disk-io.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <asm/unaligned.h>
  32. #include "compat.h"
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "transaction.h"
  36. #include "btrfs_inode.h"
  37. #include "volumes.h"
  38. #include "print-tree.h"
  39. #include "async-thread.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. static struct extent_io_ops btree_extent_io_ops;
  44. static void end_workqueue_fn(struct btrfs_work *work);
  45. static void free_fs_root(struct btrfs_root *root);
  46. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  47. int read_only);
  48. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  49. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  50. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  51. struct btrfs_root *root);
  52. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  53. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  54. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  55. struct extent_io_tree *dirty_pages,
  56. int mark);
  57. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  58. struct extent_io_tree *pinned_extents);
  59. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  60. /*
  61. * end_io_wq structs are used to do processing in task context when an IO is
  62. * complete. This is used during reads to verify checksums, and it is used
  63. * by writes to insert metadata for new file extents after IO is complete.
  64. */
  65. struct end_io_wq {
  66. struct bio *bio;
  67. bio_end_io_t *end_io;
  68. void *private;
  69. struct btrfs_fs_info *info;
  70. int error;
  71. int metadata;
  72. struct list_head list;
  73. struct btrfs_work work;
  74. };
  75. /*
  76. * async submit bios are used to offload expensive checksumming
  77. * onto the worker threads. They checksum file and metadata bios
  78. * just before they are sent down the IO stack.
  79. */
  80. struct async_submit_bio {
  81. struct inode *inode;
  82. struct bio *bio;
  83. struct list_head list;
  84. extent_submit_bio_hook_t *submit_bio_start;
  85. extent_submit_bio_hook_t *submit_bio_done;
  86. int rw;
  87. int mirror_num;
  88. unsigned long bio_flags;
  89. /*
  90. * bio_offset is optional, can be used if the pages in the bio
  91. * can't tell us where in the file the bio should go
  92. */
  93. u64 bio_offset;
  94. struct btrfs_work work;
  95. };
  96. /* These are used to set the lockdep class on the extent buffer locks.
  97. * The class is set by the readpage_end_io_hook after the buffer has
  98. * passed csum validation but before the pages are unlocked.
  99. *
  100. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  101. * allocated blocks.
  102. *
  103. * The class is based on the level in the tree block, which allows lockdep
  104. * to know that lower nodes nest inside the locks of higher nodes.
  105. *
  106. * We also add a check to make sure the highest level of the tree is
  107. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  108. * code needs update as well.
  109. */
  110. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  111. # if BTRFS_MAX_LEVEL != 8
  112. # error
  113. # endif
  114. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  115. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  116. /* leaf */
  117. "btrfs-extent-00",
  118. "btrfs-extent-01",
  119. "btrfs-extent-02",
  120. "btrfs-extent-03",
  121. "btrfs-extent-04",
  122. "btrfs-extent-05",
  123. "btrfs-extent-06",
  124. "btrfs-extent-07",
  125. /* highest possible level */
  126. "btrfs-extent-08",
  127. };
  128. #endif
  129. /*
  130. * extents on the btree inode are pretty simple, there's one extent
  131. * that covers the entire device
  132. */
  133. static struct extent_map *btree_get_extent(struct inode *inode,
  134. struct page *page, size_t page_offset, u64 start, u64 len,
  135. int create)
  136. {
  137. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  138. struct extent_map *em;
  139. int ret;
  140. read_lock(&em_tree->lock);
  141. em = lookup_extent_mapping(em_tree, start, len);
  142. if (em) {
  143. em->bdev =
  144. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  145. read_unlock(&em_tree->lock);
  146. goto out;
  147. }
  148. read_unlock(&em_tree->lock);
  149. em = alloc_extent_map(GFP_NOFS);
  150. if (!em) {
  151. em = ERR_PTR(-ENOMEM);
  152. goto out;
  153. }
  154. em->start = 0;
  155. em->len = (u64)-1;
  156. em->block_len = (u64)-1;
  157. em->block_start = 0;
  158. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  159. write_lock(&em_tree->lock);
  160. ret = add_extent_mapping(em_tree, em);
  161. if (ret == -EEXIST) {
  162. u64 failed_start = em->start;
  163. u64 failed_len = em->len;
  164. free_extent_map(em);
  165. em = lookup_extent_mapping(em_tree, start, len);
  166. if (em) {
  167. ret = 0;
  168. } else {
  169. em = lookup_extent_mapping(em_tree, failed_start,
  170. failed_len);
  171. ret = -EIO;
  172. }
  173. } else if (ret) {
  174. free_extent_map(em);
  175. em = NULL;
  176. }
  177. write_unlock(&em_tree->lock);
  178. if (ret)
  179. em = ERR_PTR(ret);
  180. out:
  181. return em;
  182. }
  183. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  184. {
  185. return crc32c(seed, data, len);
  186. }
  187. void btrfs_csum_final(u32 crc, char *result)
  188. {
  189. put_unaligned_le32(~crc, result);
  190. }
  191. /*
  192. * compute the csum for a btree block, and either verify it or write it
  193. * into the csum field of the block.
  194. */
  195. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  196. int verify)
  197. {
  198. u16 csum_size =
  199. btrfs_super_csum_size(&root->fs_info->super_copy);
  200. char *result = NULL;
  201. unsigned long len;
  202. unsigned long cur_len;
  203. unsigned long offset = BTRFS_CSUM_SIZE;
  204. char *map_token = NULL;
  205. char *kaddr;
  206. unsigned long map_start;
  207. unsigned long map_len;
  208. int err;
  209. u32 crc = ~(u32)0;
  210. unsigned long inline_result;
  211. len = buf->len - offset;
  212. while (len > 0) {
  213. err = map_private_extent_buffer(buf, offset, 32,
  214. &map_token, &kaddr,
  215. &map_start, &map_len, KM_USER0);
  216. if (err)
  217. return 1;
  218. cur_len = min(len, map_len - (offset - map_start));
  219. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  220. crc, cur_len);
  221. len -= cur_len;
  222. offset += cur_len;
  223. unmap_extent_buffer(buf, map_token, KM_USER0);
  224. }
  225. if (csum_size > sizeof(inline_result)) {
  226. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  227. if (!result)
  228. return 1;
  229. } else {
  230. result = (char *)&inline_result;
  231. }
  232. btrfs_csum_final(crc, result);
  233. if (verify) {
  234. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  235. u32 val;
  236. u32 found = 0;
  237. memcpy(&found, result, csum_size);
  238. read_extent_buffer(buf, &val, 0, csum_size);
  239. if (printk_ratelimit()) {
  240. printk(KERN_INFO "btrfs: %s checksum verify "
  241. "failed on %llu wanted %X found %X "
  242. "level %d\n",
  243. root->fs_info->sb->s_id,
  244. (unsigned long long)buf->start, val, found,
  245. btrfs_header_level(buf));
  246. }
  247. if (result != (char *)&inline_result)
  248. kfree(result);
  249. return 1;
  250. }
  251. } else {
  252. write_extent_buffer(buf, result, 0, csum_size);
  253. }
  254. if (result != (char *)&inline_result)
  255. kfree(result);
  256. return 0;
  257. }
  258. /*
  259. * we can't consider a given block up to date unless the transid of the
  260. * block matches the transid in the parent node's pointer. This is how we
  261. * detect blocks that either didn't get written at all or got written
  262. * in the wrong place.
  263. */
  264. static int verify_parent_transid(struct extent_io_tree *io_tree,
  265. struct extent_buffer *eb, u64 parent_transid)
  266. {
  267. struct extent_state *cached_state = NULL;
  268. int ret;
  269. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  270. return 0;
  271. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  272. 0, &cached_state, GFP_NOFS);
  273. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  274. btrfs_header_generation(eb) == parent_transid) {
  275. ret = 0;
  276. goto out;
  277. }
  278. if (printk_ratelimit()) {
  279. printk("parent transid verify failed on %llu wanted %llu "
  280. "found %llu\n",
  281. (unsigned long long)eb->start,
  282. (unsigned long long)parent_transid,
  283. (unsigned long long)btrfs_header_generation(eb));
  284. }
  285. ret = 1;
  286. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  287. out:
  288. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  289. &cached_state, GFP_NOFS);
  290. return ret;
  291. }
  292. /*
  293. * helper to read a given tree block, doing retries as required when
  294. * the checksums don't match and we have alternate mirrors to try.
  295. */
  296. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  297. struct extent_buffer *eb,
  298. u64 start, u64 parent_transid)
  299. {
  300. struct extent_io_tree *io_tree;
  301. int ret;
  302. int num_copies = 0;
  303. int mirror_num = 0;
  304. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  305. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  306. while (1) {
  307. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  308. btree_get_extent, mirror_num);
  309. if (!ret &&
  310. !verify_parent_transid(io_tree, eb, parent_transid))
  311. return ret;
  312. /*
  313. * This buffer's crc is fine, but its contents are corrupted, so
  314. * there is no reason to read the other copies, they won't be
  315. * any less wrong.
  316. */
  317. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  318. return ret;
  319. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  320. eb->start, eb->len);
  321. if (num_copies == 1)
  322. return ret;
  323. mirror_num++;
  324. if (mirror_num > num_copies)
  325. return ret;
  326. }
  327. return -EIO;
  328. }
  329. /*
  330. * checksum a dirty tree block before IO. This has extra checks to make sure
  331. * we only fill in the checksum field in the first page of a multi-page block
  332. */
  333. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  334. {
  335. struct extent_io_tree *tree;
  336. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  337. u64 found_start;
  338. unsigned long len;
  339. struct extent_buffer *eb;
  340. int ret;
  341. tree = &BTRFS_I(page->mapping->host)->io_tree;
  342. if (page->private == EXTENT_PAGE_PRIVATE) {
  343. WARN_ON(1);
  344. goto out;
  345. }
  346. if (!page->private) {
  347. WARN_ON(1);
  348. goto out;
  349. }
  350. len = page->private >> 2;
  351. WARN_ON(len == 0);
  352. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  353. if (eb == NULL) {
  354. WARN_ON(1);
  355. goto out;
  356. }
  357. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  358. btrfs_header_generation(eb));
  359. BUG_ON(ret);
  360. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  361. found_start = btrfs_header_bytenr(eb);
  362. if (found_start != start) {
  363. WARN_ON(1);
  364. goto err;
  365. }
  366. if (eb->first_page != page) {
  367. WARN_ON(1);
  368. goto err;
  369. }
  370. if (!PageUptodate(page)) {
  371. WARN_ON(1);
  372. goto err;
  373. }
  374. csum_tree_block(root, eb, 0);
  375. err:
  376. free_extent_buffer(eb);
  377. out:
  378. return 0;
  379. }
  380. static int check_tree_block_fsid(struct btrfs_root *root,
  381. struct extent_buffer *eb)
  382. {
  383. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  384. u8 fsid[BTRFS_UUID_SIZE];
  385. int ret = 1;
  386. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  387. BTRFS_FSID_SIZE);
  388. while (fs_devices) {
  389. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  390. ret = 0;
  391. break;
  392. }
  393. fs_devices = fs_devices->seed;
  394. }
  395. return ret;
  396. }
  397. #define CORRUPT(reason, eb, root, slot) \
  398. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  399. "root=%llu, slot=%d\n", reason, \
  400. (unsigned long long)btrfs_header_bytenr(eb), \
  401. (unsigned long long)root->objectid, slot)
  402. static noinline int check_leaf(struct btrfs_root *root,
  403. struct extent_buffer *leaf)
  404. {
  405. struct btrfs_key key;
  406. struct btrfs_key leaf_key;
  407. u32 nritems = btrfs_header_nritems(leaf);
  408. int slot;
  409. if (nritems == 0)
  410. return 0;
  411. /* Check the 0 item */
  412. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  413. BTRFS_LEAF_DATA_SIZE(root)) {
  414. CORRUPT("invalid item offset size pair", leaf, root, 0);
  415. return -EIO;
  416. }
  417. /*
  418. * Check to make sure each items keys are in the correct order and their
  419. * offsets make sense. We only have to loop through nritems-1 because
  420. * we check the current slot against the next slot, which verifies the
  421. * next slot's offset+size makes sense and that the current's slot
  422. * offset is correct.
