rt2500pci.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2500pci"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/eeprom_93cx6.h>
  33. #include "rt2x00.h"
  34. #include "rt2x00pci.h"
  35. #include "rt2500pci.h"
  36. /*
  37. * Register access.
  38. * All access to the CSR registers will go through the methods
  39. * rt2x00pci_register_read and rt2x00pci_register_write.
  40. * BBP and RF register require indirect register access,
  41. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  42. * These indirect registers work with busy bits,
  43. * and we will try maximal REGISTER_BUSY_COUNT times to access
  44. * the register while taking a REGISTER_BUSY_DELAY us delay
  45. * between each attampt. When the busy bit is still set at that time,
  46. * the access attempt is considered to have failed,
  47. * and we will print an error.
  48. */
  49. static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
  50. {
  51. u32 reg;
  52. unsigned int i;
  53. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  54. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  55. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  56. break;
  57. udelay(REGISTER_BUSY_DELAY);
  58. }
  59. return reg;
  60. }
  61. static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
  62. const unsigned int word, const u8 value)
  63. {
  64. u32 reg;
  65. /*
  66. * Wait until the BBP becomes ready.
  67. */
  68. reg = rt2500pci_bbp_check(rt2x00dev);
  69. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  70. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  71. return;
  72. }
  73. /*
  74. * Write the data into the BBP.
  75. */
  76. reg = 0;
  77. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  78. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  79. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  80. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  81. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  82. }
  83. static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. /*
  88. * Wait until the BBP becomes ready.
  89. */
  90. reg = rt2500pci_bbp_check(rt2x00dev);
  91. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  92. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  93. return;
  94. }
  95. /*
  96. * Write the request into the BBP.
  97. */
  98. reg = 0;
  99. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  100. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  101. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  102. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2500pci_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  108. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  109. *value = 0xff;
  110. return;
  111. }
  112. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  113. }
  114. static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u32 value)
  116. {
  117. u32 reg;
  118. unsigned int i;
  119. if (!word)
  120. return;
  121. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  122. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  123. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  124. goto rf_write;
  125. udelay(REGISTER_BUSY_DELAY);
  126. }
  127. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  128. return;
  129. rf_write:
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  132. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  133. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  134. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  135. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  136. rt2x00_rf_write(rt2x00dev, word, value);
  137. }
  138. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  139. {
  140. struct rt2x00_dev *rt2x00dev = eeprom->data;
  141. u32 reg;
  142. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  143. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  144. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  145. eeprom->reg_data_clock =
  146. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  147. eeprom->reg_chip_select =
  148. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  149. }
  150. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  151. {
  152. struct rt2x00_dev *rt2x00dev = eeprom->data;
  153. u32 reg = 0;
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  155. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  156. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  157. !!eeprom->reg_data_clock);
  158. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  159. !!eeprom->reg_chip_select);
  160. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  161. }
  162. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  163. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  164. static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
  165. const unsigned int word, u32 *data)
  166. {
  167. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  168. }
  169. static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
  170. const unsigned int word, u32 data)
  171. {
  172. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  173. }
  174. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  175. .owner = THIS_MODULE,
  176. .csr = {
  177. .read = rt2500pci_read_csr,
  178. .write = rt2500pci_write_csr,
  179. .word_size = sizeof(u32),
  180. .word_count = CSR_REG_SIZE / sizeof(u32),
  181. },
  182. .eeprom = {
  183. .read = rt2x00_eeprom_read,
  184. .write = rt2x00_eeprom_write,
  185. .word_size = sizeof(u16),
  186. .word_count = EEPROM_SIZE / sizeof(u16),
  187. },
  188. .bbp = {
  189. .read = rt2500pci_bbp_read,
  190. .write = rt2500pci_bbp_write,
  191. .word_size = sizeof(u8),
  192. .word_count = BBP_SIZE / sizeof(u8),
  193. },
  194. .rf = {
  195. .read = rt2x00_rf_read,
  196. .write = rt2500pci_rf_write,
  197. .word_size = sizeof(u32),
  198. .word_count = RF_SIZE / sizeof(u32),
  199. },
  200. };
  201. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  202. #ifdef CONFIG_RT2500PCI_RFKILL
  203. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  204. {
  205. u32 reg;
  206. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  207. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  208. }
  209. #else
  210. #define rt2500pci_rfkill_poll NULL
  211. #endif /* CONFIG_RT2500PCI_RFKILL */
  212. /*
  213. * Configuration handlers.
  214. */
  215. static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
  216. __le32 *mac)
  217. {
  218. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
  219. (2 * sizeof(__le32)));
  220. }
  221. static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
  222. __le32 *bssid)
  223. {
  224. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
  225. (2 * sizeof(__le32)));
  226. }
  227. static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
  228. const int tsf_sync)
  229. {
  230. u32 reg;
  231. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  232. /*
  233. * Enable beacon config
  234. */
  235. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  236. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  237. PREAMBLE + get_duration(IEEE80211_HEADER, 20));
  238. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
  239. rt2x00lib_get_ring(rt2x00dev,
  240. IEEE80211_TX_QUEUE_BEACON)
  241. ->tx_params.cw_min);
  242. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  243. /*
  244. * Enable synchronisation.
