free-space-cache.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  27. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  28. static void recalculate_thresholds(struct btrfs_block_group_cache
  29. *block_group);
  30. static int link_free_space(struct btrfs_block_group_cache *block_group,
  31. struct btrfs_free_space *info);
  32. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  33. struct btrfs_block_group_cache
  34. *block_group, struct btrfs_path *path)
  35. {
  36. struct btrfs_key key;
  37. struct btrfs_key location;
  38. struct btrfs_disk_key disk_key;
  39. struct btrfs_free_space_header *header;
  40. struct extent_buffer *leaf;
  41. struct inode *inode = NULL;
  42. int ret;
  43. spin_lock(&block_group->lock);
  44. if (block_group->inode)
  45. inode = igrab(block_group->inode);
  46. spin_unlock(&block_group->lock);
  47. if (inode)
  48. return inode;
  49. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  50. key.offset = block_group->key.objectid;
  51. key.type = 0;
  52. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  53. if (ret < 0)
  54. return ERR_PTR(ret);
  55. if (ret > 0) {
  56. btrfs_release_path(root, path);
  57. return ERR_PTR(-ENOENT);
  58. }
  59. leaf = path->nodes[0];
  60. header = btrfs_item_ptr(leaf, path->slots[0],
  61. struct btrfs_free_space_header);
  62. btrfs_free_space_key(leaf, header, &disk_key);
  63. btrfs_disk_key_to_cpu(&location, &disk_key);
  64. btrfs_release_path(root, path);
  65. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  66. if (!inode)
  67. return ERR_PTR(-ENOENT);
  68. if (IS_ERR(inode))
  69. return inode;
  70. if (is_bad_inode(inode)) {
  71. iput(inode);
  72. return ERR_PTR(-ENOENT);
  73. }
  74. inode->i_mapping->flags &= ~__GFP_FS;
  75. spin_lock(&block_group->lock);
  76. if (!root->fs_info->closing) {
  77. block_group->inode = igrab(inode);
  78. block_group->iref = 1;
  79. }
  80. spin_unlock(&block_group->lock);
  81. return inode;
  82. }
  83. int create_free_space_inode(struct btrfs_root *root,
  84. struct btrfs_trans_handle *trans,
  85. struct btrfs_block_group_cache *block_group,
  86. struct btrfs_path *path)
  87. {
  88. struct btrfs_key key;
  89. struct btrfs_disk_key disk_key;
  90. struct btrfs_free_space_header *header;
  91. struct btrfs_inode_item *inode_item;
  92. struct extent_buffer *leaf;
  93. u64 objectid;
  94. int ret;
  95. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  96. if (ret < 0)
  97. return ret;
  98. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  99. if (ret)
  100. return ret;
  101. leaf = path->nodes[0];
  102. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  103. struct btrfs_inode_item);
  104. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  105. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  106. sizeof(*inode_item));
  107. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  108. btrfs_set_inode_size(leaf, inode_item, 0);
  109. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  110. btrfs_set_inode_uid(leaf, inode_item, 0);
  111. btrfs_set_inode_gid(leaf, inode_item, 0);
  112. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  113. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  114. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  115. btrfs_set_inode_nlink(leaf, inode_item, 1);
  116. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  117. btrfs_set_inode_block_group(leaf, inode_item,
  118. block_group->key.objectid);
  119. btrfs_mark_buffer_dirty(leaf);
  120. btrfs_release_path(root, path);
  121. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  122. key.offset = block_group->key.objectid;
  123. key.type = 0;
  124. ret = btrfs_insert_empty_item(trans, root, path, &key,
  125. sizeof(struct btrfs_free_space_header));
  126. if (ret < 0) {
  127. btrfs_release_path(root, path);
  128. return ret;
  129. }
  130. leaf = path->nodes[0];
  131. header = btrfs_item_ptr(leaf, path->slots[0],
  132. struct btrfs_free_space_header);
  133. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  134. btrfs_set_free_space_key(leaf, header, &disk_key);
  135. btrfs_mark_buffer_dirty(leaf);
  136. btrfs_release_path(root, path);
  137. return 0;
  138. }
  139. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  140. struct btrfs_trans_handle *trans,
  141. struct btrfs_path *path,
  142. struct inode *inode)
  143. {
  144. loff_t oldsize;
  145. int ret = 0;
  146. trans->block_rsv = root->orphan_block_rsv;
  147. ret = btrfs_block_rsv_check(trans, root,
  148. root->orphan_block_rsv,
  149. 0, 5);
  150. if (ret)
  151. return ret;
  152. oldsize = i_size_read(inode);
  153. btrfs_i_size_write(inode, 0);
  154. truncate_pagecache(inode, oldsize, 0);
  155. /*
  156. * We don't need an orphan item because truncating the free space cache
  157. * will never be split across transactions.
