setup.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
  3. * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
  4. *
  5. * Description:
  6. * Architecture- / platform-specific boot-time initialization code for
  7. * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
  8. * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
  9. * <dan@net4x.com>.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #undef DEBUG
  17. #include <linux/config.h>
  18. #include <linux/init.h>
  19. #include <linux/threads.h>
  20. #include <linux/smp.h>
  21. #include <linux/param.h>
  22. #include <linux/string.h>
  23. #include <linux/initrd.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/kdev_t.h>
  26. #include <linux/major.h>
  27. #include <linux/root_dev.h>
  28. #include <linux/kernel.h>
  29. #include <asm/processor.h>
  30. #include <asm/machdep.h>
  31. #include <asm/page.h>
  32. #include <asm/mmu.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/cputable.h>
  36. #include <asm/sections.h>
  37. #include <asm/iommu.h>
  38. #include <asm/firmware.h>
  39. #include <asm/system.h>
  40. #include <asm/time.h>
  41. #include <asm/paca.h>
  42. #include <asm/cache.h>
  43. #include <asm/sections.h>
  44. #include <asm/abs_addr.h>
  45. #include <asm/iseries/hv_lp_config.h>
  46. #include <asm/iseries/hv_call_event.h>
  47. #include <asm/iseries/hv_call_xm.h>
  48. #include <asm/iseries/it_lp_queue.h>
  49. #include <asm/iseries/mf.h>
  50. #include <asm/iseries/hv_lp_event.h>
  51. #include <asm/iseries/lpar_map.h>
  52. #include <asm/udbg.h>
  53. #include "naca.h"
  54. #include "setup.h"
  55. #include "irq.h"
  56. #include "vpd_areas.h"
  57. #include "processor_vpd.h"
  58. #include "main_store.h"
  59. #include "call_sm.h"
  60. #include "call_hpt.h"
  61. #ifdef DEBUG
  62. #define DBG(fmt...) udbg_printf(fmt)
  63. #else
  64. #define DBG(fmt...)
  65. #endif
  66. /* Function Prototypes */
  67. static unsigned long build_iSeries_Memory_Map(void);
  68. static void iseries_shared_idle(void);
  69. static void iseries_dedicated_idle(void);
  70. #ifdef CONFIG_PCI
  71. extern void iSeries_pci_final_fixup(void);
  72. #else
  73. static void iSeries_pci_final_fixup(void) { }
  74. #endif
  75. /* Global Variables */
  76. int piranha_simulator;
  77. extern int rd_size; /* Defined in drivers/block/rd.c */
  78. extern unsigned long embedded_sysmap_start;
  79. extern unsigned long embedded_sysmap_end;
  80. extern unsigned long iSeries_recal_tb;
  81. extern unsigned long iSeries_recal_titan;
  82. static int mf_initialized;
  83. static unsigned long cmd_mem_limit;
  84. struct MemoryBlock {
  85. unsigned long absStart;
  86. unsigned long absEnd;
  87. unsigned long logicalStart;
  88. unsigned long logicalEnd;
  89. };
  90. /*
  91. * Process the main store vpd to determine where the holes in memory are
  92. * and return the number of physical blocks and fill in the array of
  93. * block data.
  94. */
  95. static unsigned long iSeries_process_Condor_mainstore_vpd(
  96. struct MemoryBlock *mb_array, unsigned long max_entries)
  97. {
  98. unsigned long holeFirstChunk, holeSizeChunks;
  99. unsigned long numMemoryBlocks = 1;
  100. struct IoHriMainStoreSegment4 *msVpd =
  101. (struct IoHriMainStoreSegment4 *)xMsVpd;
  102. unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
  103. unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
  104. unsigned long holeSize = holeEnd - holeStart;
  105. printk("Mainstore_VPD: Condor\n");
  106. /*
  107. * Determine if absolute memory has any
  108. * holes so that we can interpret the
  109. * access map we get back from the hypervisor
  110. * correctly.
