
  482. vid_2bit);
  483. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  484. }
  485. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  486. {
  487. struct kv_power_info *pi = kv_get_pi(rdev);
  488. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  489. pi->graphics_level[index].MinVddNb =
  490. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  491. return 0;
  492. }
  493. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  494. {
  495. struct kv_power_info *pi = kv_get_pi(rdev);
  496. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  497. return 0;
  498. }
  499. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  500. u32 index, bool enable)
  501. {
  502. struct kv_power_info *pi = kv_get_pi(rdev);
  503. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  504. }
  505. static void kv_start_dpm(struct radeon_device *rdev)
  506. {
  507. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  508. tmp |= GLOBAL_PWRMGT_EN;
  509. WREG32_SMC(GENERAL_PWRMGT, tmp);
  510. kv_smc_dpm_enable(rdev, true);
  511. }
  512. static void kv_stop_dpm(struct radeon_device *rdev)
  513. {
  514. kv_smc_dpm_enable(rdev, false);
  515. }
  516. static void kv_start_am(struct radeon_device *rdev)
  517. {
  518. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  519. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  520. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  521. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  522. }
  523. static void kv_reset_am(struct radeon_device *rdev)
  524. {
  525. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  526. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  527. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  528. }
  529. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  530. {
  531. return kv_notify_message_to_smu(rdev, freeze ?
  532. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  533. }
  534. static int kv_force_lowest_valid(struct radeon_device *rdev)
  535. {
  536. return kv_force_dpm_lowest(rdev);
  537. }
  538. static int kv_unforce_levels(struct radeon_device *rdev)
  539. {
  540. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  541. }
  542. static int kv_update_sclk_t(struct radeon_device *rdev)
  543. {
  544. struct kv_power_info *pi = kv_get_pi(rdev);
  545. u32 low_sclk_interrupt_t = 0;
  546. int ret = 0;
  547. if (pi->caps_sclk_throttle_low_notification) {
  548. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  549. ret = kv_copy_bytes_to_smc(rdev,
  550. pi->dpm_table_start +
  551. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  552. (u8 *)&low_sclk_interrupt_t,
  553. sizeof(u32), pi->sram_end);
  554. }
  555. return ret;
  556. }
  557. static int kv_program_bootup_state(struct radeon_device *rdev)
  558. {
  559. struct kv_power_info *pi = kv_get_pi(rdev);
  560. u32 i;
  561. struct radeon_clock_voltage_dependency_table *table =
  562. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  563. if (table && table->count) {
  564. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  565. if ((table->entries[i].clk == pi->boot_pl.sclk) ||
  566. (i == 0))
  567. break;
  568. }
  569. pi->graphics_boot_level = (u8)i;
  570. kv_dpm_power_level_enable(rdev, i, true);
  571. } else {
  572. struct sumo_sclk_voltage_mapping_table *table =
  573. &pi->sys_info.sclk_voltage_mapping_table;
  574. if (table->num_max_dpm_entries == 0)
  575. return -EINVAL;
  576. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  577. if ((table->entries[i].sclk_frequency == pi->boot_pl.sclk) ||
  578. (i == 0))
  579. break;
  580. }
  581. pi->graphics_boot_level = (u8)i;
  582. kv_dpm_power_level_enable(rdev, i, true);
  583. }
  584. return 0;
  585. }
  586. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  587. {
  588. struct kv_power_info *pi = kv_get_pi(rdev);
  589. int ret;
  590. pi->graphics_therm_throttle_enable = 1;
  591. ret = kv_copy_bytes_to_smc(rdev,
  592. pi->dpm_table_start +
  593. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  594. &pi->graphics_therm_throttle_enable,
  595. sizeof(u8), pi->sram_end);
  596. return ret;
  597. }
  598. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  599. {
  600. struct kv_power_info *pi = kv_get_pi(rdev);
  601. int ret;
  602. ret = kv_copy_bytes_to_smc(rdev,
  603. pi->dpm_table_start +
  604. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  605. (u8 *)&pi->graphics_level,
  606. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  607. pi->sram_end);
  608. if (ret)
  609. return ret;
  610. ret = kv_copy_bytes_to_smc(rdev,
  611. pi->dpm_table_start +
  612. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  613. &pi->graphics_dpm_level_count,
  614. sizeof(u8), pi->sram_end);
  615. return ret;
  616. }
  617. static u32 kv_get_clock_difference(u32 a, u32 b)
  618. {
  619. return (a >= b) ? a - b : b - a;
  620. }
  621. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  622. {
  623. struct kv_power_info *pi = kv_get_pi(rdev);
  624. u32 value;
  625. if (pi->caps_enable_dfs_bypass) {
  626. if (kv_get_clock_difference(clk, 40000) < 200)
  627. value = 3;
  628. else if (kv_get_clock_difference(clk, 30000) < 200)
  629. value = 2;
  630. else if (kv_get_clock_difference(clk, 20000) < 200)
  631. value = 7;
  632. else if (kv_get_clock_difference(clk, 15000) < 200)
  633. value = 6;
  634. else if (kv_get_clock_difference(clk, 10000) < 200)
  635. value = 8;
  636. else
  637. value = 0;
  638. } else {
  639. value = 0;
  640. }
  641. return value;
  642. }
  643. static int kv_populate_uvd_table(struct radeon_device *rdev)
  644. {
  645. struct kv_power_info *pi = kv_get_pi(rdev);
  646. struct radeon_uvd_clock_voltage_dependency_table *table =
  647. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  648. struct atom_clock_dividers dividers;
  649. int ret;
  650. u32 i;
  651. if (table == NULL || table->count == 0)
  652. return 0;
  653. pi->uvd_level_count = 0;
  654. for (i = 0; i < table->count; i++) {
  655. if (pi->high_voltage_t &&
  656. (pi->high_voltage_t < table->entries[i].v))
  657. break;
  658. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  659. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  660. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  661. pi->uvd_level[i].VClkBypassCntl =
  662. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  663. pi->uvd_level[i].DClkBypassCntl =
  664. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  665. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  666. table->entries[i].vclk, false, &dividers);
  667. if (ret)
  668. return ret;
  669. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  670. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  671. table->entries[i].dclk, false, &dividers);
  672. if (ret)
  673. return ret;
  674. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  675. pi->uvd_level_count++;
  676. }
  677. ret = kv_copy_bytes_to_smc(rdev,
  678. pi->dpm_table_start +
  679. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  680. (u8 *)&pi->uvd_level_count,
  681. sizeof(u8), pi->sram_end);
  682. if (ret)
  683. return ret;
  684. pi->uvd_interval = 1;
  685. ret = kv_copy_bytes_to_smc(rdev,
  686. pi->dpm_table_start +
  687. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  688. &pi->uvd_interval,
  689. sizeof(u8), pi->sram_end);
  690. if (ret)
  691. return ret;
  692. ret = kv_copy_bytes_to_smc(rdev,
  693. pi->dpm_table_start +