  245. */
  246. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  247. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  248. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  249. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  250. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
  251. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  252. }
  253. static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  254. const int short_preamble,
  255. const int ack_timeout,
  256. const int ack_consume_time)
  257. {
  258. int preamble_mask;
  259. u32 reg;
  260. /*
  261. * When short preamble is enabled, we should set bit 0x08
  262. */
  263. preamble_mask = short_preamble << 3;
  264. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  265. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  266. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  267. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  268. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  269. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  270. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  271. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  272. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  273. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  274. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  275. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  276. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  277. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  278. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  279. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  280. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  281. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  282. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  283. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  284. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  285. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  286. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  287. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  288. }
  289. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  290. const int basic_rate_mask)
  291. {
  292. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  293. }
  294. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  295. struct rf_channel *rf, const int txpower)
  296. {
  297. u8 r70;
  298. /*
  299. * Set TXpower.
  300. */
  301. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  302. /*
  303. * Switch on tuning bits.
  304. * For RT2523 devices we do not need to update the R1 register.
  305. */
  306. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  307. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  308. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  309. /*
  310. * For RT2525 we should first set the channel to half band higher.
  311. */
  312. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  313. static const u32 vals[] = {
  314. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  315. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  316. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  317. 0x00080d2e, 0x00080d3a
  318. };
  319. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  320. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  321. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  322. if (rf->rf4)
  323. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  324. }
  325. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  326. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  327. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  328. if (rf->rf4)
  329. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  330. /*
  331. * Channel 14 requires the Japan filter bit to be set.
  332. */
  333. r70 = 0x46;
  334. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  335. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  336. msleep(1);
  337. /*
  338. * Switch off tuning bits.
  339. * For RT2523 devices we do not need to update the R1 register.
  340. */
  341. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  342. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  343. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  344. }
  345. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  346. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  347. /*
  348. * Clear false CRC during channel switch.
  349. */
  350. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  351. }
  352. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  353. const int txpower)
  354. {
  355. u32 rf3;
  356. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  357. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  358. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  359. }
  360. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  361. struct antenna_setup *ant)
  362. {
  363. u32 reg;
  364. u8 r14;
  365. u8 r2;
  366. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  367. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  368. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  369. /*
  370. * Configure the TX antenna.
  371. */
  372. switch (ant->tx) {
  373. case ANTENNA_SW_DIVERSITY:
  374. case ANTENNA_HW_DIVERSITY:
  375. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  376. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  377. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  378. break;
  379. case ANTENNA_A:
  380. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  381. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  382. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  383. break;
  384. case ANTENNA_B:
  385. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  386. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  387. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  388. break;
  389. }
  390. /*
  391. * Configure the RX antenna.
  392. */
  393. switch (ant->rx) {
  394. case ANTENNA_SW_DIVERSITY:
  395. case ANTENNA_HW_DIVERSITY:
  396. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  397. break;
  398. case ANTENNA_A:
  399. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  400. break;
  401. case ANTENNA_B:
  402. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  403. break;
  404. }
  405. /*
  406. * RT2525E and RT5222 need to flip TX I/Q
  407. */
  408. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  409. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  410. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  411. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  412. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  413. /*
  414. * RT2525E does not need RX I/Q Flip.
  415. */
  416. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  417. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  418. } else {
  419. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  420. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  421. }
  422. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  423. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  424. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  425. }
  426. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  427. struct rt2x00lib_conf *libconf)
  428. {
  429. u32 reg;
  430. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  431. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  432. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  433. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  434. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  435. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  436. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  437. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  438. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  439. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  440. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  441. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  442. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  443. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  444. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  445. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  446. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  447. libconf->conf->beacon_int * 16);
  448. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  449. libconf->conf->beacon_int * 16);
  450. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  451. }
  452. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  453. const unsigned int flags,
  454. struct rt2x00lib_conf *libconf)
  455. {
  456. if (flags & CONFIG_UPDATE_PHYMODE)
  457. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  458. if (flags & CONFIG_UPDATE_CHANNEL)
  459. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  460. libconf->conf->power_level);
  461. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  462. rt2500pci_config_txpower(rt2x00dev,
  463. libconf->conf->power_level);
  464. if (flags & CONFIG_UPDATE_ANTENNA)
  465. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  466. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  467. rt2500pci_config_duration(rt2x00dev, libconf);
  468. }
  469. /*
  470. * LED functions.
  471. */
  472. static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
  473. {
  474. u32 reg;
  475. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  476. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  477. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  478. if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
  479. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  480. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  481. } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
  482. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  483. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  484. } else {
  485. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  486. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  487. }
  488. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  489. }
  490. static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
  491. {
  492. u32 reg;
  493. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  494. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  495. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  496. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  497. }
  498. /*
  499. * Link tuning
  500. */
  501. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  502. struct link_qual *qual)
  503. {
  504. u32 reg;
  505. /*
  506. * Update FCS error count from register.