  111. */
  112. mb_array[0].logicalStart = 0;
  113. mb_array[0].logicalEnd = 0x100000000;
  114. mb_array[0].absStart = 0;
  115. mb_array[0].absEnd = 0x100000000;
  116. if (holeSize) {
  117. numMemoryBlocks = 2;
  118. holeStart = holeStart & 0x000fffffffffffff;
  119. holeStart = addr_to_chunk(holeStart);
  120. holeFirstChunk = holeStart;
  121. holeSize = addr_to_chunk(holeSize);
  122. holeSizeChunks = holeSize;
  123. printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
  124. holeFirstChunk, holeSizeChunks );
  125. mb_array[0].logicalEnd = holeFirstChunk;
  126. mb_array[0].absEnd = holeFirstChunk;
  127. mb_array[1].logicalStart = holeFirstChunk;
  128. mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
  129. mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
  130. mb_array[1].absEnd = 0x100000000;
  131. }
  132. return numMemoryBlocks;
  133. }
  134. #define MaxSegmentAreas 32
  135. #define MaxSegmentAdrRangeBlocks 128
  136. #define MaxAreaRangeBlocks 4
  137. static unsigned long iSeries_process_Regatta_mainstore_vpd(
  138. struct MemoryBlock *mb_array, unsigned long max_entries)
  139. {
  140. struct IoHriMainStoreSegment5 *msVpdP =
  141. (struct IoHriMainStoreSegment5 *)xMsVpd;
  142. unsigned long numSegmentBlocks = 0;
  143. u32 existsBits = msVpdP->msAreaExists;
  144. unsigned long area_num;
  145. printk("Mainstore_VPD: Regatta\n");
  146. for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
  147. unsigned long numAreaBlocks;
  148. struct IoHriMainStoreArea4 *currentArea;
  149. if (existsBits & 0x80000000) {
  150. unsigned long block_num;
  151. currentArea = &msVpdP->msAreaArray[area_num];
  152. numAreaBlocks = currentArea->numAdrRangeBlocks;
  153. printk("ms_vpd: processing area %2ld blocks=%ld",
  154. area_num, numAreaBlocks);
  155. for (block_num = 0; block_num < numAreaBlocks;
  156. ++block_num ) {
  157. /* Process an address range block */
  158. struct MemoryBlock tempBlock;
  159. unsigned long i;
  160. tempBlock.absStart =
  161. (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
  162. tempBlock.absEnd =
  163. (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
  164. tempBlock.logicalStart = 0;
  165. tempBlock.logicalEnd = 0;
  166. printk("\n block %ld absStart=%016lx absEnd=%016lx",
  167. block_num, tempBlock.absStart,
  168. tempBlock.absEnd);
  169. for (i = 0; i < numSegmentBlocks; ++i) {
  170. if (mb_array[i].absStart ==
  171. tempBlock.absStart)
  172. break;
  173. }
  174. if (i == numSegmentBlocks) {
  175. if (numSegmentBlocks == max_entries)
  176. panic("iSeries_process_mainstore_vpd: too many memory blocks");
  177. mb_array[numSegmentBlocks] = tempBlock;
  178. ++numSegmentBlocks;
  179. } else
  180. printk(" (duplicate)");
  181. }
  182. printk("\n");
  183. }
  184. existsBits <<= 1;
  185. }
  186. /* Now sort the blocks found into ascending sequence */
  187. if (numSegmentBlocks > 1) {
  188. unsigned long m, n;
  189. for (m = 0; m < numSegmentBlocks - 1; ++m) {
  190. for (n = numSegmentBlocks - 1; m < n; --n) {
  191. if (mb_array[n].absStart <
  192. mb_array[n-1].absStart) {
  193. struct MemoryBlock tempBlock;
  194. tempBlock = mb_array[n];
  195. mb_array[n] = mb_array[n-1];
  196. mb_array[n-1] = tempBlock;
  197. }
  198. }
  199. }
  200. }
  201. /*
  202. * Assign "logical" addresses to each block. These
  203. * addresses correspond to the hypervisor "bitmap" space.
