events.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. /*
  2. * Xen event channels
  3. *
  4. * Xen models interrupts with abstract event channels. Because each
  5. * domain gets 1024 event channels, but NR_IRQ is not that large, we
  6. * must dynamically map irqs<->event channels. The event channels
  7. * interface with the rest of the kernel by defining a xen interrupt
  8. * chip. When an event is recieved, it is mapped to an irq and sent
  9. * through the normal interrupt processing path.
  10. *
  11. * There are four kinds of events which can be mapped to an event
  12. * channel:
  13. *
  14. * 1. Inter-domain notifications. This includes all the virtual
  15. * device events, since they're driven by front-ends in another domain
  16. * (typically dom0).
  17. * 2. VIRQs, typically used for timers. These are per-cpu events.
  18. * 3. IPIs.
  19. * 4. PIRQs - Hardware interrupts.
  20. *
  21. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  22. */
  23. #include <linux/linkage.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/irq.h>
  26. #include <linux/module.h>
  27. #include <linux/string.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/slab.h>
  30. #include <linux/irqnr.h>
  31. #include <linux/pci.h>
  32. #include <asm/desc.h>
  33. #include <asm/ptrace.h>
  34. #include <asm/irq.h>
  35. #include <asm/idle.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/sync_bitops.h>
  38. #include <asm/xen/pci.h>
  39. #include <asm/xen/hypercall.h>
  40. #include <asm/xen/hypervisor.h>
  41. #include <xen/xen.h>
  42. #include <xen/hvm.h>
  43. #include <xen/xen-ops.h>
  44. #include <xen/events.h>
  45. #include <xen/interface/xen.h>
  46. #include <xen/interface/event_channel.h>
  47. #include <xen/interface/hvm/hvm_op.h>
  48. #include <xen/interface/hvm/params.h>
  49. /*
  50. * This lock protects updates to the following mapping and reference-count
  51. * arrays. The lock does not need to be acquired to read the mapping tables.
  52. */
  53. static DEFINE_SPINLOCK(irq_mapping_update_lock);
  54. /* IRQ <-> VIRQ mapping. */
  55. static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
  56. /* IRQ <-> IPI mapping */
  57. static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
  58. /* Interrupt types. */
  59. enum xen_irq_type {
  60. IRQT_UNBOUND = 0,
  61. IRQT_PIRQ,
  62. IRQT_VIRQ,
  63. IRQT_IPI,
  64. IRQT_EVTCHN
  65. };
  66. /*
  67. * Packed IRQ information:
  68. * type - enum xen_irq_type
  69. * event channel - irq->event channel mapping
  70. * cpu - cpu this event channel is bound to
  71. * index - type-specific information:
  72. * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
  73. * guest, or GSI (real passthrough IRQ) of the device.
  74. * VIRQ - virq number
  75. * IPI - IPI vector
  76. * EVTCHN -
  77. */
  78. struct irq_info
  79. {
  80. enum xen_irq_type type; /* type */
  81. unsigned short evtchn; /* event channel */
  82. unsigned short cpu; /* cpu bound */
  83. union {
  84. unsigned short virq;
  85. enum ipi_vector ipi;
  86. struct {
  87. unsigned short pirq;
  88. unsigned short gsi;
  89. unsigned char vector;
  90. unsigned char flags;
  91. } pirq;
  92. } u;
  93. };
  94. #define PIRQ_NEEDS_EOI (1 << 0)
  95. #define PIRQ_SHAREABLE (1 << 1)
  96. static struct irq_info *irq_info;
  97. static int *pirq_to_irq;
  98. static int *evtchn_to_irq;
  99. struct cpu_evtchn_s {
  100. unsigned long bits[NR_EVENT_CHANNELS/BITS_PER_LONG];
  101. };
  102. static __initdata struct cpu_evtchn_s init_evtchn_mask = {
  103. .bits[0 ... (NR_EVENT_CHANNELS/BITS_PER_LONG)-1] = ~0ul,
  104. };
  105. static struct cpu_evtchn_s *cpu_evtchn_mask_p = &init_evtchn_mask;
  106. static inline unsigned long *cpu_evtchn_mask(int cpu)
  107. {
  108. return cpu_evtchn_mask_p[cpu].bits;
  109. }
  110. /* Xen will never allocate port zero for any purpose. */
  111. #define VALID_EVTCHN(chn) ((chn) != 0)
  112. static struct irq_chip xen_dynamic_chip;
  113. static struct irq_chip xen_percpu_chip;
  114. static struct irq_chip xen_pirq_chip;
  115. /* Constructor for packed IRQ information. */
  116. static struct irq_info mk_unbound_info(void)
  117. {
  118. return (struct irq_info) { .type = IRQT_UNBOUND };
  119. }
  120. static struct irq_info mk_evtchn_info(unsigned short evtchn)
  121. {
  122. return (struct irq_info) { .type = IRQT_EVTCHN, .evtchn = evtchn,
  123. .cpu = 0 };
  124. }
  125. static struct irq_info mk_ipi_info(unsigned short evtchn, enum ipi_vector ipi)
  126. {
  127. return (struct irq_info) { .type = IRQT_IPI, .evtchn = evtchn,
  128. .cpu = 0, .u.ipi = ipi };
  129. }
  130. static struct irq_info mk_virq_info(unsigned short evtchn, unsigned short virq)
  131. {
  132. return (struct irq_info) { .type = IRQT_VIRQ, .evtchn = evtchn,
  133. .cpu = 0, .u.virq = virq };
  134. }
  135. static struct irq_info mk_pirq_info(unsigned short evtchn, unsigned short pirq,
  136. unsigned short gsi, unsigned short vector)
  137. {
  138. return (struct irq_info) { .type = IRQT_PIRQ, .evtchn = evtchn,
  139. .cpu = 0,
  140. .u.pirq = { .pirq = pirq, .gsi = gsi, .vector = vector } };
  141. }
  142. /*
  143. * Accessors for packed IRQ information.