  158. */
  159. ret = btrfs_truncate_inode_items(trans, root, inode,
  160. 0, BTRFS_EXTENT_DATA_KEY);
  161. if (ret) {
  162. WARN_ON(1);
  163. return ret;
  164. }
  165. return btrfs_update_inode(trans, root, inode);
  166. }
  167. static int readahead_cache(struct inode *inode)
  168. {
  169. struct file_ra_state *ra;
  170. unsigned long last_index;
  171. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  172. if (!ra)
  173. return -ENOMEM;
  174. file_ra_state_init(ra, inode->i_mapping);
  175. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  176. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  177. kfree(ra);
  178. return 0;
  179. }
  180. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  181. struct btrfs_block_group_cache *block_group)
  182. {
  183. struct btrfs_root *root = fs_info->tree_root;
  184. struct inode *inode;
  185. struct btrfs_free_space_header *header;
  186. struct extent_buffer *leaf;
  187. struct page *page;
  188. struct btrfs_path *path;
  189. u32 *checksums = NULL, *crc;
  190. char *disk_crcs = NULL;
  191. struct btrfs_key key;
  192. struct list_head bitmaps;
  193. u64 num_entries;
  194. u64 num_bitmaps;
  195. u64 generation;
  196. u32 cur_crc = ~(u32)0;
  197. pgoff_t index = 0;
  198. unsigned long first_page_offset;
  199. int num_checksums;
  200. int ret = 0;
  201. /*
  202. * If we're unmounting then just return, since this does a search on the
  203. * normal root and not the commit root and we could deadlock.
  204. */
  205. smp_mb();
  206. if (fs_info->closing)
  207. return 0;
  208. /*
  209. * If this block group has been marked to be cleared for one reason or
  210. * another then we can't trust the on disk cache, so just return.
  211. */
  212. spin_lock(&block_group->lock);
  213. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  214. spin_unlock(&block_group->lock);
  215. return 0;
  216. }
  217. spin_unlock(&block_group->lock);
  218. INIT_LIST_HEAD(&bitmaps);
  219. path = btrfs_alloc_path();
  220. if (!path)
  221. return 0;
  222. inode = lookup_free_space_inode(root, block_group, path);
  223. if (IS_ERR(inode)) {
  224. btrfs_free_path(path);
  225. return 0;
  226. }
  227. /* Nothing in the space cache, goodbye */
  228. if (!i_size_read(inode)) {
  229. btrfs_free_path(path);
  230. goto out;
  231. }
  232. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  233. key.offset = block_group->key.objectid;
  234. key.type = 0;
  235. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  236. if (ret) {
  237. btrfs_free_path(path);
  238. goto out;
  239. }
  240. leaf = path->nodes[0];
  241. header = btrfs_item_ptr(leaf, path->slots[0],
  242. struct btrfs_free_space_header);
  243. num_entries = btrfs_free_space_entries(leaf, header);
  244. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  245. generation = btrfs_free_space_generation(leaf, header);
  246. btrfs_free_path(path);
  247. if (BTRFS_I(inode)->generation != generation) {
  248. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  249. " not match free space cache generation (%llu) for "
  250. "block group %llu\n",
  251. (unsigned long long)BTRFS_I(inode)->generation,
  252. (unsigned long long)generation,
  253. (unsigned long long)block_group->key.objectid);
  254. goto free_cache;
  255. }
  256. if (!num_entries)
  257. goto out;
  258. /* Setup everything for doing checksumming */
  259. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  260. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  261. if (!checksums)
  262. goto out;
  263. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  264. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  265. if (!disk_crcs)
  266. goto out;
  267. ret = readahead_cache(inode);
  268. if (ret) {
  269. ret = 0;
  270. goto out;
  271. }
  272. while (1) {
  273. struct btrfs_free_space_entry *entry;