  694. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  695. (u8 *)&pi->uvd_level,
  696. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  697. pi->sram_end);
  698. return ret;
  699. }
  700. static int kv_populate_vce_table(struct radeon_device *rdev)
  701. {
  702. struct kv_power_info *pi = kv_get_pi(rdev);
  703. int ret;
  704. u32 i;
  705. struct radeon_vce_clock_voltage_dependency_table *table =
  706. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  707. struct atom_clock_dividers dividers;
  708. if (table == NULL || table->count == 0)
  709. return 0;
  710. pi->vce_level_count = 0;
  711. for (i = 0; i < table->count; i++) {
  712. if (pi->high_voltage_t &&
  713. pi->high_voltage_t < table->entries[i].v)
  714. break;
  715. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  716. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  717. pi->vce_level[i].ClkBypassCntl =
  718. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  719. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  720. table->entries[i].evclk, false, &dividers);
  721. if (ret)
  722. return ret;
  723. pi->vce_level[i].Divider = (u8)dividers.post_div;
  724. pi->vce_level_count++;
  725. }
  726. ret = kv_copy_bytes_to_smc(rdev,
  727. pi->dpm_table_start +
  728. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  729. (u8 *)&pi->vce_level_count,
  730. sizeof(u8),
  731. pi->sram_end);
  732. if (ret)
  733. return ret;
  734. pi->vce_interval = 1;
  735. ret = kv_copy_bytes_to_smc(rdev,
  736. pi->dpm_table_start +
  737. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  738. (u8 *)&pi->vce_interval,
  739. sizeof(u8),
  740. pi->sram_end);
  741. if (ret)
  742. return ret;
  743. ret = kv_copy_bytes_to_smc(rdev,
  744. pi->dpm_table_start +
  745. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  746. (u8 *)&pi->vce_level,
  747. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  748. pi->sram_end);
  749. return ret;
  750. }
  751. static int kv_populate_samu_table(struct radeon_device *rdev)
  752. {
  753. struct kv_power_info *pi = kv_get_pi(rdev);
  754. struct radeon_clock_voltage_dependency_table *table =
  755. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  756. struct atom_clock_dividers dividers;
  757. int ret;
  758. u32 i;
  759. if (table == NULL || table->count == 0)
  760. return 0;
  761. pi->samu_level_count = 0;
  762. for (i = 0; i < table->count; i++) {
  763. if (pi->high_voltage_t &&
  764. pi->high_voltage_t < table->entries[i].v)
  765. break;
  766. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  767. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  768. pi->samu_level[i].ClkBypassCntl =
  769. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  770. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  771. table->entries[i].clk, false, &dividers);
  772. if (ret)
  773. return ret;
  774. pi->samu_level[i].Divider = (u8)dividers.post_div;
  775. pi->samu_level_count++;
  776. }
  777. ret = kv_copy_bytes_to_smc(rdev,
  778. pi->dpm_table_start +
  779. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  780. (u8 *)&pi->samu_level_count,
  781. sizeof(u8),
  782. pi->sram_end);
  783. if (ret)
  784. return ret;
  785. pi->samu_interval = 1;
  786. ret = kv_copy_bytes_to_smc(rdev,
  787. pi->dpm_table_start +
  788. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  789. (u8 *)&pi->samu_interval,
  790. sizeof(u8),
  791. pi->sram_end);
  792. if (ret)
  793. return ret;
  794. ret = kv_copy_bytes_to_smc(rdev,
  795. pi->dpm_table_start +
  796. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  797. (u8 *)&pi->samu_level,
  798. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  799. pi->sram_end);
  800. if (ret)
  801. return ret;
  802. return ret;
  803. }
  804. static int kv_populate_acp_table(struct radeon_device *rdev)
  805. {
  806. struct kv_power_info *pi = kv_get_pi(rdev);
  807. struct radeon_clock_voltage_dependency_table *table =
  808. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  809. struct atom_clock_dividers dividers;
  810. int ret;
  811. u32 i;
  812. if (table == NULL || table->count == 0)
  813. return 0;
  814. pi->acp_level_count = 0;
  815. for (i = 0; i < table->count; i++) {
  816. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  817. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  818. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  819. table->entries[i].clk, false, &dividers);
  820. if (ret)
  821. return ret;
  822. pi->acp_level[i].Divider = (u8)dividers.post_div;
  823. pi->acp_level_count++;
  824. }
  825. ret = kv_copy_bytes_to_smc(rdev,
  826. pi->dpm_table_start +
  827. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  828. (u8 *)&pi->acp_level_count,
  829. sizeof(u8),
  830. pi->sram_end);
  831. if (ret)
  832. return ret;
  833. pi->acp_interval = 1;
  834. ret = kv_copy_bytes_to_smc(rdev,
  835. pi->dpm_table_start +
  836. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  837. (u8 *)&pi->acp_interval,
  838. sizeof(u8),
  839. pi->sram_end);
  840. if (ret)
  841. return ret;
  842. ret = kv_copy_bytes_to_smc(rdev,
  843. pi->dpm_table_start +
  844. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  845. (u8 *)&pi->acp_level,
  846. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  847. pi->sram_end);
  848. if (ret)
  849. return ret;
  850. return ret;
  851. }
  852. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  853. {
  854. struct kv_power_info *pi = kv_get_pi(rdev);
  855. u32 i;
  856. struct radeon_clock_voltage_dependency_table *table =
  857. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  858. if (table && table->count) {
  859. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  860. if (pi->caps_enable_dfs_bypass) {
  861. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  862. pi->graphics_level[i].ClkBypassCntl = 3;
  863. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  864. pi->graphics_level[i].ClkBypassCntl = 2;
  865. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  866. pi->graphics_level[i].ClkBypassCntl = 7;
  867. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  868. pi->graphics_level[i].ClkBypassCntl = 6;
  869. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  870. pi->graphics_level[i].ClkBypassCntl = 8;
  871. else
  872. pi->graphics_level[i].ClkBypassCntl = 0;
  873. } else {
  874. pi->graphics_level[i].ClkBypassCntl = 0;
  875. }
  876. }
  877. } else {
  878. struct sumo_sclk_voltage_mapping_table *table =
  879. &pi->sys_info.sclk_voltage_mapping_table;
  880. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  881. if (pi->caps_enable_dfs_bypass) {
  882. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  883. pi->graphics_level[i].ClkBypassCntl = 3;
  884. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  885. pi->graphics_level[i].ClkBypassCntl = 2;
  886. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  887. pi->graphics_level[i].ClkBypassCntl = 7;
  888. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  889. pi->graphics_level[i].ClkBypassCntl = 6;
  890. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  891. pi->graphics_level[i].ClkBypassCntl = 8;
  892. else
  893. pi->graphics_level[i].ClkBypassCntl = 0;
  894. } else {
  895. pi->graphics_level[i].ClkBypassCntl = 0;
  896. }
  897. }
  898. }
  899. }
  900. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  901. {
  902. return kv_notify_message_to_smu(rdev, enable ?