  144. */
  145. static struct irq_info *info_for_irq(unsigned irq)
  146. {
  147. return &irq_info[irq];
  148. }
  149. static unsigned int evtchn_from_irq(unsigned irq)
  150. {
  151. if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
  152. return 0;
  153. return info_for_irq(irq)->evtchn;
  154. }
  155. unsigned irq_from_evtchn(unsigned int evtchn)
  156. {
  157. return evtchn_to_irq[evtchn];
  158. }
  159. EXPORT_SYMBOL_GPL(irq_from_evtchn);
  160. static enum ipi_vector ipi_from_irq(unsigned irq)
  161. {
  162. struct irq_info *info = info_for_irq(irq);
  163. BUG_ON(info == NULL);
  164. BUG_ON(info->type != IRQT_IPI);
  165. return info->u.ipi;
  166. }
  167. static unsigned virq_from_irq(unsigned irq)
  168. {
  169. struct irq_info *info = info_for_irq(irq);
  170. BUG_ON(info == NULL);
  171. BUG_ON(info->type != IRQT_VIRQ);
  172. return info->u.virq;
  173. }
  174. static unsigned pirq_from_irq(unsigned irq)
  175. {
  176. struct irq_info *info = info_for_irq(irq);
  177. BUG_ON(info == NULL);
  178. BUG_ON(info->type != IRQT_PIRQ);
  179. return info->u.pirq.pirq;
  180. }
  181. static unsigned gsi_from_irq(unsigned irq)
  182. {
  183. struct irq_info *info = info_for_irq(irq);
  184. BUG_ON(info == NULL);
  185. BUG_ON(info->type != IRQT_PIRQ);
  186. return info->u.pirq.gsi;
  187. }
  188. static unsigned vector_from_irq(unsigned irq)
  189. {
  190. struct irq_info *info = info_for_irq(irq);
  191. BUG_ON(info == NULL);
  192. BUG_ON(info->type != IRQT_PIRQ);
  193. return info->u.pirq.vector;
  194. }
  195. static enum xen_irq_type type_from_irq(unsigned irq)
  196. {
  197. return info_for_irq(irq)->type;
  198. }
  199. static unsigned cpu_from_irq(unsigned irq)
  200. {
  201. return info_for_irq(irq)->cpu;
  202. }
  203. static unsigned int cpu_from_evtchn(unsigned int evtchn)
  204. {
  205. int irq = evtchn_to_irq[evtchn];
  206. unsigned ret = 0;
  207. if (irq != -1)
  208. ret = cpu_from_irq(irq);
  209. return ret;
  210. }
  211. static bool pirq_needs_eoi(unsigned irq)
  212. {
  213. struct irq_info *info = info_for_irq(irq);
  214. BUG_ON(info->type != IRQT_PIRQ);
  215. return info->u.pirq.flags & PIRQ_NEEDS_EOI;
  216. }
  217. static inline unsigned long active_evtchns(unsigned int cpu,
  218. struct shared_info *sh,
  219. unsigned int idx)
  220. {
  221. return (sh->evtchn_pending[idx] &
  222. cpu_evtchn_mask(cpu)[idx] &
  223. ~sh->evtchn_mask[idx]);
  224. }
  225. static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
  226. {
  227. int irq = evtchn_to_irq[chn];
  228. BUG_ON(irq == -1);
  229. #ifdef CONFIG_SMP
  230. cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
  231. #endif
  232. clear_bit(chn, cpu_evtchn_mask(cpu_from_irq(irq)));
  233. set_bit(chn, cpu_evtchn_mask(cpu));
  234. irq_info[irq].cpu = cpu;
  235. }
  236. static void init_evtchn_cpu_bindings(void)
  237. {
  238. int i;
  239. #ifdef CONFIG_SMP
  240. struct irq_desc *desc;
  241. /* By default all event channels notify CPU#0. */
  242. for_each_irq_desc(i, desc) {
  243. cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
  244. }
  245. #endif
  246. for_each_possible_cpu(i)
  247. memset(cpu_evtchn_mask(i),
  248. (i == 0) ? ~0 : 0, sizeof(struct cpu_evtchn_s));
  249. }
  250. static inline void clear_evtchn(int port)
  251. {
  252. struct shared_info *s = HYPERVISOR_shared_info;
  253. sync_clear_bit(port, &s->evtchn_pending[0]);
  254. }
  255. static inline void set_evtchn(int port)
  256. {
  257. struct shared_info *s = HYPERVISOR_shared_info;
  258. sync_set_bit(port, &s->evtchn_pending[0]);
  259. }
  260. static inline int test_evtchn(int port)
  261. {
  262. struct shared_info *s = HYPERVISOR_shared_info;
  263. return sync_test_bit(port, &s->evtchn_pending[0]);
  264. }
  265. /**
  266. * notify_remote_via_irq - send event to remote end of event channel via irq
  267. * @irq: irq of event channel to send event to
  268. *
  269. * Unlike notify_remote_via_evtchn(), this is safe to use across
  270. * save/restore. Notifications on a broken connection are silently
  271. * dropped.
  272. */
  273. void notify_remote_via_irq(int irq)
  274. {
  275. int evtchn = evtchn_from_irq(irq);
  276. if (VALID_EVTCHN(evtchn))
  277. notify_remote_via_evtchn(evtchn);
  278. }
  279. EXPORT_SYMBOL_GPL(notify_remote_via_irq);
  280. static void mask_evtchn(int port)
  281. {
  282. struct shared_info *s = HYPERVISOR_shared_info;
  283. sync_set_bit(port, &s->evtchn_mask[0]);
  284. }
  285. static void unmask_evtchn(int port)
  286. {
  287. struct shared_info *s = HYPERVISOR_shared_info;
  288. unsigned int cpu = get_cpu();
  289. BUG_ON(!irqs_disabled());
  290. /* Slow path (hypercall) if this is a non-local port. */
  291. if (unlikely(cpu != cpu_from_evtchn(port))) {
  292. struct evtchn_unmask unmask = { .port = port };
  293. (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
  294. } else {
  295. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  296. sync_clear_bit(port, &s->evtchn_mask[0]);
  297. /*
  298. * The following is basically the equivalent of
  299. * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
  300. * the interrupt edge' if the channel is masked.
  301. */
  302. if (sync_test_bit(port, &s->evtchn_pending[0]) &&
  303. !sync_test_and_set_bit(port / BITS_PER_LONG,
  304. &vcpu_info->evtchn_pending_sel))
  305. vcpu_info->evtchn_upcall_pending = 1;
  306. }
  307. put_cpu();
  308. }
  309. static int xen_allocate_irq_dynamic(void)
  310. {
  311. int first = 0;
  312. int irq;
  313. #ifdef CONFIG_X86_IO_APIC
  314. /*
  315. * For an HVM guest or domain 0 which see "real" (emulated or
  316. * actual repectively) GSIs we allocate dynamic IRQs
  317. * e.g. those corresponding to event channels or MSIs
  318. * etc. from the range above those "real" GSIs to avoid
  319. * collisions.