  204. * Convert all addresses into units of 256K chunks.
  205. */
  206. {
  207. unsigned long i, nextBitmapAddress;
  208. printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
  209. nextBitmapAddress = 0;
  210. for (i = 0; i < numSegmentBlocks; ++i) {
  211. unsigned long length = mb_array[i].absEnd -
  212. mb_array[i].absStart;
  213. mb_array[i].logicalStart = nextBitmapAddress;
  214. mb_array[i].logicalEnd = nextBitmapAddress + length;
  215. nextBitmapAddress += length;
  216. printk(" Bitmap range: %016lx - %016lx\n"
  217. " Absolute range: %016lx - %016lx\n",
  218. mb_array[i].logicalStart,
  219. mb_array[i].logicalEnd,
  220. mb_array[i].absStart, mb_array[i].absEnd);
  221. mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
  222. 0x000fffffffffffff);
  223. mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
  224. 0x000fffffffffffff);
  225. mb_array[i].logicalStart =
  226. addr_to_chunk(mb_array[i].logicalStart);
  227. mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
  228. }
  229. }
  230. return numSegmentBlocks;
  231. }
  232. static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
  233. unsigned long max_entries)
  234. {
  235. unsigned long i;
  236. unsigned long mem_blocks = 0;
  237. if (cpu_has_feature(CPU_FTR_SLB))
  238. mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
  239. max_entries);
  240. else
  241. mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
  242. max_entries);
  243. printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
  244. for (i = 0; i < mem_blocks; ++i) {
  245. printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
  246. " abs chunks %016lx - %016lx\n",
  247. i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
  248. mb_array[i].absStart, mb_array[i].absEnd);
  249. }
  250. return mem_blocks;
  251. }
  252. static void __init iSeries_get_cmdline(void)
  253. {
  254. char *p, *q;
  255. /* copy the command line parameter from the primary VSP */
  256. HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
  257. HvLpDma_Direction_RemoteToLocal);
  258. p = cmd_line;
  259. q = cmd_line + 255;
  260. while(p < q) {
  261. if (!*p || *p == '\n')
  262. break;
  263. ++p;
  264. }
  265. *p = 0;
  266. }
  267. static void __init iSeries_init_early(void)
  268. {
  269. DBG(" -> iSeries_init_early()\n");
  270. ppc64_firmware_features = FW_FEATURE_ISERIES;
  271. ppc64_interrupt_controller = IC_ISERIES;
  272. #if defined(CONFIG_BLK_DEV_INITRD)
  273. /*
  274. * If the init RAM disk has been configured and there is
  275. * a non-zero starting address for it, set it up
  276. */
  277. if (naca.xRamDisk) {
  278. initrd_start = (unsigned long)__va(naca.xRamDisk);
  279. initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
  280. initrd_below_start_ok = 1; // ramdisk in kernel space
  281. ROOT_DEV = Root_RAM0;
  282. if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
  283. rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
  284. } else
  285. #endif /* CONFIG_BLK_DEV_INITRD */
  286. {
  287. /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
  288. }
  289. iSeries_recal_tb = get_tb();
  290. iSeries_recal_titan = HvCallXm_loadTod();
  291. /*
  292. * Initialize the hash table management pointers
  293. */
  294. hpte_init_iSeries();
  295. /*
  296. * Initialize the DMA/TCE management
  297. */
  298. iommu_init_early_iSeries();
  299. /* Initialize machine-dependency vectors */
  300. #ifdef CONFIG_SMP
  301. smp_init_iSeries();
  302. #endif
  303. if (itLpNaca.xPirEnvironMode == 0)
  304. piranha_simulator = 1;
  305. /* Associate Lp Event Queue 0 with processor 0 */
  306. HvCallEvent_setLpEventQueueInterruptProc(0, 0);
  307. mf_init();
  308. mf_initialized = 1;
  309. mb();
  310. /* If we were passed an initrd, set the ROOT_DEV properly if the values
  311. * look sensible. If not, clear initrd reference.