  507. */
  508. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  509. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  510. /*
  511. * Update False CCA count from register.
  512. */
  513. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  514. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  515. }
  516. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  517. {
  518. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  519. rt2x00dev->link.vgc_level = 0x48;
  520. }
  521. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  522. {
  523. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  524. u8 r17;
  525. /*
  526. * To prevent collisions with MAC ASIC on chipsets
  527. * up to version C the link tuning should halt after 20
  528. * seconds.
  529. */
  530. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  531. rt2x00dev->link.count > 20)
  532. return;
  533. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  534. /*
  535. * Chipset versions C and lower should directly continue
  536. * to the dynamic CCA tuning.
  537. */
  538. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
  539. goto dynamic_cca_tune;
  540. /*
  541. * A too low RSSI will cause too much false CCA which will
  542. * then corrupt the R17 tuning. To remidy this the tuning should
  543. * be stopped (While making sure the R17 value will not exceed limits)
  544. */
  545. if (rssi < -80 && rt2x00dev->link.count > 20) {
  546. if (r17 >= 0x41) {
  547. r17 = rt2x00dev->link.vgc_level;
  548. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  549. }
  550. return;
  551. }
  552. /*
  553. * Special big-R17 for short distance
  554. */
  555. if (rssi >= -58) {
  556. if (r17 != 0x50)
  557. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  558. return;
  559. }
  560. /*
  561. * Special mid-R17 for middle distance
  562. */
  563. if (rssi >= -74) {
  564. if (r17 != 0x41)
  565. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  566. return;
  567. }
  568. /*
  569. * Leave short or middle distance condition, restore r17
  570. * to the dynamic tuning range.
  571. */
  572. if (r17 >= 0x41) {
  573. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  574. return;
  575. }
  576. dynamic_cca_tune:
  577. /*
  578. * R17 is inside the dynamic tuning range,
  579. * start tuning the link based on the false cca counter.
  580. */
  581. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  582. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  583. rt2x00dev->link.vgc_level = r17;
  584. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  585. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  586. rt2x00dev->link.vgc_level = r17;
  587. }
  588. }
  589. /*
  590. * Initialization functions.
  591. */
  592. static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
  593. {
  594. struct data_ring *ring = rt2x00dev->rx;
  595. struct data_desc *rxd;
  596. unsigned int i;
  597. u32 word;
  598. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  599. for (i = 0; i < ring->stats.limit; i++) {
  600. rxd = ring->entry[i].priv;
  601. rt2x00_desc_read(rxd, 1, &word);
  602. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
  603. ring->entry[i].data_dma);
  604. rt2x00_desc_write(rxd, 1, word);
  605. rt2x00_desc_read(rxd, 0, &word);
  606. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  607. rt2x00_desc_write(rxd, 0, word);
  608. }
  609. rt2x00_ring_index_clear(rt2x00dev->rx);
  610. }
  611. static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
  612. {
  613. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  614. struct data_desc *txd;
  615. unsigned int i;
  616. u32 word;
  617. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  618. for (i = 0; i < ring->stats.limit; i++) {
  619. txd = ring->entry[i].priv;
  620. rt2x00_desc_read(txd, 1, &word);
  621. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
  622. ring->entry[i].data_dma);
  623. rt2x00_desc_write(txd, 1, word);
  624. rt2x00_desc_read(txd, 0, &word);
  625. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  626. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  627. rt2x00_desc_write(txd, 0, word);
  628. }
  629. rt2x00_ring_index_clear(ring);
  630. }
  631. static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
  632. {
  633. u32 reg;
  634. /*
  635. * Initialize rings.
  636. */
  637. rt2500pci_init_rxring(rt2x00dev);
  638. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  639. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  640. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  641. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  642. /*
  643. * Initialize registers.
  644. */
  645. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  646. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  647. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  648. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  649. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  651. rt2x00dev->bcn[1].stats.limit);
  652. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  653. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  654. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  655. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  656. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  657. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  658. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  659. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  660. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  661. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  662. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  663. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  664. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  665. rt2x00dev->bcn[1].data_dma);
  666. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  667. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  668. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  669. rt2x00dev->bcn[0].data_dma);
  670. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  671. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  672. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  673. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  674. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  675. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  676. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  677. rt2x00dev->rx->data_dma);
  678. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  679. return 0;
  680. }
  681. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  682. {
  683. u32 reg;
  684. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  685. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  686. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  688. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  689. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  690. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  691. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  692. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  693. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  694. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  695. rt2x00dev->rx->data_size / 128);
  696. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  697. /*
  698. * Always use CWmin and CWmax set in descriptor.