  320. */
  321. if (xen_initial_domain() || xen_hvm_domain())
  322. first = get_nr_irqs_gsi();
  323. #endif
  324. retry:
  325. irq = irq_alloc_desc_from(first, -1);
  326. if (irq == -ENOMEM && first > NR_IRQS_LEGACY) {
  327. printk(KERN_ERR "Out of dynamic IRQ space and eating into GSI space. You should increase nr_irqs\n");
  328. first = max(NR_IRQS_LEGACY, first - NR_IRQS_LEGACY);
  329. goto retry;
  330. }
  331. if (irq < 0)
  332. panic("No available IRQ to bind to: increase nr_irqs!\n");
  333. return irq;
  334. }
  335. static int xen_allocate_irq_gsi(unsigned gsi)
  336. {
  337. int irq;
  338. /*
  339. * A PV guest has no concept of a GSI (since it has no ACPI
  340. * nor access to/knowledge of the physical APICs). Therefore
  341. * all IRQs are dynamically allocated from the entire IRQ
  342. * space.
  343. */
  344. if (xen_pv_domain() && !xen_initial_domain())
  345. return xen_allocate_irq_dynamic();
  346. /* Legacy IRQ descriptors are already allocated by the arch. */
  347. if (gsi < NR_IRQS_LEGACY)
  348. return gsi;
  349. irq = irq_alloc_desc_at(gsi, -1);
  350. if (irq < 0)
  351. panic("Unable to allocate to IRQ%d (%d)\n", gsi, irq);
  352. return irq;
  353. }
  354. static void xen_free_irq(unsigned irq)
  355. {
  356. /* Legacy IRQ descriptors are managed by the arch. */
  357. if (irq < NR_IRQS_LEGACY)
  358. return;
  359. irq_free_desc(irq);
  360. }
  361. static void pirq_unmask_notify(int irq)
  362. {
  363. struct physdev_eoi eoi = { .irq = pirq_from_irq(irq) };
  364. if (unlikely(pirq_needs_eoi(irq))) {
  365. int rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
  366. WARN_ON(rc);
  367. }
  368. }
  369. static void pirq_query_unmask(int irq)
  370. {
  371. struct physdev_irq_status_query irq_status;
  372. struct irq_info *info = info_for_irq(irq);
  373. BUG_ON(info->type != IRQT_PIRQ);
  374. irq_status.irq = pirq_from_irq(irq);
  375. if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
  376. irq_status.flags = 0;
  377. info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
  378. if (irq_status.flags & XENIRQSTAT_needs_eoi)
  379. info->u.pirq.flags |= PIRQ_NEEDS_EOI;
  380. }
  381. static bool probing_irq(int irq)
  382. {
  383. struct irq_desc *desc = irq_to_desc(irq);
  384. return desc && desc->action == NULL;
  385. }
  386. static unsigned int __startup_pirq(unsigned int irq)
  387. {
  388. struct evtchn_bind_pirq bind_pirq;
  389. struct irq_info *info = info_for_irq(irq);
  390. int evtchn = evtchn_from_irq(irq);
  391. int rc;
  392. BUG_ON(info->type != IRQT_PIRQ);
  393. if (VALID_EVTCHN(evtchn))
  394. goto out;
  395. bind_pirq.pirq = pirq_from_irq(irq);
  396. /* NB. We are happy to share unless we are probing. */
  397. bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
  398. BIND_PIRQ__WILL_SHARE : 0;
  399. rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
  400. if (rc != 0) {
  401. if (!probing_irq(irq))
  402. printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
  403. irq);
  404. return 0;
  405. }
  406. evtchn = bind_pirq.port;
  407. pirq_query_unmask(irq);
  408. evtchn_to_irq[evtchn] = irq;
  409. bind_evtchn_to_cpu(evtchn, 0);
  410. info->evtchn = evtchn;
  411. out:
  412. unmask_evtchn(evtchn);
  413. pirq_unmask_notify(irq);
  414. return 0;
  415. }
  416. static unsigned int startup_pirq(struct irq_data *data)
  417. {
  418. return __startup_pirq(data->irq);
  419. }
  420. static void shutdown_pirq(struct irq_data *data)
  421. {
  422. struct evtchn_close close;
  423. unsigned int irq = data->irq;
  424. struct irq_info *info = info_for_irq(irq);
  425. int evtchn = evtchn_from_irq(irq);
  426. BUG_ON(info->type != IRQT_PIRQ);
  427. if (!VALID_EVTCHN(evtchn))
  428. return;
  429. mask_evtchn(evtchn);
  430. close.port = evtchn;
  431. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  432. BUG();
  433. bind_evtchn_to_cpu(evtchn, 0);
  434. evtchn_to_irq[evtchn] = -1;
  435. info->evtchn = 0;
  436. }
  437. static void enable_pirq(struct irq_data *data)
  438. {
  439. startup_pirq(data);
  440. }
  441. static void disable_pirq(struct irq_data *data)
  442. {
  443. }
  444. static void ack_pirq(struct irq_data *data)
  445. {
  446. int evtchn = evtchn_from_irq(data->irq);
  447. move_native_irq(data->irq);
  448. if (VALID_EVTCHN(evtchn)) {
  449. mask_evtchn(evtchn);
  450. clear_evtchn(evtchn);
  451. }
  452. }
  453. static int find_irq_by_gsi(unsigned gsi)
  454. {
  455. int irq;
  456. for (irq = 0; irq < nr_irqs; irq++) {
  457. struct irq_info *info = info_for_irq(irq);
  458. if (info == NULL || info->type != IRQT_PIRQ)
  459. continue;
  460. if (gsi_from_irq(irq) == gsi)
  461. return irq;
  462. }
  463. return -1;
  464. }
  465. int xen_allocate_pirq(unsigned gsi, int shareable, char *name)
  466. {
  467. return xen_map_pirq_gsi(gsi, gsi, shareable, name);
  468. }
  469. /* xen_map_pirq_gsi might allocate irqs from the top down, as a
  470. * consequence don't assume that the irq number returned has a low value
  471. * or can be used as a pirq number unless you know otherwise.
