vmx.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #include <asm/mce.h>
  33. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  34. MODULE_AUTHOR("Qumranet");
  35. MODULE_LICENSE("GPL");
  36. static int __read_mostly bypass_guest_pf = 1;
  37. module_param(bypass_guest_pf, bool, S_IRUGO);
  38. static int __read_mostly enable_vpid = 1;
  39. module_param_named(vpid, enable_vpid, bool, 0444);
  40. static int __read_mostly flexpriority_enabled = 1;
  41. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  42. static int __read_mostly enable_ept = 1;
  43. module_param_named(ept, enable_ept, bool, S_IRUGO);
  44. static int __read_mostly emulate_invalid_guest_state = 0;
  45. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  46. struct vmcs {
  47. u32 revision_id;
  48. u32 abort;
  49. char data[0];
  50. };
  51. struct vcpu_vmx {
  52. struct kvm_vcpu vcpu;
  53. struct list_head local_vcpus_link;
  54. unsigned long host_rsp;
  55. int launched;
  56. u8 fail;
  57. u32 idt_vectoring_info;
  58. struct kvm_msr_entry *guest_msrs;
  59. struct kvm_msr_entry *host_msrs;
  60. int nmsrs;
  61. int save_nmsrs;
  62. int msr_offset_efer;
  63. #ifdef CONFIG_X86_64
  64. int msr_offset_kernel_gs_base;
  65. #endif
  66. struct vmcs *vmcs;
  67. struct {
  68. int loaded;
  69. u16 fs_sel, gs_sel, ldt_sel;
  70. int gs_ldt_reload_needed;
  71. int fs_reload_needed;
  72. int guest_efer_loaded;
  73. } host_state;
  74. struct {
  75. struct {
  76. bool pending;
  77. u8 vector;
  78. unsigned rip;
  79. } irq;
  80. } rmode;
  81. int vpid;
  82. bool emulation_required;
  83. enum emulation_result invalid_state_emulation_result;
  84. /* Support for vnmi-less CPUs */
  85. int soft_vnmi_blocked;
  86. ktime_t entry_time;
  87. s64 vnmi_blocked_time;
  88. u32 exit_reason;
  89. };
  90. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  91. {
  92. return container_of(vcpu, struct vcpu_vmx, vcpu);
  93. }
  94. static int init_rmode(struct kvm *kvm);
  95. static u64 construct_eptp(unsigned long root_hpa);
  96. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  97. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  98. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  99. static unsigned long *vmx_io_bitmap_a;
  100. static unsigned long *vmx_io_bitmap_b;
  101. static unsigned long *vmx_msr_bitmap_legacy;
  102. static unsigned long *vmx_msr_bitmap_longmode;
  103. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  104. static DEFINE_SPINLOCK(vmx_vpid_lock);
  105. static struct vmcs_config {
  106. int size;
  107. int order;
  108. u32 revision_id;
  109. u32 pin_based_exec_ctrl;
  110. u32 cpu_based_exec_ctrl;
  111. u32 cpu_based_2nd_exec_ctrl;
  112. u32 vmexit_ctrl;
  113. u32 vmentry_ctrl;
  114. } vmcs_config;
  115. static struct vmx_capability {
  116. u32 ept;
  117. u32 vpid;
  118. } vmx_capability;
  119. #define VMX_SEGMENT_FIELD(seg) \
  120. [VCPU_SREG_##seg] = { \
  121. .selector = GUEST_##seg##_SELECTOR, \
  122. .base = GUEST_##seg##_BASE, \
  123. .limit = GUEST_##seg##_LIMIT, \
  124. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  125. }
  126. static struct kvm_vmx_segment_field {
  127. unsigned selector;
  128. unsigned base;
  129. unsigned limit;
  130. unsigned ar_bytes;
  131. } kvm_vmx_segment_fields[] = {
  132. VMX_SEGMENT_FIELD(CS),
  133. VMX_SEGMENT_FIELD(DS),
  134. VMX_SEGMENT_FIELD(ES),
  135. VMX_SEGMENT_FIELD(FS),
  136. VMX_SEGMENT_FIELD(GS),
  137. VMX_SEGMENT_FIELD(SS),
  138. VMX_SEGMENT_FIELD(TR),
  139. VMX_SEGMENT_FIELD(LDTR),
  140. };
  141. /*
  142. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  143. * away by decrementing the array size.
  144. */
  145. static const u32 vmx_msr_index[] = {
  146. #ifdef CONFIG_X86_64
  147. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  148. #endif
  149. MSR_EFER, MSR_K6_STAR,
  150. };
  151. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  152. static void load_msrs(struct kvm_msr_entry *e, int n)
  153. {
  154. int i;
  155. for (i = 0; i < n; ++i)
  156. wrmsrl(e[i].index, e[i].data);
  157. }
  158. static void save_msrs(struct kvm_msr_entry *e, int n)
  159. {
  160. int i;
  161. for (i = 0; i < n; ++i)
  162. rdmsrl(e[i].index, e[i].data);
  163. }
  164. static inline int is_page_fault(u32 intr_info)
  165. {
  166. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  167. INTR_INFO_VALID_MASK)) ==
  168. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  169. }
  170. static inline int is_no_device(u32 intr_info)
  171. {
  172. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  173. INTR_INFO_VALID_MASK)) ==
  174. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  175. }
  176. static inline int is_invalid_opcode(u32 intr_info)
  177. {
  178. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  179. INTR_INFO_VALID_MASK)) ==
  180. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  181. }
  182. static inline int is_external_interrupt(u32 intr_info)
  183. {
  184. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  185. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  186. }
  187. static inline int is_machine_check(u32 intr_info)
  188. {
  189. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  190. INTR_INFO_VALID_MASK)) ==
  191. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  192. }
  193. static inline int cpu_has_vmx_msr_bitmap(void)
  194. {
  195. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  196. }
  197. static inline int cpu_has_vmx_tpr_shadow(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  200. }
  201. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  202. {
  203. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  204. }
  205. static inline int cpu_has_secondary_exec_ctrls(void)
  206. {
  207. return vmcs_config.cpu_based_exec_ctrl &
  208. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  209. }
  210. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  211. {
  212. return vmcs_config.cpu_based_2nd_exec_ctrl &
  213. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  214. }
  215. static inline bool cpu_has_vmx_flexpriority(void)
  216. {
  217. return cpu_has_vmx_tpr_shadow() &&
  218. cpu_has_vmx_virtualize_apic_accesses();
  219. }
  220. static inline int cpu_has_vmx_invept_individual_addr(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_invept_context(void)
  225. {
  226. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  227. }
  228. static inline int cpu_has_vmx_invept_global(void)
  229. {
  230. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  231. }
  232. static inline int cpu_has_vmx_ept(void)
  233. {
  234. return vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_ENABLE_EPT;
  236. }
  237. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  238. {
  239. return flexpriority_enabled &&
  240. (cpu_has_vmx_virtualize_apic_accesses()) &&
  241. (irqchip_in_kernel(kvm));
  242. }
  243. static inline int cpu_has_vmx_vpid(void)
  244. {
  245. return vmcs_config.cpu_based_2nd_exec_ctrl &
  246. SECONDARY_EXEC_ENABLE_VPID;
  247. }
  248. static inline int cpu_has_virtual_nmis(void)
  249. {
  250. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  251. }
  252. static inline bool report_flexpriority(void)
  253. {
  254. return flexpriority_enabled;
  255. }
  256. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  257. {
  258. int i;
  259. for (i = 0; i < vmx->nmsrs; ++i)
  260. if (vmx->guest_msrs[i].index == msr)
  261. return i;
  262. return -1;
  263. }
  264. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  265. {
  266. struct {
  267. u64 vpid : 16;
  268. u64 rsvd : 48;
  269. u64 gva;
  270. } operand = { vpid, 0, gva };
  271. asm volatile (__ex(ASM_VMX_INVVPID)
  272. /* CF==1 or ZF==1 --> rc = -1 */
  273. "; ja 1f ; ud2 ; 1:"
  274. : : "a"(&operand), "c"(ext) : "cc", "memory");
  275. }
  276. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  277. {
  278. struct {
  279. u64 eptp, gpa;
  280. } operand = {eptp, gpa};
  281. asm volatile (__ex(ASM_VMX_INVEPT)
  282. /* CF==1 or ZF==1 --> rc = -1 */
  283. "; ja 1f ; ud2 ; 1:\n"
  284. : : "a" (&operand), "c" (ext) : "cc", "memory");
  285. }
  286. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  287. {
  288. int i;
  289. i = __find_msr_index(vmx, msr);
  290. if (i >= 0)
  291. return &vmx->guest_msrs[i];
  292. return NULL;
  293. }
  294. static void vmcs_clear(struct vmcs *vmcs)
  295. {
  296. u64 phys_addr = __pa(vmcs);
  297. u8 error;
  298. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  299. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  300. : "cc", "memory");
  301. if (error)
  302. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  303. vmcs, phys_addr);
  304. }
  305. static void __vcpu_clear(void *arg)
  306. {
  307. struct vcpu_vmx *vmx = arg;
  308. int cpu = raw_smp_processor_id();
  309. if (vmx->vcpu.cpu == cpu)
  310. vmcs_clear(vmx->vmcs);
  311. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  312. per_cpu(current_vmcs, cpu) = NULL;
  313. rdtscll(vmx->vcpu.arch.host_tsc);
  314. list_del(&vmx->local_vcpus_link);
  315. vmx->vcpu.cpu = -1;
  316. vmx->launched = 0;
  317. }
  318. static void vcpu_clear(struct vcpu_vmx *vmx)
  319. {
  320. if (vmx->vcpu.cpu == -1)
  321. return;
  322. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  323. }
  324. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  325. {
  326. if (vmx->vpid == 0)
  327. return;
  328. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  329. }
  330. static inline void ept_sync_global(void)
  331. {
  332. if (cpu_has_vmx_invept_global())
  333. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  334. }
  335. static inline void ept_sync_context(u64 eptp)
  336. {
  337. if (enable_ept) {
  338. if (cpu_has_vmx_invept_context())
  339. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  340. else
  341. ept_sync_global();
  342. }
  343. }
  344. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  345. {
  346. if (enable_ept) {
  347. if (cpu_has_vmx_invept_individual_addr())
  348. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  349. eptp, gpa);
  350. else
  351. ept_sync_context(eptp);
  352. }
  353. }
  354. static unsigned long vmcs_readl(unsigned long field)
  355. {
  356. unsigned long value;
  357. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  358. : "=a"(value) : "d"(field) : "cc");
  359. return value;
  360. }
  361. static u16 vmcs_read16(unsigned long field)
  362. {
  363. return vmcs_readl(field);
  364. }
  365. static u32 vmcs_read32(unsigned long field)
  366. {
  367. return vmcs_readl(field);
  368. }
  369. static u64 vmcs_read64(unsigned long field)
  370. {
  371. #ifdef CONFIG_X86_64
  372. return vmcs_readl(field);
  373. #else
  374. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  375. #endif
  376. }
  377. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  378. {
  379. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  380. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  381. dump_stack();
  382. }
  383. static void vmcs_writel(unsigned long field, unsigned long value)
  384. {
  385. u8 error;
  386. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  387. : "=q"(error) : "a"(value), "d"(field) : "cc");
  388. if (unlikely(error))
  389. vmwrite_error(field, value);
  390. }
  391. static void vmcs_write16(unsigned long field, u16 value)
  392. {
  393. vmcs_writel(field, value);
  394. }
  395. static void vmcs_write32(unsigned long field, u32 value)
  396. {
  397. vmcs_writel(field, value);
  398. }
  399. static void vmcs_write64(unsigned long field, u64 value)
  400. {
  401. vmcs_writel(field, value);
  402. #ifndef CONFIG_X86_64
  403. asm volatile ("");
  404. vmcs_writel(field+1, value >> 32);
  405. #endif
  406. }
  407. static void vmcs_clear_bits(unsigned long field, u32 mask)
  408. {
  409. vmcs_writel(field, vmcs_readl(field) & ~mask);
  410. }
  411. static void vmcs_set_bits(unsigned long field, u32 mask)
  412. {
  413. vmcs_writel(field, vmcs_readl(field) | mask);
  414. }
  415. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  416. {
  417. u32 eb;
  418. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  419. if (!vcpu->fpu_active)
  420. eb |= 1u << NM_VECTOR;
  421. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  422. if (vcpu->guest_debug &
  423. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  424. eb |= 1u << DB_VECTOR;
  425. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  426. eb |= 1u << BP_VECTOR;
  427. }
  428. if (vcpu->arch.rmode.vm86_active)
  429. eb = ~0;
  430. if (enable_ept)
  431. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  432. vmcs_write32(EXCEPTION_BITMAP, eb);
  433. }
  434. static void reload_tss(void)
  435. {
  436. /*
  437. * VT restores TR but not its size. Useless.