  699. */
  700. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  701. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  702. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  703. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  704. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  705. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  706. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  711. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  712. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  713. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  714. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  715. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  716. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  717. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  718. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  719. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  720. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  721. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  722. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  723. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  724. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  725. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  726. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  727. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  728. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  729. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  730. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  731. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  732. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  733. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  741. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  742. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  743. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  744. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  745. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  746. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  747. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  748. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  749. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  750. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  751. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  752. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  753. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  754. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  755. return -EBUSY;
  756. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  757. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  758. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  759. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  760. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  761. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  762. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  763. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  766. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  767. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  768. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  769. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  770. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  771. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  772. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  773. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  774. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  775. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  776. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  777. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  778. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  779. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  780. /*
  781. * We must clear the FCS and FIFO error count.
  782. * These registers are cleared on read,
  783. * so we may pass a useless variable to store the value.
  784. */
  785. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  786. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  787. return 0;
  788. }
  789. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  790. {
  791. unsigned int i;
  792. u16 eeprom;
  793. u8 reg_id;
  794. u8 value;
  795. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  796. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  797. if ((value != 0xff) && (value != 0x00))
  798. goto continue_csr_init;
  799. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  800. udelay(REGISTER_BUSY_DELAY);
  801. }
  802. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  803. return -EACCES;
  804. continue_csr_init:
  805. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  806. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  807. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  808. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  809. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  810. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  811. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  812. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  813. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  814. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  815. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  816. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  817. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  818. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  819. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  820. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  821. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  822. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  823. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  824. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  825. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  826. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  827. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  828. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  829. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  830. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  831. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  832. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  833. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  834. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  835. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  836. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  837. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  838. if (eeprom != 0xffff && eeprom != 0x0000) {
  839. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  840. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  841. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  842. reg_id, value);
  843. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  844. }
  845. }
  846. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  847. return 0;
  848. }
  849. /*
  850. * Device state switch handlers.
  851. */
  852. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  853. enum dev_state state)
  854. {
  855. u32 reg;
  856. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  857. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  858. state == STATE_RADIO_RX_OFF);
  859. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  860. }
  861. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  862. enum dev_state state)
  863. {
  864. int mask = (state == STATE_RADIO_IRQ_OFF);
  865. u32 reg;
  866. /*
  867. * When interrupts are being enabled, the interrupt registers
  868. * should clear the register to assure a clean state.
  869. */
  870. if (state == STATE_RADIO_IRQ_ON) {
  871. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  872. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  873. }
  874. /*
  875. * Only toggle the interrupts bits we are going to use.
  876. * Non-checked interrupt bits are disabled by default.
  877. */
  878. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  879. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  880. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  881. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  882. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  883. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  884. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  885. }
  886. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  887. {
  888. /*
  889. * Initialize all registers.
  890. */
  891. if (rt2500pci_init_rings(rt2x00dev) ||
  892. rt2500pci_init_registers(rt2x00dev) ||
  893. rt2500pci_init_bbp(rt2x00dev)) {
  894. ERROR(rt2x00dev, "Register initialization failed.\n");
  895. return -EIO;
  896. }
  897. /*
  898. * Enable interrupts.
  899. */
  900. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  901. /*
  902. * Enable LED
  903. */
  904. rt2500pci_enable_led(rt2x00dev);
  905. return 0;
  906. }
  907. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  908. {
  909. u32 reg;
  910. /*
  911. * Disable LED
  912. */
  913. rt2500pci_disable_led(rt2x00dev);
  914. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  915. /*
  916. * Disable synchronisation.
  917. */
  918. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  919. /*
  920. * Cancel RX and TX.
  921. */
  922. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  923. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  924. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  925. /*
  926. * Disable interrupts.
  927. */
  928. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  929. }
  930. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  931. enum dev_state state)
  932. {
  933. u32 reg;
  934. unsigned int i;
  935. char put_to_sleep;
  936. char bbp_state;
  937. char rf_state;
  938. put_to_sleep = (state != STATE_AWAKE);
  939. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  940. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  941. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  942. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  943. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  944. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  945. /*
  946. * Device is not guaranteed to be in the requested state yet.
  947. * We must wait until the register indicates that the
  948. * device has entered the correct state.
  949. */
  950. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  951. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  952. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  953. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  954. if (bbp_state == state && rf_state == state)
  955. return 0;
  956. msleep(10);
  957. }
  958. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  959. "current device state: bbp %d and rf %d.\n",
  960. state, bbp_state, rf_state);
  961. return -EBUSY;
  962. }
  963. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  964. enum dev_state state)
  965. {
  966. int retval = 0;
  967. switch (state) {
  968. case STATE_RADIO_ON:
  969. retval = rt2500pci_enable_radio(rt2x00dev);
  970. break;
  971. case STATE_RADIO_OFF:
  972. rt2500pci_disable_radio(rt2x00dev);
  973. break;
  974. case STATE_RADIO_RX_ON:
  975. case STATE_RADIO_RX_OFF:
  976. rt2500pci_toggle_rx(rt2x00dev, state);
  977. break;
  978. case STATE_DEEP_SLEEP:
  979. case STATE_SLEEP:
  980. case STATE_STANDBY:
  981. case STATE_AWAKE:
  982. retval = rt2500pci_set_state(rt2x00dev, state);
  983. break;
  984. default:
  985. retval = -ENOTSUPP;
  986. break;
  987. }
  988. return retval;
  989. }
  990. /*
  991. * TX descriptor initialization
  992. */
  993. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  994. struct data_desc *txd,
  995. struct txdata_entry_desc *desc,
  996. struct ieee80211_hdr *ieee80211hdr,
  997. unsigned int length,
  998. struct ieee80211_tx_control *control)
  999. {
  1000. u32 word;
  1001. /*
  1002. * Start writing the descriptor words.