  472. *
  473. * One notable exception is when xen_map_pirq_gsi is called passing an
  474. * hardware gsi as argument, in that case the irq number returned
  475. * matches the gsi number passed as second argument.
  476. *
  477. * Note: We don't assign an event channel until the irq actually started
  478. * up. Return an existing irq if we've already got one for the gsi.
  479. */
  480. int xen_map_pirq_gsi(unsigned pirq, unsigned gsi, int shareable, char *name)
  481. {
  482. int irq = 0;
  483. struct physdev_irq irq_op;
  484. spin_lock(&irq_mapping_update_lock);
  485. if ((pirq > nr_irqs) || (gsi > nr_irqs)) {
  486. printk(KERN_WARNING "xen_map_pirq_gsi: %s %s is incorrect!\n",
  487. pirq > nr_irqs ? "pirq" :"",
  488. gsi > nr_irqs ? "gsi" : "");
  489. goto out;
  490. }
  491. irq = find_irq_by_gsi(gsi);
  492. if (irq != -1) {
  493. printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
  494. irq, gsi);
  495. goto out; /* XXX need refcount? */
  496. }
  497. irq = xen_allocate_irq_gsi(gsi);
  498. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  499. handle_level_irq, name);
  500. irq_op.irq = irq;
  501. irq_op.vector = 0;
  502. /* Only the privileged domain can do this. For non-priv, the pcifront
  503. * driver provides a PCI bus that does the call to do exactly
  504. * this in the priv domain. */
  505. if (xen_initial_domain() &&
  506. HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
  507. xen_free_irq(irq);
  508. irq = -ENOSPC;
  509. goto out;
  510. }
  511. irq_info[irq] = mk_pirq_info(0, pirq, gsi, irq_op.vector);
  512. irq_info[irq].u.pirq.flags |= shareable ? PIRQ_SHAREABLE : 0;
  513. pirq_to_irq[pirq] = irq;
  514. out:
  515. spin_unlock(&irq_mapping_update_lock);
  516. return irq;
  517. }
  518. #ifdef CONFIG_PCI_MSI
  519. #include <linux/msi.h>
  520. #include "../pci/msi.h"
  521. static int find_unbound_pirq(int type)
  522. {
  523. int rc, i;
  524. struct physdev_get_free_pirq op_get_free_pirq;
  525. op_get_free_pirq.type = type;
  526. rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
  527. if (!rc)
  528. return op_get_free_pirq.pirq;
  529. for (i = 0; i < nr_irqs; i++) {
  530. if (pirq_to_irq[i] < 0)
  531. return i;
  532. }
  533. return -1;
  534. }
  535. void xen_allocate_pirq_msi(char *name, int *irq, int *pirq, int alloc)
  536. {
  537. spin_lock(&irq_mapping_update_lock);
  538. if (alloc & XEN_ALLOC_IRQ) {
  539. *irq = xen_allocate_irq_dynamic();
  540. if (*irq == -1)
  541. goto out;
  542. }
  543. if (alloc & XEN_ALLOC_PIRQ) {
  544. *pirq = find_unbound_pirq(MAP_PIRQ_TYPE_MSI);
  545. if (*pirq == -1) {
  546. xen_free_irq(*irq);
  547. *irq = -1;
  548. goto out;
  549. }
  550. }
  551. set_irq_chip_and_handler_name(*irq, &xen_pirq_chip,
  552. handle_level_irq, name);
  553. irq_info[*irq] = mk_pirq_info(0, *pirq, 0, 0);
  554. pirq_to_irq[*pirq] = *irq;
  555. out:
  556. spin_unlock(&irq_mapping_update_lock);
  557. }
  558. int xen_create_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int type)
  559. {
  560. int irq = -1;
  561. struct physdev_map_pirq map_irq;
  562. int rc;
  563. int pos;
  564. u32 table_offset, bir;
  565. memset(&map_irq, 0, sizeof(map_irq));
  566. map_irq.domid = DOMID_SELF;
  567. map_irq.type = MAP_PIRQ_TYPE_MSI;
  568. map_irq.index = -1;
  569. map_irq.pirq = -1;
  570. map_irq.bus = dev->bus->number;
  571. map_irq.devfn = dev->devfn;
  572. if (type == PCI_CAP_ID_MSIX) {
  573. pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
  574. pci_read_config_dword(dev, msix_table_offset_reg(pos),
  575. &table_offset);
  576. bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK);
  577. map_irq.table_base = pci_resource_start(dev, bir);
  578. map_irq.entry_nr = msidesc->msi_attrib.entry_nr;
  579. }
  580. spin_lock(&irq_mapping_update_lock);
  581. irq = xen_allocate_irq_dynamic();
  582. if (irq == -1)
  583. goto out;
  584. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  585. if (rc) {
  586. printk(KERN_WARNING "xen map irq failed %d\n", rc);
  587. xen_free_irq(irq);
  588. irq = -1;
  589. goto out;
  590. }
  591. irq_info[irq] = mk_pirq_info(0, map_irq.pirq, 0, map_irq.index);
  592. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  593. handle_level_irq,
  594. (type == PCI_CAP_ID_MSIX) ? "msi-x":"msi");
  595. out:
  596. spin_unlock(&irq_mapping_update_lock);
  597. return irq;
  598. }
  599. #endif
  600. int xen_destroy_irq(int irq)
  601. {
  602. struct irq_desc *desc;
  603. struct physdev_unmap_pirq unmap_irq;
  604. struct irq_info *info = info_for_irq(irq);
  605. int rc = -ENOENT;
  606. spin_lock(&irq_mapping_update_lock);
  607. desc = irq_to_desc(irq);
  608. if (!desc)
  609. goto out;
  610. if (xen_initial_domain()) {
  611. unmap_irq.pirq = info->u.pirq.pirq;
  612. unmap_irq.domid = DOMID_SELF;
  613. rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
  614. if (rc) {
  615. printk(KERN_WARNING "unmap irq failed %d\n", rc);
  616. goto out;
  617. }
  618. }
  619. pirq_to_irq[info->u.pirq.pirq] = -1;
  620. irq_info[irq] = mk_unbound_info();
  621. xen_free_irq(irq);
  622. out:
  623. spin_unlock(&irq_mapping_update_lock);
  624. return rc;
  625. }
  626. int xen_vector_from_irq(unsigned irq)
  627. {
  628. return vector_from_irq(irq);
  629. }
  630. int xen_gsi_from_irq(unsigned irq)
  631. {
  632. return gsi_from_irq(irq);
  633. }
  634. int xen_irq_from_pirq(unsigned pirq)
  635. {
  636. return pirq_to_irq[pirq];
  637. }
  638. int bind_evtchn_to_irq(unsigned int evtchn)
  639. {
  640. int irq;
  641. spin_lock(&irq_mapping_update_lock);
  642. irq = evtchn_to_irq[evtchn];
  643. if (irq == -1) {
  644. irq = xen_allocate_irq_dynamic();
  645. set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