  438. */
  439. struct descriptor_table gdt;
  440. struct desc_struct *descs;
  441. kvm_get_gdt(&gdt);
  442. descs = (void *)gdt.base;
  443. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  444. load_TR_desc();
  445. }
  446. static void load_transition_efer(struct vcpu_vmx *vmx)
  447. {
  448. int efer_offset = vmx->msr_offset_efer;
  449. u64 host_efer = vmx->host_msrs[efer_offset].data;
  450. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  451. u64 ignore_bits;
  452. if (efer_offset < 0)
  453. return;
  454. /*
  455. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  456. * outside long mode
  457. */
  458. ignore_bits = EFER_NX | EFER_SCE;
  459. #ifdef CONFIG_X86_64
  460. ignore_bits |= EFER_LMA | EFER_LME;
  461. /* SCE is meaningful only in long mode on Intel */
  462. if (guest_efer & EFER_LMA)
  463. ignore_bits &= ~(u64)EFER_SCE;
  464. #endif
  465. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  466. return;
  467. vmx->host_state.guest_efer_loaded = 1;
  468. guest_efer &= ~ignore_bits;
  469. guest_efer |= host_efer & ignore_bits;
  470. wrmsrl(MSR_EFER, guest_efer);
  471. vmx->vcpu.stat.efer_reload++;
  472. }
  473. static void reload_host_efer(struct vcpu_vmx *vmx)
  474. {
  475. if (vmx->host_state.guest_efer_loaded) {
  476. vmx->host_state.guest_efer_loaded = 0;
  477. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  478. }
  479. }
  480. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  481. {
  482. struct vcpu_vmx *vmx = to_vmx(vcpu);
  483. if (vmx->host_state.loaded)
  484. return;
  485. vmx->host_state.loaded = 1;
  486. /*
  487. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  488. * allow segment selectors with cpl > 0 or ti == 1.
  489. */
  490. vmx->host_state.ldt_sel = kvm_read_ldt();
  491. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  492. vmx->host_state.fs_sel = kvm_read_fs();
  493. if (!(vmx->host_state.fs_sel & 7)) {
  494. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  495. vmx->host_state.fs_reload_needed = 0;
  496. } else {
  497. vmcs_write16(HOST_FS_SELECTOR, 0);
  498. vmx->host_state.fs_reload_needed = 1;
  499. }
  500. vmx->host_state.gs_sel = kvm_read_gs();
  501. if (!(vmx->host_state.gs_sel & 7))
  502. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  503. else {
  504. vmcs_write16(HOST_GS_SELECTOR, 0);
  505. vmx->host_state.gs_ldt_reload_needed = 1;
  506. }
  507. #ifdef CONFIG_X86_64
  508. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  509. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  510. #else
  511. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  512. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  513. #endif
  514. #ifdef CONFIG_X86_64
  515. if (is_long_mode(&vmx->vcpu))
  516. save_msrs(vmx->host_msrs +
  517. vmx->msr_offset_kernel_gs_base, 1);
  518. #endif
  519. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  520. load_transition_efer(vmx);
  521. }
  522. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  523. {
  524. unsigned long flags;
  525. if (!vmx->host_state.loaded)
  526. return;
  527. ++vmx->vcpu.stat.host_state_reload;
  528. vmx->host_state.loaded = 0;
  529. if (vmx->host_state.fs_reload_needed)
  530. kvm_load_fs(vmx->host_state.fs_sel);
  531. if (vmx->host_state.gs_ldt_reload_needed) {
  532. kvm_load_ldt(vmx->host_state.ldt_sel);
  533. /*
  534. * If we have to reload gs, we must take care to
  535. * preserve our gs base.
  536. */
  537. local_irq_save(flags);
  538. kvm_load_gs(vmx->host_state.gs_sel);
  539. #ifdef CONFIG_X86_64
  540. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  541. #endif
  542. local_irq_restore(flags);
  543. }
  544. reload_tss();
  545. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  546. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  547. reload_host_efer(vmx);
  548. }
  549. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  550. {
  551. preempt_disable();
  552. __vmx_load_host_state(vmx);
  553. preempt_enable();
  554. }
  555. /*
  556. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  557. * vcpu mutex is already taken.
  558. */
  559. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  560. {
  561. struct vcpu_vmx *vmx = to_vmx(vcpu);
  562. u64 phys_addr = __pa(vmx->vmcs);
  563. u64 tsc_this, delta, new_offset;
  564. if (vcpu->cpu != cpu) {
  565. vcpu_clear(vmx);
  566. kvm_migrate_timers(vcpu);
  567. vpid_sync_vcpu_all(vmx);
  568. local_irq_disable();
  569. list_add(&vmx->local_vcpus_link,
  570. &per_cpu(vcpus_on_cpu, cpu));
  571. local_irq_enable();
  572. }
  573. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  574. u8 error;
  575. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  576. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  577. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  578. : "cc");
  579. if (error)
  580. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  581. vmx->vmcs, phys_addr);
  582. }
  583. if (vcpu->cpu != cpu) {
  584. struct descriptor_table dt;
  585. unsigned long sysenter_esp;
  586. vcpu->cpu = cpu;
  587. /*
  588. * Linux uses per-cpu TSS and GDT, so set these when switching
  589. * processors.
  590. */
  591. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  592. kvm_get_gdt(&dt);
  593. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  594. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  595. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  596. /*
  597. * Make sure the time stamp counter is monotonous.
  598. */
  599. rdtscll(tsc_this);
  600. if (tsc_this < vcpu->arch.host_tsc) {
  601. delta = vcpu->arch.host_tsc - tsc_this;
  602. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  603. vmcs_write64(TSC_OFFSET, new_offset);
  604. }
  605. }
  606. }
  607. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  608. {
  609. __vmx_load_host_state(to_vmx(vcpu));
  610. }
  611. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  612. {
  613. if (vcpu->fpu_active)
  614. return;
  615. vcpu->fpu_active = 1;
  616. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  617. if (vcpu->arch.cr0 & X86_CR0_TS)
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  622. {
  623. if (!vcpu->fpu_active)
  624. return;
  625. vcpu->fpu_active = 0;
  626. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  627. update_exception_bitmap(vcpu);
  628. }
  629. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  630. {
  631. return vmcs_readl(GUEST_RFLAGS);
  632. }
  633. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  634. {
  635. if (vcpu->arch.rmode.vm86_active)
  636. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  637. vmcs_writel(GUEST_RFLAGS, rflags);
  638. }
  639. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  640. {
  641. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  642. int ret = 0;
  643. if (interruptibility & GUEST_INTR_STATE_STI)
  644. ret |= X86_SHADOW_INT_STI;
  645. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  646. ret |= X86_SHADOW_INT_MOV_SS;
  647. return ret & mask;
  648. }
  649. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  650. {
  651. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  652. u32 interruptibility = interruptibility_old;
  653. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  654. if (mask & X86_SHADOW_INT_MOV_SS)
  655. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  656. if (mask & X86_SHADOW_INT_STI)
  657. interruptibility |= GUEST_INTR_STATE_STI;
  658. if ((interruptibility != interruptibility_old))
  659. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  660. }
  661. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  662. {
  663. unsigned long rip;
  664. rip = kvm_rip_read(vcpu);
  665. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  666. kvm_rip_write(vcpu, rip);
  667. /* skipping an emulated instruction also counts */
  668. vmx_set_interrupt_shadow(vcpu, 0);
  669. }
  670. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  671. bool has_error_code, u32 error_code)
  672. {
  673. struct vcpu_vmx *vmx = to_vmx(vcpu);
  674. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  675. if (has_error_code) {
  676. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  677. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  678. }
  679. if (vcpu->arch.rmode.vm86_active) {
  680. vmx->rmode.irq.pending = true;
  681. vmx->rmode.irq.vector = nr;
  682. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  683. if (kvm_exception_is_soft(nr))
  684. vmx->rmode.irq.rip +=
  685. vmx->vcpu.arch.event_exit_inst_len;
  686. intr_info |= INTR_TYPE_SOFT_INTR;
  687. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  688. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  689. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  690. return;
  691. }
  692. if (kvm_exception_is_soft(nr)) {
  693. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  694. vmx->vcpu.arch.event_exit_inst_len);
  695. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  696. } else
  697. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  698. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  699. }
  700. /*
  701. * Swap MSR entry in host/guest MSR entry array.
  702. */
  703. #ifdef CONFIG_X86_64
  704. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  705. {
  706. struct kvm_msr_entry tmp;
  707. tmp = vmx->guest_msrs[to];
  708. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  709. vmx->guest_msrs[from] = tmp;
  710. tmp = vmx->host_msrs[to];
  711. vmx->host_msrs[to] = vmx->host_msrs[from];
  712. vmx->host_msrs[from] = tmp;
  713. }
  714. #endif
  715. /*
  716. * Set up the vmcs to automatically save and restore system
  717. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  718. * mode, as fiddling with msrs is very expensive.
  719. */
  720. static void setup_msrs(struct vcpu_vmx *vmx)
  721. {
  722. int save_nmsrs;
  723. unsigned long *msr_bitmap;
  724. vmx_load_host_state(vmx);
  725. save_nmsrs = 0;
  726. #ifdef CONFIG_X86_64
  727. if (is_long_mode(&vmx->vcpu)) {
  728. int index;
  729. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  730. if (index >= 0)
  731. move_msr_up(vmx, index, save_nmsrs++);
  732. index = __find_msr_index(vmx, MSR_LSTAR);
  733. if (index >= 0)
  734. move_msr_up(vmx, index, save_nmsrs++);
  735. index = __find_msr_index(vmx, MSR_CSTAR);
  736. if (index >= 0)
  737. move_msr_up(vmx, index, save_nmsrs++);
  738. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  739. if (index >= 0)
  740. move_msr_up(vmx, index, save_nmsrs++);
  741. /*
  742. * MSR_K6_STAR is only needed on long mode guests, and only
  743. * if efer.sce is enabled.
  744. */
  745. index = __find_msr_index(vmx, MSR_K6_STAR);
  746. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  747. move_msr_up(vmx, index, save_nmsrs++);
  748. }
  749. #endif
  750. vmx->save_nmsrs = save_nmsrs;
  751. #ifdef CONFIG_X86_64
  752. vmx->msr_offset_kernel_gs_base =
  753. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  754. #endif
  755. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  756. if (cpu_has_vmx_msr_bitmap()) {
  757. if (is_long_mode(&vmx->vcpu))
  758. msr_bitmap = vmx_msr_bitmap_longmode;
  759. else
  760. msr_bitmap = vmx_msr_bitmap_legacy;
  761. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  762. }
  763. }
  764. /*
  765. * reads and returns guest's timestamp counter "register"
  766. * guest_tsc = host_tsc + tsc_offset -- 21.3
  767. */
  768. static u64 guest_read_tsc(void)
  769. {
  770. u64 host_tsc, tsc_offset;
  771. rdtscll(host_tsc);
  772. tsc_offset = vmcs_read64(TSC_OFFSET);
  773. return host_tsc + tsc_offset;
  774. }
  775. /*
  776. * writes 'guest_tsc' into guest's timestamp counter "register"
  777. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  778. */
  779. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  780. {
  781. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  782. }
  783. /*
  784. * Reads an msr value (of 'msr_index') into 'pdata'.
  785. * Returns 0 on success, non-0 otherwise.
  786. * Assumes vcpu_load() was already called.
  787. */
  788. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  789. {
  790. u64 data;
  791. struct kvm_msr_entry *msr;
  792. if (!pdata) {
  793. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  794. return -EINVAL;
  795. }
  796. switch (msr_index) {
  797. #ifdef CONFIG_X86_64
  798. case MSR_FS_BASE:
  799. data = vmcs_readl(GUEST_FS_BASE);
  800. break;
  801. case MSR_GS_BASE:
  802. data = vmcs_readl(GUEST_GS_BASE);
  803. break;
  804. case MSR_EFER:
  805. return kvm_get_msr_common(vcpu, msr_index, pdata);
  806. #endif
  807. case MSR_IA32_TIME_STAMP_COUNTER:
  808. data = guest_read_tsc();
  809. break;
  810. case MSR_IA32_SYSENTER_CS:
  811. data = vmcs_read32(GUEST_SYSENTER_CS);
  812. break;
  813. case MSR_IA32_SYSENTER_EIP:
  814. data = vmcs_readl(GUEST_SYSENTER_EIP);
  815. break;
  816. case MSR_IA32_SYSENTER_ESP:
  817. data = vmcs_readl(GUEST_SYSENTER_ESP);
  818. break;
  819. default:
  820. vmx_load_host_state(to_vmx(vcpu));
  821. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  822. if (msr) {
  823. data = msr->data;
  824. break;
  825. }
  826. return kvm_get_msr_common(vcpu, msr_index, pdata);
  827. }
  828. *pdata = data;
  829. return 0;
  830. }
  831. /*
  832. * Writes msr value into into the appropriate "register".