  1003. */
  1004. rt2x00_desc_read(txd, 2, &word);
  1005. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1006. rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
  1007. rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
  1008. rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
  1009. rt2x00_desc_write(txd, 2, word);
  1010. rt2x00_desc_read(txd, 3, &word);
  1011. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
  1012. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
  1013. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
  1014. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
  1015. rt2x00_desc_write(txd, 3, word);
  1016. rt2x00_desc_read(txd, 10, &word);
  1017. rt2x00_set_field32(&word, TXD_W10_RTS,
  1018. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  1019. rt2x00_desc_write(txd, 10, word);
  1020. rt2x00_desc_read(txd, 0, &word);
  1021. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1022. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1023. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1024. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  1025. rt2x00_set_field32(&word, TXD_W0_ACK,
  1026. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  1027. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1028. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  1029. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1030. test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
  1031. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1032. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  1033. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1034. !!(control->flags &
  1035. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1036. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
  1037. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1038. rt2x00_desc_write(txd, 0, word);
  1039. }
  1040. /*
  1041. * TX data initialization
  1042. */
  1043. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1044. unsigned int queue)
  1045. {
  1046. u32 reg;
  1047. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  1048. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1049. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1050. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1051. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1052. }
  1053. return;
  1054. }
  1055. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1056. if (queue == IEEE80211_TX_QUEUE_DATA0)
  1057. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  1058. else if (queue == IEEE80211_TX_QUEUE_DATA1)
  1059. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  1060. else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
  1061. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  1062. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1063. }
  1064. /*
  1065. * RX control handlers
  1066. */
  1067. static void rt2500pci_fill_rxdone(struct data_entry *entry,
  1068. struct rxdata_entry_desc *desc)
  1069. {
  1070. struct data_desc *rxd = entry->priv;
  1071. u32 word0;
  1072. u32 word2;
  1073. rt2x00_desc_read(rxd, 0, &word0);
  1074. rt2x00_desc_read(rxd, 2, &word2);
  1075. desc->flags = 0;
  1076. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1077. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1078. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1079. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1080. desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1081. desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1082. entry->ring->rt2x00dev->rssi_offset;
  1083. desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1084. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1085. }
  1086. /*
  1087. * Interrupt functions.
  1088. */
  1089. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  1090. {
  1091. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  1092. struct data_entry *entry;
  1093. struct data_desc *txd;
  1094. u32 word;
  1095. int tx_status;
  1096. int retry;
  1097. while (!rt2x00_ring_empty(ring)) {
  1098. entry = rt2x00_get_data_entry_done(ring);
  1099. txd = entry->priv;
  1100. rt2x00_desc_read(txd, 0, &word);
  1101. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1102. !rt2x00_get_field32(word, TXD_W0_VALID))
  1103. break;
  1104. /*
  1105. * Obtain the status about this packet.
  1106. */
  1107. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1108. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1109. rt2x00lib_txdone(entry, tx_status, retry);
  1110. /*
  1111. * Make this entry available for reuse.
  1112. */
  1113. entry->flags = 0;
  1114. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  1115. rt2x00_desc_write(txd, 0, word);
  1116. rt2x00_ring_index_done_inc(ring);
  1117. }
  1118. /*
  1119. * If the data ring was full before the txdone handler
  1120. * we must make sure the packet queue in the mac80211 stack
  1121. * is reenabled when the txdone handler has finished.
  1122. */
  1123. entry = ring->entry;
  1124. if (!rt2x00_ring_full(ring))
  1125. ieee80211_wake_queue(rt2x00dev->hw,
  1126. entry->tx_status.control.queue);
  1127. }
  1128. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1129. {
  1130. struct rt2x00_dev *rt2x00dev = dev_instance;
  1131. u32 reg;
  1132. /*
  1133. * Get the interrupt sources & saved to local variable.
  1134. * Write register value back to clear pending interrupts.
  1135. */
  1136. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1137. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1138. if (!reg)
  1139. return IRQ_NONE;
  1140. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1141. return IRQ_HANDLED;
  1142. /*
  1143. * Handle interrupts, walk through all bits
  1144. * and run the tasks, the bits are checked in order of
  1145. * priority.
  1146. */
  1147. /*
  1148. * 1 - Beacon timer expired interrupt.
  1149. */
  1150. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1151. rt2x00lib_beacondone(rt2x00dev);
  1152. /*
  1153. * 2 - Rx ring done interrupt.
  1154. */
  1155. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1156. rt2x00pci_rxdone(rt2x00dev);
  1157. /*
  1158. * 3 - Atim ring transmit done interrupt.