  274. struct btrfs_free_space *e;
  275. void *addr;
  276. unsigned long offset = 0;
  277. unsigned long start_offset = 0;
  278. int need_loop = 0;
  279. if (!num_entries && !num_bitmaps)
  280. break;
  281. if (index == 0) {
  282. start_offset = first_page_offset;
  283. offset = start_offset;
  284. }
  285. page = grab_cache_page(inode->i_mapping, index);
  286. if (!page) {
  287. ret = 0;
  288. goto free_cache;
  289. }
  290. if (!PageUptodate(page)) {
  291. btrfs_readpage(NULL, page);
  292. lock_page(page);
  293. if (!PageUptodate(page)) {
  294. unlock_page(page);
  295. page_cache_release(page);
  296. printk(KERN_ERR "btrfs: error reading free "
  297. "space cache: %llu\n",
  298. (unsigned long long)
  299. block_group->key.objectid);
  300. goto free_cache;
  301. }
  302. }
  303. addr = kmap(page);
  304. if (index == 0) {
  305. u64 *gen;
  306. memcpy(disk_crcs, addr, first_page_offset);
  307. gen = addr + (sizeof(u32) * num_checksums);
  308. if (*gen != BTRFS_I(inode)->generation) {
  309. printk(KERN_ERR "btrfs: space cache generation"
  310. " (%llu) does not match inode (%llu) "
  311. "for block group %llu\n",
  312. (unsigned long long)*gen,
  313. (unsigned long long)
  314. BTRFS_I(inode)->generation,
  315. (unsigned long long)
  316. block_group->key.objectid);
  317. kunmap(page);
  318. unlock_page(page);
  319. page_cache_release(page);
  320. goto free_cache;
  321. }
  322. crc = (u32 *)disk_crcs;
  323. }
  324. entry = addr + start_offset;
  325. /* First lets check our crc before we do anything fun */
  326. cur_crc = ~(u32)0;
  327. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  328. PAGE_CACHE_SIZE - start_offset);
  329. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  330. if (cur_crc != *crc) {
  331. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  332. "block group %llu\n", index,
  333. (unsigned long long)block_group->key.objectid);
  334. kunmap(page);
  335. unlock_page(page);
  336. page_cache_release(page);
  337. goto free_cache;
  338. }
  339. crc++;
  340. while (1) {
  341. if (!num_entries)
  342. break;
  343. need_loop = 1;
  344. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  345. GFP_NOFS);
  346. if (!e) {
  347. kunmap(page);
  348. unlock_page(page);
  349. page_cache_release(page);
  350. goto free_cache;
  351. }
  352. e->offset = le64_to_cpu(entry->offset);
  353. e->bytes = le64_to_cpu(entry->bytes);
  354. if (!e->bytes) {
  355. kunmap(page);
  356. kmem_cache_free(btrfs_free_space_cachep, e);
  357. unlock_page(page);
  358. page_cache_release(page);
  359. goto free_cache;
  360. }
  361. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  362. spin_lock(&block_group->tree_lock);
  363. ret = link_free_space(block_group, e);
  364. spin_unlock(&block_group->tree_lock);
  365. BUG_ON(ret);
  366. } else {
  367. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  368. if (!e->bitmap) {
  369. kunmap(page);
  370. kmem_cache_free(
  371. btrfs_free_space_cachep, e);
  372. unlock_page(page);
  373. page_cache_release(page);
  374. goto free_cache;
  375. }
  376. spin_lock(&block_group->tree_lock);
  377. ret = link_free_space(block_group, e);
  378. block_group->total_bitmaps++;
  379. recalculate_thresholds(block_group);
  380. spin_unlock(&block_group->tree_lock);
  381. list_add_tail(&e->list, &bitmaps);
  382. }
  383. num_entries--;
  384. offset += sizeof(struct btrfs_free_space_entry);
  385. if (offset + sizeof(struct btrfs_free_space_entry) >=
  386. PAGE_CACHE_SIZE)
  387. break;
  388. entry++;
  389. }
  390. /*
  391. * We read an entry out of this page, we need to move on to the
  392. * next page.
  393. */
  394. if (need_loop) {
  395. kunmap(page);
  396. goto next;
  397. }
  398. /*
  399. * We add the bitmaps at the end of the entries in order that
  400. * the bitmap entries are added to the cache.