  833. * Returns 0 on success, non-0 otherwise.
  834. * Assumes vcpu_load() was already called.
  835. */
  836. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  837. {
  838. struct vcpu_vmx *vmx = to_vmx(vcpu);
  839. struct kvm_msr_entry *msr;
  840. u64 host_tsc;
  841. int ret = 0;
  842. switch (msr_index) {
  843. case MSR_EFER:
  844. vmx_load_host_state(vmx);
  845. ret = kvm_set_msr_common(vcpu, msr_index, data);
  846. break;
  847. #ifdef CONFIG_X86_64
  848. case MSR_FS_BASE:
  849. vmcs_writel(GUEST_FS_BASE, data);
  850. break;
  851. case MSR_GS_BASE:
  852. vmcs_writel(GUEST_GS_BASE, data);
  853. break;
  854. #endif
  855. case MSR_IA32_SYSENTER_CS:
  856. vmcs_write32(GUEST_SYSENTER_CS, data);
  857. break;
  858. case MSR_IA32_SYSENTER_EIP:
  859. vmcs_writel(GUEST_SYSENTER_EIP, data);
  860. break;
  861. case MSR_IA32_SYSENTER_ESP:
  862. vmcs_writel(GUEST_SYSENTER_ESP, data);
  863. break;
  864. case MSR_IA32_TIME_STAMP_COUNTER:
  865. rdtscll(host_tsc);
  866. guest_write_tsc(data, host_tsc);
  867. break;
  868. case MSR_P6_PERFCTR0:
  869. case MSR_P6_PERFCTR1:
  870. case MSR_P6_EVNTSEL0:
  871. case MSR_P6_EVNTSEL1:
  872. /*
  873. * Just discard all writes to the performance counters; this
  874. * should keep both older linux and windows 64-bit guests
  875. * happy
  876. */
  877. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  878. break;
  879. case MSR_IA32_CR_PAT:
  880. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  881. vmcs_write64(GUEST_IA32_PAT, data);
  882. vcpu->arch.pat = data;
  883. break;
  884. }
  885. /* Otherwise falls through to kvm_set_msr_common */
  886. default:
  887. vmx_load_host_state(vmx);
  888. msr = find_msr_entry(vmx, msr_index);
  889. if (msr) {
  890. msr->data = data;
  891. break;
  892. }
  893. ret = kvm_set_msr_common(vcpu, msr_index, data);
  894. }
  895. return ret;
  896. }
  897. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  898. {
  899. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  900. switch (reg) {
  901. case VCPU_REGS_RSP:
  902. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  903. break;
  904. case VCPU_REGS_RIP:
  905. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  906. break;
  907. default:
  908. break;
  909. }
  910. }
  911. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  912. {
  913. int old_debug = vcpu->guest_debug;
  914. unsigned long flags;
  915. vcpu->guest_debug = dbg->control;
  916. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  917. vcpu->guest_debug = 0;
  918. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  919. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  920. else
  921. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  922. flags = vmcs_readl(GUEST_RFLAGS);
  923. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  924. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  925. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  926. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  927. vmcs_writel(GUEST_RFLAGS, flags);
  928. update_exception_bitmap(vcpu);
  929. return 0;
  930. }
  931. static __init int cpu_has_kvm_support(void)
  932. {
  933. return cpu_has_vmx();
  934. }
  935. static __init int vmx_disabled_by_bios(void)
  936. {
  937. u64 msr;
  938. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  939. return (msr & (FEATURE_CONTROL_LOCKED |
  940. FEATURE_CONTROL_VMXON_ENABLED))
  941. == FEATURE_CONTROL_LOCKED;
  942. /* locked but not enabled */
  943. }
  944. static void hardware_enable(void *garbage)
  945. {
  946. int cpu = raw_smp_processor_id();
  947. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  948. u64 old;
  949. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  950. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  951. if ((old & (FEATURE_CONTROL_LOCKED |
  952. FEATURE_CONTROL_VMXON_ENABLED))
  953. != (FEATURE_CONTROL_LOCKED |
  954. FEATURE_CONTROL_VMXON_ENABLED))
  955. /* enable and lock */
  956. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  957. FEATURE_CONTROL_LOCKED |
  958. FEATURE_CONTROL_VMXON_ENABLED);
  959. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  960. asm volatile (ASM_VMX_VMXON_RAX
  961. : : "a"(&phys_addr), "m"(phys_addr)
  962. : "memory", "cc");
  963. }
  964. static void vmclear_local_vcpus(void)
  965. {
  966. int cpu = raw_smp_processor_id();
  967. struct vcpu_vmx *vmx, *n;
  968. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  969. local_vcpus_link)
  970. __vcpu_clear(vmx);
  971. }
  972. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  973. * tricks.
  974. */
  975. static void kvm_cpu_vmxoff(void)
  976. {
  977. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  978. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  979. }
  980. static void hardware_disable(void *garbage)
  981. {
  982. vmclear_local_vcpus();
  983. kvm_cpu_vmxoff();
  984. }
  985. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  986. u32 msr, u32 *result)
  987. {
  988. u32 vmx_msr_low, vmx_msr_high;
  989. u32 ctl = ctl_min | ctl_opt;
  990. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  991. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  992. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  993. /* Ensure minimum (required) set of control bits are supported. */
  994. if (ctl_min & ~ctl)
  995. return -EIO;
  996. *result = ctl;
  997. return 0;
  998. }
  999. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1000. {
  1001. u32 vmx_msr_low, vmx_msr_high;
  1002. u32 min, opt, min2, opt2;
  1003. u32 _pin_based_exec_control = 0;
  1004. u32 _cpu_based_exec_control = 0;
  1005. u32 _cpu_based_2nd_exec_control = 0;
  1006. u32 _vmexit_control = 0;
  1007. u32 _vmentry_control = 0;
  1008. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1009. opt = PIN_BASED_VIRTUAL_NMIS;
  1010. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1011. &_pin_based_exec_control) < 0)
  1012. return -EIO;
  1013. min = CPU_BASED_HLT_EXITING |
  1014. #ifdef CONFIG_X86_64
  1015. CPU_BASED_CR8_LOAD_EXITING |
  1016. CPU_BASED_CR8_STORE_EXITING |
  1017. #endif
  1018. CPU_BASED_CR3_LOAD_EXITING |
  1019. CPU_BASED_CR3_STORE_EXITING |
  1020. CPU_BASED_USE_IO_BITMAPS |
  1021. CPU_BASED_MOV_DR_EXITING |
  1022. CPU_BASED_USE_TSC_OFFSETING |
  1023. CPU_BASED_INVLPG_EXITING;
  1024. opt = CPU_BASED_TPR_SHADOW |
  1025. CPU_BASED_USE_MSR_BITMAPS |
  1026. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1027. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1028. &_cpu_based_exec_control) < 0)
  1029. return -EIO;
  1030. #ifdef CONFIG_X86_64
  1031. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1032. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1033. ~CPU_BASED_CR8_STORE_EXITING;
  1034. #endif
  1035. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1036. min2 = 0;
  1037. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1038. SECONDARY_EXEC_WBINVD_EXITING |
  1039. SECONDARY_EXEC_ENABLE_VPID |
  1040. SECONDARY_EXEC_ENABLE_EPT;
  1041. if (adjust_vmx_controls(min2, opt2,
  1042. MSR_IA32_VMX_PROCBASED_CTLS2,
  1043. &_cpu_based_2nd_exec_control) < 0)
  1044. return -EIO;
  1045. }
  1046. #ifndef CONFIG_X86_64
  1047. if (!(_cpu_based_2nd_exec_control &
  1048. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1049. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1050. #endif
  1051. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1052. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1053. enabled */
  1054. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1055. CPU_BASED_CR3_STORE_EXITING |
  1056. CPU_BASED_INVLPG_EXITING);
  1057. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1058. &_cpu_based_exec_control) < 0)
  1059. return -EIO;
  1060. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1061. vmx_capability.ept, vmx_capability.vpid);
  1062. }
  1063. min = 0;
  1064. #ifdef CONFIG_X86_64
  1065. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1066. #endif
  1067. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1068. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1069. &_vmexit_control) < 0)
  1070. return -EIO;
  1071. min = 0;
  1072. opt = VM_ENTRY_LOAD_IA32_PAT;
  1073. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1074. &_vmentry_control) < 0)
  1075. return -EIO;
  1076. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1077. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1078. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1079. return -EIO;
  1080. #ifdef CONFIG_X86_64
  1081. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1082. if (vmx_msr_high & (1u<<16))
  1083. return -EIO;
  1084. #endif
  1085. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1086. if (((vmx_msr_high >> 18) & 15) != 6)
  1087. return -EIO;
  1088. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1089. vmcs_conf->order = get_order(vmcs_config.size);
  1090. vmcs_conf->revision_id = vmx_msr_low;
  1091. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1092. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1093. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1094. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1095. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1096. return 0;
  1097. }
  1098. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1099. {
  1100. int node = cpu_to_node(cpu);
  1101. struct page *pages;
  1102. struct vmcs *vmcs;
  1103. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1104. if (!pages)
  1105. return NULL;
  1106. vmcs = page_address(pages);
  1107. memset(vmcs, 0, vmcs_config.size);
  1108. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1109. return vmcs;
  1110. }
  1111. static struct vmcs *alloc_vmcs(void)
  1112. {
  1113. return alloc_vmcs_cpu(raw_smp_processor_id());
  1114. }
  1115. static void free_vmcs(struct vmcs *vmcs)
  1116. {
  1117. free_pages((unsigned long)vmcs, vmcs_config.order);
  1118. }
  1119. static void free_kvm_area(void)
  1120. {
  1121. int cpu;
  1122. for_each_online_cpu(cpu)
  1123. free_vmcs(per_cpu(vmxarea, cpu));
  1124. }
  1125. static __init int alloc_kvm_area(void)
  1126. {
  1127. int cpu;
  1128. for_each_online_cpu(cpu) {
  1129. struct vmcs *vmcs;
  1130. vmcs = alloc_vmcs_cpu(cpu);
  1131. if (!vmcs) {
  1132. free_kvm_area();
  1133. return -ENOMEM;
  1134. }
  1135. per_cpu(vmxarea, cpu) = vmcs;
  1136. }
  1137. return 0;
  1138. }
  1139. static __init int hardware_setup(void)
  1140. {
  1141. if (setup_vmcs_config(&vmcs_config) < 0)
  1142. return -EIO;
  1143. if (boot_cpu_has(X86_FEATURE_NX))
  1144. kvm_enable_efer_bits(EFER_NX);
  1145. if (!cpu_has_vmx_vpid())
  1146. enable_vpid = 0;
  1147. if (!cpu_has_vmx_ept())
  1148. enable_ept = 0;
  1149. if (!cpu_has_vmx_flexpriority())
  1150. flexpriority_enabled = 0;
  1151. if (!cpu_has_vmx_tpr_shadow())
  1152. kvm_x86_ops->update_cr8_intercept = NULL;
  1153. return alloc_kvm_area();
  1154. }
  1155. static __exit void hardware_unsetup(void)
  1156. {
  1157. free_kvm_area();
  1158. }
  1159. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1160. {
  1161. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1162. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1163. vmcs_write16(sf->selector, save->selector);
  1164. vmcs_writel(sf->base, save->base);
  1165. vmcs_write32(sf->limit, save->limit);
  1166. vmcs_write32(sf->ar_bytes, save->ar);
  1167. } else {
  1168. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1169. << AR_DPL_SHIFT;
  1170. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1171. }
  1172. }
  1173. static void enter_pmode(struct kvm_vcpu *vcpu)
  1174. {
  1175. unsigned long flags;
  1176. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1177. vmx->emulation_required = 1;
  1178. vcpu->arch.rmode.vm86_active = 0;
  1179. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1180. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1181. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1182. flags = vmcs_readl(GUEST_RFLAGS);
  1183. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1184. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1185. vmcs_writel(GUEST_RFLAGS, flags);
  1186. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1187. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1188. update_exception_bitmap(vcpu);
  1189. if (emulate_invalid_guest_state)
  1190. return;
  1191. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1192. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1193. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1194. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1195. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1196. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1197. vmcs_write16(GUEST_CS_SELECTOR,
  1198. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1199. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1200. }
  1201. static gva_t rmode_tss_base(struct kvm *kvm)
  1202. {
  1203. if (!kvm->arch.tss_addr) {
  1204. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1205. kvm->memslots[0].npages - 3;
  1206. return base_gfn << PAGE_SHIFT;
  1207. }
  1208. return kvm->arch.tss_addr;
  1209. }
  1210. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1211. {
  1212. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1213. save->selector = vmcs_read16(sf->selector);
  1214. save->base = vmcs_readl(sf->base);
  1215. save->limit = vmcs_read32(sf->limit);
  1216. save->ar = vmcs_read32(sf->ar_bytes);
  1217. vmcs_write16(sf->selector, save->base >> 4);
  1218. vmcs_write32(sf->base, save->base & 0xfffff);
  1219. vmcs_write32(sf->limit, 0xffff);
  1220. vmcs_write32(sf->ar_bytes, 0xf3);
  1221. }
  1222. static void enter_rmode(struct kvm_vcpu *vcpu)
  1223. {
  1224. unsigned long flags;
  1225. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1226. vmx->emulation_required = 1;
  1227. vcpu->arch.rmode.vm86_active = 1;
  1228. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1229. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1230. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1231. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1232. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1233. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1234. flags = vmcs_readl(GUEST_RFLAGS);
  1235. vcpu->arch.rmode.save_iopl