  646. handle_fasteoi_irq, "event");
  647. evtchn_to_irq[evtchn] = irq;
  648. irq_info[irq] = mk_evtchn_info(evtchn);
  649. }
  650. spin_unlock(&irq_mapping_update_lock);
  651. return irq;
  652. }
  653. EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
  654. static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
  655. {
  656. struct evtchn_bind_ipi bind_ipi;
  657. int evtchn, irq;
  658. spin_lock(&irq_mapping_update_lock);
  659. irq = per_cpu(ipi_to_irq, cpu)[ipi];
  660. if (irq == -1) {
  661. irq = xen_allocate_irq_dynamic();
  662. if (irq < 0)
  663. goto out;
  664. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  665. handle_percpu_irq, "ipi");
  666. bind_ipi.vcpu = cpu;
  667. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  668. &bind_ipi) != 0)
  669. BUG();
  670. evtchn = bind_ipi.port;
  671. evtchn_to_irq[evtchn] = irq;
  672. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  673. per_cpu(ipi_to_irq, cpu)[ipi] = irq;
  674. bind_evtchn_to_cpu(evtchn, cpu);
  675. }
  676. out:
  677. spin_unlock(&irq_mapping_update_lock);
  678. return irq;
  679. }
  680. int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
  681. {
  682. struct evtchn_bind_virq bind_virq;
  683. int evtchn, irq;
  684. spin_lock(&irq_mapping_update_lock);
  685. irq = per_cpu(virq_to_irq, cpu)[virq];
  686. if (irq == -1) {
  687. irq = xen_allocate_irq_dynamic();
  688. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  689. handle_percpu_irq, "virq");
  690. bind_virq.virq = virq;
  691. bind_virq.vcpu = cpu;
  692. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  693. &bind_virq) != 0)
  694. BUG();
  695. evtchn = bind_virq.port;
  696. evtchn_to_irq[evtchn] = irq;
  697. irq_info[irq] = mk_virq_info(evtchn, virq);
  698. per_cpu(virq_to_irq, cpu)[virq] = irq;
  699. bind_evtchn_to_cpu(evtchn, cpu);
  700. }
  701. spin_unlock(&irq_mapping_update_lock);
  702. return irq;
  703. }
  704. static void unbind_from_irq(unsigned int irq)
  705. {
  706. struct evtchn_close close;
  707. int evtchn = evtchn_from_irq(irq);
  708. spin_lock(&irq_mapping_update_lock);
  709. if (VALID_EVTCHN(evtchn)) {
  710. close.port = evtchn;
  711. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  712. BUG();
  713. switch (type_from_irq(irq)) {
  714. case IRQT_VIRQ:
  715. per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
  716. [virq_from_irq(irq)] = -1;
  717. break;
  718. case IRQT_IPI:
  719. per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
  720. [ipi_from_irq(irq)] = -1;
  721. break;
  722. default:
  723. break;
  724. }
  725. /* Closed ports are implicitly re-bound to VCPU0. */
  726. bind_evtchn_to_cpu(evtchn, 0);
  727. evtchn_to_irq[evtchn] = -1;
  728. }
  729. if (irq_info[irq].type != IRQT_UNBOUND) {
  730. irq_info[irq] = mk_unbound_info();
  731. xen_free_irq(irq);
  732. }
  733. spin_unlock(&irq_mapping_update_lock);
  734. }
  735. int bind_evtchn_to_irqhandler(unsigned int evtchn,
  736. irq_handler_t handler,
  737. unsigned long irqflags,
  738. const char *devname, void *dev_id)
  739. {
  740. unsigned int irq;
  741. int retval;
  742. irq = bind_evtchn_to_irq(evtchn);
  743. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  744. if (retval != 0) {
  745. unbind_from_irq(irq);
  746. return retval;
  747. }
  748. return irq;
  749. }
  750. EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
  751. int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
  752. irq_handler_t handler,
  753. unsigned long irqflags, const char *devname, void *dev_id)
  754. {
  755. unsigned int irq;
  756. int retval;
  757. irq = bind_virq_to_irq(virq, cpu);
  758. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  759. if (retval != 0) {
  760. unbind_from_irq(irq);
  761. return retval;
  762. }
  763. return irq;
  764. }
  765. EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
  766. int bind_ipi_to_irqhandler(enum ipi_vector ipi,
  767. unsigned int cpu,
  768. irq_handler_t handler,
  769. unsigned long irqflags,
  770. const char *devname,
  771. void *dev_id)
  772. {
  773. int irq, retval;
  774. irq = bind_ipi_to_irq(ipi, cpu);
  775. if (irq < 0)
  776. return irq;
  777. irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME;
  778. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  779. if (retval != 0) {
  780. unbind_from_irq(irq);
  781. return retval;
  782. }
  783. return irq;
  784. }
  785. void unbind_from_irqhandler(unsigned int irq, void *dev_id)
  786. {
  787. free_irq(irq, dev_id);
  788. unbind_from_irq(irq);
  789. }
  790. EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
  791. void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
  792. {
  793. int irq = per_cpu(ipi_to_irq, cpu)[vector];
  794. BUG_ON(irq < 0);
  795. notify_remote_via_irq(irq);
  796. }
  797. irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
  798. {
  799. struct shared_info *sh = HYPERVISOR_shared_info;
  800. int cpu = smp_processor_id();
  801. unsigned long *cpu_evtchn = cpu_evtchn_mask(cpu);
  802. int i;
  803. unsigned long flags;
  804. static DEFINE_SPINLOCK(debug_lock);
  805. struct vcpu_info *v;
  806. spin_lock_irqsave(&debug_lock, flags);
  807. printk("\nvcpu %d\n ", cpu);
  808. for_each_online_cpu(i) {
  809. int pending;
  810. v = per_cpu(xen_vcpu, i);
  811. pending = (get_irq_regs() && i == cpu)
  812. ? xen_irqs_disabled(get_irq_regs())
  813. : v->evtchn_upcall_mask;
  814. printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
  815. pending, v->evtchn_upcall_pending,
  816. (int)(sizeof(v->evtchn_pending_sel)*2),
  817. v->evtchn_pending_sel);
  818. }
  819. v = per_cpu(xen_vcpu, cpu);
  820. printk("\npending:\n ");