  312. */
  313. #ifdef CONFIG_BLK_DEV_INITRD
  314. if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
  315. initrd_end > initrd_start)
  316. ROOT_DEV = Root_RAM0;
  317. else
  318. initrd_start = initrd_end = 0;
  319. #endif /* CONFIG_BLK_DEV_INITRD */
  320. DBG(" <- iSeries_init_early()\n");
  321. }
  322. struct mschunks_map mschunks_map = {
  323. /* XXX We don't use these, but Piranha might need them. */
  324. .chunk_size = MSCHUNKS_CHUNK_SIZE,
  325. .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
  326. .chunk_mask = MSCHUNKS_OFFSET_MASK,
  327. };
  328. EXPORT_SYMBOL(mschunks_map);
  329. void mschunks_alloc(unsigned long num_chunks)
  330. {
  331. klimit = _ALIGN(klimit, sizeof(u32));
  332. mschunks_map.mapping = (u32 *)klimit;
  333. klimit += num_chunks * sizeof(u32);
  334. mschunks_map.num_chunks = num_chunks;
  335. }
  336. /*
  337. * The iSeries may have very large memories ( > 128 GB ) and a partition
  338. * may get memory in "chunks" that may be anywhere in the 2**52 real
  339. * address space. The chunks are 256K in size. To map this to the
  340. * memory model Linux expects, the AS/400 specific code builds a
  341. * translation table to translate what Linux thinks are "physical"
  342. * addresses to the actual real addresses. This allows us to make
  343. * it appear to Linux that we have contiguous memory starting at
  344. * physical address zero while in fact this could be far from the truth.
  345. * To avoid confusion, I'll let the words physical and/or real address
  346. * apply to the Linux addresses while I'll use "absolute address" to
  347. * refer to the actual hardware real address.
  348. *
  349. * build_iSeries_Memory_Map gets information from the Hypervisor and
  350. * looks at the Main Store VPD to determine the absolute addresses
  351. * of the memory that has been assigned to our partition and builds
  352. * a table used to translate Linux's physical addresses to these
  353. * absolute addresses. Absolute addresses are needed when
  354. * communicating with the hypervisor (e.g. to build HPT entries)
  355. *
  356. * Returns the physical memory size
  357. */
  358. static unsigned long __init build_iSeries_Memory_Map(void)
  359. {
  360. u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
  361. u32 nextPhysChunk;
  362. u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
  363. u32 totalChunks,moreChunks;
  364. u32 currChunk, thisChunk, absChunk;
  365. u32 currDword;
  366. u32 chunkBit;
  367. u64 map;
  368. struct MemoryBlock mb[32];
  369. unsigned long numMemoryBlocks, curBlock;
  370. /* Chunk size on iSeries is 256K bytes */
  371. totalChunks = (u32)HvLpConfig_getMsChunks();
  372. mschunks_alloc(totalChunks);
  373. /*
  374. * Get absolute address of our load area
  375. * and map it to physical address 0
  376. * This guarantees that the loadarea ends up at physical 0
  377. * otherwise, it might not be returned by PLIC as the first
  378. * chunks
  379. */
  380. loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
  381. loadAreaSize = itLpNaca.xLoadAreaChunks;
  382. /*
  383. * Only add the pages already mapped here.
  384. * Otherwise we might add the hpt pages
  385. * The rest of the pages of the load area
  386. * aren't in the HPT yet and can still
  387. * be assigned an arbitrary physical address
  388. */
  389. if ((loadAreaSize * 64) > HvPagesToMap)
  390. loadAreaSize = HvPagesToMap / 64;
  391. loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
  392. /*
  393. * TODO Do we need to do something if the HPT is in the 64MB load area?