  1236. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1237. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1238. vmcs_writel(GUEST_RFLAGS, flags);
  1239. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1240. update_exception_bitmap(vcpu);
  1241. if (emulate_invalid_guest_state)
  1242. goto continue_rmode;
  1243. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1244. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1245. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1246. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1247. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1248. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1249. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1250. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1251. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1252. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1253. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1254. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1255. continue_rmode:
  1256. kvm_mmu_reset_context(vcpu);
  1257. init_rmode(vcpu->kvm);
  1258. }
  1259. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1260. {
  1261. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1262. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1263. vcpu->arch.shadow_efer = efer;
  1264. if (!msr)
  1265. return;
  1266. if (efer & EFER_LMA) {
  1267. vmcs_write32(VM_ENTRY_CONTROLS,
  1268. vmcs_read32(VM_ENTRY_CONTROLS) |
  1269. VM_ENTRY_IA32E_MODE);
  1270. msr->data = efer;
  1271. } else {
  1272. vmcs_write32(VM_ENTRY_CONTROLS,
  1273. vmcs_read32(VM_ENTRY_CONTROLS) &
  1274. ~VM_ENTRY_IA32E_MODE);
  1275. msr->data = efer & ~EFER_LME;
  1276. }
  1277. setup_msrs(vmx);
  1278. }
  1279. #ifdef CONFIG_X86_64
  1280. static void enter_lmode(struct kvm_vcpu *vcpu)
  1281. {
  1282. u32 guest_tr_ar;
  1283. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1284. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1285. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1286. __func__);
  1287. vmcs_write32(GUEST_TR_AR_BYTES,
  1288. (guest_tr_ar & ~AR_TYPE_MASK)
  1289. | AR_TYPE_BUSY_64_TSS);
  1290. }
  1291. vcpu->arch.shadow_efer |= EFER_LMA;
  1292. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1293. }
  1294. static void exit_lmode(struct kvm_vcpu *vcpu)
  1295. {
  1296. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1297. vmcs_write32(VM_ENTRY_CONTROLS,
  1298. vmcs_read32(VM_ENTRY_CONTROLS)
  1299. & ~VM_ENTRY_IA32E_MODE);
  1300. }
  1301. #endif
  1302. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1303. {
  1304. vpid_sync_vcpu_all(to_vmx(vcpu));
  1305. if (enable_ept)
  1306. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1307. }
  1308. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1309. {
  1310. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1311. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1312. }
  1313. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1314. {
  1315. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1316. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1317. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1318. return;
  1319. }
  1320. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1321. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1322. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1323. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1324. }
  1325. }
  1326. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1327. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1328. unsigned long cr0,
  1329. struct kvm_vcpu *vcpu)
  1330. {
  1331. if (!(cr0 & X86_CR0_PG)) {
  1332. /* From paging/starting to nonpaging */
  1333. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1334. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1335. (CPU_BASED_CR3_LOAD_EXITING |
  1336. CPU_BASED_CR3_STORE_EXITING));
  1337. vcpu->arch.cr0 = cr0;
  1338. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1339. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1340. *hw_cr0 &= ~X86_CR0_WP;
  1341. } else if (!is_paging(vcpu)) {
  1342. /* From nonpaging to paging */
  1343. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1344. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1345. ~(CPU_BASED_CR3_LOAD_EXITING |
  1346. CPU_BASED_CR3_STORE_EXITING));
  1347. vcpu->arch.cr0 = cr0;
  1348. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1349. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1350. *hw_cr0 &= ~X86_CR0_WP;
  1351. }
  1352. }
  1353. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1354. struct kvm_vcpu *vcpu)
  1355. {
  1356. if (!is_paging(vcpu)) {
  1357. *hw_cr4 &= ~X86_CR4_PAE;
  1358. *hw_cr4 |= X86_CR4_PSE;
  1359. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1360. *hw_cr4 &= ~X86_CR4_PAE;
  1361. }
  1362. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1363. {
  1364. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1365. KVM_VM_CR0_ALWAYS_ON;
  1366. vmx_fpu_deactivate(vcpu);
  1367. if (vcpu->arch.rmode.vm86_active && (cr0 & X86_CR0_PE))
  1368. enter_pmode(vcpu);
  1369. if (!vcpu->arch.rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1370. enter_rmode(vcpu);
  1371. #ifdef CONFIG_X86_64
  1372. if (vcpu->arch.shadow_efer & EFER_LME) {
  1373. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1374. enter_lmode(vcpu);
  1375. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1376. exit_lmode(vcpu);
  1377. }
  1378. #endif
  1379. if (enable_ept)
  1380. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1381. vmcs_writel(CR0_READ_SHADOW, cr0);
  1382. vmcs_writel(GUEST_CR0, hw_cr0);
  1383. vcpu->arch.cr0 = cr0;
  1384. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1385. vmx_fpu_activate(vcpu);
  1386. }
  1387. static u64 construct_eptp(unsigned long root_hpa)
  1388. {
  1389. u64 eptp;
  1390. /* TODO write the value reading from MSR */
  1391. eptp = VMX_EPT_DEFAULT_MT |
  1392. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1393. eptp |= (root_hpa & PAGE_MASK);
  1394. return eptp;
  1395. }
  1396. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1397. {
  1398. unsigned long guest_cr3;
  1399. u64 eptp;
  1400. guest_cr3 = cr3;
  1401. if (enable_ept) {
  1402. eptp = construct_eptp(cr3);
  1403. vmcs_write64(EPT_POINTER, eptp);
  1404. ept_sync_context(eptp);
  1405. ept_load_pdptrs(vcpu);
  1406. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1407. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1408. }
  1409. vmx_flush_tlb(vcpu);
  1410. vmcs_writel(GUEST_CR3, guest_cr3);
  1411. if (vcpu->arch.cr0 & X86_CR0_PE)
  1412. vmx_fpu_deactivate(vcpu);
  1413. }
  1414. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1415. {
  1416. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.vm86_active ?
  1417. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1418. vcpu->arch.cr4 = cr4;
  1419. if (enable_ept)
  1420. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1421. vmcs_writel(CR4_READ_SHADOW, cr4);
  1422. vmcs_writel(GUEST_CR4, hw_cr4);
  1423. }
  1424. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1425. {
  1426. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1427. return vmcs_readl(sf->base);
  1428. }
  1429. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1430. struct kvm_segment *var, int seg)
  1431. {
  1432. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1433. u32 ar;
  1434. var->base = vmcs_readl(sf->base);
  1435. var->limit = vmcs_read32(sf->limit);
  1436. var->selector = vmcs_read16(sf->selector);
  1437. ar = vmcs_read32(sf->ar_bytes);
  1438. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1439. ar = 0;
  1440. var->type = ar & 15;
  1441. var->s = (ar >> 4) & 1;
  1442. var->dpl = (ar >> 5) & 3;
  1443. var->present = (ar >> 7) & 1;
  1444. var->avl = (ar >> 12) & 1;
  1445. var->l = (ar >> 13) & 1;
  1446. var->db = (ar >> 14) & 1;
  1447. var->g = (ar >> 15) & 1;
  1448. var->unusable = (ar >> 16) & 1;
  1449. }
  1450. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1451. {
  1452. struct kvm_segment kvm_seg;
  1453. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1454. return 0;
  1455. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1456. return 3;
  1457. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1458. return kvm_seg.selector & 3;
  1459. }
  1460. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1461. {
  1462. u32 ar;
  1463. if (var->unusable)
  1464. ar = 1 << 16;
  1465. else {
  1466. ar = var->type & 15;
  1467. ar |= (var->s & 1) << 4;
  1468. ar |= (var->dpl & 3) << 5;
  1469. ar |= (var->present & 1) << 7;
  1470. ar |= (var->avl & 1) << 12;
  1471. ar |= (var->l & 1) << 13;
  1472. ar |= (var->db & 1) << 14;
  1473. ar |= (var->g & 1) << 15;
  1474. }
  1475. if (ar == 0) /* a 0 value means unusable */
  1476. ar = AR_UNUSABLE_MASK;
  1477. return ar;
  1478. }
  1479. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1480. struct kvm_segment *var, int seg)
  1481. {
  1482. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1483. u32 ar;
  1484. if (vcpu->arch.rmode.vm86_active && seg == VCPU_SREG_TR) {
  1485. vcpu->arch.rmode.tr.selector = var->selector;
  1486. vcpu->arch.rmode.tr.base = var->base;
  1487. vcpu->arch.rmode.tr.limit = var->limit;
  1488. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1489. return;
  1490. }
  1491. vmcs_writel(sf->base, var->base);
  1492. vmcs_write32(sf->limit, var->limit);
  1493. vmcs_write16(sf->selector, var->selector);
  1494. if (vcpu->arch.rmode.vm86_active && var->s) {
  1495. /*
  1496. * Hack real-mode segments into vm86 compatibility.
  1497. */
  1498. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1499. vmcs_writel(sf->base, 0xf0000);
  1500. ar = 0xf3;
  1501. } else
  1502. ar = vmx_segment_access_rights(var);
  1503. vmcs_write32(sf->ar_bytes, ar);
  1504. }
  1505. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1506. {
  1507. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1508. *db = (ar >> 14) & 1;
  1509. *l = (ar >> 13) & 1;
  1510. }
  1511. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1512. {
  1513. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1514. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1515. }
  1516. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1517. {
  1518. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1519. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1520. }
  1521. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1522. {
  1523. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1524. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1525. }
  1526. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1527. {
  1528. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1529. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1530. }
  1531. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1532. {
  1533. struct kvm_segment var;
  1534. u32 ar;
  1535. vmx_get_segment(vcpu, &var, seg);
  1536. ar = vmx_segment_access_rights(&var);
  1537. if (var.base != (var.selector << 4))
  1538. return false;
  1539. if (var.limit != 0xffff)
  1540. return false;
  1541. if (ar != 0xf3)
  1542. return false;
  1543. return true;
  1544. }
  1545. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1546. {
  1547. struct kvm_segment cs;
  1548. unsigned int cs_rpl;
  1549. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1550. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1551. if (cs.unusable)
  1552. return false;
  1553. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1554. return false;
  1555. if (!cs.s)
  1556. return false;
  1557. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1558. if (cs.dpl > cs_rpl)
  1559. return false;
  1560. } else {
  1561. if (cs.dpl != cs_rpl)
  1562. return false;
  1563. }
  1564. if (!cs.present)
  1565. return false;
  1566. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1567. return true;
  1568. }
  1569. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1570. {
  1571. struct kvm_segment ss;
  1572. unsigned int ss_rpl;
  1573. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1574. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1575. if (ss.unusable)
  1576. return true;
  1577. if (ss.type != 3 && ss.type != 7)
  1578. return false;
  1579. if (!ss.s)
  1580. return false;
  1581. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1582. return false;
  1583. if (!ss.present)
  1584. return false;
  1585. return true;
  1586. }
  1587. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1588. {
  1589. struct kvm_segment var;
  1590. unsigned int rpl;
  1591. vmx_get_segment(vcpu, &var, seg);
  1592. rpl = var.selector & SELECTOR_RPL_MASK;
  1593. if (var.unusable)
  1594. return true;
  1595. if (!var.s)
  1596. return false;
  1597. if (!var.present)
  1598. return false;
  1599. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1600. if (var.dpl < rpl) /* DPL < RPL */
  1601. return false;
  1602. }
  1603. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1604. * rights flags
  1605. */
  1606. return true;
  1607. }
  1608. static bool tr_valid(struct kvm_vcpu *vcpu)
  1609. {
  1610. struct kvm_segment tr;
  1611. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1612. if (tr.unusable)
  1613. return false;
  1614. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1615. return false;
  1616. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1617. return false;
  1618. if (!tr.present)
  1619. return false;
  1620. return true;
  1621. }
  1622. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1623. {
  1624. struct kvm_segment ldtr;
  1625. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1626. if (ldtr.unusable)
  1627. return true;
  1628. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1629. return false;
  1630. if (ldtr.type != 2)
  1631. return false;
  1632. if (!ldtr.present)
  1633. return false;
  1634. return true;
  1635. }
  1636. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1637. {
  1638. struct kvm_segment cs, ss;
  1639. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1640. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1641. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1642. (ss.selector & SELECTOR_RPL_MASK));
  1643. }
  1644. /*
  1645. * Check if guest state is valid. Returns true if valid, false if
  1646. * not.