  903. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  904. }
  905. static void kv_update_current_ps(struct radeon_device *rdev,
  906. struct radeon_ps *rps)
  907. {
  908. struct kv_ps *new_ps = kv_get_ps(rps);
  909. struct kv_power_info *pi = kv_get_pi(rdev);
  910. pi->current_rps = *rps;
  911. pi->current_ps = *new_ps;
  912. pi->current_rps.ps_priv = &pi->current_ps;
  913. }
  914. static void kv_update_requested_ps(struct radeon_device *rdev,
  915. struct radeon_ps *rps)
  916. {
  917. struct kv_ps *new_ps = kv_get_ps(rps);
  918. struct kv_power_info *pi = kv_get_pi(rdev);
  919. pi->requested_rps = *rps;
  920. pi->requested_ps = *new_ps;
  921. pi->requested_rps.ps_priv = &pi->requested_ps;
  922. }
  923. int kv_dpm_enable(struct radeon_device *rdev)
  924. {
  925. struct kv_power_info *pi = kv_get_pi(rdev);
  926. int ret;
  927. ret = kv_process_firmware_header(rdev);
  928. if (ret) {
  929. DRM_ERROR("kv_process_firmware_header failed\n");
  930. return ret;
  931. }
  932. kv_init_fps_limits(rdev);
  933. kv_init_graphics_levels(rdev);
  934. ret = kv_program_bootup_state(rdev);
  935. if (ret) {
  936. DRM_ERROR("kv_program_bootup_state failed\n");
  937. return ret;
  938. }
  939. kv_calculate_dfs_bypass_settings(rdev);
  940. ret = kv_upload_dpm_settings(rdev);
  941. if (ret) {
  942. DRM_ERROR("kv_upload_dpm_settings failed\n");
  943. return ret;
  944. }
  945. ret = kv_populate_uvd_table(rdev);
  946. if (ret) {
  947. DRM_ERROR("kv_populate_uvd_table failed\n");
  948. return ret;
  949. }
  950. ret = kv_populate_vce_table(rdev);
  951. if (ret) {
  952. DRM_ERROR("kv_populate_vce_table failed\n");
  953. return ret;
  954. }
  955. ret = kv_populate_samu_table(rdev);
  956. if (ret) {
  957. DRM_ERROR("kv_populate_samu_table failed\n");
  958. return ret;
  959. }
  960. ret = kv_populate_acp_table(rdev);
  961. if (ret) {
  962. DRM_ERROR("kv_populate_acp_table failed\n");
  963. return ret;
  964. }
  965. kv_program_vc(rdev);
  966. #if 0
  967. kv_initialize_hardware_cac_manager(rdev);
  968. #endif
  969. kv_start_am(rdev);
  970. if (pi->enable_auto_thermal_throttling) {
  971. ret = kv_enable_auto_thermal_throttling(rdev);
  972. if (ret) {
  973. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  974. return ret;
  975. }
  976. }
  977. ret = kv_enable_dpm_voltage_scaling(rdev);
  978. if (ret) {
  979. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  980. return ret;
  981. }
  982. ret = kv_set_dpm_interval(rdev);
  983. if (ret) {
  984. DRM_ERROR("kv_set_dpm_interval failed\n");
  985. return ret;
  986. }
  987. ret = kv_set_dpm_boot_state(rdev);
  988. if (ret) {
  989. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  990. return ret;
  991. }
  992. ret = kv_enable_ulv(rdev, true);
  993. if (ret) {
  994. DRM_ERROR("kv_enable_ulv failed\n");
  995. return ret;
  996. }
  997. kv_start_dpm(rdev);
  998. ret = kv_enable_didt(rdev, true);
  999. if (ret) {
  1000. DRM_ERROR("kv_enable_didt failed\n");
  1001. return ret;
  1002. }
  1003. ret = kv_enable_smc_cac(rdev, true);
  1004. if (ret) {
  1005. DRM_ERROR("kv_enable_smc_cac failed\n");
  1006. return ret;
  1007. }
  1008. if (rdev->irq.installed &&
  1009. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  1010. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  1011. if (ret) {
  1012. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1013. return ret;
  1014. }
  1015. rdev->irq.dpm_thermal = true;
  1016. radeon_irq_set(rdev);
  1017. }
  1018. /* powerdown unused blocks for now */
  1019. kv_dpm_powergate_acp(rdev, true);
  1020. kv_dpm_powergate_samu(rdev, true);
  1021. kv_dpm_powergate_vce(rdev, true);
  1022. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1023. return ret;
  1024. }
  1025. void kv_dpm_disable(struct radeon_device *rdev)
  1026. {
  1027. kv_enable_smc_cac(rdev, false);
  1028. kv_enable_didt(rdev, false);
  1029. kv_clear_vc(rdev);
  1030. kv_stop_dpm(rdev);
  1031. kv_enable_ulv(rdev, false);
  1032. kv_reset_am(rdev);
  1033. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1034. }
  1035. #if 0
  1036. static int kv_write_smc_soft_register(struct radeon_device *rdev,
  1037. u16 reg_offset, u32 value)
  1038. {
  1039. struct kv_power_info *pi = kv_get_pi(rdev);
  1040. return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
  1041. (u8 *)&value, sizeof(u16), pi->sram_end);
  1042. }
  1043. static int kv_read_smc_soft_register(struct radeon_device *rdev,
  1044. u16 reg_offset, u32 *value)
  1045. {
  1046. struct kv_power_info *pi = kv_get_pi(rdev);
  1047. return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
  1048. value, pi->sram_end);
  1049. }
  1050. #endif
  1051. static void kv_init_sclk_t(struct radeon_device *rdev)
  1052. {
  1053. struct kv_power_info *pi = kv_get_pi(rdev);
  1054. pi->low_sclk_interrupt_t = 0;
  1055. }
  1056. static int kv_init_fps_limits(struct radeon_device *rdev)
  1057. {
  1058. struct kv_power_info *pi = kv_get_pi(rdev);
  1059. int ret = 0;
  1060. if (pi->caps_fps) {
  1061. u16 tmp;
  1062. tmp = 45;
  1063. pi->fps_high_t = cpu_to_be16(tmp);
  1064. ret = kv_copy_bytes_to_smc(rdev,
  1065. pi->dpm_table_start +
  1066. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1067. (u8 *)&pi->fps_high_t,
  1068. sizeof(u16), pi->sram_end);
  1069. tmp = 30;
  1070. pi->fps_low_t = cpu_to_be16(tmp);
  1071. ret = kv_copy_bytes_to_smc(rdev,
  1072. pi->dpm_table_start +
  1073. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1074. (u8 *)&pi->fps_low_t,
  1075. sizeof(u16), pi->sram_end);
  1076. }
  1077. return ret;
  1078. }
  1079. static void kv_init_powergate_state(struct radeon_device *rdev)
  1080. {
  1081. struct kv_power_info *pi = kv_get_pi(rdev);
  1082. pi->uvd_power_gated = false;
  1083. pi->vce_power_gated = false;
  1084. pi->samu_power_gated = false;
  1085. pi->acp_power_gated = false;
  1086. }
  1087. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1088. {
  1089. return kv_notify_message_to_smu(rdev, enable ?
  1090. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1091. }
  1092. #if 0
  1093. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1094. {
  1095. return kv_notify_message_to_smu(rdev, enable ?
  1096. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1097. }
  1098. #endif
  1099. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1100. {
  1101. return kv_notify_message_to_smu(rdev, enable ?
  1102. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1103. }
  1104. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1105. {
  1106. return kv_notify_message_to_smu(rdev, enable ?