  394. * This would be required if the itLpNaca.xLoadAreaChunks includes
  395. * the HPT size
  396. */
  397. printk("Mapping load area - physical addr = 0000000000000000\n"
  398. " absolute addr = %016lx\n",
  399. chunk_to_addr(loadAreaFirstChunk));
  400. printk("Load area size %dK\n", loadAreaSize * 256);
  401. for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
  402. mschunks_map.mapping[nextPhysChunk] =
  403. loadAreaFirstChunk + nextPhysChunk;
  404. /*
  405. * Get absolute address of our HPT and remember it so
  406. * we won't map it to any physical address
  407. */
  408. hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
  409. hptSizePages = (u32)HvCallHpt_getHptPages();
  410. hptSizeChunks = hptSizePages >>
  411. (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
  412. hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
  413. printk("HPT absolute addr = %016lx, size = %dK\n",
  414. chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
  415. /*
  416. * Determine if absolute memory has any
  417. * holes so that we can interpret the
  418. * access map we get back from the hypervisor
  419. * correctly.
  420. */
  421. numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
  422. /*
  423. * Process the main store access map from the hypervisor
  424. * to build up our physical -> absolute translation table
  425. */
  426. curBlock = 0;
  427. currChunk = 0;
  428. currDword = 0;
  429. moreChunks = totalChunks;
  430. while (moreChunks) {
  431. map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
  432. currDword);
  433. thisChunk = currChunk;
  434. while (map) {
  435. chunkBit = map >> 63;
  436. map <<= 1;
  437. if (chunkBit) {
  438. --moreChunks;
  439. while (thisChunk >= mb[curBlock].logicalEnd) {
  440. ++curBlock;
  441. if (curBlock >= numMemoryBlocks)
  442. panic("out of memory blocks");
  443. }
  444. if (thisChunk < mb[curBlock].logicalStart)
  445. panic("memory block error");
  446. absChunk = mb[curBlock].absStart +
  447. (thisChunk - mb[curBlock].logicalStart);
  448. if (((absChunk < hptFirstChunk) ||
  449. (absChunk > hptLastChunk)) &&
  450. ((absChunk < loadAreaFirstChunk) ||
  451. (absChunk > loadAreaLastChunk))) {
  452. mschunks_map.mapping[nextPhysChunk] =
  453. absChunk;
  454. ++nextPhysChunk;
  455. }
  456. }
  457. ++thisChunk;
  458. }
  459. ++currDword;
  460. currChunk += 64;
  461. }
  462. /*
  463. * main store size (in chunks) is
  464. * totalChunks - hptSizeChunks
  465. * which should be equal to
  466. * nextPhysChunk
  467. */
  468. return chunk_to_addr(nextPhysChunk);
  469. }
  470. /*
  471. * Document me.
  472. */
  473. static void __init iSeries_setup_arch(void)
  474. {
  475. if (get_lppaca()->shared_proc) {
  476. ppc_md.idle_loop = iseries_shared_idle;
  477. printk(KERN_INFO "Using shared processor idle loop\n");
  478. } else {
  479. ppc_md.idle_loop = iseries_dedicated_idle;
  480. printk(KERN_INFO "Using dedicated idle loop\n");
  481. }
  482. /* Setup the Lp Event Queue */
  483. setup_hvlpevent_queue();
  484. printk("Max logical processors = %d\n",
  485. itVpdAreas.xSlicMaxLogicalProcs);
  486. printk("Max physical processors = %d\n",
  487. itVpdAreas.xSlicMaxPhysicalProcs);
  488. }
  489. static void iSeries_show_cpuinfo(struct seq_file *m)
  490. {
  491. seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
  492. }
  493. /*
  494. * Document me.
  495. */
  496. static void iSeries_restart(char *cmd)
  497. {
  498. mf_reboot();
  499. }
  500. /*
  501. * Document me.
  502. */
  503. static void iSeries_power_off(void)
  504. {
  505. mf_power_off();
  506. }
  507. /*
  508. * Document me.