  423. */
  424. for (slot = 0; slot < nritems - 1; slot++) {
  425. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  426. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  427. /* Make sure the keys are in the right order */
  428. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  429. CORRUPT("bad key order", leaf, root, slot);
  430. return -EIO;
  431. }
  432. /*
  433. * Make sure the offset and ends are right, remember that the
  434. * item data starts at the end of the leaf and grows towards the
  435. * front.
  436. */
  437. if (btrfs_item_offset_nr(leaf, slot) !=
  438. btrfs_item_end_nr(leaf, slot + 1)) {
  439. CORRUPT("slot offset bad", leaf, root, slot);
  440. return -EIO;
  441. }
  442. /*
  443. * Check to make sure that we don't point outside of the leaf,
  444. * just incase all the items are consistent to eachother, but
  445. * all point outside of the leaf.
  446. */
  447. if (btrfs_item_end_nr(leaf, slot) >
  448. BTRFS_LEAF_DATA_SIZE(root)) {
  449. CORRUPT("slot end outside of leaf", leaf, root, slot);
  450. return -EIO;
  451. }
  452. }
  453. return 0;
  454. }
  455. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  456. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  457. {
  458. lockdep_set_class_and_name(&eb->lock,
  459. &btrfs_eb_class[level],
  460. btrfs_eb_name[level]);
  461. }
  462. #endif
  463. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  464. struct extent_state *state)
  465. {
  466. struct extent_io_tree *tree;
  467. u64 found_start;
  468. int found_level;
  469. unsigned long len;
  470. struct extent_buffer *eb;
  471. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  472. int ret = 0;
  473. tree = &BTRFS_I(page->mapping->host)->io_tree;
  474. if (page->private == EXTENT_PAGE_PRIVATE)
  475. goto out;
  476. if (!page->private)
  477. goto out;
  478. len = page->private >> 2;
  479. WARN_ON(len == 0);
  480. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  481. if (eb == NULL) {
  482. ret = -EIO;
  483. goto out;
  484. }
  485. found_start = btrfs_header_bytenr(eb);
  486. if (found_start != start) {
  487. if (printk_ratelimit()) {
  488. printk(KERN_INFO "btrfs bad tree block start "
  489. "%llu %llu\n",
  490. (unsigned long long)found_start,
  491. (unsigned long long)eb->start);
  492. }
  493. ret = -EIO;
  494. goto err;
  495. }
  496. if (eb->first_page != page) {
  497. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  498. eb->first_page->index, page->index);
  499. WARN_ON(1);
  500. ret = -EIO;
  501. goto err;
  502. }
  503. if (check_tree_block_fsid(root, eb)) {
  504. if (printk_ratelimit()) {
  505. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  506. (unsigned long long)eb->start);
  507. }
  508. ret = -EIO;
  509. goto err;
  510. }
  511. found_level = btrfs_header_level(eb);
  512. btrfs_set_buffer_lockdep_class(eb, found_level);
  513. ret = csum_tree_block(root, eb, 1);
  514. if (ret) {
  515. ret = -EIO;
  516. goto err;
  517. }
  518. /*
  519. * If this is a leaf block and it is corrupt, set the corrupt bit so
  520. * that we don't try and read the other copies of this block, just
  521. * return -EIO.
  522. */
  523. if (found_level == 0 && check_leaf(root, eb)) {
  524. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  525. ret = -EIO;
  526. }
  527. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  528. end = eb->start + end - 1;
  529. err:
  530. free_extent_buffer(eb);
  531. out:
  532. return ret;
  533. }
  534. static void end_workqueue_bio(struct bio *bio, int err)
  535. {
  536. struct end_io_wq *end_io_wq = bio->bi_private;
  537. struct btrfs_fs_info *fs_info;
  538. fs_info = end_io_wq->info;
  539. end_io_wq->error = err;
  540. end_io_wq->work.func = end_workqueue_fn;
  541. end_io_wq->work.flags = 0;
  542. if (bio->bi_rw & REQ_WRITE) {
  543. if (end_io_wq->metadata == 1)
  544. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  545. &end_io_wq->work);
  546. else if (end_io_wq->metadata == 2)
  547. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  548. &end_io_wq->work);
  549. else
  550. btrfs_queue_worker(&fs_info->endio_write_workers,
  551. &end_io_wq->work);
  552. } else {
  553. if (end_io_wq->metadata)
  554. btrfs_queue_worker(&fs_info->endio_meta_workers,
  555. &end_io_wq->work);
  556. else
  557. btrfs_queue_worker(&fs_info->endio_workers,
  558. &end_io_wq->work);
  559. }
  560. }
  561. /*
  562. * For the metadata arg you want
  563. *
  564. * 0 - if data
  565. * 1 - if normal metadta
  566. * 2 - if writing to the free space cache area
  567. */
  568. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  569. int metadata)
  570. {
  571. struct end_io_wq *end_io_wq;
  572. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  573. if (!end_io_wq)
  574. return -ENOMEM;
  575. end_io_wq->private = bio->bi_private;
  576. end_io_wq->end_io = bio->bi_end_io;
  577. end_io_wq->info = info;
  578. end_io_wq->error = 0;
  579. end_io_wq->bio = bio;
  580. end_io_wq->metadata = metadata;
  581. bio->bi_private = end_io_wq;
  582. bio->bi_end_io = end_workqueue_bio;
  583. return 0;
  584. }
  585. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  586. {
  587. unsigned long limit = min_t(unsigned long,
  588. info->workers.max_workers,
  589. info->fs_devices->open_devices);
  590. return 256 * limit;
  591. }
  592. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  593. {
  594. return atomic_read(&info->nr_async_bios) >
  595. btrfs_async_submit_limit(info);
  596. }
  597. static void run_one_async_start(struct btrfs_work *work)
  598. {
  599. struct async_submit_bio *async;
  600. async = container_of(work, struct async_submit_bio, work);
  601. async->submit_bio_start(async->inode, async->rw, async->bio,
  602. async->mirror_num, async->bio_flags,
  603. async->bio_offset);
  604. }
  605. static void run_one_async_done(struct btrfs_work *work)
  606. {
  607. struct btrfs_fs_info *fs_info;
  608. struct async_submit_bio *async;
  609. int limit;
  610. async = container_of(work, struct async_submit_bio, work);
  611. fs_info = BTRFS_I(async->inode)->root->fs_info;
  612. limit = btrfs_async_submit_limit(fs_info);
  613. limit = limit * 2 / 3;
  614. atomic_dec(&fs_info->nr_async_submits);
  615. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  616. waitqueue_active(&fs_info->async_submit_wait))
  617. wake_up(&fs_info->async_submit_wait);
  618. async->submit_bio_done(async->inode, async->rw, async->bio,
  619. async->mirror_num, async->bio_flags,
  620. async->bio_offset);
  621. }
  622. static void run_one_async_free(struct btrfs_work *work)
  623. {
  624. struct async_submit_bio *async;
  625. async = container_of(work, struct async_submit_bio, work);
  626. kfree(async);
  627. }
  628. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  629. int rw, struct bio *bio, int mirror_num,
  630. unsigned long bio_flags,
  631. u64 bio_offset,
  632. extent_submit_bio_hook_t *submit_bio_start,
  633. extent_submit_bio_hook_t *submit_bio_done)
  634. {
  635. struct async_submit_bio *async;
  636. async = kmalloc(sizeof(*async), GFP_NOFS);
  637. if (!async)
  638. return -ENOMEM;
  639. async->inode = inode;
  640. async->rw = rw;
  641. async->bio = bio;
  642. async->mirror_num = mirror_num;
  643. async->submit_bio_start = submit_bio_start;
  644. async->submit_bio_done = submit_bio_done;
  645. async->work.func = run_one_async_start;
  646. async->work.ordered_func = run_one_async_done;
  647. async->work.ordered_free = run_one_async_free;
  648. async->work.flags = 0;
  649. async->bio_flags = bio_flags;
  650. async->bio_offset = bio_offset;
  651. atomic_inc(&fs_info->nr_async_submits);
  652. if (rw & REQ_SYNC)
  653. btrfs_set_work_high_prio(&async->work);
  654. btrfs_queue_worker(&fs_info->workers, &async->work);
  655. while (atomic_read(&fs_info->async_submit_draining) &&
  656. atomic_read(&fs_info->nr_async_submits)) {
  657. wait_event(fs_info->async_submit_wait,
  658. (atomic_read(&fs_info->nr_async_submits) == 0));
  659. }
  660. return 0;
  661. }
  662. static int btree_csum_one_bio(struct bio *bio)
  663. {
  664. struct bio_vec *bvec = bio->bi_io_vec;
  665. int bio_index = 0;
  666. struct btrfs_root *root;
  667. WARN_ON(bio->bi_vcnt <= 0);
  668. while (bio_index < bio->bi_vcnt) {
  669. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  670. csum_dirty_buffer(root, bvec->bv_page);
  671. bio_index++;
  672. bvec++;
  673. }
  674. return 0;
  675. }
  676. static int __btree_submit_bio_start(struct inode *inode, int rw,
  677. struct bio *bio, int mirror_num,
  678. unsigned long bio_flags,
  679. u64 bio_offset)
  680. {
  681. /*
  682. * when we're called for a write, we're already in the async
  683. * submission context. Just jump into btrfs_map_bio
  684. */
  685. btree_csum_one_bio(bio);
  686. return 0;
  687. }
  688. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  689. int mirror_num, unsigned long bio_flags,
  690. u64 bio_offset)
  691. {
  692. /*
  693. * when we're called for a write, we're already in the async
  694. * submission context. Just jump into btrfs_map_bio
  695. */
  696. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  697. }
  698. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  699. int mirror_num, unsigned long bio_flags,
  700. u64 bio_offset)
  701. {
  702. int ret;
  703. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  704. bio, 1);
  705. BUG_ON(ret);
  706. if (!(rw & REQ_WRITE)) {
  707. /*
  708. * called for a read, do the setup so that checksum validation
  709. * can happen in the async kernel threads
  710. */
  711. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  712. mirror_num, 0);
  713. }
  714. /*
  715. * kthread helpers are used to submit writes so that checksumming
  716. * can happen in parallel across all CPUs
  717. */
  718. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  719. inode, rw, bio, mirror_num, 0,
  720. bio_offset,
  721. __btree_submit_bio_start,
  722. __btree_submit_bio_done);
  723. }
  724. #ifdef CONFIG_MIGRATION
  725. static int btree_migratepage(struct address_space *mapping,
  726. struct page *newpage, struct page *page)
  727. {
  728. /*
  729. * we can't safely write a btree page from here,
  730. * we haven't done the locking hook
  731. */
  732. if (PageDirty(page))
  733. return -EAGAIN;
  734. /*
  735. * Buffers may be managed in a filesystem specific way.