  1107. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1108. }
  1109. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1110. {
  1111. struct kv_power_info *pi = kv_get_pi(rdev);
  1112. struct radeon_uvd_clock_voltage_dependency_table *table =
  1113. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1114. int ret;
  1115. if (!gate) {
  1116. if (!pi->caps_uvd_dpm || table->count || pi->caps_stable_p_state)
  1117. pi->uvd_boot_level = table->count - 1;
  1118. else
  1119. pi->uvd_boot_level = 0;
  1120. ret = kv_copy_bytes_to_smc(rdev,
  1121. pi->dpm_table_start +
  1122. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1123. (uint8_t *)&pi->uvd_boot_level,
  1124. sizeof(u8), pi->sram_end);
  1125. if (ret)
  1126. return ret;
  1127. if (!pi->caps_uvd_dpm ||
  1128. pi->caps_stable_p_state)
  1129. kv_send_msg_to_smc_with_parameter(rdev,
  1130. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1131. (1 << pi->uvd_boot_level));
  1132. }
  1133. return kv_enable_uvd_dpm(rdev, !gate);
  1134. }
  1135. #if 0
  1136. static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
  1137. {
  1138. u8 i;
  1139. struct radeon_vce_clock_voltage_dependency_table *table =
  1140. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1141. for (i = 0; i < table->count; i++) {
  1142. if (table->entries[i].evclk >= 0) /* XXX */
  1143. break;
  1144. }
  1145. return i;
  1146. }
  1147. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1148. struct radeon_ps *radeon_new_state,
  1149. struct radeon_ps *radeon_current_state)
  1150. {
  1151. struct kv_power_info *pi = kv_get_pi(rdev);
  1152. struct radeon_vce_clock_voltage_dependency_table *table =
  1153. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1154. int ret;
  1155. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1156. if (pi->caps_stable_p_state)
  1157. pi->vce_boot_level = table->count - 1;
  1158. else
  1159. pi->vce_boot_level = kv_get_vce_boot_level(rdev);
  1160. ret = kv_copy_bytes_to_smc(rdev,
  1161. pi->dpm_table_start +
  1162. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1163. (u8 *)&pi->vce_boot_level,
  1164. sizeof(u8),
  1165. pi->sram_end);
  1166. if (ret)
  1167. return ret;
  1168. if (pi->caps_stable_p_state)
  1169. kv_send_msg_to_smc_with_parameter(rdev,
  1170. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1171. (1 << pi->vce_boot_level));
  1172. kv_enable_vce_dpm(rdev, true);
  1173. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1174. kv_enable_vce_dpm(rdev, false);
  1175. }
  1176. return 0;
  1177. }
  1178. #endif
  1179. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1180. {
  1181. struct kv_power_info *pi = kv_get_pi(rdev);
  1182. struct radeon_clock_voltage_dependency_table *table =
  1183. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1184. int ret;
  1185. if (!gate) {
  1186. if (pi->caps_stable_p_state)
  1187. pi->samu_boot_level = table->count - 1;
  1188. else
  1189. pi->samu_boot_level = 0;
  1190. ret = kv_copy_bytes_to_smc(rdev,
  1191. pi->dpm_table_start +
  1192. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1193. (u8 *)&pi->samu_boot_level,
  1194. sizeof(u8),
  1195. pi->sram_end);
  1196. if (ret)
  1197. return ret;
  1198. if (pi->caps_stable_p_state)
  1199. kv_send_msg_to_smc_with_parameter(rdev,
  1200. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1201. (1 << pi->samu_boot_level));
  1202. }
  1203. return kv_enable_samu_dpm(rdev, !gate);
  1204. }
  1205. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1206. {
  1207. struct kv_power_info *pi = kv_get_pi(rdev);
  1208. struct radeon_clock_voltage_dependency_table *table =
  1209. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1210. int ret;
  1211. if (!gate) {
  1212. if (pi->caps_stable_p_state)
  1213. pi->acp_boot_level = table->count - 1;
  1214. else
  1215. pi->acp_boot_level = 0;
  1216. ret = kv_copy_bytes_to_smc(rdev,
  1217. pi->dpm_table_start +
  1218. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1219. (u8 *)&pi->acp_boot_level,
  1220. sizeof(u8),
  1221. pi->sram_end);
  1222. if (ret)
  1223. return ret;
  1224. if (pi->caps_stable_p_state)
  1225. kv_send_msg_to_smc_with_parameter(rdev,
  1226. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1227. (1 << pi->acp_boot_level));
  1228. }
  1229. return kv_enable_acp_dpm(rdev, !gate);
  1230. }
  1231. static void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1232. {
  1233. struct kv_power_info *pi = kv_get_pi(rdev);
  1234. if (pi->uvd_power_gated == gate)
  1235. return;
  1236. pi->uvd_power_gated = gate;
  1237. if (gate) {
  1238. kv_update_uvd_dpm(rdev, true);
  1239. if (pi->caps_uvd_pg)
  1240. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1241. } else {
  1242. if (pi->caps_uvd_pg)
  1243. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1244. kv_update_uvd_dpm(rdev, false);
  1245. }
  1246. }
  1247. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1248. {
  1249. struct kv_power_info *pi = kv_get_pi(rdev);
  1250. if (pi->vce_power_gated == gate)
  1251. return;
  1252. pi->vce_power_gated = gate;
  1253. if (gate) {
  1254. if (pi->caps_vce_pg)
  1255. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1256. } else {
  1257. if (pi->caps_vce_pg)
  1258. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1259. }
  1260. }
  1261. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1262. {
  1263. struct kv_power_info *pi = kv_get_pi(rdev);
  1264. if (pi->samu_power_gated == gate)
  1265. return;
  1266. pi->samu_power_gated = gate;
  1267. if (gate) {
  1268. kv_update_samu_dpm(rdev, true);
  1269. if (pi->caps_samu_pg)
  1270. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1271. } else {
  1272. if (pi->caps_samu_pg)
  1273. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1274. kv_update_samu_dpm(rdev, false);
  1275. }
  1276. }
  1277. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1278. {
  1279. struct kv_power_info *pi = kv_get_pi(rdev);
  1280. if (pi->acp_power_gated == gate)
  1281. return;
  1282. if (rdev->family == CHIP_KABINI)
  1283. return;
  1284. pi->acp_power_gated = gate;
  1285. if (gate) {
  1286. kv_update_acp_dpm(rdev, true);
  1287. if (pi->caps_acp_pg)
  1288. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1289. } else {
  1290. if (pi->caps_acp_pg)
  1291. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1292. kv_update_acp_dpm(rdev, false);
  1293. }
  1294. }
  1295. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1296. struct radeon_ps *new_rps)
  1297. {
  1298. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1299. struct kv_power_info *pi = kv_get_pi(rdev);
  1300. u32 i;
  1301. struct radeon_clock_voltage_dependency_table *table =
  1302. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1303. if (table && table->count) {
  1304. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1305. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1306. (i == (pi->graphics_dpm_level_count - 1))) {
  1307. pi->lowest_valid = i;
  1308. break;
  1309. }
  1310. }
  1311. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  1312. if ((table->entries[i].clk <= new_ps->levels[new_ps->num_levels -1].sclk) ||
  1313. (i == 0)) {
  1314. pi->highest_valid = i;
  1315. break;
  1316. }
  1317. }
  1318. if (pi->lowest_valid > pi->highest_valid) {
  1319. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1320. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1321. pi->highest_valid = pi->lowest_valid;
  1322. else
  1323. pi->lowest_valid = pi->highest_valid;
  1324. }
  1325. } else {
  1326. struct sumo_sclk_voltage_mapping_table *table =
  1327. &pi->sys_info.sclk_voltage_mapping_table;