  1159. */
  1160. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1161. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  1162. /*
  1163. * 4 - Priority ring transmit done interrupt.
  1164. */
  1165. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1166. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1167. /*
  1168. * 5 - Tx ring transmit done interrupt.
  1169. */
  1170. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1171. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1172. return IRQ_HANDLED;
  1173. }
  1174. /*
  1175. * Device probe functions.
  1176. */
  1177. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1178. {
  1179. struct eeprom_93cx6 eeprom;
  1180. u32 reg;
  1181. u16 word;
  1182. u8 *mac;
  1183. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1184. eeprom.data = rt2x00dev;
  1185. eeprom.register_read = rt2500pci_eepromregister_read;
  1186. eeprom.register_write = rt2500pci_eepromregister_write;
  1187. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1188. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1189. eeprom.reg_data_in = 0;
  1190. eeprom.reg_data_out = 0;
  1191. eeprom.reg_data_clock = 0;
  1192. eeprom.reg_chip_select = 0;
  1193. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1194. EEPROM_SIZE / sizeof(u16));
  1195. /*
  1196. * Start validation of the data that has been read.
  1197. */
  1198. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1199. if (!is_valid_ether_addr(mac)) {
  1200. DECLARE_MAC_BUF(macbuf);
  1201. random_ether_addr(mac);
  1202. EEPROM(rt2x00dev, "MAC: %s\n",
  1203. print_mac(macbuf, mac));
  1204. }
  1205. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1206. if (word == 0xffff) {
  1207. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1208. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1209. ANTENNA_SW_DIVERSITY);
  1210. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1211. ANTENNA_SW_DIVERSITY);
  1212. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1213. LED_MODE_DEFAULT);
  1214. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1215. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1216. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1217. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1218. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1219. }
  1220. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1221. if (word == 0xffff) {
  1222. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1223. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1224. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1225. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1226. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1227. }
  1228. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1229. if (word == 0xffff) {
  1230. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1231. DEFAULT_RSSI_OFFSET);
  1232. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1233. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1234. }
  1235. return 0;
  1236. }
  1237. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1238. {
  1239. u32 reg;
  1240. u16 value;
  1241. u16 eeprom;
  1242. /*
  1243. * Read EEPROM word for configuration.
  1244. */
  1245. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1246. /*
  1247. * Identify RF chipset.
  1248. */
  1249. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1250. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1251. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1252. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1253. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1254. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1255. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1256. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1257. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1258. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1259. return -ENODEV;
  1260. }
  1261. /*
  1262. * Identify default antenna configuration.
  1263. */
  1264. rt2x00dev->default_ant.tx =
  1265. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1266. rt2x00dev->default_ant.rx =
  1267. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1268. /*
  1269. * Store led mode, for correct led behaviour.
  1270. */
  1271. rt2x00dev->led_mode =
  1272. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1273. /*
  1274. * Detect if this device has an hardware controlled radio.
  1275. */
  1276. #ifdef CONFIG_RT2500PCI_RFKILL
  1277. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1278. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1279. #endif /* CONFIG_RT2500PCI_RFKILL */
  1280. /*
  1281. * Check if the BBP tuning should be enabled.
  1282. */
  1283. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1284. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1285. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1286. /*
  1287. * Read the RSSI <-> dBm offset information.
  1288. */
  1289. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1290. rt2x00dev->rssi_offset =
  1291. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1292. return 0;
  1293. }
  1294. /*
  1295. * RF value list for RF2522
  1296. * Supports: 2.4 GHz
  1297. */
  1298. static const struct rf_channel rf_vals_bg_2522[] = {
  1299. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1300. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1301. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1302. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1303. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1304. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1305. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1306. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1307. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1308. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1309. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1310. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1311. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1312. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1313. };
  1314. /*
  1315. * RF value list for RF2523
  1316. * Supports: 2.4 GHz
  1317. */
  1318. static const struct rf_channel rf_vals_bg_2523[] = {
  1319. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1320. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1321. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1322. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1323. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1324. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1325. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1326. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1327. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1328. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1329. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1330. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1331. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1332. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1333. };
  1334. /*
  1335. * RF value list for RF2524
  1336. * Supports: 2.4 GHz
  1337. */
  1338. static const struct rf_channel rf_vals_bg_2524[] = {
  1339. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1340. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1341. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1342. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1343. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1344. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1345. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1346. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1347. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1348. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1349. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1350. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1351. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1352. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1353. };
  1354. /*
  1355. * RF value list for RF2525
  1356. * Supports: 2.4 GHz
  1357. */
  1358. static const struct rf_channel rf_vals_bg_2525[] = {
  1359. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1360. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1361. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1362. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1363. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1364. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1365. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1366. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1367. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1368. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1369. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1370. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1371. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1372. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1373. };
  1374. /*
  1375. * RF value list for RF2525e
  1376. * Supports: 2.4 GHz
  1377. */
  1378. static const struct rf_channel rf_vals_bg_2525e[] = {
  1379. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1380. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1381. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1382. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1383. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1384. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1385. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1386. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1387. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1388. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1389. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1390. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1391. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1392. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1393. };
  1394. /*
  1395. * RF value list for RF5222
  1396. * Supports: 2.4 GHz & 5.2 GHz
  1397. */
  1398. static const struct rf_channel rf_vals_5222[] = {
  1399. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1400. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1401. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1402. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1403. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1404. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1405. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1406. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1407. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1408. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1409. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1410. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1411. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1412. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1413. /* 802.11 UNI / HyperLan 2 */
  1414. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1415. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1416. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1417. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1418. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1419. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1420. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1421. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1422. /* 802.11 HyperLan 2 */
  1423. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1424. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1425. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1426. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1427. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1428. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1429. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1430. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1431. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1432. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1433. /* 802.11 UNII */
  1434. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1435. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1436. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1437. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1438. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1439. };
  1440. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1441. {
  1442. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1443. u8 *txpower;
  1444. unsigned int i;
  1445. /*
  1446. * Initialize all hw fields.