  736. * We must have no buffers or drop them.
  737. */
  738. if (page_has_private(page) &&
  739. !try_to_release_page(page, GFP_KERNEL))
  740. return -EAGAIN;
  741. return migrate_page(mapping, newpage, page);
  742. }
  743. #endif
  744. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  745. {
  746. struct extent_io_tree *tree;
  747. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  748. struct extent_buffer *eb;
  749. int was_dirty;
  750. tree = &BTRFS_I(page->mapping->host)->io_tree;
  751. if (!(current->flags & PF_MEMALLOC)) {
  752. return extent_write_full_page(tree, page,
  753. btree_get_extent, wbc);
  754. }
  755. redirty_page_for_writepage(wbc, page);
  756. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  757. WARN_ON(!eb);
  758. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  759. if (!was_dirty) {
  760. spin_lock(&root->fs_info->delalloc_lock);
  761. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  762. spin_unlock(&root->fs_info->delalloc_lock);
  763. }
  764. free_extent_buffer(eb);
  765. unlock_page(page);
  766. return 0;
  767. }
  768. static int btree_writepages(struct address_space *mapping,
  769. struct writeback_control *wbc)
  770. {
  771. struct extent_io_tree *tree;
  772. tree = &BTRFS_I(mapping->host)->io_tree;
  773. if (wbc->sync_mode == WB_SYNC_NONE) {
  774. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  775. u64 num_dirty;
  776. unsigned long thresh = 32 * 1024 * 1024;
  777. if (wbc->for_kupdate)
  778. return 0;
  779. /* this is a bit racy, but that's ok */
  780. num_dirty = root->fs_info->dirty_metadata_bytes;
  781. if (num_dirty < thresh)
  782. return 0;
  783. }
  784. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  785. }
  786. static int btree_readpage(struct file *file, struct page *page)
  787. {
  788. struct extent_io_tree *tree;
  789. tree = &BTRFS_I(page->mapping->host)->io_tree;
  790. return extent_read_full_page(tree, page, btree_get_extent);
  791. }
  792. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  793. {
  794. struct extent_io_tree *tree;
  795. struct extent_map_tree *map;
  796. int ret;
  797. if (PageWriteback(page) || PageDirty(page))
  798. return 0;
  799. tree = &BTRFS_I(page->mapping->host)->io_tree;
  800. map = &BTRFS_I(page->mapping->host)->extent_tree;
  801. ret = try_release_extent_state(map, tree, page, gfp_flags);
  802. if (!ret)
  803. return 0;
  804. ret = try_release_extent_buffer(tree, page);
  805. if (ret == 1) {
  806. ClearPagePrivate(page);
  807. set_page_private(page, 0);
  808. page_cache_release(page);
  809. }
  810. return ret;
  811. }
  812. static void btree_invalidatepage(struct page *page, unsigned long offset)
  813. {
  814. struct extent_io_tree *tree;
  815. tree = &BTRFS_I(page->mapping->host)->io_tree;
  816. extent_invalidatepage(tree, page, offset);
  817. btree_releasepage(page, GFP_NOFS);
  818. if (PagePrivate(page)) {
  819. printk(KERN_WARNING "btrfs warning page private not zero "
  820. "on page %llu\n", (unsigned long long)page_offset(page));
  821. ClearPagePrivate(page);
  822. set_page_private(page, 0);
  823. page_cache_release(page);
  824. }
  825. }
  826. static const struct address_space_operations btree_aops = {
  827. .readpage = btree_readpage,
  828. .writepage = btree_writepage,
  829. .writepages = btree_writepages,
  830. .releasepage = btree_releasepage,
  831. .invalidatepage = btree_invalidatepage,
  832. #ifdef CONFIG_MIGRATION
  833. .migratepage = btree_migratepage,
  834. #endif
  835. };
  836. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  837. u64 parent_transid)
  838. {
  839. struct extent_buffer *buf = NULL;
  840. struct inode *btree_inode = root->fs_info->btree_inode;
  841. int ret = 0;
  842. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  843. if (!buf)
  844. return 0;
  845. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  846. buf, 0, 0, btree_get_extent, 0);
  847. free_extent_buffer(buf);
  848. return ret;
  849. }
  850. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  851. u64 bytenr, u32 blocksize)
  852. {
  853. struct inode *btree_inode = root->fs_info->btree_inode;
  854. struct extent_buffer *eb;
  855. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  856. bytenr, blocksize, GFP_NOFS);
  857. return eb;
  858. }
  859. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  860. u64 bytenr, u32 blocksize)
  861. {
  862. struct inode *btree_inode = root->fs_info->btree_inode;
  863. struct extent_buffer *eb;
  864. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  865. bytenr, blocksize, NULL, GFP_NOFS);
  866. return eb;
  867. }
  868. int btrfs_write_tree_block(struct extent_buffer *buf)
  869. {
  870. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  871. buf->start + buf->len - 1);
  872. }
  873. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  874. {
  875. return filemap_fdatawait_range(buf->first_page->mapping,
  876. buf->start, buf->start + buf->len - 1);
  877. }
  878. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  879. u32 blocksize, u64 parent_transid)
  880. {
  881. struct extent_buffer *buf = NULL;
  882. int ret;
  883. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  884. if (!buf)
  885. return NULL;
  886. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  887. if (ret == 0)
  888. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  889. return buf;
  890. }
  891. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  892. struct extent_buffer *buf)
  893. {
  894. struct inode *btree_inode = root->fs_info->btree_inode;
  895. if (btrfs_header_generation(buf) ==
  896. root->fs_info->running_transaction->transid) {
  897. btrfs_assert_tree_locked(buf);
  898. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  899. spin_lock(&root->fs_info->delalloc_lock);
  900. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  901. root->fs_info->dirty_metadata_bytes -= buf->len;
  902. else
  903. WARN_ON(1);
  904. spin_unlock(&root->fs_info->delalloc_lock);
  905. }
  906. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  907. btrfs_set_lock_blocking(buf);
  908. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  909. buf);
  910. }
  911. return 0;
  912. }
  913. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  914. u32 stripesize, struct btrfs_root *root,
  915. struct btrfs_fs_info *fs_info,
  916. u64 objectid)
  917. {
  918. root->node = NULL;
  919. root->commit_root = NULL;
  920. root->sectorsize = sectorsize;
  921. root->nodesize = nodesize;
  922. root->leafsize = leafsize;
  923. root->stripesize = stripesize;
  924. root->ref_cows = 0;
  925. root->track_dirty = 0;
  926. root->in_radix = 0;
  927. root->orphan_item_inserted = 0;
  928. root->orphan_cleanup_state = 0;
  929. root->fs_info = fs_info;
  930. root->objectid = objectid;
  931. root->last_trans = 0;
  932. root->highest_objectid = 0;
  933. root->name = NULL;
  934. root->in_sysfs = 0;
  935. root->inode_tree = RB_ROOT;
  936. root->block_rsv = NULL;
  937. root->orphan_block_rsv = NULL;
  938. INIT_LIST_HEAD(&root->dirty_list);
  939. INIT_LIST_HEAD(&root->orphan_list);
  940. INIT_LIST_HEAD(&root->root_list);
  941. spin_lock_init(&root->node_lock);
  942. spin_lock_init(&root->orphan_lock);
  943. spin_lock_init(&root->inode_lock);
  944. spin_lock_init(&root->accounting_lock);
  945. mutex_init(&root->objectid_mutex);
  946. mutex_init(&root->log_mutex);
  947. init_waitqueue_head(&root->log_writer_wait);
  948. init_waitqueue_head(&root->log_commit_wait[0]);
  949. init_waitqueue_head(&root->log_commit_wait[1]);
  950. atomic_set(&root->log_commit[0], 0);
  951. atomic_set(&root->log_commit[1], 0);
  952. atomic_set(&root->log_writers, 0);
  953. root->log_batch = 0;
  954. root->log_transid = 0;
  955. root->last_log_commit = 0;
  956. extent_io_tree_init(&root->dirty_log_pages,
  957. fs_info->btree_inode->i_mapping, GFP_NOFS);
  958. memset(&root->root_key, 0, sizeof(root->root_key));
  959. memset(&root->root_item, 0, sizeof(root->root_item));
  960. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  961. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  962. root->defrag_trans_start = fs_info->generation;
  963. init_completion(&root->kobj_unregister);
  964. root->defrag_running = 0;
  965. root->root_key.objectid = objectid;
  966. root->anon_super.s_root = NULL;
  967. root->anon_super.s_dev = 0;
  968. INIT_LIST_HEAD(&root->anon_super.s_list);
  969. INIT_LIST_HEAD(&root->anon_super.s_instances);
  970. init_rwsem(&root->anon_super.s_umount);
  971. return 0;
  972. }
  973. static int find_and_setup_root(struct btrfs_root *tree_root,
  974. struct btrfs_fs_info *fs_info,
  975. u64 objectid,
  976. struct btrfs_root *root)
  977. {
  978. int ret;
  979. u32 blocksize;
  980. u64 generation;
  981. __setup_root(tree_root->nodesize, tree_root->leafsize,
  982. tree_root->sectorsize, tree_root->stripesize,
  983. root, fs_info, objectid);
  984. ret = btrfs_find_last_root(tree_root, objectid,
  985. &root->root_item, &root->root_key);
  986. if (ret > 0)
  987. return -ENOENT;
  988. BUG_ON(ret);
  989. generation = btrfs_root_generation(&root->root_item);
  990. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  991. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  992. blocksize, generation);
  993. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  994. free_extent_buffer(root->node);
  995. return -EIO;
  996. }
  997. root->commit_root = btrfs_root_node(root);
  998. return 0;
  999. }
  1000. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1001. struct btrfs_fs_info *fs_info)
  1002. {
  1003. struct btrfs_root *root;
  1004. struct btrfs_root *tree_root = fs_info->tree_root;
  1005. struct extent_buffer *leaf;
  1006. root = kzalloc(sizeof(*root), GFP_NOFS);
  1007. if (!root)
  1008. return ERR_PTR(-ENOMEM);
  1009. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1010. tree_root->sectorsize, tree_root->stripesize,
  1011. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1012. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1013. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1014. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1015. /*
  1016. * log trees do not get reference counted because they go away
  1017. * before a real commit is actually done. They do store pointers
  1018. * to file data extents, and those reference counts still get
  1019. * updated (along with back refs to the log tree).