  821. for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
  822. printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
  823. sh->evtchn_pending[i],
  824. i % 8 == 0 ? "\n " : " ");
  825. printk("\nglobal mask:\n ");
  826. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  827. printk("%0*lx%s",
  828. (int)(sizeof(sh->evtchn_mask[0])*2),
  829. sh->evtchn_mask[i],
  830. i % 8 == 0 ? "\n " : " ");
  831. printk("\nglobally unmasked:\n ");
  832. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  833. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  834. sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
  835. i % 8 == 0 ? "\n " : " ");
  836. printk("\nlocal cpu%d mask:\n ", cpu);
  837. for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
  838. printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
  839. cpu_evtchn[i],
  840. i % 8 == 0 ? "\n " : " ");
  841. printk("\nlocally unmasked:\n ");
  842. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
  843. unsigned long pending = sh->evtchn_pending[i]
  844. & ~sh->evtchn_mask[i]
  845. & cpu_evtchn[i];
  846. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  847. pending, i % 8 == 0 ? "\n " : " ");
  848. }
  849. printk("\npending list:\n");
  850. for (i = 0; i < NR_EVENT_CHANNELS; i++) {
  851. if (sync_test_bit(i, sh->evtchn_pending)) {
  852. int word_idx = i / BITS_PER_LONG;
  853. printk(" %d: event %d -> irq %d%s%s%s\n",
  854. cpu_from_evtchn(i), i,
  855. evtchn_to_irq[i],
  856. sync_test_bit(word_idx, &v->evtchn_pending_sel)
  857. ? "" : " l2-clear",
  858. !sync_test_bit(i, sh->evtchn_mask)
  859. ? "" : " globally-masked",
  860. sync_test_bit(i, cpu_evtchn)
  861. ? "" : " locally-masked");
  862. }
  863. }
  864. spin_unlock_irqrestore(&debug_lock, flags);
  865. return IRQ_HANDLED;
  866. }
  867. static DEFINE_PER_CPU(unsigned, xed_nesting_count);
  868. /*
  869. * Search the CPUs pending events bitmasks. For each one found, map
  870. * the event number to an irq, and feed it into do_IRQ() for
  871. * handling.
  872. *
  873. * Xen uses a two-level bitmap to speed searching. The first level is
  874. * a bitset of words which contain pending event bits. The second
  875. * level is a bitset of pending events themselves.
  876. */
  877. static void __xen_evtchn_do_upcall(void)
  878. {
  879. int cpu = get_cpu();
  880. struct shared_info *s = HYPERVISOR_shared_info;
  881. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  882. unsigned count;
  883. do {
  884. unsigned long pending_words;
  885. vcpu_info->evtchn_upcall_pending = 0;
  886. if (__this_cpu_inc_return(xed_nesting_count) - 1)
  887. goto out;
  888. #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
  889. /* Clear master flag /before/ clearing selector flag. */
  890. wmb();
  891. #endif
  892. pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
  893. while (pending_words != 0) {
  894. unsigned long pending_bits;
  895. int word_idx = __ffs(pending_words);
  896. pending_words &= ~(1UL << word_idx);
  897. while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) {
  898. int bit_idx = __ffs(pending_bits);
  899. int port = (word_idx * BITS_PER_LONG) + bit_idx;
  900. int irq = evtchn_to_irq[port];
  901. struct irq_desc *desc;
  902. mask_evtchn(port);
  903. clear_evtchn(port);
  904. if (irq != -1) {
  905. desc = irq_to_desc(irq);
  906. if (desc)
  907. generic_handle_irq_desc(irq, desc);
  908. }
  909. }
  910. }
  911. BUG_ON(!irqs_disabled());
  912. count = __this_cpu_read(xed_nesting_count);
  913. __this_cpu_write(xed_nesting_count, 0);
  914. } while (count != 1 || vcpu_info->evtchn_upcall_pending);
  915. out:
  916. put_cpu();
  917. }
  918. void xen_evtchn_do_upcall(struct pt_regs *regs)
  919. {
  920. struct pt_regs *old_regs = set_irq_regs(regs);
  921. exit_idle();
  922. irq_enter();
  923. __xen_evtchn_do_upcall();
  924. irq_exit();
  925. set_irq_regs(old_regs);
  926. }
  927. void xen_hvm_evtchn_do_upcall(void)
  928. {
  929. __xen_evtchn_do_upcall();
  930. }
  931. EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
  932. /* Rebind a new event channel to an existing irq. */
  933. void rebind_evtchn_irq(int evtchn, int irq)
  934. {
  935. struct irq_info *info = info_for_irq(irq);
  936. /* Make sure the irq is masked, since the new event channel
  937. will also be masked. */
  938. disable_irq(irq);
  939. spin_lock(&irq_mapping_update_lock);
  940. /* After resume the irq<->evtchn mappings are all cleared out */
  941. BUG_ON(evtchn_to_irq[evtchn] != -1);
  942. /* Expect irq to have been bound before,
  943. so there should be a proper type */
  944. BUG_ON(info->type == IRQT_UNBOUND);
  945. evtchn_to_irq[evtchn] = irq;
  946. irq_info[irq] = mk_evtchn_info(evtchn);
  947. spin_unlock(&irq_mapping_update_lock);
  948. /* new event channels are always bound to cpu 0 */
  949. irq_set_affinity(irq, cpumask_of(0));
  950. /* Unmask the event channel. */
  951. enable_irq(irq);
  952. }
  953. /* Rebind an evtchn so that it gets delivered to a specific cpu */
  954. static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
  955. {
  956. struct evtchn_bind_vcpu bind_vcpu;
  957. int evtchn = evtchn_from_irq(irq);
  958. /* events delivered via platform PCI interrupts are always
  959. * routed to vcpu 0 */
  960. if (!VALID_EVTCHN(evtchn) ||
  961. (xen_hvm_domain() && !xen_have_vector_callback))
  962. return -1;
  963. /* Send future instances of this interrupt to other vcpu. */
  964. bind_vcpu.port = evtchn;
  965. bind_vcpu.vcpu = tcpu;
  966. /*
  967. * If this fails, it usually just indicates that we're dealing with a
  968. * virq or IPI channel, which don't actually need to be rebound. Ignore
  969. * it, but don't do the xenlinux-level rebind in that case.