  1647. * We assume that registers are always usable
  1648. */
  1649. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1650. {
  1651. /* real mode guest state checks */
  1652. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1653. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1654. return false;
  1655. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1656. return false;
  1657. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1658. return false;
  1659. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1660. return false;
  1661. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1662. return false;
  1663. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1664. return false;
  1665. } else {
  1666. /* protected mode guest state checks */
  1667. if (!cs_ss_rpl_check(vcpu))
  1668. return false;
  1669. if (!code_segment_valid(vcpu))
  1670. return false;
  1671. if (!stack_segment_valid(vcpu))
  1672. return false;
  1673. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1674. return false;
  1675. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1676. return false;
  1677. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1678. return false;
  1679. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1680. return false;
  1681. if (!tr_valid(vcpu))
  1682. return false;
  1683. if (!ldtr_valid(vcpu))
  1684. return false;
  1685. }
  1686. /* TODO:
  1687. * - Add checks on RIP
  1688. * - Add checks on RFLAGS
  1689. */
  1690. return true;
  1691. }
  1692. static int init_rmode_tss(struct kvm *kvm)
  1693. {
  1694. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1695. u16 data = 0;
  1696. int ret = 0;
  1697. int r;
  1698. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1699. if (r < 0)
  1700. goto out;
  1701. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1702. r = kvm_write_guest_page(kvm, fn++, &data,
  1703. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1704. if (r < 0)
  1705. goto out;
  1706. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1707. if (r < 0)
  1708. goto out;
  1709. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1710. if (r < 0)
  1711. goto out;
  1712. data = ~0;
  1713. r = kvm_write_guest_page(kvm, fn, &data,
  1714. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1715. sizeof(u8));
  1716. if (r < 0)
  1717. goto out;
  1718. ret = 1;
  1719. out:
  1720. return ret;
  1721. }
  1722. static int init_rmode_identity_map(struct kvm *kvm)
  1723. {
  1724. int i, r, ret;
  1725. pfn_t identity_map_pfn;
  1726. u32 tmp;
  1727. if (!enable_ept)
  1728. return 1;
  1729. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1730. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1731. "haven't been allocated!\n");
  1732. return 0;
  1733. }
  1734. if (likely(kvm->arch.ept_identity_pagetable_done))
  1735. return 1;
  1736. ret = 0;
  1737. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1738. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1739. if (r < 0)
  1740. goto out;
  1741. /* Set up identity-mapping pagetable for EPT in real mode */
  1742. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1743. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1744. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1745. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1746. &tmp, i * sizeof(tmp), sizeof(tmp));
  1747. if (r < 0)
  1748. goto out;
  1749. }
  1750. kvm->arch.ept_identity_pagetable_done = true;
  1751. ret = 1;
  1752. out:
  1753. return ret;
  1754. }
  1755. static void seg_setup(int seg)
  1756. {
  1757. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1758. vmcs_write16(sf->selector, 0);
  1759. vmcs_writel(sf->base, 0);
  1760. vmcs_write32(sf->limit, 0xffff);
  1761. vmcs_write32(sf->ar_bytes, 0xf3);
  1762. }
  1763. static int alloc_apic_access_page(struct kvm *kvm)
  1764. {
  1765. struct kvm_userspace_memory_region kvm_userspace_mem;
  1766. int r = 0;
  1767. down_write(&kvm->slots_lock);
  1768. if (kvm->arch.apic_access_page)
  1769. goto out;
  1770. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1771. kvm_userspace_mem.flags = 0;
  1772. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1773. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1774. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1775. if (r)
  1776. goto out;
  1777. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1778. out:
  1779. up_write(&kvm->slots_lock);
  1780. return r;
  1781. }
  1782. static int alloc_identity_pagetable(struct kvm *kvm)
  1783. {
  1784. struct kvm_userspace_memory_region kvm_userspace_mem;
  1785. int r = 0;
  1786. down_write(&kvm->slots_lock);
  1787. if (kvm->arch.ept_identity_pagetable)
  1788. goto out;
  1789. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1790. kvm_userspace_mem.flags = 0;
  1791. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1792. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1793. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1794. if (r)
  1795. goto out;
  1796. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1797. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1798. out:
  1799. up_write(&kvm->slots_lock);
  1800. return r;
  1801. }
  1802. static void allocate_vpid(struct vcpu_vmx *vmx)
  1803. {
  1804. int vpid;
  1805. vmx->vpid = 0;
  1806. if (!enable_vpid)
  1807. return;
  1808. spin_lock(&vmx_vpid_lock);
  1809. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1810. if (vpid < VMX_NR_VPIDS) {
  1811. vmx->vpid = vpid;
  1812. __set_bit(vpid, vmx_vpid_bitmap);
  1813. }
  1814. spin_unlock(&vmx_vpid_lock);
  1815. }
  1816. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1817. {
  1818. int f = sizeof(unsigned long);
  1819. if (!cpu_has_vmx_msr_bitmap())
  1820. return;
  1821. /*
  1822. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1823. * have the write-low and read-high bitmap offsets the wrong way round.
  1824. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1825. */
  1826. if (msr <= 0x1fff) {
  1827. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1828. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1829. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1830. msr &= 0x1fff;
  1831. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1832. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1833. }
  1834. }
  1835. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1836. {
  1837. if (!longmode_only)
  1838. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1839. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1840. }
  1841. /*
  1842. * Sets up the vmcs for emulated real mode.
  1843. */
  1844. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1845. {
  1846. u32 host_sysenter_cs, msr_low, msr_high;
  1847. u32 junk;
  1848. u64 host_pat, tsc_this, tsc_base;
  1849. unsigned long a;
  1850. struct descriptor_table dt;
  1851. int i;
  1852. unsigned long kvm_vmx_return;
  1853. u32 exec_control;
  1854. /* I/O */
  1855. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1856. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1857. if (cpu_has_vmx_msr_bitmap())
  1858. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1859. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1860. /* Control */
  1861. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1862. vmcs_config.pin_based_exec_ctrl);
  1863. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1864. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1865. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1866. #ifdef CONFIG_X86_64
  1867. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1868. CPU_BASED_CR8_LOAD_EXITING;
  1869. #endif
  1870. }
  1871. if (!enable_ept)
  1872. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1873. CPU_BASED_CR3_LOAD_EXITING |
  1874. CPU_BASED_INVLPG_EXITING;
  1875. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1876. if (cpu_has_secondary_exec_ctrls()) {
  1877. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1878. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1879. exec_control &=
  1880. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1881. if (vmx->vpid == 0)
  1882. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1883. if (!enable_ept)
  1884. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1885. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1886. }
  1887. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1888. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1889. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1890. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1891. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1892. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1893. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1894. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1895. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1896. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1897. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1898. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1899. #ifdef CONFIG_X86_64
  1900. rdmsrl(MSR_FS_BASE, a);
  1901. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1902. rdmsrl(MSR_GS_BASE, a);
  1903. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1904. #else
  1905. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1906. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1907. #endif
  1908. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1909. kvm_get_idt(&dt);
  1910. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1911. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1912. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1913. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1914. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1915. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1916. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1917. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1918. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1919. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1920. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1921. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1922. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1923. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1924. host_pat = msr_low | ((u64) msr_high << 32);
  1925. vmcs_write64(HOST_IA32_PAT, host_pat);
  1926. }
  1927. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1928. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1929. host_pat = msr_low | ((u64) msr_high << 32);
  1930. /* Write the default value follow host pat */
  1931. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1932. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1933. vmx->vcpu.arch.pat = host_pat;
  1934. }
  1935. for (i = 0; i < NR_VMX_MSR; ++i) {
  1936. u32 index = vmx_msr_index[i];
  1937. u32 data_low, data_high;
  1938. u64 data;
  1939. int j = vmx->nmsrs;
  1940. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1941. continue;
  1942. if (wrmsr_safe(index, data_low, data_high) < 0)
  1943. continue;
  1944. data = data_low | ((u64)data_high << 32);
  1945. vmx->host_msrs[j].index = index;
  1946. vmx->host_msrs[j].reserved = 0;
  1947. vmx->host_msrs[j].data = data;
  1948. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1949. ++vmx->nmsrs;
  1950. }
  1951. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1952. /* 22.2.1, 20.8.1 */
  1953. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1954. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1955. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1956. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1957. rdtscll(tsc_this);
  1958. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1959. tsc_base = tsc_this;
  1960. guest_write_tsc(0, tsc_base);
  1961. return 0;
  1962. }
  1963. static int init_rmode(struct kvm *kvm)
  1964. {
  1965. if (!init_rmode_tss(kvm))
  1966. return 0;
  1967. if (!init_rmode_identity_map(kvm))
  1968. return 0;
  1969. return 1;
  1970. }
  1971. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1972. {
  1973. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1974. u64 msr;
  1975. int ret;
  1976. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1977. down_read(&vcpu->kvm->slots_lock);
  1978. if (!init_rmode(vmx->vcpu.kvm)) {
  1979. ret = -ENOMEM;
  1980. goto out;
  1981. }
  1982. vmx->vcpu.arch.rmode.vm86_active = 0;
  1983. vmx->soft_vnmi_blocked = 0;
  1984. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1985. kvm_set_cr8(&vmx->vcpu, 0);
  1986. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1987. if (vmx->vcpu.vcpu_id == 0)
  1988. msr |= MSR_IA32_APICBASE_BSP;
  1989. kvm_set_apic_base(&vmx->vcpu, msr);
  1990. fx_init(&vmx->vcpu);
  1991. seg_setup(VCPU_SREG_CS);
  1992. /*
  1993. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1994. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1995. */
  1996. if (vmx->vcpu.vcpu_id == 0) {
  1997. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1998. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1999. } else {
  2000. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2001. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2002. }
  2003. seg_setup(VCPU_SREG_DS);
  2004. seg_setup(VCPU_SREG_ES);
  2005. seg_setup(VCPU_SREG_FS);
  2006. seg_setup(VCPU_SREG_GS);
  2007. seg_setup(VCPU_SREG_SS);
  2008. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2009. vmcs_writel(GUEST_TR_BASE, 0);
  2010. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2011. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2012. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2013. vmcs_writel(GUEST_LDTR_BASE, 0);
  2014. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2015. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2016. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2017. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2018. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2019. vmcs_writel(GUEST_RFLAGS, 0x02);
  2020. if (vmx->vcpu.vcpu_id == 0)
  2021. kvm_rip_write(vcpu, 0xfff0);
  2022. else
  2023. kvm_rip_write(vcpu, 0);
  2024. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2025. vmcs_writel(GUEST_DR7, 0x400);
  2026. vmcs_writel(GUEST_GDTR_BASE, 0);
  2027. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2028. vmcs_writel(GUEST_IDTR_BASE, 0);
  2029. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2030. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2031. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2032. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2033. /* Special registers */
  2034. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2035. setup_msrs(vmx);
  2036. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2037. if (cpu_has_vmx_tpr_shadow()) {
  2038. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2039. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2040. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2041. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2042. vmcs_write32(TPR_THRESHOLD, 0);
  2043. }
  2044. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2045. vmcs_write64(APIC_ACCESS_ADDR,
  2046. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2047. if (vmx->vpid != 0)
  2048. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2049. vmx->vcpu.arch.cr0 = 0x60000010;
  2050. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2051. vmx_set_cr4(&vmx->vcpu, 0);
  2052. vmx_set_efer(&vmx->vcpu, 0);
  2053. vmx_fpu_activate(&vmx->vcpu);
  2054. update_exception_bitmap(&vmx->vcpu);
  2055. vpid_sync_vcpu_all(vmx);
  2056. ret = 0;
  2057. /* HACK: Don't enable emulation on guest boot/reset */
  2058. vmx->emulation_required = 0;
  2059. out:
  2060. up_read(&vcpu->kvm->slots_lock);
  2061. return ret;
  2062. }
  2063. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2064. {
  2065. u32 cpu_based_vm_exec_control;
  2066. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2067. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2068. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2069. }
  2070. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2071. {
  2072. u32 cpu_based_vm_exec_control;
  2073. if (!cpu_has_virtual_nmis()) {
  2074. enable_irq_window(vcpu);
  2075. return;
  2076. }
  2077. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2078. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2079. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2080. }
  2081. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2082. {
  2083. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2084. uint32_t intr;
  2085. int irq = vcpu->arch.interrupt.nr;
  2086. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2087. ++vcpu->stat.irq_injections;
  2088. if (vcpu->arch.rmode.vm86_active) {
  2089. vmx->rmode.irq.pending = true;
  2090. vmx->rmode.irq.vector = irq;
  2091. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2092. if (vcpu->arch.interrupt.soft)
  2093. vmx->rmode.irq.rip +=
  2094. vmx->vcpu.arch.event_exit_inst_len;
  2095. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2096. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2097. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2098. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2099. return;
  2100. }
  2101. intr = irq | INTR_INFO_VALID_MASK;
  2102. if (vcpu->arch.interrupt.soft) {
  2103. intr |= INTR_TYPE_SOFT_INTR;
  2104. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2105. vmx->vcpu.arch.event_exit_inst_len);
  2106. } else
  2107. intr |= INTR_TYPE_EXT_INTR;
  2108. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2109. }
  2110. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2111. {
  2112. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2113. if (!cpu_has_virtual_nmis()) {
  2114. /*
  2115. * Tracking the NMI-blocked state in software is built upon
  2116. * finding the next open IRQ window. This, in turn, depends on
  2117. * well-behaving guests: They have to keep IRQs disabled at
  2118. * least as long as the NMI handler runs. Otherwise we may
  2119. * cause NMI nesting, maybe breaking the guest. But as this is
  2120. * highly unlikely, we can live with the residual risk.