  1020. */
  1021. root->ref_cows = 0;
  1022. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1023. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1024. if (IS_ERR(leaf)) {
  1025. kfree(root);
  1026. return ERR_CAST(leaf);
  1027. }
  1028. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1029. btrfs_set_header_bytenr(leaf, leaf->start);
  1030. btrfs_set_header_generation(leaf, trans->transid);
  1031. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1032. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1033. root->node = leaf;
  1034. write_extent_buffer(root->node, root->fs_info->fsid,
  1035. (unsigned long)btrfs_header_fsid(root->node),
  1036. BTRFS_FSID_SIZE);
  1037. btrfs_mark_buffer_dirty(root->node);
  1038. btrfs_tree_unlock(root->node);
  1039. return root;
  1040. }
  1041. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1042. struct btrfs_fs_info *fs_info)
  1043. {
  1044. struct btrfs_root *log_root;
  1045. log_root = alloc_log_tree(trans, fs_info);
  1046. if (IS_ERR(log_root))
  1047. return PTR_ERR(log_root);
  1048. WARN_ON(fs_info->log_root_tree);
  1049. fs_info->log_root_tree = log_root;
  1050. return 0;
  1051. }
  1052. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1053. struct btrfs_root *root)
  1054. {
  1055. struct btrfs_root *log_root;
  1056. struct btrfs_inode_item *inode_item;
  1057. log_root = alloc_log_tree(trans, root->fs_info);
  1058. if (IS_ERR(log_root))
  1059. return PTR_ERR(log_root);
  1060. log_root->last_trans = trans->transid;
  1061. log_root->root_key.offset = root->root_key.objectid;
  1062. inode_item = &log_root->root_item.inode;
  1063. inode_item->generation = cpu_to_le64(1);
  1064. inode_item->size = cpu_to_le64(3);
  1065. inode_item->nlink = cpu_to_le32(1);
  1066. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1067. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1068. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1069. WARN_ON(root->log_root);
  1070. root->log_root = log_root;
  1071. root->log_transid = 0;
  1072. root->last_log_commit = 0;
  1073. return 0;
  1074. }
  1075. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1076. struct btrfs_key *location)
  1077. {
  1078. struct btrfs_root *root;
  1079. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1080. struct btrfs_path *path;
  1081. struct extent_buffer *l;
  1082. u64 generation;
  1083. u32 blocksize;
  1084. int ret = 0;
  1085. root = kzalloc(sizeof(*root), GFP_NOFS);
  1086. if (!root)
  1087. return ERR_PTR(-ENOMEM);
  1088. if (location->offset == (u64)-1) {
  1089. ret = find_and_setup_root(tree_root, fs_info,
  1090. location->objectid, root);
  1091. if (ret) {
  1092. kfree(root);
  1093. return ERR_PTR(ret);
  1094. }
  1095. goto out;
  1096. }
  1097. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1098. tree_root->sectorsize, tree_root->stripesize,
  1099. root, fs_info, location->objectid);
  1100. path = btrfs_alloc_path();
  1101. if (!path) {
  1102. kfree(root);
  1103. return ERR_PTR(-ENOMEM);
  1104. }
  1105. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1106. if (ret == 0) {
  1107. l = path->nodes[0];
  1108. read_extent_buffer(l, &root->root_item,
  1109. btrfs_item_ptr_offset(l, path->slots[0]),
  1110. sizeof(root->root_item));
  1111. memcpy(&root->root_key, location, sizeof(*location));
  1112. }
  1113. btrfs_free_path(path);
  1114. if (ret) {
  1115. kfree(root);
  1116. if (ret > 0)
  1117. ret = -ENOENT;
  1118. return ERR_PTR(ret);
  1119. }
  1120. generation = btrfs_root_generation(&root->root_item);
  1121. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1122. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1123. blocksize, generation);
  1124. root->commit_root = btrfs_root_node(root);
  1125. BUG_ON(!root->node);
  1126. out:
  1127. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1128. root->ref_cows = 1;
  1129. btrfs_check_and_init_root_item(&root->root_item);
  1130. }
  1131. return root;
  1132. }
  1133. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1134. u64 root_objectid)
  1135. {
  1136. struct btrfs_root *root;
  1137. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1138. return fs_info->tree_root;
  1139. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1140. return fs_info->extent_root;
  1141. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1142. (unsigned long)root_objectid);
  1143. return root;
  1144. }
  1145. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1146. struct btrfs_key *location)
  1147. {
  1148. struct btrfs_root *root;
  1149. int ret;
  1150. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1151. return fs_info->tree_root;
  1152. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1153. return fs_info->extent_root;
  1154. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1155. return fs_info->chunk_root;
  1156. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1157. return fs_info->dev_root;
  1158. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1159. return fs_info->csum_root;
  1160. again:
  1161. spin_lock(&fs_info->fs_roots_radix_lock);
  1162. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1163. (unsigned long)location->objectid);
  1164. spin_unlock(&fs_info->fs_roots_radix_lock);
  1165. if (root)
  1166. return root;
  1167. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1168. if (IS_ERR(root))
  1169. return root;
  1170. set_anon_super(&root->anon_super, NULL);
  1171. if (btrfs_root_refs(&root->root_item) == 0) {
  1172. ret = -ENOENT;
  1173. goto fail;
  1174. }
  1175. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1176. if (ret < 0)
  1177. goto fail;
  1178. if (ret == 0)
  1179. root->orphan_item_inserted = 1;
  1180. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1181. if (ret)
  1182. goto fail;
  1183. spin_lock(&fs_info->fs_roots_radix_lock);
  1184. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1185. (unsigned long)root->root_key.objectid,
  1186. root);
  1187. if (ret == 0)
  1188. root->in_radix = 1;
  1189. spin_unlock(&fs_info->fs_roots_radix_lock);
  1190. radix_tree_preload_end();
  1191. if (ret) {
  1192. if (ret == -EEXIST) {
  1193. free_fs_root(root);
  1194. goto again;
  1195. }
  1196. goto fail;
  1197. }
  1198. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1199. root->root_key.objectid);
  1200. WARN_ON(ret);
  1201. return root;
  1202. fail:
  1203. free_fs_root(root);
  1204. return ERR_PTR(ret);
  1205. }
  1206. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1207. struct btrfs_key *location,
  1208. const char *name, int namelen)
  1209. {
  1210. return btrfs_read_fs_root_no_name(fs_info, location);
  1211. #if 0
  1212. struct btrfs_root *root;
  1213. int ret;
  1214. root = btrfs_read_fs_root_no_name(fs_info, location);
  1215. if (!root)
  1216. return NULL;
  1217. if (root->in_sysfs)
  1218. return root;
  1219. ret = btrfs_set_root_name(root, name, namelen);
  1220. if (ret) {
  1221. free_extent_buffer(root->node);
  1222. kfree(root);
  1223. return ERR_PTR(ret);
  1224. }
  1225. ret = btrfs_sysfs_add_root(root);
  1226. if (ret) {
  1227. free_extent_buffer(root->node);
  1228. kfree(root->name);
  1229. kfree(root);
  1230. return ERR_PTR(ret);
  1231. }
  1232. root->in_sysfs = 1;
  1233. return root;
  1234. #endif
  1235. }
  1236. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1237. {
  1238. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1239. int ret = 0;
  1240. struct btrfs_device *device;
  1241. struct backing_dev_info *bdi;
  1242. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1243. if (!device->bdev)
  1244. continue;
  1245. bdi = blk_get_backing_dev_info(device->bdev);
  1246. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1247. ret = 1;
  1248. break;
  1249. }
  1250. }
  1251. return ret;
  1252. }
  1253. /*
  1254. * If this fails, caller must call bdi_destroy() to get rid of the
  1255. * bdi again.
  1256. */
  1257. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1258. {
  1259. int err;
  1260. bdi->capabilities = BDI_CAP_MAP_COPY;
  1261. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1262. if (err)
  1263. return err;
  1264. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1265. bdi->congested_fn = btrfs_congested_fn;
  1266. bdi->congested_data = info;
  1267. return 0;
  1268. }
  1269. static int bio_ready_for_csum(struct bio *bio)
  1270. {
  1271. u64 length = 0;
  1272. u64 buf_len = 0;
  1273. u64 start = 0;
  1274. struct page *page;
  1275. struct extent_io_tree *io_tree = NULL;
  1276. struct bio_vec *bvec;
  1277. int i;
  1278. int ret;
  1279. bio_for_each_segment(bvec, bio, i) {
  1280. page = bvec->bv_page;
  1281. if (page->private == EXTENT_PAGE_PRIVATE) {
  1282. length += bvec->bv_len;
  1283. continue;
  1284. }
  1285. if (!page->private) {
  1286. length += bvec->bv_len;
  1287. continue;
  1288. }
  1289. length = bvec->bv_len;
  1290. buf_len = page->private >> 2;
  1291. start = page_offset(page) + bvec->bv_offset;
  1292. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1293. }
  1294. /* are we fully contained in this bio? */
  1295. if (buf_len <= length)
  1296. return 1;
  1297. ret = extent_range_uptodate(io_tree, start + length,
  1298. start + buf_len - 1);
  1299. return ret;
  1300. }
  1301. /*
  1302. * called by the kthread helper functions to finally call the bio end_io
  1303. * functions. This is where read checksum verification actually happens
  1304. */
  1305. static void end_workqueue_fn(struct btrfs_work *work)
  1306. {
  1307. struct bio *bio;
  1308. struct end_io_wq *end_io_wq;
  1309. struct btrfs_fs_info *fs_info;
  1310. int error;
  1311. end_io_wq = container_of(work, struct end_io_wq, work);
  1312. bio = end_io_wq->bio;
  1313. fs_info = end_io_wq->info;
  1314. /* metadata bio reads are special because the whole tree block must
  1315. * be checksummed at once. This makes sure the entire block is in
  1316. * ram and up to date before trying to verify things. For
  1317. * blocksize <= pagesize, it is basically a noop
  1318. */
  1319. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1320. !bio_ready_for_csum(bio)) {
  1321. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1322. &end_io_wq->work);
  1323. return;
  1324. }
  1325. error = end_io_wq->error;
  1326. bio->bi_private = end_io_wq->private;
  1327. bio->bi_end_io = end_io_wq->end_io;
  1328. kfree(end_io_wq);
  1329. bio_endio(bio, error);
  1330. }
  1331. static int cleaner_kthread(void *arg)
  1332. {
  1333. struct btrfs_root *root = arg;
  1334. do {
  1335. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1336. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1337. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1338. btrfs_run_delayed_iputs(root);
  1339. btrfs_clean_old_snapshots(root);
  1340. mutex_unlock(&root->fs_info->cleaner_mutex);
  1341. }
  1342. if (freezing(current)) {
  1343. refrigerator();
  1344. } else {
  1345. set_current_state(TASK_INTERRUPTIBLE);
  1346. if (!kthread_should_stop())
  1347. schedule();
  1348. __set_current_state(TASK_RUNNING);
  1349. }
  1350. } while (!kthread_should_stop());
  1351. return 0;
  1352. }
  1353. static int transaction_kthread(void *arg)
  1354. {
  1355. struct btrfs_root *root = arg;
  1356. struct btrfs_trans_handle *trans;
  1357. struct btrfs_transaction *cur;
  1358. u64 transid;
  1359. unsigned long now;
  1360. unsigned long delay;
  1361. int ret;
  1362. do {
  1363. delay = HZ * 30;
  1364. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1365. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1366. spin_lock(&root->fs_info->new_trans_lock);