  401. */
  402. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  403. list_del_init(&e->list);
  404. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  405. kunmap(page);
  406. num_bitmaps--;
  407. next:
  408. unlock_page(page);
  409. page_cache_release(page);
  410. index++;
  411. }
  412. ret = 1;
  413. out:
  414. kfree(checksums);
  415. kfree(disk_crcs);
  416. iput(inode);
  417. return ret;
  418. free_cache:
  419. /* This cache is bogus, make sure it gets cleared */
  420. spin_lock(&block_group->lock);
  421. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  422. spin_unlock(&block_group->lock);
  423. btrfs_remove_free_space_cache(block_group);
  424. goto out;
  425. }
  426. int btrfs_write_out_cache(struct btrfs_root *root,
  427. struct btrfs_trans_handle *trans,
  428. struct btrfs_block_group_cache *block_group,
  429. struct btrfs_path *path)
  430. {
  431. struct btrfs_free_space_header *header;
  432. struct extent_buffer *leaf;
  433. struct inode *inode;
  434. struct rb_node *node;
  435. struct list_head *pos, *n;
  436. struct page *page;
  437. struct extent_state *cached_state = NULL;
  438. struct list_head bitmap_list;
  439. struct btrfs_key key;
  440. u64 bytes = 0;
  441. u32 *crc, *checksums;
  442. pgoff_t index = 0, last_index = 0;
  443. unsigned long first_page_offset;
  444. int num_checksums;
  445. int entries = 0;
  446. int bitmaps = 0;
  447. int ret = 0;
  448. root = root->fs_info->tree_root;
  449. INIT_LIST_HEAD(&bitmap_list);
  450. spin_lock(&block_group->lock);
  451. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  452. spin_unlock(&block_group->lock);
  453. return 0;
  454. }
  455. spin_unlock(&block_group->lock);
  456. inode = lookup_free_space_inode(root, block_group, path);
  457. if (IS_ERR(inode))
  458. return 0;
  459. if (!i_size_read(inode)) {
  460. iput(inode);
  461. return 0;
  462. }
  463. node = rb_first(&block_group->free_space_offset);
  464. if (!node) {
  465. iput(inode);
  466. return 0;
  467. }
  468. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  469. filemap_write_and_wait(inode->i_mapping);
  470. btrfs_wait_ordered_range(inode, inode->i_size &
  471. ~(root->sectorsize - 1), (u64)-1);
  472. /* We need a checksum per page. */
  473. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  474. crc = checksums = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  475. if (!crc) {
  476. iput(inode);
  477. return 0;
  478. }
  479. /* Since the first page has all of our checksums and our generation we
  480. * need to calculate the offset into the page that we can start writing
  481. * our entries.
  482. */
  483. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  484. /*
  485. * Lock all pages first so we can lock the extent safely.
  486. *
  487. * NOTE: Because we hold the ref the entire time we're going to write to
  488. * the page find_get_page should never fail, so we don't do a check
  489. * after find_get_page at this point. Just putting this here so people
  490. * know and don't freak out.
  491. */
  492. while (index <= last_index) {
  493. page = grab_cache_page(inode->i_mapping, index);
  494. if (!page) {
  495. pgoff_t i = 0;
  496. while (i < index) {
  497. page = find_get_page(inode->i_mapping, i);
  498. unlock_page(page);
  499. page_cache_release(page);
  500. page_cache_release(page);
  501. i++;
  502. }
  503. goto out_free;
  504. }
  505. index++;
  506. }
  507. index = 0;
  508. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  509. 0, &cached_state, GFP_NOFS);
  510. /* Write out the extent entries */
  511. do {
  512. struct btrfs_free_space_entry *entry;
  513. void *addr;
  514. unsigned long offset = 0;
  515. unsigned long start_offset = 0;
  516. if (index == 0) {
  517. start_offset = first_page_offset;
  518. offset = start_offset;
  519. }
  520. page = find_get_page(inode->i_mapping, index);
  521. addr = kmap(page);
  522. entry = addr + start_offset;
  523. memset(addr, 0, PAGE_CACHE_SIZE);
  524. while (1) {
  525. struct btrfs_free_space *e;
  526. e = rb_entry(node, struct btrfs_free_space, offset_index);
  527. entries++;
  528. entry->offset = cpu_to_le64(e->offset);
  529. entry->bytes = cpu_to_le64(e->bytes);
  530. if (e->bitmap) {
  531. entry->type = BTRFS_FREE_SPACE_BITMAP;
  532. list_add_tail(&e->list, &bitmap_list);
  533. bitmaps++;
  534. } else {
  535. entry->type = BTRFS_FREE_SPACE_EXTENT;
  536. }
  537. node = rb_next(node);
  538. if (!node)
  539. break;
  540. offset += sizeof(struct btrfs_free_space_entry);
  541. if (offset + sizeof(struct btrfs_free_space_entry) >=
  542. PAGE_CACHE_SIZE)
  543. break;
  544. entry++;
  545. }
  546. *crc = ~(u32)0;
  547. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  548. PAGE_CACHE_SIZE - start_offset);
  549. kunmap(page);
  550. btrfs_csum_final(*crc, (char *)crc);
  551. crc++;
  552. bytes += PAGE_CACHE_SIZE;
  553. ClearPageChecked(page);
  554. set_page_extent_mapped(page);
  555. SetPageUptodate(page);
  556. set_page_dirty(page);
  557. /*
  558. * We need to release our reference we got for grab_cache_page,
  559. * except for the first page which will hold our checksums, we
  560. * do that below.