  2121. */
  2122. vmx->soft_vnmi_blocked = 1;
  2123. vmx->vnmi_blocked_time = 0;
  2124. }
  2125. ++vcpu->stat.nmi_injections;
  2126. if (vcpu->arch.rmode.vm86_active) {
  2127. vmx->rmode.irq.pending = true;
  2128. vmx->rmode.irq.vector = NMI_VECTOR;
  2129. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2130. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2131. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2132. INTR_INFO_VALID_MASK);
  2133. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2134. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2135. return;
  2136. }
  2137. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2138. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2139. }
  2140. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2141. {
  2142. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2143. return 0;
  2144. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2145. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2146. GUEST_INTR_STATE_NMI));
  2147. }
  2148. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2149. {
  2150. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2151. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2152. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2153. }
  2154. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2155. {
  2156. int ret;
  2157. struct kvm_userspace_memory_region tss_mem = {
  2158. .slot = TSS_PRIVATE_MEMSLOT,
  2159. .guest_phys_addr = addr,
  2160. .memory_size = PAGE_SIZE * 3,
  2161. .flags = 0,
  2162. };
  2163. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2164. if (ret)
  2165. return ret;
  2166. kvm->arch.tss_addr = addr;
  2167. return 0;
  2168. }
  2169. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2170. int vec, u32 err_code)
  2171. {
  2172. /*
  2173. * Instruction with address size override prefix opcode 0x67
  2174. * Cause the #SS fault with 0 error code in VM86 mode.
  2175. */
  2176. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2177. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2178. return 1;
  2179. /*
  2180. * Forward all other exceptions that are valid in real mode.
  2181. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2182. * the required debugging infrastructure rework.
  2183. */
  2184. switch (vec) {
  2185. case DB_VECTOR:
  2186. if (vcpu->guest_debug &
  2187. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2188. return 0;
  2189. kvm_queue_exception(vcpu, vec);
  2190. return 1;
  2191. case BP_VECTOR:
  2192. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2193. return 0;
  2194. /* fall through */
  2195. case DE_VECTOR:
  2196. case OF_VECTOR:
  2197. case BR_VECTOR:
  2198. case UD_VECTOR:
  2199. case DF_VECTOR:
  2200. case SS_VECTOR:
  2201. case GP_VECTOR:
  2202. case MF_VECTOR:
  2203. kvm_queue_exception(vcpu, vec);
  2204. return 1;
  2205. }
  2206. return 0;
  2207. }
  2208. /*
  2209. * Trigger machine check on the host. We assume all the MSRs are already set up
  2210. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2211. * We pass a fake environment to the machine check handler because we want
  2212. * the guest to be always treated like user space, no matter what context
  2213. * it used internally.
  2214. */
  2215. static void kvm_machine_check(void)
  2216. {
  2217. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2218. struct pt_regs regs = {
  2219. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2220. .flags = X86_EFLAGS_IF,
  2221. };
  2222. do_machine_check(&regs, 0);
  2223. #endif
  2224. }
  2225. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2226. {
  2227. /* already handled by vcpu_run */
  2228. return 1;
  2229. }
  2230. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2231. {
  2232. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2233. u32 intr_info, ex_no, error_code;
  2234. unsigned long cr2, rip, dr6;
  2235. u32 vect_info;
  2236. enum emulation_result er;
  2237. vect_info = vmx->idt_vectoring_info;
  2238. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2239. if (is_machine_check(intr_info))
  2240. return handle_machine_check(vcpu, kvm_run);
  2241. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2242. !is_page_fault(intr_info))
  2243. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2244. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2245. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2246. return 1; /* already handled by vmx_vcpu_run() */
  2247. if (is_no_device(intr_info)) {
  2248. vmx_fpu_activate(vcpu);
  2249. return 1;
  2250. }
  2251. if (is_invalid_opcode(intr_info)) {
  2252. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2253. if (er != EMULATE_DONE)
  2254. kvm_queue_exception(vcpu, UD_VECTOR);
  2255. return 1;
  2256. }
  2257. error_code = 0;
  2258. rip = kvm_rip_read(vcpu);
  2259. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2260. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2261. if (is_page_fault(intr_info)) {
  2262. /* EPT won't cause page fault directly */
  2263. if (enable_ept)
  2264. BUG();
  2265. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2266. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2267. (u32)((u64)cr2 >> 32), handler);
  2268. if (kvm_event_needs_reinjection(vcpu))
  2269. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2270. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2271. }
  2272. if (vcpu->arch.rmode.vm86_active &&
  2273. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2274. error_code)) {
  2275. if (vcpu->arch.halt_request) {
  2276. vcpu->arch.halt_request = 0;
  2277. return kvm_emulate_halt(vcpu);
  2278. }
  2279. return 1;
  2280. }
  2281. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2282. switch (ex_no) {
  2283. case DB_VECTOR:
  2284. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2285. if (!(vcpu->guest_debug &
  2286. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2287. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2288. kvm_queue_exception(vcpu, DB_VECTOR);
  2289. return 1;
  2290. }
  2291. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2292. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2293. /* fall through */
  2294. case BP_VECTOR:
  2295. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2296. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2297. kvm_run->debug.arch.exception = ex_no;
  2298. break;
  2299. default:
  2300. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2301. kvm_run->ex.exception = ex_no;
  2302. kvm_run->ex.error_code = error_code;
  2303. break;
  2304. }
  2305. return 0;
  2306. }
  2307. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2308. struct kvm_run *kvm_run)
  2309. {
  2310. ++vcpu->stat.irq_exits;
  2311. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2312. return 1;
  2313. }
  2314. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2315. {
  2316. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2317. return 0;
  2318. }
  2319. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2320. {
  2321. unsigned long exit_qualification;
  2322. int size, in, string;
  2323. unsigned port;
  2324. ++vcpu->stat.io_exits;
  2325. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2326. string = (exit_qualification & 16) != 0;
  2327. if (string) {
  2328. if (emulate_instruction(vcpu,
  2329. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2330. return 0;
  2331. return 1;
  2332. }
  2333. size = (exit_qualification & 7) + 1;
  2334. in = (exit_qualification & 8) != 0;
  2335. port = exit_qualification >> 16;
  2336. skip_emulated_instruction(vcpu);
  2337. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2338. }
  2339. static void
  2340. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2341. {
  2342. /*
  2343. * Patch in the VMCALL instruction:
  2344. */
  2345. hypercall[0] = 0x0f;
  2346. hypercall[1] = 0x01;
  2347. hypercall[2] = 0xc1;
  2348. }
  2349. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2350. {
  2351. unsigned long exit_qualification;
  2352. int cr;
  2353. int reg;
  2354. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2355. cr = exit_qualification & 15;
  2356. reg = (exit_qualification >> 8) & 15;
  2357. switch ((exit_qualification >> 4) & 3) {
  2358. case 0: /* mov to cr */
  2359. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2360. (u32)kvm_register_read(vcpu, reg),
  2361. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2362. handler);
  2363. switch (cr) {
  2364. case 0:
  2365. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2366. skip_emulated_instruction(vcpu);
  2367. return 1;
  2368. case 3:
  2369. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2370. skip_emulated_instruction(vcpu);
  2371. return 1;
  2372. case 4:
  2373. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2374. skip_emulated_instruction(vcpu);
  2375. return 1;
  2376. case 8: {
  2377. u8 cr8_prev = kvm_get_cr8(vcpu);
  2378. u8 cr8 = kvm_register_read(vcpu, reg);
  2379. kvm_set_cr8(vcpu, cr8);
  2380. skip_emulated_instruction(vcpu);
  2381. if (irqchip_in_kernel(vcpu->kvm))
  2382. return 1;
  2383. if (cr8_prev <= cr8)
  2384. return 1;
  2385. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2386. return 0;
  2387. }
  2388. };
  2389. break;
  2390. case 2: /* clts */
  2391. vmx_fpu_deactivate(vcpu);
  2392. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2393. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2394. vmx_fpu_activate(vcpu);
  2395. KVMTRACE_0D(CLTS, vcpu, handler);
  2396. skip_emulated_instruction(vcpu);
  2397. return 1;
  2398. case 1: /*mov from cr*/
  2399. switch (cr) {
  2400. case 3:
  2401. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2402. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2403. (u32)kvm_register_read(vcpu, reg),
  2404. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2405. handler);
  2406. skip_emulated_instruction(vcpu);
  2407. return 1;
  2408. case 8:
  2409. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2410. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2411. (u32)kvm_register_read(vcpu, reg), handler);
  2412. skip_emulated_instruction(vcpu);
  2413. return 1;
  2414. }
  2415. break;
  2416. case 3: /* lmsw */
  2417. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2418. skip_emulated_instruction(vcpu);
  2419. return 1;
  2420. default:
  2421. break;
  2422. }
  2423. kvm_run->exit_reason = 0;
  2424. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2425. (int)(exit_qualification >> 4) & 3, cr);
  2426. return 0;
  2427. }
  2428. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2429. {
  2430. unsigned long exit_qualification;
  2431. unsigned long val;
  2432. int dr, reg;
  2433. dr = vmcs_readl(GUEST_DR7);
  2434. if (dr & DR7_GD) {
  2435. /*
  2436. * As the vm-exit takes precedence over the debug trap, we
  2437. * need to emulate the latter, either for the host or the
  2438. * guest debugging itself.