  509. */
  510. static void iSeries_halt(void)
  511. {
  512. mf_power_off();
  513. }
  514. static void __init iSeries_progress(char * st, unsigned short code)
  515. {
  516. printk("Progress: [%04x] - %s\n", (unsigned)code, st);
  517. if (!piranha_simulator && mf_initialized) {
  518. if (code != 0xffff)
  519. mf_display_progress(code);
  520. else
  521. mf_clear_src();
  522. }
  523. }
  524. static void __init iSeries_fixup_klimit(void)
  525. {
  526. /*
  527. * Change klimit to take into account any ram disk
  528. * that may be included
  529. */
  530. if (naca.xRamDisk)
  531. klimit = KERNELBASE + (u64)naca.xRamDisk +
  532. (naca.xRamDiskSize * HW_PAGE_SIZE);
  533. else {
  534. /*
  535. * No ram disk was included - check and see if there
  536. * was an embedded system map. Change klimit to take
  537. * into account any embedded system map
  538. */
  539. if (embedded_sysmap_end)
  540. klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
  541. 0xfffffffffffff000);
  542. }
  543. }
  544. static int __init iSeries_src_init(void)
  545. {
  546. /* clear the progress line */
  547. ppc_md.progress(" ", 0xffff);
  548. return 0;
  549. }
  550. late_initcall(iSeries_src_init);
  551. static inline void process_iSeries_events(void)
  552. {
  553. asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
  554. }
  555. static void yield_shared_processor(void)
  556. {
  557. unsigned long tb;
  558. HvCall_setEnabledInterrupts(HvCall_MaskIPI |
  559. HvCall_MaskLpEvent |
  560. HvCall_MaskLpProd |
  561. HvCall_MaskTimeout);
  562. tb = get_tb();
  563. /* Compute future tb value when yield should expire */
  564. HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
  565. /*
  566. * The decrementer stops during the yield. Force a fake decrementer
  567. * here and let the timer_interrupt code sort out the actual time.
  568. */
  569. get_lppaca()->int_dword.fields.decr_int = 1;
  570. ppc64_runlatch_on();
  571. process_iSeries_events();
  572. }
  573. static void iseries_shared_idle(void)
  574. {
  575. while (1) {
  576. while (!need_resched() && !hvlpevent_is_pending()) {
  577. local_irq_disable();
  578. ppc64_runlatch_off();
  579. /* Recheck with irqs off */
  580. if (!need_resched() && !hvlpevent_is_pending())
  581. yield_shared_processor();
  582. HMT_medium();
  583. local_irq_enable();
  584. }
  585. ppc64_runlatch_on();
  586. if (hvlpevent_is_pending())
  587. process_iSeries_events();
  588. preempt_enable_no_resched();
  589. schedule();
  590. preempt_disable();
  591. }
  592. }
  593. static void iseries_dedicated_idle(void)
  594. {
  595. set_thread_flag(TIF_POLLING_NRFLAG);
  596. while (1) {
  597. if (!need_resched()) {
  598. while (!need_resched()) {
  599. ppc64_runlatch_off();
  600. HMT_low();
  601. if (hvlpevent_is_pending()) {
  602. HMT_medium();
  603. ppc64_runlatch_on();
  604. process_iSeries_events();
  605. }
  606. }
  607. HMT_medium();
  608. }
  609. ppc64_runlatch_on();
  610. preempt_enable_no_resched();
  611. schedule();
  612. preempt_disable();
  613. }
  614. }
  615. #ifndef CONFIG_PCI
  616. void __init iSeries_init_IRQ(void) { }
  617. #endif
  618. static int __init iseries_probe(int platform)
  619. {
  620. return PLATFORM_ISERIES_LPAR == platform;
  621. }
  622. struct machdep_calls __initdata iseries_md = {
  623. .setup_arch = iSeries_setup_arch,
  624. .show_cpuinfo = iSeries_show_cpuinfo,
  625. .init_IRQ = iSeries_init_IRQ,
  626. .get_irq = iSeries_get_irq,
  627. .init_early = iSeries_init_early,
  628. .pcibios_fixup = iSeries_pci_final_fixup,
  629. .restart = iSeries_restart,
  630. .power_off = iSeries_power_off,
  631. .halt = iSeries_halt,