  561. */
  562. if (index != 0) {
  563. unlock_page(page);
  564. page_cache_release(page);
  565. }
  566. page_cache_release(page);
  567. index++;
  568. } while (node);
  569. /* Write out the bitmaps */
  570. list_for_each_safe(pos, n, &bitmap_list) {
  571. void *addr;
  572. struct btrfs_free_space *entry =
  573. list_entry(pos, struct btrfs_free_space, list);
  574. page = find_get_page(inode->i_mapping, index);
  575. addr = kmap(page);
  576. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  577. *crc = ~(u32)0;
  578. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  579. kunmap(page);
  580. btrfs_csum_final(*crc, (char *)crc);
  581. crc++;
  582. bytes += PAGE_CACHE_SIZE;
  583. ClearPageChecked(page);
  584. set_page_extent_mapped(page);
  585. SetPageUptodate(page);
  586. set_page_dirty(page);
  587. unlock_page(page);
  588. page_cache_release(page);
  589. page_cache_release(page);
  590. list_del_init(&entry->list);
  591. index++;
  592. }
  593. /* Zero out the rest of the pages just to make sure */
  594. while (index <= last_index) {
  595. void *addr;
  596. page = find_get_page(inode->i_mapping, index);
  597. addr = kmap(page);
  598. memset(addr, 0, PAGE_CACHE_SIZE);
  599. kunmap(page);
  600. ClearPageChecked(page);
  601. set_page_extent_mapped(page);
  602. SetPageUptodate(page);
  603. set_page_dirty(page);
  604. unlock_page(page);
  605. page_cache_release(page);
  606. page_cache_release(page);
  607. bytes += PAGE_CACHE_SIZE;
  608. index++;
  609. }
  610. btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state);
  611. /* Write the checksums and trans id to the first page */
  612. {
  613. void *addr;
  614. u64 *gen;
  615. page = find_get_page(inode->i_mapping, 0);
  616. addr = kmap(page);
  617. memcpy(addr, checksums, sizeof(u32) * num_checksums);
  618. gen = addr + (sizeof(u32) * num_checksums);
  619. *gen = trans->transid;
  620. kunmap(page);
  621. ClearPageChecked(page);
  622. set_page_extent_mapped(page);
  623. SetPageUptodate(page);
  624. set_page_dirty(page);
  625. unlock_page(page);
  626. page_cache_release(page);
  627. page_cache_release(page);
  628. }
  629. BTRFS_I(inode)->generation = trans->transid;
  630. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  631. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  632. filemap_write_and_wait(inode->i_mapping);
  633. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  634. key.offset = block_group->key.objectid;
  635. key.type = 0;
  636. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  637. if (ret < 0) {
  638. ret = 0;
  639. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  640. EXTENT_DIRTY | EXTENT_DELALLOC |
  641. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  642. goto out_free;
  643. }
  644. leaf = path->nodes[0];
  645. if (ret > 0) {
  646. struct btrfs_key found_key;
  647. BUG_ON(!path->slots[0]);
  648. path->slots[0]--;
  649. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  650. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  651. found_key.offset != block_group->key.objectid) {
  652. ret = 0;
  653. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  654. EXTENT_DIRTY | EXTENT_DELALLOC |
  655. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  656. GFP_NOFS);
  657. btrfs_release_path(root, path);
  658. goto out_free;
  659. }
  660. }
  661. header = btrfs_item_ptr(leaf, path->slots[0],
  662. struct btrfs_free_space_header);
  663. btrfs_set_free_space_entries(leaf, header, entries);
  664. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  665. btrfs_set_free_space_generation(leaf, header, trans->transid);
  666. btrfs_mark_buffer_dirty(leaf);
  667. btrfs_release_path(root, path);
  668. ret = 1;