  2439. */
  2440. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2441. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2442. kvm_run->debug.arch.dr7 = dr;
  2443. kvm_run->debug.arch.pc =
  2444. vmcs_readl(GUEST_CS_BASE) +
  2445. vmcs_readl(GUEST_RIP);
  2446. kvm_run->debug.arch.exception = DB_VECTOR;
  2447. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2448. return 0;
  2449. } else {
  2450. vcpu->arch.dr7 &= ~DR7_GD;
  2451. vcpu->arch.dr6 |= DR6_BD;
  2452. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2453. kvm_queue_exception(vcpu, DB_VECTOR);
  2454. return 1;
  2455. }
  2456. }
  2457. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2458. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2459. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2460. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2461. switch (dr) {
  2462. case 0 ... 3:
  2463. val = vcpu->arch.db[dr];
  2464. break;
  2465. case 6:
  2466. val = vcpu->arch.dr6;
  2467. break;
  2468. case 7:
  2469. val = vcpu->arch.dr7;
  2470. break;
  2471. default:
  2472. val = 0;
  2473. }
  2474. kvm_register_write(vcpu, reg, val);
  2475. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2476. } else {
  2477. val = vcpu->arch.regs[reg];
  2478. switch (dr) {
  2479. case 0 ... 3:
  2480. vcpu->arch.db[dr] = val;
  2481. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2482. vcpu->arch.eff_db[dr] = val;
  2483. break;
  2484. case 4 ... 5:
  2485. if (vcpu->arch.cr4 & X86_CR4_DE)
  2486. kvm_queue_exception(vcpu, UD_VECTOR);
  2487. break;
  2488. case 6:
  2489. if (val & 0xffffffff00000000ULL) {
  2490. kvm_queue_exception(vcpu, GP_VECTOR);
  2491. break;
  2492. }
  2493. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2494. break;
  2495. case 7:
  2496. if (val & 0xffffffff00000000ULL) {
  2497. kvm_queue_exception(vcpu, GP_VECTOR);
  2498. break;
  2499. }
  2500. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2501. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2502. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2503. vcpu->arch.switch_db_regs =
  2504. (val & DR7_BP_EN_MASK);
  2505. }
  2506. break;
  2507. }
  2508. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2509. }
  2510. skip_emulated_instruction(vcpu);
  2511. return 1;
  2512. }
  2513. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2514. {
  2515. kvm_emulate_cpuid(vcpu);
  2516. return 1;
  2517. }
  2518. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2519. {
  2520. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2521. u64 data;
  2522. if (vmx_get_msr(vcpu, ecx, &data)) {
  2523. kvm_inject_gp(vcpu, 0);
  2524. return 1;
  2525. }
  2526. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2527. handler);
  2528. /* FIXME: handling of bits 32:63 of rax, rdx */
  2529. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2530. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2531. skip_emulated_instruction(vcpu);
  2532. return 1;
  2533. }
  2534. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2535. {
  2536. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2537. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2538. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2539. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2540. handler);
  2541. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2542. kvm_inject_gp(vcpu, 0);
  2543. return 1;
  2544. }
  2545. skip_emulated_instruction(vcpu);
  2546. return 1;
  2547. }
  2548. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2549. struct kvm_run *kvm_run)
  2550. {
  2551. return 1;
  2552. }
  2553. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2554. struct kvm_run *kvm_run)
  2555. {
  2556. u32 cpu_based_vm_exec_control;
  2557. /* clear pending irq */
  2558. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2559. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2560. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2561. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2562. ++vcpu->stat.irq_window_exits;
  2563. /*
  2564. * If the user space waits to inject interrupts, exit as soon as
  2565. * possible
  2566. */
  2567. if (!irqchip_in_kernel(vcpu->kvm) &&
  2568. kvm_run->request_interrupt_window &&
  2569. !kvm_cpu_has_interrupt(vcpu)) {
  2570. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2571. return 0;
  2572. }
  2573. return 1;
  2574. }
  2575. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2576. {
  2577. skip_emulated_instruction(vcpu);
  2578. return kvm_emulate_halt(vcpu);
  2579. }
  2580. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2581. {
  2582. skip_emulated_instruction(vcpu);
  2583. kvm_emulate_hypercall(vcpu);
  2584. return 1;
  2585. }
  2586. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2587. {
  2588. kvm_queue_exception(vcpu, UD_VECTOR);
  2589. return 1;
  2590. }
  2591. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2592. {
  2593. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2594. kvm_mmu_invlpg(vcpu, exit_qualification);
  2595. skip_emulated_instruction(vcpu);
  2596. return 1;
  2597. }
  2598. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2599. {
  2600. skip_emulated_instruction(vcpu);
  2601. /* TODO: Add support for VT-d/pass-through device */
  2602. return 1;
  2603. }
  2604. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2605. {
  2606. unsigned long exit_qualification;
  2607. enum emulation_result er;
  2608. unsigned long offset;
  2609. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2610. offset = exit_qualification & 0xffful;
  2611. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2612. if (er != EMULATE_DONE) {
  2613. printk(KERN_ERR
  2614. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2615. offset);
  2616. return -ENOTSUPP;
  2617. }
  2618. return 1;
  2619. }
  2620. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2621. {
  2622. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2623. unsigned long exit_qualification;
  2624. u16 tss_selector;
  2625. int reason, type, idt_v;
  2626. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2627. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2628. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2629. reason = (u32)exit_qualification >> 30;
  2630. if (reason == TASK_SWITCH_GATE && idt_v) {
  2631. switch (type) {
  2632. case INTR_TYPE_NMI_INTR:
  2633. vcpu->arch.nmi_injected = false;
  2634. if (cpu_has_virtual_nmis())
  2635. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2636. GUEST_INTR_STATE_NMI);
  2637. break;
  2638. case INTR_TYPE_EXT_INTR:
  2639. case INTR_TYPE_SOFT_INTR:
  2640. kvm_clear_interrupt_queue(vcpu);
  2641. break;
  2642. case INTR_TYPE_HARD_EXCEPTION:
  2643. case INTR_TYPE_SOFT_EXCEPTION:
  2644. kvm_clear_exception_queue(vcpu);
  2645. break;
  2646. default:
  2647. break;
  2648. }
  2649. }
  2650. tss_selector = exit_qualification;
  2651. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2652. type != INTR_TYPE_EXT_INTR &&
  2653. type != INTR_TYPE_NMI_INTR))
  2654. skip_emulated_instruction(vcpu);
  2655. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2656. return 0;
  2657. /* clear all local breakpoint enable flags */
  2658. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2659. /*
  2660. * TODO: What about debug traps on tss switch?
  2661. * Are we supposed to inject them and update dr6?
  2662. */
  2663. return 1;
  2664. }
  2665. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2666. {
  2667. unsigned long exit_qualification;
  2668. gpa_t gpa;
  2669. int gla_validity;
  2670. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2671. if (exit_qualification & (1 << 6)) {
  2672. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2673. return -ENOTSUPP;
  2674. }
  2675. gla_validity = (exit_qualification >> 7) & 0x3;
  2676. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2677. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2678. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2679. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2680. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2681. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2682. (long unsigned int)exit_qualification);
  2683. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2684. kvm_run->hw.hardware_exit_reason = 0;
  2685. return -ENOTSUPP;
  2686. }
  2687. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2688. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2689. }
  2690. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2691. {
  2692. u32 cpu_based_vm_exec_control;
  2693. /* clear pending NMI */
  2694. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2695. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2696. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2697. ++vcpu->stat.nmi_window_exits;
  2698. return 1;
  2699. }
  2700. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2701. struct kvm_run *kvm_run)
  2702. {
  2703. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2704. enum emulation_result err = EMULATE_DONE;
  2705. local_irq_enable();
  2706. preempt_enable();
  2707. while (!guest_state_valid(vcpu)) {
  2708. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2709. if (err == EMULATE_DO_MMIO)
  2710. break;
  2711. if (err != EMULATE_DONE) {
  2712. kvm_report_emulation_failure(vcpu, "emulation failure");
  2713. break;
  2714. }
  2715. if (signal_pending(current))
  2716. break;
  2717. if (need_resched())
  2718. schedule();
  2719. }
  2720. preempt_disable();
  2721. local_irq_disable();
  2722. vmx->invalid_state_emulation_result = err;
  2723. }
  2724. /*
  2725. * The exit handlers return 1 if the exit was handled fully and guest execution
  2726. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2727. * to be done to userspace and return 0.
  2728. */
  2729. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2730. struct kvm_run *kvm_run) = {
  2731. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2732. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2733. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2734. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2735. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2736. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2737. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2738. [EXIT_REASON_CPUID] = handle_cpuid,
  2739. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2740. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2741. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2742. [EXIT_REASON_HLT] = handle_halt,
  2743. [EXIT_REASON_INVLPG] = handle_invlpg,
  2744. [EXIT_REASON_VMCALL] = handle_vmcall,
  2745. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2746. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2747. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2748. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2749. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2750. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2751. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2752. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2753. [EXIT_REASON_VMON] = handle_vmx_insn,
  2754. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2755. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2756. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2757. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2758. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2759. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2760. };
  2761. static const int kvm_vmx_max_exit_handlers =
  2762. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2763. /*
  2764. * The guest has exited. See if we can fix it or if we need userspace
  2765. * assistance.
  2766. */
  2767. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2768. {
  2769. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2770. u32 exit_reason = vmx->exit_reason;
  2771. u32 vectoring_info = vmx->idt_vectoring_info;
  2772. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2773. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2774. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2775. * we just return 0 */
  2776. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2777. if (guest_state_valid(vcpu))
  2778. vmx->emulation_required = 0;
  2779. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2780. }
  2781. /* Access CR3 don't cause VMExit in paging mode, so we need
  2782. * to sync with guest real CR3. */
  2783. if (enable_ept && is_paging(vcpu)) {
  2784. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2785. ept_load_pdptrs(vcpu);
  2786. }
  2787. if (unlikely(vmx->fail)) {
  2788. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2789. kvm_run->fail_entry.hardware_entry_failure_reason
  2790. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2791. return 0;
  2792. }
  2793. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2794. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2795. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2796. exit_reason != EXIT_REASON_TASK_SWITCH))
  2797. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2798. "(0x%x) and exit reason is 0x%x\n",
  2799. __func__, vectoring_info, exit_reason);
  2800. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2801. if (vmx_interrupt_allowed(vcpu)) {
  2802. vmx->soft_vnmi_blocked = 0;
  2803. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2804. vcpu->arch.nmi_pending) {
  2805. /*
  2806. * This CPU don't support us in finding the end of an
  2807. * NMI-blocked window if the guest runs with IRQs
  2808. * disabled. So we pull the trigger after 1 s of
  2809. * futile waiting, but inform the user about this.
  2810. */
  2811. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2812. "state on VCPU %d after 1 s timeout\n",
  2813. __func__, vcpu->vcpu_id);
  2814. vmx->soft_vnmi_blocked = 0;
  2815. }
  2816. }
  2817. if (exit_reason < kvm_vmx_max_exit_handlers
  2818. && kvm_vmx_exit_handlers[exit_reason])
  2819. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2820. else {
  2821. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2822. kvm_run->hw.hardware_exit_reason = exit_reason;
  2823. }
  2824. return 0;
  2825. }
  2826. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2827. {
  2828. if (irr == -1 || tpr < irr) {
  2829. vmcs_write32(TPR_THRESHOLD, 0);
  2830. return;
  2831. }
  2832. vmcs_write32(TPR_THRESHOLD, irr);
  2833. }
  2834. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2835. {
  2836. u32 exit_intr_info;
  2837. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2838. bool unblock_nmi;
  2839. u8 vector;
  2840. int type;
  2841. bool idtv_info_valid;
  2842. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2843. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2844. /* Handle machine checks before interrupts are enabled */
  2845. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2846. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2847. && is_machine_check(exit_intr_info)))
  2848. kvm_machine_check();
  2849. /* We need to handle NMIs before interrupts are enabled */
  2850. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2851. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  2852. KVMTRACE_0D(NMI, &vmx->vcpu, handler);
  2853. asm("int $2");
  2854. }
  2855. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2856. if (cpu_has_virtual_nmis()) {
  2857. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2858. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2859. /*
  2860. * SDM 3: 27.7.1.2 (September 2008)
  2861. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2862. * a guest IRET fault.
  2863. * SDM 3: 23.2.2 (September 2008)
  2864. * Bit 12 is undefined in any of the following cases:
  2865. * If the VM exit sets the valid bit in the IDT-vectoring
  2866. * information field.
  2867. * If the VM exit is due to a double fault.
  2868. */
  2869. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2870. vector != DF_VECTOR && !idtv_info_valid)
  2871. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2872. GUEST_INTR_STATE_NMI);
  2873. } else if (unlikely(vmx->soft_vnmi_blocked))
  2874. vmx->vnmi_blocked_time +=
  2875. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2876. vmx->vcpu.arch.nmi_injected = false;
  2877. kvm_clear_exception_queue(&vmx->vcpu);
  2878. kvm_clear_interrupt_queue(&vmx->vcpu);
  2879. if (!idtv_info_valid)
  2880. return;
  2881. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2882. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2883. switch (type) {
  2884. case INTR_TYPE_NMI_INTR:
  2885. vmx->vcpu.arch.nmi_injected = true;
  2886. /*
  2887. * SDM 3: 27.7.1.2 (September 2008)
  2888. * Clear bit "block by NMI" before VM entry if a NMI
  2889. * delivery faulted.
  2890. */
  2891. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2892. GUEST_INTR_STATE_NMI);
  2893. break;
  2894. case INTR_TYPE_SOFT_EXCEPTION:
  2895. vmx->vcpu.arch.event_exit_inst_len =
  2896. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2897. /* fall through */
  2898. case INTR_TYPE_HARD_EXCEPTION:
  2899. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2900. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2901. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2902. } else
  2903. kvm_queue_exception(&vmx->vcpu, vector);
  2904. break;
  2905. case INTR_TYPE_SOFT_INTR:
  2906. vmx->vcpu.arch.event_exit_inst_len =
  2907. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2908. /* fall through */
  2909. case INTR_TYPE_EXT_INTR:
  2910. kvm_queue_interrupt(&vmx->vcpu, vector,
  2911. type == INTR_TYPE_SOFT_INTR);
  2912. break;
  2913. default:
  2914. break;
  2915. }
  2916. }
  2917. /*
  2918. * Failure to inject an interrupt should give us the information
  2919. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2920. * when fetching the interrupt redirection bitmap in the real-mode
  2921. * tss, this doesn't happen. So we do it ourselves.