  632. .get_boot_time = iSeries_get_boot_time,
  633. .set_rtc_time = iSeries_set_rtc_time,
  634. .get_rtc_time = iSeries_get_rtc_time,
  635. .calibrate_decr = generic_calibrate_decr,
  636. .progress = iSeries_progress,
  637. .probe = iseries_probe,
  638. /* XXX Implement enable_pmcs for iSeries */
  639. };
  640. struct blob {
  641. unsigned char data[PAGE_SIZE];
  642. unsigned long next;
  643. };
  644. struct iseries_flat_dt {
  645. struct boot_param_header header;
  646. u64 reserve_map[2];
  647. struct blob dt;
  648. struct blob strings;
  649. };
  650. struct iseries_flat_dt iseries_dt;
  651. void dt_init(struct iseries_flat_dt *dt)
  652. {
  653. dt->header.off_mem_rsvmap =
  654. offsetof(struct iseries_flat_dt, reserve_map);
  655. dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
  656. dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
  657. dt->header.totalsize = sizeof(struct iseries_flat_dt);
  658. dt->header.dt_strings_size = sizeof(struct blob);
  659. /* There is no notion of hardware cpu id on iSeries */
  660. dt->header.boot_cpuid_phys = smp_processor_id();
  661. dt->dt.next = (unsigned long)&dt->dt.data;
  662. dt->strings.next = (unsigned long)&dt->strings.data;
  663. dt->header.magic = OF_DT_HEADER;
  664. dt->header.version = 0x10;
  665. dt->header.last_comp_version = 0x10;
  666. dt->reserve_map[0] = 0;
  667. dt->reserve_map[1] = 0;
  668. }
  669. void dt_check_blob(struct blob *b)
  670. {
  671. if (b->next >= (unsigned long)&b->next) {
  672. DBG("Ran out of space in flat device tree blob!\n");
  673. BUG();
  674. }
  675. }
  676. void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
  677. {
  678. *((u32*)dt->dt.next) = value;
  679. dt->dt.next += sizeof(u32);
  680. dt_check_blob(&dt->dt);
  681. }
  682. void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
  683. {
  684. *((u64*)dt->dt.next) = value;
  685. dt->dt.next += sizeof(u64);
  686. dt_check_blob(&dt->dt);
  687. }
  688. unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
  689. {
  690. unsigned long start = blob->next - (unsigned long)blob->data;
  691. memcpy((char *)blob->next, data, len);
  692. blob->next = _ALIGN(blob->next + len, 4);
  693. dt_check_blob(blob);
  694. return start;
  695. }
  696. void dt_start_node(struct iseries_flat_dt *dt, char *name)
  697. {
  698. dt_push_u32(dt, OF_DT_BEGIN_NODE);
  699. dt_push_bytes(&dt->dt, name, strlen(name) + 1);
  700. }
  701. #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
  702. void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
  703. {
  704. unsigned long offset;
  705. dt_push_u32(dt, OF_DT_PROP);
  706. /* Length of the data */
  707. dt_push_u32(dt, len);
  708. /* Put the property name in the string blob. */
  709. offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
  710. /* The offset of the properties name in the string blob. */
  711. dt_push_u32(dt, (u32)offset);
  712. /* The actual data. */
  713. dt_push_bytes(&dt->dt, data, len);
  714. }
  715. void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
  716. {
  717. dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
  718. }
  719. void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
  720. {
  721. dt_prop(dt, name, (char *)&data, sizeof(u32));
  722. }
  723. void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
  724. {
  725. dt_prop(dt, name, (char *)&data, sizeof(u64));
  726. }
  727. void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
  728. {
  729. dt_prop(dt, name, (char *)data, sizeof(u64) * n);
  730. }
  731. void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
  732. {
  733. dt_prop(dt, name, (char *)data, sizeof(u32) * n);
  734. }