  669. out_free:
  670. if (ret == 0) {
  671. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  672. spin_lock(&block_group->lock);
  673. block_group->disk_cache_state = BTRFS_DC_ERROR;
  674. spin_unlock(&block_group->lock);
  675. BTRFS_I(inode)->generation = 0;
  676. }
  677. kfree(checksums);
  678. btrfs_update_inode(trans, root, inode);
  679. iput(inode);
  680. return ret;
  681. }
  682. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  683. u64 offset)
  684. {
  685. BUG_ON(offset < bitmap_start);
  686. offset -= bitmap_start;
  687. return (unsigned long)(div64_u64(offset, sectorsize));
  688. }
  689. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  690. {
  691. return (unsigned long)(div64_u64(bytes, sectorsize));
  692. }
  693. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  694. u64 offset)
  695. {
  696. u64 bitmap_start;
  697. u64 bytes_per_bitmap;
  698. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  699. bitmap_start = offset - block_group->key.objectid;
  700. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  701. bitmap_start *= bytes_per_bitmap;
  702. bitmap_start += block_group->key.objectid;
  703. return bitmap_start;
  704. }
  705. static int tree_insert_offset(struct rb_root *root, u64 offset,
  706. struct rb_node *node, int bitmap)
  707. {
  708. struct rb_node **p = &root->rb_node;
  709. struct rb_node *parent = NULL;
  710. struct btrfs_free_space *info;
  711. while (*p) {
  712. parent = *p;
  713. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  714. if (offset < info->offset) {
  715. p = &(*p)->rb_left;
  716. } else if (offset > info->offset) {
  717. p = &(*p)->rb_right;
  718. } else {
  719. /*
  720. * we could have a bitmap entry and an extent entry
  721. * share the same offset. If this is the case, we want
  722. * the extent entry to always be found first if we do a
  723. * linear search through the tree, since we want to have
  724. * the quickest allocation time, and allocating from an
  725. * extent is faster than allocating from a bitmap. So
  726. * if we're inserting a bitmap and we find an entry at
  727. * this offset, we want to go right, or after this entry
  728. * logically. If we are inserting an extent and we've
  729. * found a bitmap, we want to go left, or before
  730. * logically.
  731. */
  732. if (bitmap) {
  733. WARN_ON(info->bitmap);
  734. p = &(*p)->rb_right;
  735. } else {
  736. WARN_ON(!info->bitmap);
  737. p = &(*p)->rb_left;
  738. }
  739. }
  740. }
  741. rb_link_node(node, parent, p);
  742. rb_insert_color(node, root);
  743. return 0;
  744. }
  745. /*
  746. * searches the tree for the given offset.
  747. *
  748. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  749. * want a section that has at least bytes size and comes at or after the given
  750. * offset.
  751. */
  752. static struct btrfs_free_space *
  753. tree_search_offset(struct btrfs_block_group_cache *block_group,
  754. u64 offset, int bitmap_only, int fuzzy)
  755. {
  756. struct rb_node *n = block_group->free_space_offset.rb_node;
  757. struct btrfs_free_space *entry, *prev = NULL;
  758. /* find entry that is closest to the 'offset' */
  759. while (1) {
  760. if (!n) {
  761. entry = NULL;
  762. break;
  763. }
  764. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  765. prev = entry;
  766. if (offset < entry->offset)
  767. n = n->rb_left;
  768. else if (offset > entry->offset)
  769. n = n->rb_right;
  770. else
  771. break;
  772. }
  773. if (bitmap_only) {
  774. if (!entry)
  775. return NULL;
  776. if (entry->bitmap)
  777. return entry;
  778. /*
  779. * bitmap entry and extent entry may share same offset,
  780. * in that case, bitmap entry comes after extent entry.