  1328. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1329. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1330. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1331. pi->lowest_valid = i;
  1332. break;
  1333. }
  1334. }
  1335. for (i = pi->graphics_dpm_level_count - 1; i >= 0; i--) {
  1336. if (table->entries[i].sclk_frequency <=
  1337. new_ps->levels[new_ps->num_levels - 1].sclk ||
  1338. i == 0) {
  1339. pi->highest_valid = i;
  1340. break;
  1341. }
  1342. }
  1343. if (pi->lowest_valid > pi->highest_valid) {
  1344. if ((new_ps->levels[0].sclk -
  1345. table->entries[pi->highest_valid].sclk_frequency) >
  1346. (table->entries[pi->lowest_valid].sclk_frequency -
  1347. new_ps->levels[new_ps->num_levels -1].sclk))
  1348. pi->highest_valid = pi->lowest_valid;
  1349. else
  1350. pi->lowest_valid = pi->highest_valid;
  1351. }
  1352. }
  1353. }
  1354. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1355. struct radeon_ps *new_rps)
  1356. {
  1357. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1358. struct kv_power_info *pi = kv_get_pi(rdev);
  1359. int ret = 0;
  1360. u8 clk_bypass_cntl;
  1361. if (pi->caps_enable_dfs_bypass) {
  1362. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1363. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1364. ret = kv_copy_bytes_to_smc(rdev,
  1365. (pi->dpm_table_start +
  1366. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1367. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1368. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1369. &clk_bypass_cntl,
  1370. sizeof(u8), pi->sram_end);
  1371. }
  1372. return ret;
  1373. }
  1374. static int kv_enable_nb_dpm(struct radeon_device *rdev)
  1375. {
  1376. struct kv_power_info *pi = kv_get_pi(rdev);
  1377. int ret = 0;
  1378. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1379. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1380. if (ret == 0)
  1381. pi->nb_dpm_enabled = true;
  1382. }
  1383. return ret;
  1384. }
  1385. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1386. {
  1387. struct kv_power_info *pi = kv_get_pi(rdev);
  1388. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1389. struct radeon_ps *new_ps = &requested_ps;
  1390. kv_update_requested_ps(rdev, new_ps);
  1391. kv_apply_state_adjust_rules(rdev,
  1392. &pi->requested_rps,
  1393. &pi->current_rps);
  1394. return 0;
  1395. }
  1396. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1397. {
  1398. struct kv_power_info *pi = kv_get_pi(rdev);
  1399. struct radeon_ps *new_ps = &pi->requested_rps;
  1400. /*struct radeon_ps *old_ps = &pi->current_rps;*/
  1401. int ret;
  1402. if (rdev->family == CHIP_KABINI) {
  1403. if (pi->enable_dpm) {
  1404. kv_set_valid_clock_range(rdev, new_ps);
  1405. kv_update_dfs_bypass_settings(rdev, new_ps);
  1406. ret = kv_calculate_ds_divider(rdev);
  1407. if (ret) {
  1408. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1409. return ret;
  1410. }
  1411. kv_calculate_nbps_level_settings(rdev);
  1412. kv_calculate_dpm_settings(rdev);
  1413. kv_force_lowest_valid(rdev);
  1414. kv_enable_new_levels(rdev);
  1415. kv_upload_dpm_settings(rdev);
  1416. kv_program_nbps_index_settings(rdev, new_ps);
  1417. kv_unforce_levels(rdev);
  1418. kv_set_enabled_levels(rdev);
  1419. kv_force_lowest_valid(rdev);
  1420. kv_unforce_levels(rdev);
  1421. #if 0
  1422. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1423. if (ret) {
  1424. DRM_ERROR("kv_update_vce_dpm failed\n");
  1425. return ret;
  1426. }
  1427. #endif
  1428. kv_update_uvd_dpm(rdev, false);
  1429. kv_update_sclk_t(rdev);
  1430. }
  1431. } else {
  1432. if (pi->enable_dpm) {
  1433. kv_set_valid_clock_range(rdev, new_ps);
  1434. kv_update_dfs_bypass_settings(rdev, new_ps);
  1435. ret = kv_calculate_ds_divider(rdev);
  1436. if (ret) {
  1437. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1438. return ret;
  1439. }
  1440. kv_calculate_nbps_level_settings(rdev);
  1441. kv_calculate_dpm_settings(rdev);
  1442. kv_freeze_sclk_dpm(rdev, true);
  1443. kv_upload_dpm_settings(rdev);
  1444. kv_program_nbps_index_settings(rdev, new_ps);
  1445. kv_freeze_sclk_dpm(rdev, false);
  1446. kv_set_enabled_levels(rdev);
  1447. #if 0
  1448. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1449. if (ret) {
  1450. DRM_ERROR("kv_update_vce_dpm failed\n");
  1451. return ret;
  1452. }
  1453. #endif
  1454. kv_update_uvd_dpm(rdev, false);
  1455. kv_update_sclk_t(rdev);
  1456. kv_enable_nb_dpm(rdev);
  1457. }
  1458. }
  1459. return 0;
  1460. }
  1461. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1462. {
  1463. struct kv_power_info *pi = kv_get_pi(rdev);
  1464. struct radeon_ps *new_ps = &pi->requested_rps;
  1465. kv_update_current_ps(rdev, new_ps);
  1466. }
  1467. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1468. {
  1469. sumo_take_smu_control(rdev, true);
  1470. kv_init_powergate_state(rdev);
  1471. kv_init_sclk_t(rdev);
  1472. }
  1473. void kv_dpm_reset_asic(struct radeon_device *rdev)
  1474. {
  1475. kv_force_lowest_valid(rdev);
  1476. kv_init_graphics_levels(rdev);
  1477. kv_program_bootup_state(rdev);
  1478. kv_upload_dpm_settings(rdev);
  1479. kv_force_lowest_valid(rdev);
  1480. kv_unforce_levels(rdev);
  1481. }
  1482. //XXX use sumo_dpm_display_configuration_changed
  1483. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1484. struct radeon_clock_and_voltage_limits *table)
  1485. {
  1486. struct kv_power_info *pi = kv_get_pi(rdev);
  1487. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1488. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1489. table->sclk =
  1490. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1491. table->vddc =
  1492. kv_convert_2bit_index_to_voltage(rdev,
  1493. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1494. }
  1495. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1496. }
  1497. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1498. {
  1499. int i;
  1500. struct radeon_uvd_clock_voltage_dependency_table *table =
  1501. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1502. if (table->count) {
  1503. for (i = 0; i < table->count; i++)
  1504. table->entries[i].v =
  1505. kv_convert_8bit_index_to_voltage(rdev,
  1506. table->entries[i].v);
  1507. }
  1508. }
  1509. static void kv_construct_boot_state(struct radeon_device *rdev)
  1510. {
  1511. struct kv_power_info *pi = kv_get_pi(rdev);
  1512. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1513. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1514. pi->boot_pl.ds_divider_index = 0;
  1515. pi->boot_pl.ss_divider_index = 0;
  1516. pi->boot_pl.allow_gnb_slow = 1;
  1517. pi->boot_pl.force_nbp_state = 0;
  1518. pi->boot_pl.display_wm = 0;
  1519. pi->boot_pl.vce_wm = 0;
  1520. }
  1521. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1522. {
  1523. int ret;
  1524. u32 enable_mask, i;
  1525. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1526. if (ret)
  1527. return ret;
  1528. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1529. if (enable_mask & (1 << i))
  1530. break;
  1531. }
  1532. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1533. }
  1534. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1535. u32 sclk, u32 min_sclk_in_sr)
  1536. {
  1537. struct kv_power_info *pi = kv_get_pi(rdev);
  1538. u32 i;
  1539. u32 temp;
  1540. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1541. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1542. if (sclk < min)
  1543. return 0;
  1544. if (!pi->caps_sclk_ds)
  1545. return 0;
  1546. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i <= 0; i--) {
  1547. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1548. if ((temp >= min) || (i == 0))
  1549. break;
  1550. }
  1551. return (u8)i;
  1552. }
  1553. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1554. {