  970. */
  971. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
  972. bind_evtchn_to_cpu(evtchn, tcpu);
  973. return 0;
  974. }
  975. static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
  976. bool force)
  977. {
  978. unsigned tcpu = cpumask_first(dest);
  979. return rebind_irq_to_cpu(data->irq, tcpu);
  980. }
  981. int resend_irq_on_evtchn(unsigned int irq)
  982. {
  983. int masked, evtchn = evtchn_from_irq(irq);
  984. struct shared_info *s = HYPERVISOR_shared_info;
  985. if (!VALID_EVTCHN(evtchn))
  986. return 1;
  987. masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
  988. sync_set_bit(evtchn, s->evtchn_pending);
  989. if (!masked)
  990. unmask_evtchn(evtchn);
  991. return 1;
  992. }
  993. static void enable_dynirq(struct irq_data *data)
  994. {
  995. int evtchn = evtchn_from_irq(data->irq);
  996. if (VALID_EVTCHN(evtchn))
  997. unmask_evtchn(evtchn);
  998. }
  999. static void disable_dynirq(struct irq_data *data)
  1000. {
  1001. int evtchn = evtchn_from_irq(data->irq);
  1002. if (VALID_EVTCHN(evtchn))
  1003. mask_evtchn(evtchn);
  1004. }
  1005. static void ack_dynirq(struct irq_data *data)
  1006. {
  1007. int evtchn = evtchn_from_irq(data->irq);
  1008. move_masked_irq(data->irq);
  1009. if (VALID_EVTCHN(evtchn))
  1010. unmask_evtchn(evtchn);
  1011. }
  1012. static int retrigger_dynirq(struct irq_data *data)
  1013. {
  1014. int evtchn = evtchn_from_irq(data->irq);
  1015. struct shared_info *sh = HYPERVISOR_shared_info;
  1016. int ret = 0;
  1017. if (VALID_EVTCHN(evtchn)) {
  1018. int masked;
  1019. masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
  1020. sync_set_bit(evtchn, sh->evtchn_pending);
  1021. if (!masked)
  1022. unmask_evtchn(evtchn);
  1023. ret = 1;
  1024. }
  1025. return ret;
  1026. }
  1027. static void restore_cpu_pirqs(void)
  1028. {
  1029. int pirq, rc, irq, gsi;
  1030. struct physdev_map_pirq map_irq;
  1031. for (pirq = 0; pirq < nr_irqs; pirq++) {
  1032. irq = pirq_to_irq[pirq];
  1033. if (irq == -1)
  1034. continue;
  1035. /* save/restore of PT devices doesn't work, so at this point the
  1036. * only devices present are GSI based emulated devices */
  1037. gsi = gsi_from_irq(irq);
  1038. if (!gsi)
  1039. continue;
  1040. map_irq.domid = DOMID_SELF;
  1041. map_irq.type = MAP_PIRQ_TYPE_GSI;
  1042. map_irq.index = gsi;
  1043. map_irq.pirq = pirq;
  1044. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  1045. if (rc) {
  1046. printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
  1047. gsi, irq, pirq, rc);
  1048. irq_info[irq] = mk_unbound_info();
  1049. pirq_to_irq[pirq] = -1;
  1050. continue;
  1051. }
  1052. printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
  1053. __startup_pirq(irq);
  1054. }
  1055. }
  1056. static void restore_cpu_virqs(unsigned int cpu)
  1057. {
  1058. struct evtchn_bind_virq bind_virq;
  1059. int virq, irq, evtchn;
  1060. for (virq = 0; virq < NR_VIRQS; virq++) {
  1061. if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
  1062. continue;
  1063. BUG_ON(virq_from_irq(irq) != virq);
  1064. /* Get a new binding from Xen. */
  1065. bind_virq.virq = virq;
  1066. bind_virq.vcpu = cpu;
  1067. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  1068. &bind_virq) != 0)
  1069. BUG();
  1070. evtchn = bind_virq.port;
  1071. /* Record the new mapping. */
  1072. evtchn_to_irq[evtchn] = irq;
  1073. irq_info[irq] = mk_virq_info(evtchn, virq);
  1074. bind_evtchn_to_cpu(evtchn, cpu);
  1075. }
  1076. }
  1077. static void restore_cpu_ipis(unsigned int cpu)
  1078. {
  1079. struct evtchn_bind_ipi bind_ipi;
  1080. int ipi, irq, evtchn;
  1081. for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
  1082. if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
  1083. continue;
  1084. BUG_ON(ipi_from_irq(irq) != ipi);
  1085. /* Get a new binding from Xen. */
  1086. bind_ipi.vcpu = cpu;
  1087. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  1088. &bind_ipi) != 0)
  1089. BUG();
  1090. evtchn = bind_ipi.port;
  1091. /* Record the new mapping. */
  1092. evtchn_to_irq[evtchn] = irq;
  1093. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  1094. bind_evtchn_to_cpu(evtchn, cpu);
  1095. }
  1096. }
  1097. /* Clear an irq's pending state, in preparation for polling on it */
  1098. void xen_clear_irq_pending(int irq)
  1099. {
  1100. int evtchn = evtchn_from_irq(irq);
  1101. if (VALID_EVTCHN(evtchn))
  1102. clear_evtchn(evtchn);
  1103. }
  1104. EXPORT_SYMBOL(xen_clear_irq_pending);
  1105. void xen_set_irq_pending(int irq)
  1106. {
  1107. int evtchn = evtchn_from_irq(irq);
  1108. if (VALID_EVTCHN(evtchn))
  1109. set_evtchn(evtchn);
  1110. }
  1111. bool xen_test_irq_pending(int irq)
  1112. {
  1113. int evtchn = evtchn_from_irq(irq);
  1114. bool ret = false;
  1115. if (VALID_EVTCHN(evtchn))
  1116. ret = test_evtchn(evtchn);
  1117. return ret;
  1118. }
  1119. /* Poll waiting for an irq to become pending with timeout. In the usual case,
  1120. * the irq will be disabled so it won't deliver an interrupt. */