  1367. cur = root->fs_info->running_transaction;
  1368. if (!cur) {
  1369. spin_unlock(&root->fs_info->new_trans_lock);
  1370. goto sleep;
  1371. }
  1372. now = get_seconds();
  1373. if (!cur->blocked &&
  1374. (now < cur->start_time || now - cur->start_time < 30)) {
  1375. spin_unlock(&root->fs_info->new_trans_lock);
  1376. delay = HZ * 5;
  1377. goto sleep;
  1378. }
  1379. transid = cur->transid;
  1380. spin_unlock(&root->fs_info->new_trans_lock);
  1381. trans = btrfs_join_transaction(root, 1);
  1382. BUG_ON(IS_ERR(trans));
  1383. if (transid == trans->transid) {
  1384. ret = btrfs_commit_transaction(trans, root);
  1385. BUG_ON(ret);
  1386. } else {
  1387. btrfs_end_transaction(trans, root);
  1388. }
  1389. sleep:
  1390. wake_up_process(root->fs_info->cleaner_kthread);
  1391. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1392. if (freezing(current)) {
  1393. refrigerator();
  1394. } else {
  1395. set_current_state(TASK_INTERRUPTIBLE);
  1396. if (!kthread_should_stop() &&
  1397. !btrfs_transaction_blocked(root->fs_info))
  1398. schedule_timeout(delay);
  1399. __set_current_state(TASK_RUNNING);
  1400. }
  1401. } while (!kthread_should_stop());
  1402. return 0;
  1403. }
  1404. struct btrfs_root *open_ctree(struct super_block *sb,
  1405. struct btrfs_fs_devices *fs_devices,
  1406. char *options)
  1407. {
  1408. u32 sectorsize;
  1409. u32 nodesize;
  1410. u32 leafsize;
  1411. u32 blocksize;
  1412. u32 stripesize;
  1413. u64 generation;
  1414. u64 features;
  1415. struct btrfs_key location;
  1416. struct buffer_head *bh;
  1417. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1418. GFP_NOFS);
  1419. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1420. GFP_NOFS);
  1421. struct btrfs_root *tree_root = btrfs_sb(sb);
  1422. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1423. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1424. GFP_NOFS);
  1425. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1426. GFP_NOFS);
  1427. struct btrfs_root *log_tree_root;
  1428. int ret;
  1429. int err = -EINVAL;
  1430. struct btrfs_super_block *disk_super;
  1431. if (!extent_root || !tree_root || !fs_info ||
  1432. !chunk_root || !dev_root || !csum_root) {
  1433. err = -ENOMEM;
  1434. goto fail;
  1435. }
  1436. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1437. if (ret) {
  1438. err = ret;
  1439. goto fail;
  1440. }
  1441. ret = setup_bdi(fs_info, &fs_info->bdi);
  1442. if (ret) {
  1443. err = ret;
  1444. goto fail_srcu;
  1445. }
  1446. fs_info->btree_inode = new_inode(sb);
  1447. if (!fs_info->btree_inode) {
  1448. err = -ENOMEM;
  1449. goto fail_bdi;
  1450. }
  1451. fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
  1452. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1453. INIT_LIST_HEAD(&fs_info->trans_list);
  1454. INIT_LIST_HEAD(&fs_info->dead_roots);
  1455. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1456. INIT_LIST_HEAD(&fs_info->hashers);
  1457. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1458. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1459. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1460. spin_lock_init(&fs_info->delalloc_lock);
  1461. spin_lock_init(&fs_info->new_trans_lock);
  1462. spin_lock_init(&fs_info->ref_cache_lock);
  1463. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1464. spin_lock_init(&fs_info->delayed_iput_lock);
  1465. init_completion(&fs_info->kobj_unregister);
  1466. fs_info->tree_root = tree_root;
  1467. fs_info->extent_root = extent_root;
  1468. fs_info->csum_root = csum_root;
  1469. fs_info->chunk_root = chunk_root;
  1470. fs_info->dev_root = dev_root;
  1471. fs_info->fs_devices = fs_devices;
  1472. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1473. INIT_LIST_HEAD(&fs_info->space_info);
  1474. btrfs_mapping_init(&fs_info->mapping_tree);
  1475. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1476. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1477. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1478. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1479. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1480. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1481. mutex_init(&fs_info->durable_block_rsv_mutex);
  1482. atomic_set(&fs_info->nr_async_submits, 0);
  1483. atomic_set(&fs_info->async_delalloc_pages, 0);
  1484. atomic_set(&fs_info->async_submit_draining, 0);
  1485. atomic_set(&fs_info->nr_async_bios, 0);
  1486. fs_info->sb = sb;
  1487. fs_info->max_inline = 8192 * 1024;
  1488. fs_info->metadata_ratio = 0;
  1489. fs_info->thread_pool_size = min_t(unsigned long,
  1490. num_online_cpus() + 2, 8);
  1491. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1492. spin_lock_init(&fs_info->ordered_extent_lock);
  1493. sb->s_blocksize = 4096;
  1494. sb->s_blocksize_bits = blksize_bits(4096);
  1495. sb->s_bdi = &fs_info->bdi;
  1496. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1497. fs_info->btree_inode->i_nlink = 1;
  1498. /*
  1499. * we set the i_size on the btree inode to the max possible int.
  1500. * the real end of the address space is determined by all of
  1501. * the devices in the system
  1502. */
  1503. fs_info->btree_inode->i_size = OFFSET_MAX;
  1504. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1505. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1506. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1507. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1508. fs_info->btree_inode->i_mapping,
  1509. GFP_NOFS);
  1510. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1511. GFP_NOFS);
  1512. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1513. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1514. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1515. sizeof(struct btrfs_key));
  1516. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1517. insert_inode_hash(fs_info->btree_inode);
  1518. spin_lock_init(&fs_info->block_group_cache_lock);
  1519. fs_info->block_group_cache_tree = RB_ROOT;
  1520. extent_io_tree_init(&fs_info->freed_extents[0],
  1521. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1522. extent_io_tree_init(&fs_info->freed_extents[1],
  1523. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1524. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1525. fs_info->do_barriers = 1;
  1526. mutex_init(&fs_info->trans_mutex);
  1527. mutex_init(&fs_info->ordered_operations_mutex);
  1528. mutex_init(&fs_info->tree_log_mutex);
  1529. mutex_init(&fs_info->chunk_mutex);
  1530. mutex_init(&fs_info->transaction_kthread_mutex);
  1531. mutex_init(&fs_info->cleaner_mutex);
  1532. mutex_init(&fs_info->volume_mutex);
  1533. init_rwsem(&fs_info->extent_commit_sem);
  1534. init_rwsem(&fs_info->cleanup_work_sem);
  1535. init_rwsem(&fs_info->subvol_sem);
  1536. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1537. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1538. init_waitqueue_head(&fs_info->transaction_throttle);
  1539. init_waitqueue_head(&fs_info->transaction_wait);
  1540. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1541. init_waitqueue_head(&fs_info->async_submit_wait);
  1542. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1543. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1544. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1545. if (!bh) {
  1546. err = -EINVAL;
  1547. goto fail_iput;
  1548. }
  1549. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1550. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1551. sizeof(fs_info->super_for_commit));
  1552. brelse(bh);
  1553. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1554. disk_super = &fs_info->super_copy;
  1555. if (!btrfs_super_root(disk_super))
  1556. goto fail_iput;
  1557. /* check FS state, whether FS is broken. */
  1558. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1559. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1560. /*
  1561. * In the long term, we'll store the compression type in the super
  1562. * block, and it'll be used for per file compression control.
  1563. */
  1564. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1565. ret = btrfs_parse_options(tree_root, options);
  1566. if (ret) {
  1567. err = ret;
  1568. goto fail_iput;
  1569. }
  1570. features = btrfs_super_incompat_flags(disk_super) &
  1571. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1572. if (features) {
  1573. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1574. "unsupported optional features (%Lx).\n",
  1575. (unsigned long long)features);
  1576. err = -EINVAL;
  1577. goto fail_iput;
  1578. }
  1579. features = btrfs_super_incompat_flags(disk_super);
  1580. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1581. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1582. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1583. btrfs_set_super_incompat_flags(disk_super, features);
  1584. features = btrfs_super_compat_ro_flags(disk_super) &
  1585. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1586. if (!(sb->s_flags & MS_RDONLY) && features) {
  1587. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1588. "unsupported option features (%Lx).\n",
  1589. (unsigned long long)features);
  1590. err = -EINVAL;
  1591. goto fail_iput;
  1592. }
  1593. btrfs_init_workers(&fs_info->generic_worker,
  1594. "genwork", 1, NULL);
  1595. btrfs_init_workers(&fs_info->workers, "worker",
  1596. fs_info->thread_pool_size,
  1597. &fs_info->generic_worker);
  1598. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1599. fs_info->thread_pool_size,
  1600. &fs_info->generic_worker);
  1601. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1602. min_t(u64, fs_devices->num_devices,
  1603. fs_info->thread_pool_size),
  1604. &fs_info->generic_worker);
  1605. /* a higher idle thresh on the submit workers makes it much more
  1606. * likely that bios will be send down in a sane order to the
  1607. * devices
  1608. */
  1609. fs_info->submit_workers.idle_thresh = 64;
  1610. fs_info->workers.idle_thresh = 16;
  1611. fs_info->workers.ordered = 1;
  1612. fs_info->delalloc_workers.idle_thresh = 2;
  1613. fs_info->delalloc_workers.ordered = 1;
  1614. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1615. &fs_info->generic_worker);
  1616. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1617. fs_info->thread_pool_size,
  1618. &fs_info->generic_worker);
  1619. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1620. fs_info->thread_pool_size,
  1621. &fs_info->generic_worker);
  1622. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1623. "endio-meta-write", fs_info->thread_pool_size,
  1624. &fs_info->generic_worker);
  1625. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1626. fs_info->thread_pool_size,
  1627. &fs_info->generic_worker);
  1628. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1629. 1, &fs_info->generic_worker);
  1630. /*
  1631. * endios are largely parallel and should have a very
  1632. * low idle thresh
  1633. */
  1634. fs_info->endio_workers.idle_thresh = 4;
  1635. fs_info->endio_meta_workers.idle_thresh = 4;
  1636. fs_info->endio_write_workers.idle_thresh = 2;
  1637. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1638. btrfs_start_workers(&fs_info->workers, 1);
  1639. btrfs_start_workers(&fs_info->generic_worker, 1);
  1640. btrfs_start_workers(&fs_info->submit_workers, 1);
  1641. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1642. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1643. btrfs_start_workers(&fs_info->endio_workers, 1);