  1447. */
  1448. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1449. rt2x00dev->hw->extra_tx_headroom = 0;
  1450. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1451. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1452. rt2x00dev->hw->queues = 2;
  1453. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1454. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1455. rt2x00_eeprom_addr(rt2x00dev,
  1456. EEPROM_MAC_ADDR_0));
  1457. /*
  1458. * Convert tx_power array in eeprom.
  1459. */
  1460. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1461. for (i = 0; i < 14; i++)
  1462. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1463. /*
  1464. * Initialize hw_mode information.
  1465. */
  1466. spec->num_modes = 2;
  1467. spec->num_rates = 12;
  1468. spec->tx_power_a = NULL;
  1469. spec->tx_power_bg = txpower;
  1470. spec->tx_power_default = DEFAULT_TXPOWER;
  1471. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1472. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1473. spec->channels = rf_vals_bg_2522;
  1474. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1475. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1476. spec->channels = rf_vals_bg_2523;
  1477. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1478. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1479. spec->channels = rf_vals_bg_2524;
  1480. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1481. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1482. spec->channels = rf_vals_bg_2525;
  1483. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1484. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1485. spec->channels = rf_vals_bg_2525e;
  1486. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1487. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1488. spec->channels = rf_vals_5222;
  1489. spec->num_modes = 3;
  1490. }
  1491. }
  1492. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1493. {
  1494. int retval;
  1495. /*
  1496. * Allocate eeprom data.
  1497. */
  1498. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1499. if (retval)
  1500. return retval;
  1501. retval = rt2500pci_init_eeprom(rt2x00dev);
  1502. if (retval)
  1503. return retval;
  1504. /*
  1505. * Initialize hw specifications.
  1506. */
  1507. rt2500pci_probe_hw_mode(rt2x00dev);
  1508. /*
  1509. * This device requires the beacon ring
  1510. */
  1511. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1512. /*
  1513. * Set the rssi offset.
  1514. */
  1515. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1516. return 0;
  1517. }
  1518. /*
  1519. * IEEE80211 stack callback functions.
  1520. */
  1521. static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
  1522. unsigned int changed_flags,
  1523. unsigned int *total_flags,
  1524. int mc_count,
  1525. struct dev_addr_list *mc_list)
  1526. {
  1527. struct rt2x00_dev *rt2x00dev = hw->priv;
  1528. struct interface *intf = &rt2x00dev->interface;
  1529. u32 reg;
  1530. /*
  1531. * Mask off any flags we are going to ignore from
  1532. * the total_flags field.
  1533. */
  1534. *total_flags &=
  1535. FIF_ALLMULTI |
  1536. FIF_FCSFAIL |
  1537. FIF_PLCPFAIL |
  1538. FIF_CONTROL |
  1539. FIF_OTHER_BSS |
  1540. FIF_PROMISC_IN_BSS;
  1541. /*
  1542. * Apply some rules to the filters:
  1543. * - Some filters imply different filters to be set.
  1544. * - Some things we can't filter out at all.
  1545. * - Some filters are set based on interface type.
  1546. */
  1547. if (mc_count)
  1548. *total_flags |= FIF_ALLMULTI;
  1549. if (*total_flags & FIF_OTHER_BSS ||
  1550. *total_flags & FIF_PROMISC_IN_BSS)
  1551. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1552. if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  1553. *total_flags |= FIF_PROMISC_IN_BSS;
  1554. /*
  1555. * Check if there is any work left for us.
  1556. */
  1557. if (intf->filter == *total_flags)
  1558. return;
  1559. intf->filter = *total_flags;
  1560. /*
  1561. * Start configuration steps.
  1562. * Note that the version error will always be dropped
  1563. * and broadcast frames will always be accepted since
  1564. * there is no filter for it at this time.