  735. void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
  736. {
  737. dt_prop(dt, name, NULL, 0);
  738. }
  739. void dt_cpus(struct iseries_flat_dt *dt)
  740. {
  741. unsigned char buf[32];
  742. unsigned char *p;
  743. unsigned int i, index;
  744. struct IoHriProcessorVpd *d;
  745. u32 pft_size[2];
  746. /* yuck */
  747. snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
  748. p = strchr(buf, ' ');
  749. if (!p) p = buf + strlen(buf);
  750. dt_start_node(dt, "cpus");
  751. dt_prop_u32(dt, "#address-cells", 1);
  752. dt_prop_u32(dt, "#size-cells", 0);
  753. pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
  754. pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
  755. for (i = 0; i < NR_CPUS; i++) {
  756. if (lppaca[i].dyn_proc_status >= 2)
  757. continue;
  758. snprintf(p, 32 - (p - buf), "@%d", i);
  759. dt_start_node(dt, buf);
  760. dt_prop_str(dt, "device_type", "cpu");
  761. index = lppaca[i].dyn_hv_phys_proc_index;
  762. d = &xIoHriProcessorVpd[index];
  763. dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
  764. dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
  765. dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
  766. dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
  767. /* magic conversions to Hz copied from old code */
  768. dt_prop_u32(dt, "clock-frequency",
  769. ((1UL << 34) * 1000000) / d->xProcFreq);
  770. dt_prop_u32(dt, "timebase-frequency",
  771. ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
  772. dt_prop_u32(dt, "reg", i);
  773. dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
  774. dt_end_node(dt);
  775. }
  776. dt_end_node(dt);
  777. }
  778. void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
  779. {
  780. u64 tmp[2];
  781. dt_init(dt);
  782. dt_start_node(dt, "");
  783. dt_prop_u32(dt, "#address-cells", 2);
  784. dt_prop_u32(dt, "#size-cells", 2);
  785. /* /memory */
  786. dt_start_node(dt, "memory@0");
  787. dt_prop_str(dt, "name", "memory");
  788. dt_prop_str(dt, "device_type", "memory");
  789. tmp[0] = 0;
  790. tmp[1] = phys_mem_size;
  791. dt_prop_u64_list(dt, "reg", tmp, 2);
  792. dt_end_node(dt);
  793. /* /chosen */
  794. dt_start_node(dt, "chosen");
  795. dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
  796. if (cmd_mem_limit)
  797. dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
  798. dt_end_node(dt);
  799. dt_cpus(dt);
  800. dt_end_node(dt);
  801. dt_push_u32(dt, OF_DT_END);
  802. }
  803. void * __init iSeries_early_setup(void)
  804. {
  805. unsigned long phys_mem_size;
  806. iSeries_fixup_klimit();
  807. /*
  808. * Initialize the table which translate Linux physical addresses to
  809. * AS/400 absolute addresses
  810. */
  811. phys_mem_size = build_iSeries_Memory_Map();
  812. iSeries_get_cmdline();
  813. /* Save unparsed command line copy for /proc/cmdline */
  814. strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
  815. /* Parse early parameters, in particular mem=x */
  816. parse_early_param();
  817. build_flat_dt(&iseries_dt, phys_mem_size);
  818. return (void *) __pa(&iseries_dt);
  819. }
  820. /*
  821. * On iSeries we just parse the mem=X option from the command line.
  822. * On pSeries it's a bit more complicated, see prom_init_mem()
  823. */
  824. static int __init early_parsemem(char *p)
  825. {
  826. if (p)
  827. cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
  828. return 0;
  829. }
  830. early_param("mem", early_parsemem);
  831. static void hvputc(char c)
  832. {
  833. if (c == '\n')
  834. hvputc('\r');
  835. HvCall_writeLogBuffer(&c, 1);
  836. }
  837. void __init udbg_init_iseries(void)
  838. {
  839. udbg_putc = hvputc;
  840. }