  1644. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1645. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1646. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1647. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1648. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1649. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1650. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1651. nodesize = btrfs_super_nodesize(disk_super);
  1652. leafsize = btrfs_super_leafsize(disk_super);
  1653. sectorsize = btrfs_super_sectorsize(disk_super);
  1654. stripesize = btrfs_super_stripesize(disk_super);
  1655. tree_root->nodesize = nodesize;
  1656. tree_root->leafsize = leafsize;
  1657. tree_root->sectorsize = sectorsize;
  1658. tree_root->stripesize = stripesize;
  1659. sb->s_blocksize = sectorsize;
  1660. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1661. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1662. sizeof(disk_super->magic))) {
  1663. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1664. goto fail_sb_buffer;
  1665. }
  1666. mutex_lock(&fs_info->chunk_mutex);
  1667. ret = btrfs_read_sys_array(tree_root);
  1668. mutex_unlock(&fs_info->chunk_mutex);
  1669. if (ret) {
  1670. printk(KERN_WARNING "btrfs: failed to read the system "
  1671. "array on %s\n", sb->s_id);
  1672. goto fail_sb_buffer;
  1673. }
  1674. blocksize = btrfs_level_size(tree_root,
  1675. btrfs_super_chunk_root_level(disk_super));
  1676. generation = btrfs_super_chunk_root_generation(disk_super);
  1677. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1678. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1679. chunk_root->node = read_tree_block(chunk_root,
  1680. btrfs_super_chunk_root(disk_super),
  1681. blocksize, generation);
  1682. BUG_ON(!chunk_root->node);
  1683. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1684. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1685. sb->s_id);
  1686. goto fail_chunk_root;
  1687. }
  1688. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1689. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1690. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1691. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1692. BTRFS_UUID_SIZE);
  1693. mutex_lock(&fs_info->chunk_mutex);
  1694. ret = btrfs_read_chunk_tree(chunk_root);
  1695. mutex_unlock(&fs_info->chunk_mutex);
  1696. if (ret) {
  1697. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1698. sb->s_id);
  1699. goto fail_chunk_root;
  1700. }
  1701. btrfs_close_extra_devices(fs_devices);
  1702. blocksize = btrfs_level_size(tree_root,
  1703. btrfs_super_root_level(disk_super));
  1704. generation = btrfs_super_generation(disk_super);
  1705. tree_root->node = read_tree_block(tree_root,
  1706. btrfs_super_root(disk_super),
  1707. blocksize, generation);
  1708. if (!tree_root->node)
  1709. goto fail_chunk_root;
  1710. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1711. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1712. sb->s_id);
  1713. goto fail_tree_root;
  1714. }
  1715. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1716. tree_root->commit_root = btrfs_root_node(tree_root);
  1717. ret = find_and_setup_root(tree_root, fs_info,
  1718. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1719. if (ret)
  1720. goto fail_tree_root;
  1721. extent_root->track_dirty = 1;
  1722. ret = find_and_setup_root(tree_root, fs_info,
  1723. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1724. if (ret)
  1725. goto fail_extent_root;
  1726. dev_root->track_dirty = 1;
  1727. ret = find_and_setup_root(tree_root, fs_info,
  1728. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1729. if (ret)
  1730. goto fail_dev_root;
  1731. csum_root->track_dirty = 1;
  1732. fs_info->generation = generation;
  1733. fs_info->last_trans_committed = generation;
  1734. fs_info->data_alloc_profile = (u64)-1;
  1735. fs_info->metadata_alloc_profile = (u64)-1;
  1736. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1737. ret = btrfs_init_space_info(fs_info);
  1738. if (ret) {
  1739. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1740. goto fail_block_groups;
  1741. }
  1742. ret = btrfs_read_block_groups(extent_root);
  1743. if (ret) {
  1744. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1745. goto fail_block_groups;
  1746. }
  1747. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1748. "btrfs-cleaner");
  1749. if (IS_ERR(fs_info->cleaner_kthread))
  1750. goto fail_block_groups;
  1751. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1752. tree_root,
  1753. "btrfs-transaction");
  1754. if (IS_ERR(fs_info->transaction_kthread))
  1755. goto fail_cleaner;
  1756. if (!btrfs_test_opt(tree_root, SSD) &&
  1757. !btrfs_test_opt(tree_root, NOSSD) &&
  1758. !fs_info->fs_devices->rotating) {
  1759. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1760. "mode\n");
  1761. btrfs_set_opt(fs_info->mount_opt, SSD);
  1762. }
  1763. /* do not make disk changes in broken FS */
  1764. if (btrfs_super_log_root(disk_super) != 0 &&
  1765. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1766. u64 bytenr = btrfs_super_log_root(disk_super);
  1767. if (fs_devices->rw_devices == 0) {
  1768. printk(KERN_WARNING "Btrfs log replay required "
  1769. "on RO media\n");
  1770. err = -EIO;
  1771. goto fail_trans_kthread;
  1772. }
  1773. blocksize =
  1774. btrfs_level_size(tree_root,
  1775. btrfs_super_log_root_level(disk_super));
  1776. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1777. if (!log_tree_root) {
  1778. err = -ENOMEM;
  1779. goto fail_trans_kthread;
  1780. }
  1781. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1782. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1783. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1784. blocksize,
  1785. generation + 1);
  1786. ret = btrfs_recover_log_trees(log_tree_root);
  1787. BUG_ON(ret);
  1788. if (sb->s_flags & MS_RDONLY) {
  1789. ret = btrfs_commit_super(tree_root);
  1790. BUG_ON(ret);
  1791. }
  1792. }
  1793. ret = btrfs_find_orphan_roots(tree_root);
  1794. BUG_ON(ret);
  1795. if (!(sb->s_flags & MS_RDONLY)) {
  1796. ret = btrfs_cleanup_fs_roots(fs_info);
  1797. BUG_ON(ret);
  1798. ret = btrfs_recover_relocation(tree_root);
  1799. if (ret < 0) {
  1800. printk(KERN_WARNING
  1801. "btrfs: failed to recover relocation\n");
  1802. err = -EINVAL;
  1803. goto fail_trans_kthread;
  1804. }
  1805. }
  1806. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1807. location.type = BTRFS_ROOT_ITEM_KEY;
  1808. location.offset = (u64)-1;
  1809. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1810. if (!fs_info->fs_root)
  1811. goto fail_trans_kthread;
  1812. if (IS_ERR(fs_info->fs_root)) {
  1813. err = PTR_ERR(fs_info->fs_root);
  1814. goto fail_trans_kthread;
  1815. }
  1816. if (!(sb->s_flags & MS_RDONLY)) {
  1817. down_read(&fs_info->cleanup_work_sem);
  1818. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1819. if (!err)
  1820. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1821. up_read(&fs_info->cleanup_work_sem);
  1822. if (err) {
  1823. close_ctree(tree_root);
  1824. return ERR_PTR(err);
  1825. }
  1826. }
  1827. return tree_root;
  1828. fail_trans_kthread:
  1829. kthread_stop(fs_info->transaction_kthread);
  1830. fail_cleaner:
  1831. kthread_stop(fs_info->cleaner_kthread);
  1832. /*
  1833. * make sure we're done with the btree inode before we stop our
  1834. * kthreads
  1835. */
  1836. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1837. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1838. fail_block_groups:
  1839. btrfs_free_block_groups(fs_info);
  1840. free_extent_buffer(csum_root->node);
  1841. free_extent_buffer(csum_root->commit_root);
  1842. fail_dev_root:
  1843. free_extent_buffer(dev_root->node);
  1844. free_extent_buffer(dev_root->commit_root);
  1845. fail_extent_root:
  1846. free_extent_buffer(extent_root->node);
  1847. free_extent_buffer(extent_root->commit_root);
  1848. fail_tree_root:
  1849. free_extent_buffer(tree_root->node);
  1850. free_extent_buffer(tree_root->commit_root);
  1851. fail_chunk_root:
  1852. free_extent_buffer(chunk_root->node);
  1853. free_extent_buffer(chunk_root->commit_root);
  1854. fail_sb_buffer:
  1855. btrfs_stop_workers(&fs_info->generic_worker);
  1856. btrfs_stop_workers(&fs_info->fixup_workers);
  1857. btrfs_stop_workers(&fs_info->delalloc_workers);
  1858. btrfs_stop_workers(&fs_info->workers);
  1859. btrfs_stop_workers(&fs_info->endio_workers);
  1860. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1861. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1862. btrfs_stop_workers(&fs_info->endio_write_workers);
  1863. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1864. btrfs_stop_workers(&fs_info->submit_workers);
  1865. fail_iput:
  1866. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1867. iput(fs_info->btree_inode);
  1868. btrfs_close_devices(fs_info->fs_devices);
  1869. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1870. fail_bdi:
  1871. bdi_destroy(&fs_info->bdi);
  1872. fail_srcu:
  1873. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1874. fail:
  1875. kfree(extent_root);
  1876. kfree(tree_root);
  1877. kfree(fs_info);
  1878. kfree(chunk_root);
  1879. kfree(dev_root);
  1880. kfree(csum_root);
  1881. return ERR_PTR(err);
  1882. }
  1883. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1884. {
  1885. char b[BDEVNAME_SIZE];
  1886. if (uptodate) {
  1887. set_buffer_uptodate(bh);
  1888. } else {
  1889. if (printk_ratelimit()) {
  1890. printk(KERN_WARNING "lost page write due to "
  1891. "I/O error on %s\n",
  1892. bdevname(bh->b_bdev, b));
  1893. }
  1894. /* note, we dont' set_buffer_write_io_error because we have
  1895. * our own ways of dealing with the IO errors
  1896. */
  1897. clear_buffer_uptodate(bh);
  1898. }
  1899. unlock_buffer(bh);
  1900. put_bh(bh);
  1901. }
  1902. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1903. {
  1904. struct buffer_head *bh;
  1905. struct buffer_head *latest = NULL;
  1906. struct btrfs_super_block *super;
  1907. int i;
  1908. u64 transid = 0;
  1909. u64 bytenr;
  1910. /* we would like to check all the supers, but that would make
  1911. * a btrfs mount succeed after a mkfs from a different FS.
  1912. * So, we need to add a special mount option to scan for
  1913. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1914. */
  1915. for (i = 0; i < 1; i++) {
  1916. bytenr = btrfs_sb_offset(i);
  1917. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1918. break;
  1919. bh = __bread(bdev, bytenr / 4096, 4096);
  1920. if (!bh)
  1921. continue;
  1922. super = (struct btrfs_super_block *)bh->b_data;
  1923. if (btrfs_super_bytenr(super) != bytenr ||
  1924. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1925. sizeof(super->magic))) {
  1926. brelse(bh);
  1927. continue;
  1928. }
  1929. if (!latest || btrfs_super_generation(super) > transid) {
  1930. brelse(latest);
  1931. latest = bh;
  1932. transid = btrfs_super_generation(super);
  1933. } else {
  1934. brelse(bh);
  1935. }
  1936. }
  1937. return latest;
  1938. }
  1939. /*
  1940. * this should be called twice, once with wait == 0 and
  1941. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1942. * we write are pinned.
  1943. *
  1944. * They are released when wait == 1 is done.
  1945. * max_mirrors must be the same for both runs, and it indicates how
  1946. * many supers on this one device should be written.
  1947. *
  1948. * max_mirrors == 0 means to write them all.