  1565. */
  1566. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1567. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1568. !(*total_flags & FIF_FCSFAIL));
  1569. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1570. !(*total_flags & FIF_PLCPFAIL));
  1571. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1572. !(*total_flags & FIF_CONTROL));
  1573. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1574. !(*total_flags & FIF_PROMISC_IN_BSS));
  1575. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1576. !(*total_flags & FIF_PROMISC_IN_BSS));
  1577. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1578. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  1579. !(*total_flags & FIF_ALLMULTI));
  1580. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  1581. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1582. }
  1583. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1584. u32 short_retry, u32 long_retry)
  1585. {
  1586. struct rt2x00_dev *rt2x00dev = hw->priv;
  1587. u32 reg;
  1588. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1589. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1590. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1591. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1592. return 0;
  1593. }
  1594. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1595. {
  1596. struct rt2x00_dev *rt2x00dev = hw->priv;
  1597. u64 tsf;
  1598. u32 reg;
  1599. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1600. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1601. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1602. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1603. return tsf;
  1604. }
  1605. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1606. {
  1607. struct rt2x00_dev *rt2x00dev = hw->priv;
  1608. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1609. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1610. }
  1611. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1612. {
  1613. struct rt2x00_dev *rt2x00dev = hw->priv;
  1614. u32 reg;
  1615. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1616. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1617. }
  1618. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1619. .tx = rt2x00mac_tx,
  1620. .start = rt2x00mac_start,
  1621. .stop = rt2x00mac_stop,
  1622. .add_interface = rt2x00mac_add_interface,
  1623. .remove_interface = rt2x00mac_remove_interface,
  1624. .config = rt2x00mac_config,
  1625. .config_interface = rt2x00mac_config_interface,
  1626. .configure_filter = rt2500pci_configure_filter,
  1627. .get_stats = rt2x00mac_get_stats,
  1628. .set_retry_limit = rt2500pci_set_retry_limit,
  1629. .erp_ie_changed = rt2x00mac_erp_ie_changed,
  1630. .conf_tx = rt2x00mac_conf_tx,
  1631. .get_tx_stats = rt2x00mac_get_tx_stats,
  1632. .get_tsf = rt2500pci_get_tsf,
  1633. .reset_tsf = rt2500pci_reset_tsf,
  1634. .beacon_update = rt2x00pci_beacon_update,
  1635. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1636. };
  1637. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1638. .irq_handler = rt2500pci_interrupt,
  1639. .probe_hw = rt2500pci_probe_hw,
  1640. .initialize = rt2x00pci_initialize,
  1641. .uninitialize = rt2x00pci_uninitialize,
  1642. .set_device_state = rt2500pci_set_device_state,
  1643. .rfkill_poll = rt2500pci_rfkill_poll,
  1644. .link_stats = rt2500pci_link_stats,
  1645. .reset_tuner = rt2500pci_reset_tuner,
  1646. .link_tuner = rt2500pci_link_tuner,
  1647. .write_tx_desc = rt2500pci_write_tx_desc,
  1648. .write_tx_data = rt2x00pci_write_tx_data,
  1649. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1650. .fill_rxdone = rt2500pci_fill_rxdone,
  1651. .config_mac_addr = rt2500pci_config_mac_addr,
  1652. .config_bssid = rt2500pci_config_bssid,
  1653. .config_type = rt2500pci_config_type,
  1654. .config_preamble = rt2500pci_config_preamble,
  1655. .config = rt2500pci_config,
  1656. };
  1657. static const struct rt2x00_ops rt2500pci_ops = {
  1658. .name = DRV_NAME,
  1659. .rxd_size = RXD_DESC_SIZE,
  1660. .txd_size = TXD_DESC_SIZE,
  1661. .eeprom_size = EEPROM_SIZE,
  1662. .rf_size = RF_SIZE,
  1663. .lib = &rt2500pci_rt2x00_ops,
  1664. .hw = &rt2500pci_mac80211_ops,
  1665. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1666. .debugfs = &rt2500pci_rt2x00debug,
  1667. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1668. };
  1669. /*
  1670. * RT2500pci module information.
  1671. */
  1672. static struct pci_device_id rt2500pci_device_table[] = {
  1673. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1674. { 0, }
  1675. };
  1676. MODULE_AUTHOR(DRV_PROJECT);
  1677. MODULE_VERSION(DRV_VERSION);
  1678. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1679. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1680. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1681. MODULE_LICENSE("GPL");
  1682. static struct pci_driver rt2500pci_driver = {
  1683. .name = DRV_NAME,
  1684. .id_table = rt2500pci_device_table,
  1685. .probe = rt2x00pci_probe,
  1686. .remove = __devexit_p(rt2x00pci_remove),
  1687. .suspend = rt2x00pci_suspend,
  1688. .resume = rt2x00pci_resume,
  1689. };
  1690. static int __init rt2500pci_init(void)
  1691. {
  1692. return pci_register_driver(&rt2500pci_driver);
  1693. }
  1694. static void __exit rt2500pci_exit(void)
  1695. {
  1696. pci_unregister_driver(&rt2500pci_driver);
  1697. }
  1698. module_init(rt2500pci_init);
  1699. module_exit(rt2500pci_exit);