  1555. struct kv_power_info *pi = kv_get_pi(rdev);
  1556. struct radeon_clock_voltage_dependency_table *table =
  1557. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1558. int i;
  1559. if (table && table->count) {
  1560. for (i = table->count - 1; i >= 0; i--) {
  1561. if (pi->high_voltage_t &&
  1562. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1563. pi->high_voltage_t)) {
  1564. *limit = i;
  1565. return 0;
  1566. }
  1567. }
  1568. } else {
  1569. struct sumo_sclk_voltage_mapping_table *table =
  1570. &pi->sys_info.sclk_voltage_mapping_table;
  1571. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1572. if (pi->high_voltage_t &&
  1573. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1574. pi->high_voltage_t)) {
  1575. *limit = i;
  1576. return 0;
  1577. }
  1578. }
  1579. }
  1580. *limit = 0;
  1581. return 0;
  1582. }
  1583. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1584. struct radeon_ps *new_rps,
  1585. struct radeon_ps *old_rps)
  1586. {
  1587. struct kv_ps *ps = kv_get_ps(new_rps);
  1588. struct kv_power_info *pi = kv_get_pi(rdev);
  1589. u32 min_sclk = 10000; /* ??? */
  1590. u32 sclk, mclk = 0;
  1591. int i, limit;
  1592. bool force_high;
  1593. struct radeon_clock_voltage_dependency_table *table =
  1594. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1595. u32 stable_p_state_sclk = 0;
  1596. struct radeon_clock_and_voltage_limits *max_limits =
  1597. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1598. mclk = max_limits->mclk;
  1599. sclk = min_sclk;
  1600. if (pi->caps_stable_p_state) {
  1601. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1602. for (i = table->count - 1; i >= 0; i++) {
  1603. if (stable_p_state_sclk >= table->entries[i].clk) {
  1604. stable_p_state_sclk = table->entries[i].clk;
  1605. break;
  1606. }
  1607. }
  1608. if (i > 0)
  1609. stable_p_state_sclk = table->entries[0].clk;
  1610. sclk = stable_p_state_sclk;
  1611. }
  1612. ps->need_dfs_bypass = true;
  1613. for (i = 0; i < ps->num_levels; i++) {
  1614. if (ps->levels[i].sclk < sclk)
  1615. ps->levels[i].sclk = sclk;
  1616. }
  1617. if (table && table->count) {
  1618. for (i = 0; i < ps->num_levels; i++) {
  1619. if (pi->high_voltage_t &&
  1620. (pi->high_voltage_t <
  1621. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1622. kv_get_high_voltage_limit(rdev, &limit);
  1623. ps->levels[i].sclk = table->entries[limit].clk;
  1624. }
  1625. }
  1626. } else {
  1627. struct sumo_sclk_voltage_mapping_table *table =
  1628. &pi->sys_info.sclk_voltage_mapping_table;
  1629. for (i = 0; i < ps->num_levels; i++) {
  1630. if (pi->high_voltage_t &&
  1631. (pi->high_voltage_t <
  1632. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1633. kv_get_high_voltage_limit(rdev, &limit);
  1634. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1635. }
  1636. }
  1637. }
  1638. if (pi->caps_stable_p_state) {
  1639. for (i = 0; i < ps->num_levels; i++) {
  1640. ps->levels[i].sclk = stable_p_state_sclk;
  1641. }
  1642. }
  1643. pi->video_start = new_rps->dclk || new_rps->vclk;
  1644. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1645. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1646. pi->battery_state = true;
  1647. else
  1648. pi->battery_state = false;
  1649. if (rdev->family == CHIP_KABINI) {
  1650. ps->dpm0_pg_nb_ps_lo = 0x1;
  1651. ps->dpm0_pg_nb_ps_hi = 0x0;
  1652. ps->dpmx_nb_ps_lo = 0x1;
  1653. ps->dpmx_nb_ps_hi = 0x0;
  1654. } else {
  1655. ps->dpm0_pg_nb_ps_lo = 0x1;
  1656. ps->dpm0_pg_nb_ps_hi = 0x0;
  1657. ps->dpmx_nb_ps_lo = 0x2;
  1658. ps->dpmx_nb_ps_hi = 0x1;
  1659. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1660. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1661. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1662. pi->disable_nb_ps3_in_battery;
  1663. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1664. ps->dpm0_pg_nb_ps_hi = 0x2;
  1665. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1666. ps->dpmx_nb_ps_hi = 0x2;
  1667. }
  1668. }
  1669. }
  1670. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1671. u32 index, bool enable)
  1672. {
  1673. struct kv_power_info *pi = kv_get_pi(rdev);
  1674. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1675. }
  1676. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1677. {
  1678. struct kv_power_info *pi = kv_get_pi(rdev);
  1679. u32 sclk_in_sr = 10000; /* ??? */
  1680. u32 i;
  1681. if (pi->lowest_valid > pi->highest_valid)
  1682. return -EINVAL;
  1683. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1684. pi->graphics_level[i].DeepSleepDivId =
  1685. kv_get_sleep_divider_id_from_clock(rdev,
  1686. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1687. sclk_in_sr);
  1688. }
  1689. return 0;
  1690. }
  1691. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1692. {
  1693. struct kv_power_info *pi = kv_get_pi(rdev);
  1694. u32 i;
  1695. bool force_high;
  1696. struct radeon_clock_and_voltage_limits *max_limits =
  1697. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1698. u32 mclk = max_limits->mclk;
  1699. if (pi->lowest_valid > pi->highest_valid)
  1700. return -EINVAL;
  1701. if (rdev->family == CHIP_KABINI) {
  1702. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1703. pi->graphics_level[i].GnbSlow = 1;
  1704. pi->graphics_level[i].ForceNbPs1 = 0;
  1705. pi->graphics_level[i].UpH = 0;
  1706. }
  1707. if (!pi->sys_info.nb_dpm_enable)
  1708. return 0;
  1709. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1710. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1711. if (force_high) {
  1712. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1713. pi->graphics_level[i].GnbSlow = 0;
  1714. } else {
  1715. if (pi->battery_state)
  1716. pi->graphics_level[0].ForceNbPs1 = 1;
  1717. pi->graphics_level[1].GnbSlow = 0;
  1718. pi->graphics_level[2].GnbSlow = 0;
  1719. pi->graphics_level[3].GnbSlow = 0;
  1720. pi->graphics_level[4].GnbSlow = 0;
  1721. }
  1722. } else {
  1723. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1724. pi->graphics_level[i].GnbSlow = 1;
  1725. pi->graphics_level[i].ForceNbPs1 = 0;
  1726. pi->graphics_level[i].UpH = 0;
  1727. }
  1728. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1729. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1730. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1731. if (pi->lowest_valid != pi->highest_valid)
  1732. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1733. }
  1734. }
  1735. return 0;
  1736. }
  1737. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1738. {
  1739. struct kv_power_info *pi = kv_get_pi(rdev);
  1740. u32 i;
  1741. if (pi->lowest_valid > pi->highest_valid)
  1742. return -EINVAL;
  1743. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1744. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1745. return 0;
  1746. }
  1747. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1748. {
  1749. struct kv_power_info *pi = kv_get_pi(rdev);
  1750. u32 i;
  1751. struct radeon_clock_voltage_dependency_table *table =
  1752. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1753. if (table && table->count) {
  1754. u32 vid_2bit;
  1755. pi->graphics_dpm_level_count = 0;
  1756. for (i = 0; i < table->count; i++) {
  1757. if (pi->high_voltage_t &&
  1758. (pi->high_voltage_t <
  1759. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1760. break;
  1761. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1762. vid_2bit = sumo_convert_vid7_to_vid2(rdev,
  1763. &pi->sys_info.vid_mapping_table,
  1764. table->entries[i].v);
  1765. kv_set_vid(rdev, i, vid_2bit);
  1766. kv_set_at(rdev, i, pi->at[i]);
  1767. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1768. pi->graphics_dpm_level_count++;
  1769. }