  2922. */
  2923. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2924. {
  2925. vmx->rmode.irq.pending = 0;
  2926. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2927. return;
  2928. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2929. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2930. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2931. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2932. return;
  2933. }
  2934. vmx->idt_vectoring_info =
  2935. VECTORING_INFO_VALID_MASK
  2936. | INTR_TYPE_EXT_INTR
  2937. | vmx->rmode.irq.vector;
  2938. }
  2939. #ifdef CONFIG_X86_64
  2940. #define R "r"
  2941. #define Q "q"
  2942. #else
  2943. #define R "e"
  2944. #define Q "l"
  2945. #endif
  2946. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2947. {
  2948. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2949. /* Record the guest's net vcpu time for enforced NMI injections. */
  2950. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2951. vmx->entry_time = ktime_get();
  2952. /* Handle invalid guest state instead of entering VMX */
  2953. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2954. handle_invalid_guest_state(vcpu, kvm_run);
  2955. return;
  2956. }
  2957. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2958. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2959. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2960. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2961. /*
  2962. * Loading guest fpu may have cleared host cr0.ts
  2963. */
  2964. vmcs_writel(HOST_CR0, read_cr0());
  2965. set_debugreg(vcpu->arch.dr6, 6);
  2966. asm(
  2967. /* Store host registers */
  2968. "push %%"R"dx; push %%"R"bp;"
  2969. "push %%"R"cx \n\t"
  2970. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2971. "je 1f \n\t"
  2972. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2973. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2974. "1: \n\t"
  2975. /* Check if vmlaunch of vmresume is needed */
  2976. "cmpl $0, %c[launched](%0) \n\t"
  2977. /* Load guest registers. Don't clobber flags. */
  2978. "mov %c[cr2](%0), %%"R"ax \n\t"
  2979. "mov %%"R"ax, %%cr2 \n\t"
  2980. "mov %c[rax](%0), %%"R"ax \n\t"
  2981. "mov %c[rbx](%0), %%"R"bx \n\t"
  2982. "mov %c[rdx](%0), %%"R"dx \n\t"
  2983. "mov %c[rsi](%0), %%"R"si \n\t"
  2984. "mov %c[rdi](%0), %%"R"di \n\t"
  2985. "mov %c[rbp](%0), %%"R"bp \n\t"
  2986. #ifdef CONFIG_X86_64
  2987. "mov %c[r8](%0), %%r8 \n\t"
  2988. "mov %c[r9](%0), %%r9 \n\t"
  2989. "mov %c[r10](%0), %%r10 \n\t"
  2990. "mov %c[r11](%0), %%r11 \n\t"
  2991. "mov %c[r12](%0), %%r12 \n\t"
  2992. "mov %c[r13](%0), %%r13 \n\t"
  2993. "mov %c[r14](%0), %%r14 \n\t"
  2994. "mov %c[r15](%0), %%r15 \n\t"
  2995. #endif
  2996. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2997. /* Enter guest mode */
  2998. "jne .Llaunched \n\t"
  2999. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3000. "jmp .Lkvm_vmx_return \n\t"
  3001. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3002. ".Lkvm_vmx_return: "
  3003. /* Save guest registers, load host registers, keep flags */
  3004. "xchg %0, (%%"R"sp) \n\t"
  3005. "mov %%"R"ax, %c[rax](%0) \n\t"
  3006. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3007. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3008. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3009. "mov %%"R"si, %c[rsi](%0) \n\t"
  3010. "mov %%"R"di, %c[rdi](%0) \n\t"
  3011. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3012. #ifdef CONFIG_X86_64
  3013. "mov %%r8, %c[r8](%0) \n\t"
  3014. "mov %%r9, %c[r9](%0) \n\t"
  3015. "mov %%r10, %c[r10](%0) \n\t"
  3016. "mov %%r11, %c[r11](%0) \n\t"
  3017. "mov %%r12, %c[r12](%0) \n\t"
  3018. "mov %%r13, %c[r13](%0) \n\t"
  3019. "mov %%r14, %c[r14](%0) \n\t"
  3020. "mov %%r15, %c[r15](%0) \n\t"
  3021. #endif
  3022. "mov %%cr2, %%"R"ax \n\t"
  3023. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3024. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3025. "setbe %c[fail](%0) \n\t"
  3026. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3027. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3028. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3029. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3030. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3031. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3032. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3033. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3034. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3035. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3036. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3037. #ifdef CONFIG_X86_64
  3038. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3039. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3040. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3041. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3042. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3043. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3044. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3045. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3046. #endif
  3047. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3048. : "cc", "memory"
  3049. , R"bx", R"di", R"si"
  3050. #ifdef CONFIG_X86_64
  3051. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3052. #endif
  3053. );
  3054. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3055. vcpu->arch.regs_dirty = 0;
  3056. get_debugreg(vcpu->arch.dr6, 6);
  3057. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3058. if (vmx->rmode.irq.pending)
  3059. fixup_rmode_irq(vmx);
  3060. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3061. vmx->launched = 1;
  3062. vmx_complete_interrupts(vmx);
  3063. }
  3064. #undef R
  3065. #undef Q
  3066. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3067. {
  3068. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3069. if (vmx->vmcs) {
  3070. vcpu_clear(vmx);
  3071. free_vmcs(vmx->vmcs);
  3072. vmx->vmcs = NULL;
  3073. }
  3074. }
  3075. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3076. {
  3077. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3078. spin_lock(&vmx_vpid_lock);
  3079. if (vmx->vpid != 0)
  3080. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3081. spin_unlock(&vmx_vpid_lock);
  3082. vmx_free_vmcs(vcpu);
  3083. kfree(vmx->host_msrs);
  3084. kfree(vmx->guest_msrs);
  3085. kvm_vcpu_uninit(vcpu);
  3086. kmem_cache_free(kvm_vcpu_cache, vmx);
  3087. }
  3088. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3089. {
  3090. int err;
  3091. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3092. int cpu;
  3093. if (!vmx)
  3094. return ERR_PTR(-ENOMEM);
  3095. allocate_vpid(vmx);
  3096. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3097. if (err)
  3098. goto free_vcpu;
  3099. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3100. if (!vmx->guest_msrs) {
  3101. err = -ENOMEM;
  3102. goto uninit_vcpu;
  3103. }
  3104. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3105. if (!vmx->host_msrs)
  3106. goto free_guest_msrs;
  3107. vmx->vmcs = alloc_vmcs();
  3108. if (!vmx->vmcs)
  3109. goto free_msrs;
  3110. vmcs_clear(vmx->vmcs);
  3111. cpu = get_cpu();
  3112. vmx_vcpu_load(&vmx->vcpu, cpu);
  3113. err = vmx_vcpu_setup(vmx);
  3114. vmx_vcpu_put(&vmx->vcpu);
  3115. put_cpu();
  3116. if (err)
  3117. goto free_vmcs;
  3118. if (vm_need_virtualize_apic_accesses(kvm))
  3119. if (alloc_apic_access_page(kvm) != 0)
  3120. goto free_vmcs;
  3121. if (enable_ept)
  3122. if (alloc_identity_pagetable(kvm) != 0)
  3123. goto free_vmcs;
  3124. return &vmx->vcpu;
  3125. free_vmcs:
  3126. free_vmcs(vmx->vmcs);
  3127. free_msrs:
  3128. kfree(vmx->host_msrs);
  3129. free_guest_msrs:
  3130. kfree(vmx->guest_msrs);
  3131. uninit_vcpu:
  3132. kvm_vcpu_uninit(&vmx->vcpu);
  3133. free_vcpu:
  3134. kmem_cache_free(kvm_vcpu_cache, vmx);
  3135. return ERR_PTR(err);
  3136. }
  3137. static void __init vmx_check_processor_compat(void *rtn)
  3138. {
  3139. struct vmcs_config vmcs_conf;
  3140. *(int *)rtn = 0;
  3141. if (setup_vmcs_config(&vmcs_conf) < 0)
  3142. *(int *)rtn = -EIO;
  3143. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3144. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3145. smp_processor_id());
  3146. *(int *)rtn = -EIO;
  3147. }
  3148. }
  3149. static int get_ept_level(void)
  3150. {
  3151. return VMX_EPT_DEFAULT_GAW + 1;
  3152. }
  3153. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3154. {
  3155. u64 ret;
  3156. /* For VT-d and EPT combination
  3157. * 1. MMIO: always map as UC
  3158. * 2. EPT with VT-d:
  3159. * a. VT-d without snooping control feature: can't guarantee the
  3160. * result, try to trust guest.
  3161. * b. VT-d with snooping control feature: snooping control feature of
  3162. * VT-d engine can guarantee the cache correctness. Just set it
  3163. * to WB to keep consistent with host. So the same as item 3.
  3164. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3165. * consistent with host MTRR
  3166. */
  3167. if (is_mmio)
  3168. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3169. else if (vcpu->kvm->arch.iommu_domain &&
  3170. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3171. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3172. VMX_EPT_MT_EPTE_SHIFT;
  3173. else
  3174. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3175. | VMX_EPT_IGMT_BIT;
  3176. return ret;
  3177. }
  3178. static struct kvm_x86_ops vmx_x86_ops = {
  3179. .cpu_has_kvm_support = cpu_has_kvm_support,
  3180. .disabled_by_bios = vmx_disabled_by_bios,
  3181. .hardware_setup = hardware_setup,
  3182. .hardware_unsetup = hardware_unsetup,
  3183. .check_processor_compatibility = vmx_check_processor_compat,
  3184. .hardware_enable = hardware_enable,
  3185. .hardware_disable = hardware_disable,
  3186. .cpu_has_accelerated_tpr = report_flexpriority,
  3187. .vcpu_create = vmx_create_vcpu,
  3188. .vcpu_free = vmx_free_vcpu,
  3189. .vcpu_reset = vmx_vcpu_reset,
  3190. .prepare_guest_switch = vmx_save_host_state,
  3191. .vcpu_load = vmx_vcpu_load,
  3192. .vcpu_put = vmx_vcpu_put,
  3193. .set_guest_debug = set_guest_debug,
  3194. .get_msr = vmx_get_msr,
  3195. .set_msr = vmx_set_msr,
  3196. .get_segment_base = vmx_get_segment_base,
  3197. .get_segment = vmx_get_segment,
  3198. .set_segment = vmx_set_segment,
  3199. .get_cpl = vmx_get_cpl,
  3200. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3201. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3202. .set_cr0 = vmx_set_cr0,
  3203. .set_cr3 = vmx_set_cr3,
  3204. .set_cr4 = vmx_set_cr4,
  3205. .set_efer = vmx_set_efer,
  3206. .get_idt = vmx_get_idt,
  3207. .set_idt = vmx_set_idt,
  3208. .get_gdt = vmx_get_gdt,
  3209. .set_gdt = vmx_set_gdt,
  3210. .cache_reg = vmx_cache_reg,
  3211. .get_rflags = vmx_get_rflags,
  3212. .set_rflags = vmx_set_rflags,
  3213. .tlb_flush = vmx_flush_tlb,
  3214. .run = vmx_vcpu_run,
  3215. .handle_exit = vmx_handle_exit,
  3216. .skip_emulated_instruction = skip_emulated_instruction,
  3217. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3218. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3219. .patch_hypercall = vmx_patch_hypercall,
  3220. .set_irq = vmx_inject_irq,
  3221. .set_nmi = vmx_inject_nmi,
  3222. .queue_exception = vmx_queue_exception,
  3223. .interrupt_allowed = vmx_interrupt_allowed,
  3224. .nmi_allowed = vmx_nmi_allowed,
  3225. .enable_nmi_window = enable_nmi_window,
  3226. .enable_irq_window = enable_irq_window,
  3227. .update_cr8_intercept = update_cr8_intercept,
  3228. .set_tss_addr = vmx_set_tss_addr,
  3229. .get_tdp_level = get_ept_level,
  3230. .get_mt_mask = vmx_get_mt_mask,
  3231. };
  3232. static int __init vmx_init(void)
  3233. {
  3234. int r;
  3235. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3236. if (!vmx_io_bitmap_a)
  3237. return -ENOMEM;
  3238. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3239. if (!vmx_io_bitmap_b) {
  3240. r = -ENOMEM;
  3241. goto out;
  3242. }
  3243. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3244. if (!vmx_msr_bitmap_legacy) {
  3245. r = -ENOMEM;
  3246. goto out1;
  3247. }
  3248. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3249. if (!vmx_msr_bitmap_longmode) {
  3250. r = -ENOMEM;
  3251. goto out2;
  3252. }
  3253. /*
  3254. * Allow direct access to the PC debug port (it is often used for I/O
  3255. * delays, but the vmexits simply slow things down).
  3256. */
  3257. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3258. clear_bit(0x80, vmx_io_bitmap_a);
  3259. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3260. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3261. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3262. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3263. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3264. if (r)
  3265. goto out3;
  3266. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3267. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3268. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3269. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3270. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3271. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3272. if (enable_ept) {
  3273. bypass_guest_pf = 0;
  3274. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3275. VMX_EPT_WRITABLE_MASK);
  3276. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3277. VMX_EPT_EXECUTABLE_MASK);
  3278. kvm_enable_tdp();
  3279. } else
  3280. kvm_disable_tdp();
  3281. if (bypass_guest_pf)
  3282. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3283. ept_sync_global();
  3284. return 0;
  3285. out3:
  3286. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3287. out2:
  3288. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3289. out1:
  3290. free_page((unsigned long)vmx_io_bitmap_b);
  3291. out:
  3292. free_page((unsigned long)vmx_io_bitmap_a);
  3293. return r;
  3294. }
  3295. static void __exit vmx_exit(void)
  3296. {
  3297. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3298. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3299. free_page((unsigned long)vmx_io_bitmap_b);
  3300. free_page((unsigned long)vmx_io_bitmap_a);
  3301. kvm_exit();
  3302. }
  3303. module_init(vmx_init)
  3304. module_exit(vmx_exit)