  781. */
  782. n = rb_next(n);
  783. if (!n)
  784. return NULL;
  785. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  786. if (entry->offset != offset)
  787. return NULL;
  788. WARN_ON(!entry->bitmap);
  789. return entry;
  790. } else if (entry) {
  791. if (entry->bitmap) {
  792. /*
  793. * if previous extent entry covers the offset,
  794. * we should return it instead of the bitmap entry
  795. */
  796. n = &entry->offset_index;
  797. while (1) {
  798. n = rb_prev(n);
  799. if (!n)
  800. break;
  801. prev = rb_entry(n, struct btrfs_free_space,
  802. offset_index);
  803. if (!prev->bitmap) {
  804. if (prev->offset + prev->bytes > offset)
  805. entry = prev;
  806. break;
  807. }
  808. }
  809. }
  810. return entry;
  811. }
  812. if (!prev)
  813. return NULL;
  814. /* find last entry before the 'offset' */
  815. entry = prev;
  816. if (entry->offset > offset) {
  817. n = rb_prev(&entry->offset_index);
  818. if (n) {
  819. entry = rb_entry(n, struct btrfs_free_space,
  820. offset_index);
  821. BUG_ON(entry->offset > offset);
  822. } else {
  823. if (fuzzy)
  824. return entry;
  825. else
  826. return NULL;
  827. }
  828. }
  829. if (entry->bitmap) {
  830. n = &entry->offset_index;
  831. while (1) {
  832. n = rb_prev(n);
  833. if (!n)
  834. break;
  835. prev = rb_entry(n, struct btrfs_free_space,
  836. offset_index);
  837. if (!prev->bitmap) {
  838. if (prev->offset + prev->bytes > offset)
  839. return prev;
  840. break;
  841. }
  842. }
  843. if (entry->offset + BITS_PER_BITMAP *
  844. block_group->sectorsize > offset)
  845. return entry;
  846. } else if (entry->offset + entry->bytes > offset)
  847. return entry;
  848. if (!fuzzy)
  849. return NULL;
  850. while (1) {
  851. if (entry->bitmap) {
  852. if (entry->offset + BITS_PER_BITMAP *
  853. block_group->sectorsize > offset)
  854. break;
  855. } else {
  856. if (entry->offset + entry->bytes > offset)
  857. break;
  858. }
  859. n = rb_next(&entry->offset_index);
  860. if (!n)
  861. return NULL;
  862. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  863. }
  864. return entry;
  865. }
  866. static inline void
  867. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  868. struct btrfs_free_space *info)
  869. {
  870. rb_erase(&info->offset_index, &block_group->free_space_offset);
  871. block_group->free_extents--;
  872. }
  873. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  874. struct btrfs_free_space *info)
  875. {
  876. __unlink_free_space(block_group, info);
  877. block_group->free_space -= info->bytes;
  878. }
  879. static int link_free_space(struct btrfs_block_group_cache *block_group,
  880. struct btrfs_free_space *info)
  881. {
  882. int ret = 0;
  883. BUG_ON(!info->bitmap && !info->bytes);
  884. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  885. &info->offset_index, (info->bitmap != NULL));
  886. if (ret)
  887. return ret;
  888. block_group->free_space += info->bytes;
  889. block_group->free_extents++;
  890. return ret;
  891. }
  892. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  893. {
  894. u64 max_bytes;
  895. u64 bitmap_bytes;
  896. u64 extent_bytes;
  897. u64 size = block_group->key.offset;
  898. /*
  899. * The goal is to keep the total amount of memory used per 1gb of space
  900. * at or below 32k, so we need to adjust how much memory we allow to be
  901. * used by extent based free space tracking
  902. */
  903. if (size < 1024 * 1024 * 1024)
  904. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  905. else
  906. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  907. div64_u64(size, 1024 * 1024 * 1024);
  908. /*
  909. * we want to account for 1 more bitmap than what we have so we can make
  910. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  911. * we add more bitmaps.
  912. */
  913. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  914. if (bitmap_bytes >= max_bytes) {
  915. block_group->extents_thresh = 0;
  916. return;
  917. }
  918. /*
  919. * we want the extent entry threshold to always be at most 1/2 the maxw
  920. * bytes we can have, or whatever is less than that.