  1949. */
  1950. static int write_dev_supers(struct btrfs_device *device,
  1951. struct btrfs_super_block *sb,
  1952. int do_barriers, int wait, int max_mirrors)
  1953. {
  1954. struct buffer_head *bh;
  1955. int i;
  1956. int ret;
  1957. int errors = 0;
  1958. u32 crc;
  1959. u64 bytenr;
  1960. int last_barrier = 0;
  1961. if (max_mirrors == 0)
  1962. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1963. /* make sure only the last submit_bh does a barrier */
  1964. if (do_barriers) {
  1965. for (i = 0; i < max_mirrors; i++) {
  1966. bytenr = btrfs_sb_offset(i);
  1967. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1968. device->total_bytes)
  1969. break;
  1970. last_barrier = i;
  1971. }
  1972. }
  1973. for (i = 0; i < max_mirrors; i++) {
  1974. bytenr = btrfs_sb_offset(i);
  1975. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1976. break;
  1977. if (wait) {
  1978. bh = __find_get_block(device->bdev, bytenr / 4096,
  1979. BTRFS_SUPER_INFO_SIZE);
  1980. BUG_ON(!bh);
  1981. wait_on_buffer(bh);
  1982. if (!buffer_uptodate(bh))
  1983. errors++;
  1984. /* drop our reference */
  1985. brelse(bh);
  1986. /* drop the reference from the wait == 0 run */
  1987. brelse(bh);
  1988. continue;
  1989. } else {
  1990. btrfs_set_super_bytenr(sb, bytenr);
  1991. crc = ~(u32)0;
  1992. crc = btrfs_csum_data(NULL, (char *)sb +
  1993. BTRFS_CSUM_SIZE, crc,
  1994. BTRFS_SUPER_INFO_SIZE -
  1995. BTRFS_CSUM_SIZE);
  1996. btrfs_csum_final(crc, sb->csum);
  1997. /*
  1998. * one reference for us, and we leave it for the
  1999. * caller
  2000. */
  2001. bh = __getblk(device->bdev, bytenr / 4096,
  2002. BTRFS_SUPER_INFO_SIZE);
  2003. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2004. /* one reference for submit_bh */
  2005. get_bh(bh);
  2006. set_buffer_uptodate(bh);
  2007. lock_buffer(bh);
  2008. bh->b_end_io = btrfs_end_buffer_write_sync;
  2009. }
  2010. if (i == last_barrier && do_barriers)
  2011. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2012. else
  2013. ret = submit_bh(WRITE_SYNC, bh);
  2014. if (ret)
  2015. errors++;
  2016. }
  2017. return errors < i ? 0 : -1;
  2018. }
  2019. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2020. {
  2021. struct list_head *head;
  2022. struct btrfs_device *dev;
  2023. struct btrfs_super_block *sb;
  2024. struct btrfs_dev_item *dev_item;
  2025. int ret;
  2026. int do_barriers;
  2027. int max_errors;
  2028. int total_errors = 0;
  2029. u64 flags;
  2030. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2031. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2032. sb = &root->fs_info->super_for_commit;
  2033. dev_item = &sb->dev_item;
  2034. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2035. head = &root->fs_info->fs_devices->devices;
  2036. list_for_each_entry(dev, head, dev_list) {
  2037. if (!dev->bdev) {
  2038. total_errors++;
  2039. continue;
  2040. }
  2041. if (!dev->in_fs_metadata || !dev->writeable)
  2042. continue;
  2043. btrfs_set_stack_device_generation(dev_item, 0);
  2044. btrfs_set_stack_device_type(dev_item, dev->type);
  2045. btrfs_set_stack_device_id(dev_item, dev->devid);
  2046. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2047. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2048. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2049. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2050. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2051. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2052. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2053. flags = btrfs_super_flags(sb);
  2054. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2055. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2056. if (ret)
  2057. total_errors++;
  2058. }
  2059. if (total_errors > max_errors) {
  2060. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2061. total_errors);
  2062. BUG();
  2063. }
  2064. total_errors = 0;
  2065. list_for_each_entry(dev, head, dev_list) {
  2066. if (!dev->bdev)
  2067. continue;
  2068. if (!dev->in_fs_metadata || !dev->writeable)
  2069. continue;
  2070. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2071. if (ret)
  2072. total_errors++;
  2073. }
  2074. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2075. if (total_errors > max_errors) {
  2076. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2077. total_errors);
  2078. BUG();
  2079. }
  2080. return 0;
  2081. }
  2082. int write_ctree_super(struct btrfs_trans_handle *trans,
  2083. struct btrfs_root *root, int max_mirrors)
  2084. {
  2085. int ret;
  2086. ret = write_all_supers(root, max_mirrors);
  2087. return ret;
  2088. }
  2089. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2090. {
  2091. spin_lock(&fs_info->fs_roots_radix_lock);
  2092. radix_tree_delete(&fs_info->fs_roots_radix,
  2093. (unsigned long)root->root_key.objectid);
  2094. spin_unlock(&fs_info->fs_roots_radix_lock);
  2095. if (btrfs_root_refs(&root->root_item) == 0)
  2096. synchronize_srcu(&fs_info->subvol_srcu);
  2097. free_fs_root(root);
  2098. return 0;
  2099. }
  2100. static void free_fs_root(struct btrfs_root *root)
  2101. {
  2102. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2103. if (root->anon_super.s_dev) {
  2104. down_write(&root->anon_super.s_umount);
  2105. kill_anon_super(&root->anon_super);
  2106. }
  2107. free_extent_buffer(root->node);
  2108. free_extent_buffer(root->commit_root);
  2109. kfree(root->name);
  2110. kfree(root);
  2111. }
  2112. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2113. {
  2114. int ret;
  2115. struct btrfs_root *gang[8];
  2116. int i;
  2117. while (!list_empty(&fs_info->dead_roots)) {
  2118. gang[0] = list_entry(fs_info->dead_roots.next,
  2119. struct btrfs_root, root_list);
  2120. list_del(&gang[0]->root_list);
  2121. if (gang[0]->in_radix) {
  2122. btrfs_free_fs_root(fs_info, gang[0]);
  2123. } else {
  2124. free_extent_buffer(gang[0]->node);
  2125. free_extent_buffer(gang[0]->commit_root);
  2126. kfree(gang[0]);
  2127. }
  2128. }
  2129. while (1) {
  2130. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2131. (void **)gang, 0,
  2132. ARRAY_SIZE(gang));
  2133. if (!ret)
  2134. break;
  2135. for (i = 0; i < ret; i++)
  2136. btrfs_free_fs_root(fs_info, gang[i]);
  2137. }
  2138. return 0;
  2139. }
  2140. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2141. {
  2142. u64 root_objectid = 0;
  2143. struct btrfs_root *gang[8];
  2144. int i;
  2145. int ret;
  2146. while (1) {
  2147. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2148. (void **)gang, root_objectid,
  2149. ARRAY_SIZE(gang));
  2150. if (!ret)
  2151. break;
  2152. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2153. for (i = 0; i < ret; i++) {
  2154. int err;
  2155. root_objectid = gang[i]->root_key.objectid;
  2156. err = btrfs_orphan_cleanup(gang[i]);
  2157. if (err)
  2158. return err;
  2159. }
  2160. root_objectid++;
  2161. }
  2162. return 0;
  2163. }
  2164. int btrfs_commit_super(struct btrfs_root *root)
  2165. {
  2166. struct btrfs_trans_handle *trans;
  2167. int ret;
  2168. mutex_lock(&root->fs_info->cleaner_mutex);
  2169. btrfs_run_delayed_iputs(root);
  2170. btrfs_clean_old_snapshots(root);
  2171. mutex_unlock(&root->fs_info->cleaner_mutex);
  2172. /* wait until ongoing cleanup work done */
  2173. down_write(&root->fs_info->cleanup_work_sem);
  2174. up_write(&root->fs_info->cleanup_work_sem);
  2175. trans = btrfs_join_transaction(root, 1);
  2176. if (IS_ERR(trans))
  2177. return PTR_ERR(trans);
  2178. ret = btrfs_commit_transaction(trans, root);
  2179. BUG_ON(ret);
  2180. /* run commit again to drop the original snapshot */
  2181. trans = btrfs_join_transaction(root, 1);
  2182. if (IS_ERR(trans))
  2183. return PTR_ERR(trans);
  2184. btrfs_commit_transaction(trans, root);
  2185. ret = btrfs_write_and_wait_transaction(NULL, root);
  2186. BUG_ON(ret);
  2187. ret = write_ctree_super(NULL, root, 0);
  2188. return ret;
  2189. }
  2190. int close_ctree(struct btrfs_root *root)
  2191. {
  2192. struct btrfs_fs_info *fs_info = root->fs_info;
  2193. int ret;
  2194. fs_info->closing = 1;
  2195. smp_mb();
  2196. btrfs_put_block_group_cache(fs_info);
  2197. /*
  2198. * Here come 2 situations when btrfs is broken to flip readonly:
  2199. *
  2200. * 1. when btrfs flips readonly somewhere else before
  2201. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2202. * and btrfs will skip to write sb directly to keep
  2203. * ERROR state on disk.
  2204. *
  2205. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2206. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2207. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2208. * btrfs will cleanup all FS resources first and write sb then.
  2209. */
  2210. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2211. ret = btrfs_commit_super(root);
  2212. if (ret)
  2213. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2214. }
  2215. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2216. ret = btrfs_error_commit_super(root);
  2217. if (ret)
  2218. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2219. }
  2220. kthread_stop(root->fs_info->transaction_kthread);
  2221. kthread_stop(root->fs_info->cleaner_kthread);
  2222. fs_info->closing = 2;
  2223. smp_mb();
  2224. if (fs_info->delalloc_bytes) {
  2225. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2226. (unsigned long long)fs_info->delalloc_bytes);
  2227. }
  2228. if (fs_info->total_ref_cache_size) {
  2229. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2230. (unsigned long long)fs_info->total_ref_cache_size);
  2231. }
  2232. free_extent_buffer(fs_info->extent_root->node);
  2233. free_extent_buffer(fs_info->extent_root->commit_root);
  2234. free_extent_buffer(fs_info->tree_root->node);
  2235. free_extent_buffer(fs_info->tree_root->commit_root);
  2236. free_extent_buffer(root->fs_info->chunk_root->node);
  2237. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2238. free_extent_buffer(root->fs_info->dev_root->node);
  2239. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2240. free_extent_buffer(root->fs_info->csum_root->node);
  2241. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2242. btrfs_free_block_groups(root->fs_info);
  2243. del_fs_roots(fs_info);
  2244. iput(fs_info->btree_inode);
  2245. btrfs_stop_workers(&fs_info->generic_worker);
  2246. btrfs_stop_workers(&fs_info->fixup_workers);
  2247. btrfs_stop_workers(&fs_info->delalloc_workers);
  2248. btrfs_stop_workers(&fs_info->workers);
  2249. btrfs_stop_workers(&fs_info->endio_workers);
  2250. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2251. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2252. btrfs_stop_workers(&fs_info->endio_write_workers);
  2253. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2254. btrfs_stop_workers(&fs_info->submit_workers);
  2255. btrfs_close_devices(fs_info->fs_devices);
  2256. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2257. bdi_destroy(&fs_info->bdi);
  2258. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2259. kfree(fs_info->extent_root);
  2260. kfree(fs_info->tree_root);
  2261. kfree(fs_info->chunk_root);
  2262. kfree(fs_info->dev_root);
  2263. kfree(fs_info->csum_root);
  2264. kfree(fs_info);
  2265. return 0;
  2266. }
  2267. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2268. {
  2269. int ret;
  2270. struct inode *btree_inode = buf->first_page->mapping->host;
  2271. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2272. NULL);
  2273. if (!ret)
  2274. return ret;
  2275. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2276. parent_transid);
  2277. return !ret;
  2278. }
  2279. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2280. {
  2281. struct inode *btree_inode = buf->first_page->mapping->host;
  2282. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2283. buf);
  2284. }
  2285. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2286. {
  2287. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2288. u64 transid = btrfs_header_generation(buf);
  2289. struct inode *btree_inode = root->fs_info->btree_inode;
  2290. int was_dirty;
  2291. btrfs_assert_tree_locked(buf);
  2292. if (transid != root->fs_info->generation) {