  1770. } else {
  1771. struct sumo_sclk_voltage_mapping_table *table =
  1772. &pi->sys_info.sclk_voltage_mapping_table;
  1773. pi->graphics_dpm_level_count = 0;
  1774. for (i = 0; i < table->num_max_dpm_entries; i++) {
  1775. if (pi->high_voltage_t &&
  1776. pi->high_voltage_t <
  1777. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  1778. break;
  1779. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  1780. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  1781. kv_set_at(rdev, i, pi->at[i]);
  1782. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1783. pi->graphics_dpm_level_count++;
  1784. }
  1785. }
  1786. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  1787. kv_dpm_power_level_enable(rdev, i, false);
  1788. }
  1789. static void kv_enable_new_levels(struct radeon_device *rdev)
  1790. {
  1791. struct kv_power_info *pi = kv_get_pi(rdev);
  1792. u32 i;
  1793. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1794. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  1795. kv_dpm_power_level_enable(rdev, i, true);
  1796. }
  1797. }
  1798. static int kv_set_enabled_levels(struct radeon_device *rdev)
  1799. {
  1800. struct kv_power_info *pi = kv_get_pi(rdev);
  1801. u32 i, new_mask = 0;
  1802. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1803. new_mask |= (1 << i);
  1804. return kv_send_msg_to_smc_with_parameter(rdev,
  1805. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1806. new_mask);
  1807. }
  1808. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  1809. struct radeon_ps *new_rps)
  1810. {
  1811. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1812. struct kv_power_info *pi = kv_get_pi(rdev);
  1813. u32 nbdpmconfig1;
  1814. if (rdev->family == CHIP_KABINI)
  1815. return;
  1816. if (pi->sys_info.nb_dpm_enable) {
  1817. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  1818. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  1819. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  1820. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  1821. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  1822. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  1823. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  1824. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  1825. }
  1826. }
  1827. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  1828. int min_temp, int max_temp)
  1829. {
  1830. int low_temp = 0 * 1000;
  1831. int high_temp = 255 * 1000;
  1832. u32 tmp;
  1833. if (low_temp < min_temp)
  1834. low_temp = min_temp;
  1835. if (high_temp > max_temp)
  1836. high_temp = max_temp;
  1837. if (high_temp < low_temp) {
  1838. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  1839. return -EINVAL;
  1840. }
  1841. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  1842. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  1843. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  1844. DIG_THERM_INTL(49 + (low_temp / 1000)));
  1845. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  1846. rdev->pm.dpm.thermal.min_temp = low_temp;
  1847. rdev->pm.dpm.thermal.max_temp = high_temp;
  1848. return 0;
  1849. }
  1850. union igp_info {
  1851. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  1852. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  1853. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  1854. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  1855. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  1856. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  1857. };
  1858. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  1859. {
  1860. struct kv_power_info *pi = kv_get_pi(rdev);
  1861. struct radeon_mode_info *mode_info = &rdev->mode_info;
  1862. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  1863. union igp_info *igp_info;
  1864. u8 frev, crev;
  1865. u16 data_offset;
  1866. int i;
  1867. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  1868. &frev, &crev, &data_offset)) {
  1869. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  1870. data_offset);
  1871. if (crev != 8) {
  1872. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  1873. return -EINVAL;
  1874. }
  1875. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  1876. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  1877. pi->sys_info.bootup_nb_voltage_index =
  1878. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  1879. if (igp_info->info_8.ucHtcTmpLmt == 0)
  1880. pi->sys_info.htc_tmp_lmt = 203;
  1881. else
  1882. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  1883. if (igp_info->info_8.ucHtcHystLmt == 0)
  1884. pi->sys_info.htc_hyst_lmt = 5;
  1885. else
  1886. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  1887. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  1888. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  1889. }
  1890. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  1891. pi->sys_info.nb_dpm_enable = true;
  1892. else
  1893. pi->sys_info.nb_dpm_enable = false;
  1894. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  1895. pi->sys_info.nbp_memory_clock[i] =
  1896. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  1897. pi->sys_info.nbp_n_clock[i] =
  1898. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  1899. }
  1900. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  1901. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  1902. pi->caps_enable_dfs_bypass = true;
  1903. sumo_construct_sclk_voltage_mapping_table(rdev,
  1904. &pi->sys_info.sclk_voltage_mapping_table,
  1905. igp_info->info_8.sAvail_SCLK);
  1906. sumo_construct_vid_mapping_table(rdev,
  1907. &pi->sys_info.vid_mapping_table,
  1908. igp_info->info_8.sAvail_SCLK);
  1909. kv_construct_max_power_limits_table(rdev,
  1910. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  1911. }
  1912. return 0;
  1913. }
  1914. union power_info {
  1915. struct _ATOM_POWERPLAY_INFO info;
  1916. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  1917. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  1918. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  1919. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  1920. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  1921. };
  1922. union pplib_clock_info {
  1923. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  1924. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  1925. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  1926. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  1927. };
  1928. union pplib_power_state {
  1929. struct _ATOM_PPLIB_STATE v1;
  1930. struct _ATOM_PPLIB_STATE_V2 v2;
  1931. };
  1932. static void kv_patch_boot_state(struct radeon_device *rdev,
  1933. struct kv_ps *ps)
  1934. {
  1935. struct kv_power_info *pi = kv_get_pi(rdev);
  1936. ps->num_levels = 1;
  1937. ps->levels[0] = pi->boot_pl;
  1938. }
  1939. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  1940. struct radeon_ps *rps,
  1941. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  1942. u8 table_rev)
  1943. {
  1944. struct kv_ps *ps = kv_get_ps(rps);
  1945. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  1946. rps->class = le16_to_cpu(non_clock_info->usClassification);
  1947. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  1948. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  1949. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  1950. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  1951. } else {
  1952. rps->vclk = 0;
  1953. rps->dclk = 0;
  1954. }
  1955. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  1956. rdev->pm.dpm.boot_ps = rps;
  1957. kv_patch_boot_state(rdev, ps);
  1958. }
  1959. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  1960. rdev->pm.dpm.uvd_ps = rps;