  1121. void xen_poll_irq_timeout(int irq, u64 timeout)
  1122. {
  1123. evtchn_port_t evtchn = evtchn_from_irq(irq);
  1124. if (VALID_EVTCHN(evtchn)) {
  1125. struct sched_poll poll;
  1126. poll.nr_ports = 1;
  1127. poll.timeout = timeout;
  1128. set_xen_guest_handle(poll.ports, &evtchn);
  1129. if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
  1130. BUG();
  1131. }
  1132. }
  1133. EXPORT_SYMBOL(xen_poll_irq_timeout);
  1134. /* Poll waiting for an irq to become pending. In the usual case, the
  1135. * irq will be disabled so it won't deliver an interrupt. */
  1136. void xen_poll_irq(int irq)
  1137. {
  1138. xen_poll_irq_timeout(irq, 0 /* no timeout */);
  1139. }
  1140. void xen_irq_resume(void)
  1141. {
  1142. unsigned int cpu, irq, evtchn;
  1143. init_evtchn_cpu_bindings();
  1144. /* New event-channel space is not 'live' yet. */
  1145. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1146. mask_evtchn(evtchn);
  1147. /* No IRQ <-> event-channel mappings. */
  1148. for (irq = 0; irq < nr_irqs; irq++)
  1149. irq_info[irq].evtchn = 0; /* zap event-channel binding */
  1150. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1151. evtchn_to_irq[evtchn] = -1;
  1152. for_each_possible_cpu(cpu) {
  1153. restore_cpu_virqs(cpu);
  1154. restore_cpu_ipis(cpu);
  1155. }
  1156. restore_cpu_pirqs();
  1157. }
  1158. static struct irq_chip xen_dynamic_chip __read_mostly = {
  1159. .name = "xen-dyn",
  1160. .irq_disable = disable_dynirq,
  1161. .irq_mask = disable_dynirq,
  1162. .irq_unmask = enable_dynirq,
  1163. .irq_eoi = ack_dynirq,
  1164. .irq_set_affinity = set_affinity_irq,
  1165. .irq_retrigger = retrigger_dynirq,
  1166. };
  1167. static struct irq_chip xen_pirq_chip __read_mostly = {
  1168. .name = "xen-pirq",
  1169. .irq_startup = startup_pirq,
  1170. .irq_shutdown = shutdown_pirq,
  1171. .irq_enable = enable_pirq,
  1172. .irq_unmask = enable_pirq,
  1173. .irq_disable = disable_pirq,
  1174. .irq_mask = disable_pirq,
  1175. .irq_ack = ack_pirq,
  1176. .irq_set_affinity = set_affinity_irq,
  1177. .irq_retrigger = retrigger_dynirq,
  1178. };
  1179. static struct irq_chip xen_percpu_chip __read_mostly = {
  1180. .name = "xen-percpu",
  1181. .irq_disable = disable_dynirq,
  1182. .irq_mask = disable_dynirq,
  1183. .irq_unmask = enable_dynirq,
  1184. .irq_ack = ack_dynirq,
  1185. };
  1186. int xen_set_callback_via(uint64_t via)
  1187. {
  1188. struct xen_hvm_param a;
  1189. a.domid = DOMID_SELF;
  1190. a.index = HVM_PARAM_CALLBACK_IRQ;
  1191. a.value = via;
  1192. return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
  1193. }
  1194. EXPORT_SYMBOL_GPL(xen_set_callback_via);
  1195. #ifdef CONFIG_XEN_PVHVM
  1196. /* Vector callbacks are better than PCI interrupts to receive event
  1197. * channel notifications because we can receive vector callbacks on any
  1198. * vcpu and we don't need PCI support or APIC interactions. */
  1199. void xen_callback_vector(void)
  1200. {
  1201. int rc;
  1202. uint64_t callback_via;
  1203. if (xen_have_vector_callback) {
  1204. callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
  1205. rc = xen_set_callback_via(callback_via);
  1206. if (rc) {
  1207. printk(KERN_ERR "Request for Xen HVM callback vector"
  1208. " failed.\n");
  1209. xen_have_vector_callback = 0;
  1210. return;
  1211. }
  1212. printk(KERN_INFO "Xen HVM callback vector for event delivery is "
  1213. "enabled\n");
  1214. /* in the restore case the vector has already been allocated */
  1215. if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
  1216. alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
  1217. }
  1218. }
  1219. #else
  1220. void xen_callback_vector(void) {}
  1221. #endif
  1222. void __init xen_init_IRQ(void)
  1223. {
  1224. int i;
  1225. cpu_evtchn_mask_p = kcalloc(nr_cpu_ids, sizeof(struct cpu_evtchn_s),
  1226. GFP_KERNEL);
  1227. irq_info = kcalloc(nr_irqs, sizeof(*irq_info), GFP_KERNEL);
  1228. /* We are using nr_irqs as the maximum number of pirq available but
  1229. * that number is actually chosen by Xen and we don't know exactly
  1230. * what it is. Be careful choosing high pirq numbers. */
  1231. pirq_to_irq = kcalloc(nr_irqs, sizeof(*pirq_to_irq), GFP_KERNEL);
  1232. for (i = 0; i < nr_irqs; i++)
  1233. pirq_to_irq[i] = -1;
  1234. evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
  1235. GFP_KERNEL);
  1236. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1237. evtchn_to_irq[i] = -1;
  1238. init_evtchn_cpu_bindings();
  1239. /* No event channels are 'live' right now. */
  1240. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1241. mask_evtchn(i);
  1242. if (xen_hvm_domain()) {
  1243. xen_callback_vector();
  1244. native_init_IRQ();
  1245. /* pci_xen_hvm_init must be called after native_init_IRQ so that
  1246. * __acpi_register_gsi can point at the right function */
  1247. pci_xen_hvm_init();
  1248. } else {
  1249. irq_ctx_init(smp_processor_id());
  1250. if (xen_initial_domain())
  1251. xen_setup_pirqs();
  1252. }
  1253. }