  2293. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2294. "found %llu running %llu\n",
  2295. (unsigned long long)buf->start,
  2296. (unsigned long long)transid,
  2297. (unsigned long long)root->fs_info->generation);
  2298. WARN_ON(1);
  2299. }
  2300. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2301. buf);
  2302. if (!was_dirty) {
  2303. spin_lock(&root->fs_info->delalloc_lock);
  2304. root->fs_info->dirty_metadata_bytes += buf->len;
  2305. spin_unlock(&root->fs_info->delalloc_lock);
  2306. }
  2307. }
  2308. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2309. {
  2310. /*
  2311. * looks as though older kernels can get into trouble with
  2312. * this code, they end up stuck in balance_dirty_pages forever
  2313. */
  2314. u64 num_dirty;
  2315. unsigned long thresh = 32 * 1024 * 1024;
  2316. if (current->flags & PF_MEMALLOC)
  2317. return;
  2318. num_dirty = root->fs_info->dirty_metadata_bytes;
  2319. if (num_dirty > thresh) {
  2320. balance_dirty_pages_ratelimited_nr(
  2321. root->fs_info->btree_inode->i_mapping, 1);
  2322. }
  2323. return;
  2324. }
  2325. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2326. {
  2327. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2328. int ret;
  2329. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2330. if (ret == 0)
  2331. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2332. return ret;
  2333. }
  2334. int btree_lock_page_hook(struct page *page)
  2335. {
  2336. struct inode *inode = page->mapping->host;
  2337. struct btrfs_root *root = BTRFS_I(inode)->root;
  2338. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2339. struct extent_buffer *eb;
  2340. unsigned long len;
  2341. u64 bytenr = page_offset(page);
  2342. if (page->private == EXTENT_PAGE_PRIVATE)
  2343. goto out;
  2344. len = page->private >> 2;
  2345. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2346. if (!eb)
  2347. goto out;
  2348. btrfs_tree_lock(eb);
  2349. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2350. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2351. spin_lock(&root->fs_info->delalloc_lock);
  2352. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2353. root->fs_info->dirty_metadata_bytes -= eb->len;
  2354. else
  2355. WARN_ON(1);
  2356. spin_unlock(&root->fs_info->delalloc_lock);
  2357. }
  2358. btrfs_tree_unlock(eb);
  2359. free_extent_buffer(eb);
  2360. out:
  2361. lock_page(page);
  2362. return 0;
  2363. }
  2364. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2365. int read_only)
  2366. {
  2367. if (read_only)
  2368. return;
  2369. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2370. printk(KERN_WARNING "warning: mount fs with errors, "
  2371. "running btrfsck is recommended\n");
  2372. }
  2373. int btrfs_error_commit_super(struct btrfs_root *root)
  2374. {
  2375. int ret;
  2376. mutex_lock(&root->fs_info->cleaner_mutex);
  2377. btrfs_run_delayed_iputs(root);
  2378. mutex_unlock(&root->fs_info->cleaner_mutex);
  2379. down_write(&root->fs_info->cleanup_work_sem);
  2380. up_write(&root->fs_info->cleanup_work_sem);
  2381. /* cleanup FS via transaction */
  2382. btrfs_cleanup_transaction(root);
  2383. ret = write_ctree_super(NULL, root, 0);
  2384. return ret;
  2385. }
  2386. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2387. {
  2388. struct btrfs_inode *btrfs_inode;
  2389. struct list_head splice;
  2390. INIT_LIST_HEAD(&splice);
  2391. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2392. spin_lock(&root->fs_info->ordered_extent_lock);
  2393. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2394. while (!list_empty(&splice)) {
  2395. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2396. ordered_operations);
  2397. list_del_init(&btrfs_inode->ordered_operations);
  2398. btrfs_invalidate_inodes(btrfs_inode->root);
  2399. }
  2400. spin_unlock(&root->fs_info->ordered_extent_lock);
  2401. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2402. return 0;
  2403. }
  2404. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2405. {
  2406. struct list_head splice;
  2407. struct btrfs_ordered_extent *ordered;
  2408. struct inode *inode;
  2409. INIT_LIST_HEAD(&splice);
  2410. spin_lock(&root->fs_info->ordered_extent_lock);
  2411. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2412. while (!list_empty(&splice)) {
  2413. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2414. root_extent_list);
  2415. list_del_init(&ordered->root_extent_list);
  2416. atomic_inc(&ordered->refs);
  2417. /* the inode may be getting freed (in sys_unlink path). */
  2418. inode = igrab(ordered->inode);
  2419. spin_unlock(&root->fs_info->ordered_extent_lock);
  2420. if (inode)
  2421. iput(inode);
  2422. atomic_set(&ordered->refs, 1);
  2423. btrfs_put_ordered_extent(ordered);
  2424. spin_lock(&root->fs_info->ordered_extent_lock);
  2425. }
  2426. spin_unlock(&root->fs_info->ordered_extent_lock);
  2427. return 0;
  2428. }
  2429. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2430. struct btrfs_root *root)
  2431. {
  2432. struct rb_node *node;
  2433. struct btrfs_delayed_ref_root *delayed_refs;
  2434. struct btrfs_delayed_ref_node *ref;
  2435. int ret = 0;
  2436. delayed_refs = &trans->delayed_refs;
  2437. spin_lock(&delayed_refs->lock);
  2438. if (delayed_refs->num_entries == 0) {
  2439. printk(KERN_INFO "delayed_refs has NO entry\n");
  2440. return ret;
  2441. }
  2442. node = rb_first(&delayed_refs->root);
  2443. while (node) {
  2444. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2445. node = rb_next(node);
  2446. ref->in_tree = 0;
  2447. rb_erase(&ref->rb_node, &delayed_refs->root);
  2448. delayed_refs->num_entries--;
  2449. atomic_set(&ref->refs, 1);
  2450. if (btrfs_delayed_ref_is_head(ref)) {
  2451. struct btrfs_delayed_ref_head *head;
  2452. head = btrfs_delayed_node_to_head(ref);
  2453. mutex_lock(&head->mutex);
  2454. kfree(head->extent_op);
  2455. delayed_refs->num_heads--;
  2456. if (list_empty(&head->cluster))
  2457. delayed_refs->num_heads_ready--;
  2458. list_del_init(&head->cluster);
  2459. mutex_unlock(&head->mutex);
  2460. }
  2461. spin_unlock(&delayed_refs->lock);
  2462. btrfs_put_delayed_ref(ref);
  2463. cond_resched();
  2464. spin_lock(&delayed_refs->lock);
  2465. }
  2466. spin_unlock(&delayed_refs->lock);
  2467. return ret;
  2468. }
  2469. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2470. {
  2471. struct btrfs_pending_snapshot *snapshot;
  2472. struct list_head splice;
  2473. INIT_LIST_HEAD(&splice);
  2474. list_splice_init(&t->pending_snapshots, &splice);
  2475. while (!list_empty(&splice)) {
  2476. snapshot = list_entry(splice.next,
  2477. struct btrfs_pending_snapshot,
  2478. list);
  2479. list_del_init(&snapshot->list);
  2480. kfree(snapshot);
  2481. }
  2482. return 0;
  2483. }
  2484. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2485. {
  2486. struct btrfs_inode *btrfs_inode;
  2487. struct list_head splice;
  2488. INIT_LIST_HEAD(&splice);
  2489. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2490. spin_lock(&root->fs_info->delalloc_lock);
  2491. while (!list_empty(&splice)) {
  2492. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2493. delalloc_inodes);
  2494. list_del_init(&btrfs_inode->delalloc_inodes);
  2495. btrfs_invalidate_inodes(btrfs_inode->root);
  2496. }
  2497. spin_unlock(&root->fs_info->delalloc_lock);
  2498. return 0;
  2499. }
  2500. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2501. struct extent_io_tree *dirty_pages,
  2502. int mark)
  2503. {
  2504. int ret;
  2505. struct page *page;
  2506. struct inode *btree_inode = root->fs_info->btree_inode;
  2507. struct extent_buffer *eb;
  2508. u64 start = 0;
  2509. u64 end;
  2510. u64 offset;
  2511. unsigned long index;
  2512. while (1) {
  2513. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2514. mark);
  2515. if (ret)
  2516. break;
  2517. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2518. while (start <= end) {
  2519. index = start >> PAGE_CACHE_SHIFT;
  2520. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2521. page = find_get_page(btree_inode->i_mapping, index);
  2522. if (!page)
  2523. continue;
  2524. offset = page_offset(page);
  2525. spin_lock(&dirty_pages->buffer_lock);
  2526. eb = radix_tree_lookup(
  2527. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2528. offset >> PAGE_CACHE_SHIFT);
  2529. spin_unlock(&dirty_pages->buffer_lock);
  2530. if (eb) {
  2531. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2532. &eb->bflags);
  2533. atomic_set(&eb->refs, 1);
  2534. }
  2535. if (PageWriteback(page))
  2536. end_page_writeback(page);
  2537. lock_page(page);
  2538. if (PageDirty(page)) {
  2539. clear_page_dirty_for_io(page);
  2540. spin_lock_irq(&page->mapping->tree_lock);
  2541. radix_tree_tag_clear(&page->mapping->page_tree,
  2542. page_index(page),
  2543. PAGECACHE_TAG_DIRTY);
  2544. spin_unlock_irq(&page->mapping->tree_lock);
  2545. }
  2546. page->mapping->a_ops->invalidatepage(page, 0);
  2547. unlock_page(page);
  2548. }
  2549. }
  2550. return ret;
  2551. }
  2552. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2553. struct extent_io_tree *pinned_extents)
  2554. {
  2555. struct extent_io_tree *unpin;
  2556. u64 start;
  2557. u64 end;
  2558. int ret;
  2559. unpin = pinned_extents;
  2560. while (1) {
  2561. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2562. EXTENT_DIRTY);
  2563. if (ret)
  2564. break;
  2565. /* opt_discard */
  2566. if (btrfs_test_opt(root, DISCARD))
  2567. ret = btrfs_error_discard_extent(root, start,
  2568. end + 1 - start,
  2569. NULL);
  2570. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2571. btrfs_error_unpin_extent_range(root, start, end);
  2572. cond_resched();
  2573. }
  2574. return 0;
  2575. }
  2576. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2577. {
  2578. struct btrfs_transaction *t;
  2579. LIST_HEAD(list);
  2580. WARN_ON(1);
  2581. mutex_lock(&root->fs_info->trans_mutex);
  2582. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2583. list_splice_init(&root->fs_info->trans_list, &list);
  2584. while (!list_empty(&list)) {
  2585. t = list_entry(list.next, struct btrfs_transaction, list);
  2586. if (!t)
  2587. break;
  2588. btrfs_destroy_ordered_operations(root);
  2589. btrfs_destroy_ordered_extents(root);
  2590. btrfs_destroy_delayed_refs(t, root);
  2591. btrfs_block_rsv_release(root,
  2592. &root->fs_info->trans_block_rsv,
  2593. t->dirty_pages.dirty_bytes);
  2594. /* FIXME: cleanup wait for commit */
  2595. t->in_commit = 1;
  2596. t->blocked = 1;
  2597. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2598. wake_up(&root->fs_info->transaction_blocked_wait);
  2599. t->blocked = 0;
  2600. if (waitqueue_active(&root->fs_info->transaction_wait))
  2601. wake_up(&root->fs_info->transaction_wait);
  2602. mutex_unlock(&root->fs_info->trans_mutex);
  2603. mutex_lock(&root->fs_info->trans_mutex);
  2604. t->commit_done = 1;
  2605. if (waitqueue_active(&t->commit_wait))
  2606. wake_up(&t->commit_wait);
  2607. mutex_unlock(&root->fs_info->trans_mutex);
  2608. mutex_lock(&root->fs_info->trans_mutex);
  2609. btrfs_destroy_pending_snapshots(t);
  2610. btrfs_destroy_delalloc_inodes(root);
  2611. spin_lock(&root->fs_info->new_trans_lock);
  2612. root->fs_info->running_transaction = NULL;
  2613. spin_unlock(&root->fs_info->new_trans_lock);
  2614. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2615. EXTENT_DIRTY);
  2616. btrfs_destroy_pinned_extent(root,
  2617. root->fs_info->pinned_extents);
  2618. atomic_set(&t->use_count, 0);
  2619. list_del_init(&t->list);
  2620. memset(t, 0, sizeof(*t));
  2621. kmem_cache_free(btrfs_transaction_cachep, t);
  2622. }
  2623. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2624. mutex_unlock(&root->fs_info->trans_mutex);
  2625. return 0;
  2626. }
  2627. static struct extent_io_ops btree_extent_io_ops = {
  2628. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2629. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2630. .submit_bio_hook = btree_submit_bio_hook,
  2631. /* note we're sharing with inode.c for the merge bio hook */
  2632. .merge_bio_hook = btrfs_merge_bio_hook,
  2633. };