  1961. }
  1962. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  1963. struct radeon_ps *rps, int index,
  1964. union pplib_clock_info *clock_info)
  1965. {
  1966. struct kv_power_info *pi = kv_get_pi(rdev);
  1967. struct kv_ps *ps = kv_get_ps(rps);
  1968. struct kv_pl *pl = &ps->levels[index];
  1969. u32 sclk;
  1970. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  1971. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  1972. pl->sclk = sclk;
  1973. pl->vddc_index = clock_info->sumo.vddcIndex;
  1974. ps->num_levels = index + 1;
  1975. if (pi->caps_sclk_ds) {
  1976. pl->ds_divider_index = 5;
  1977. pl->ss_divider_index = 5;
  1978. }
  1979. }
  1980. static int kv_parse_power_table(struct radeon_device *rdev)
  1981. {
  1982. struct radeon_mode_info *mode_info = &rdev->mode_info;
  1983. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  1984. union pplib_power_state *power_state;
  1985. int i, j, k, non_clock_array_index, clock_array_index;
  1986. union pplib_clock_info *clock_info;
  1987. struct _StateArray *state_array;
  1988. struct _ClockInfoArray *clock_info_array;
  1989. struct _NonClockInfoArray *non_clock_info_array;
  1990. union power_info *power_info;
  1991. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  1992. u16 data_offset;
  1993. u8 frev, crev;
  1994. u8 *power_state_offset;
  1995. struct kv_ps *ps;
  1996. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  1997. &frev, &crev, &data_offset))
  1998. return -EINVAL;
  1999. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2000. state_array = (struct _StateArray *)
  2001. (mode_info->atom_context->bios + data_offset +
  2002. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2003. clock_info_array = (struct _ClockInfoArray *)
  2004. (mode_info->atom_context->bios + data_offset +
  2005. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2006. non_clock_info_array = (struct _NonClockInfoArray *)
  2007. (mode_info->atom_context->bios + data_offset +
  2008. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2009. rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
  2010. state_array->ucNumEntries, GFP_KERNEL);
  2011. if (!rdev->pm.dpm.ps)
  2012. return -ENOMEM;
  2013. power_state_offset = (u8 *)state_array->states;
  2014. rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  2015. rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  2016. rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  2017. for (i = 0; i < state_array->ucNumEntries; i++) {
  2018. power_state = (union pplib_power_state *)power_state_offset;
  2019. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2020. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2021. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2022. if (!rdev->pm.power_state[i].clock_info)
  2023. return -EINVAL;
  2024. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2025. if (ps == NULL) {
  2026. kfree(rdev->pm.dpm.ps);
  2027. return -ENOMEM;
  2028. }
  2029. rdev->pm.dpm.ps[i].ps_priv = ps;
  2030. k = 0;
  2031. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2032. clock_array_index = power_state->v2.clockInfoIndex[j];
  2033. if (clock_array_index >= clock_info_array->ucNumEntries)
  2034. continue;
  2035. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2036. break;
  2037. clock_info = (union pplib_clock_info *)
  2038. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2039. kv_parse_pplib_clock_info(rdev,
  2040. &rdev->pm.dpm.ps[i], k,
  2041. clock_info);
  2042. k++;
  2043. }
  2044. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2045. non_clock_info,
  2046. non_clock_info_array->ucEntrySize);
  2047. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2048. }
  2049. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2050. return 0;
  2051. }
  2052. int kv_dpm_init(struct radeon_device *rdev)
  2053. {
  2054. struct kv_power_info *pi;
  2055. int ret, i;
  2056. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2057. if (pi == NULL)
  2058. return -ENOMEM;
  2059. rdev->pm.dpm.priv = pi;
  2060. ret = r600_parse_extended_power_table(rdev);
  2061. if (ret)
  2062. return ret;
  2063. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2064. pi->at[i] = TRINITY_AT_DFLT;
  2065. pi->sram_end = SMC_RAM_END;
  2066. if (rdev->family == CHIP_KABINI)
  2067. pi->high_voltage_t = 4001;
  2068. pi->enable_nb_dpm = true;
  2069. pi->caps_power_containment = true;
  2070. pi->caps_cac = true;
  2071. pi->enable_didt = false;
  2072. if (pi->enable_didt) {
  2073. pi->caps_sq_ramping = true;
  2074. pi->caps_db_ramping = true;
  2075. pi->caps_td_ramping = true;
  2076. pi->caps_tcp_ramping = true;
  2077. }
  2078. pi->caps_sclk_ds = true;
  2079. pi->enable_auto_thermal_throttling = true;
  2080. pi->disable_nb_ps3_in_battery = false;
  2081. pi->bapm_enable = true;
  2082. pi->voltage_drop_t = 0;
  2083. pi->caps_sclk_throttle_low_notification = false;
  2084. pi->caps_fps = false; /* true? */
  2085. pi->caps_uvd_pg = false; /* XXX */
  2086. pi->caps_uvd_dpm = true;
  2087. pi->caps_vce_pg = false;
  2088. pi->caps_samu_pg = false;
  2089. pi->caps_acp_pg = false;
  2090. pi->caps_stable_p_state = false;
  2091. ret = kv_parse_sys_info_table(rdev);
  2092. if (ret)
  2093. return ret;
  2094. kv_patch_voltage_values(rdev);
  2095. kv_construct_boot_state(rdev);
  2096. ret = kv_parse_power_table(rdev);
  2097. if (ret)
  2098. return ret;
  2099. pi->enable_dpm = true;
  2100. return 0;
  2101. }
  2102. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2103. struct seq_file *m)
  2104. {
  2105. struct kv_power_info *pi = kv_get_pi(rdev);
  2106. u32 current_index =
  2107. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2108. CURR_SCLK_INDEX_SHIFT;
  2109. u32 sclk, tmp;
  2110. u16 vddc;
  2111. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2112. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2113. } else {
  2114. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2115. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2116. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2117. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2118. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2119. current_index, sclk, vddc);
  2120. }
  2121. }
  2122. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2123. struct radeon_ps *rps)
  2124. {
  2125. int i;
  2126. struct kv_ps *ps = kv_get_ps(rps);
  2127. r600_dpm_print_class_info(rps->class, rps->class2);
  2128. r600_dpm_print_cap_info(rps->caps);
  2129. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2130. for (i = 0; i < ps->num_levels; i++) {
  2131. struct kv_pl *pl = &ps->levels[i];
  2132. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2133. i, pl->sclk,
  2134. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2135. }
  2136. r600_dpm_print_ps_status(rdev, rps);
  2137. }
  2138. void kv_dpm_fini(struct radeon_device *rdev)
  2139. {
  2140. int i;
  2141. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2142. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2143. }
  2144. kfree(rdev->pm.dpm.ps);
  2145. kfree(rdev->pm.dpm.priv);
  2146. r600_free_extended_power_table(rdev);
  2147. }
  2148. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2149. {
  2150. }
  2151. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2152. {
  2153. struct kv_power_info *pi = kv_get_pi(rdev);
  2154. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2155. if (low)
  2156. return requested_state->levels[0].sclk;
  2157. else
  2158. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2159. }
  2160. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2161. {
  2162. struct kv_power_info *pi = kv_get_pi(rdev);
  2163. return pi->sys_info.bootup_uma_clk;
  2164. }