  921. */
  922. extent_bytes = max_bytes - bitmap_bytes;
  923. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  924. block_group->extents_thresh =
  925. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  926. }
  927. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  928. struct btrfs_free_space *info, u64 offset,
  929. u64 bytes)
  930. {
  931. unsigned long start, end;
  932. unsigned long i;
  933. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  934. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  935. BUG_ON(end > BITS_PER_BITMAP);
  936. for (i = start; i < end; i++)
  937. clear_bit(i, info->bitmap);
  938. info->bytes -= bytes;
  939. block_group->free_space -= bytes;
  940. }
  941. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  942. struct btrfs_free_space *info, u64 offset,
  943. u64 bytes)
  944. {
  945. unsigned long start, end;
  946. unsigned long i;
  947. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  948. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  949. BUG_ON(end > BITS_PER_BITMAP);
  950. for (i = start; i < end; i++)
  951. set_bit(i, info->bitmap);
  952. info->bytes += bytes;
  953. block_group->free_space += bytes;
  954. }
  955. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  956. struct btrfs_free_space *bitmap_info, u64 *offset,
  957. u64 *bytes)
  958. {
  959. unsigned long found_bits = 0;
  960. unsigned long bits, i;
  961. unsigned long next_zero;
  962. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  963. max_t(u64, *offset, bitmap_info->offset));
  964. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  965. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  966. i < BITS_PER_BITMAP;
  967. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  968. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  969. BITS_PER_BITMAP, i);
  970. if ((next_zero - i) >= bits) {
  971. found_bits = next_zero - i;
  972. break;
  973. }
  974. i = next_zero;
  975. }
  976. if (found_bits) {
  977. *offset = (u64)(i * block_group->sectorsize) +
  978. bitmap_info->offset;
  979. *bytes = (u64)(found_bits) * block_group->sectorsize;
  980. return 0;
  981. }
  982. return -1;
  983. }
  984. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  985. *block_group, u64 *offset,
  986. u64 *bytes, int debug)
  987. {
  988. struct btrfs_free_space *entry;
  989. struct rb_node *node;
  990. int ret;
  991. if (!block_group->free_space_offset.rb_node)
  992. return NULL;
  993. entry = tree_search_offset(block_group,
  994. offset_to_bitmap(block_group, *offset),
  995. 0, 1);
  996. if (!entry)
  997. return NULL;
  998. for (node = &entry->offset_index; node; node = rb_next(node)) {
  999. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1000. if (entry->bytes < *bytes)
  1001. continue;
  1002. if (entry->bitmap) {
  1003. ret = search_bitmap(block_group, entry, offset, bytes);
  1004. if (!ret)
  1005. return entry;
  1006. continue;
  1007. }
  1008. *offset = entry->offset;
  1009. *bytes = entry->bytes;
  1010. return entry;
  1011. }
  1012. return NULL;
  1013. }
  1014. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1015. struct btrfs_free_space *info, u64 offset)
  1016. {
  1017. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1018. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1019. bytes_per_bg - 1, bytes_per_bg);
  1020. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1021. info->offset = offset_to_bitmap(block_group, offset);
  1022. info->bytes = 0;
  1023. link_free_space(block_group, info);
  1024. block_group->total_bitmaps++;
  1025. recalculate_thresholds(block_group);
  1026. }
  1027. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1028. struct btrfs_free_space *bitmap_info)
  1029. {
  1030. unlink_free_space(block_group, bitmap_info);
  1031. kfree(bitmap_info->bitmap);
  1032. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1033. block_group->total_bitmaps--;
  1034. recalculate_thresholds(block_group);
  1035. }
  1036. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1037. struct btrfs_free_space *bitmap_info,
  1038. u64 *offset, u64 *bytes)
  1039. {
  1040. u64 end;
  1041. u64 search_start, search_bytes;
  1042. int ret;
  1043. again:
  1044. end = bitmap_info->offset +
  1045. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1046. /*
  1047. * XXX - this can go away after a few releases.
  1048. *
  1049. * since the only user of btrfs_remove_free_space is the tree logging
  1050. * stuff, and the only way to test that is under crash conditions, we
  1051. * want to have this debug stuff here just in case somethings not
  1052. * working. Search the bitmap for the space we are trying to use to
  1053. * make sure its actually there. If its not there then we need to stop
  1054. * because something has gone wrong.
  1055. */
  1056. search_start = *offset;
  1057. search_bytes = *bytes;
  1058. search_bytes = min(search_bytes, end - search_start + 1);
  1059. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1060. &search_bytes);
  1061. BUG_ON(ret < 0 || search_start != *offset);
  1062. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1063. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1064. end - *offset + 1);
  1065. *bytes -= end - *offset + 1;
  1066. *offset = end + 1;
  1067. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1068. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1069. *bytes = 0;
  1070. }
  1071. if (*bytes) {
  1072. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1073. if (!bitmap_info->bytes)
  1074. free_bitmap(block_group, bitmap_info);
  1075. /*
  1076. * no entry after this bitmap, but we still have bytes to
  1077. * remove, so something has gone wrong.
  1078. */
  1079. if (!next)
  1080. return -EINVAL;
  1081. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1082. offset_index);
  1083. /*
  1084. * if the next entry isn't a bitmap we need to return to let the
  1085. * extent stuff do its work.
  1086. */
  1087. if (!bitmap_info->bitmap)
  1088. return -EAGAIN;
  1089. /*
  1090. * Ok the next item is a bitmap, but it may not actually hold
  1091. * the information for the rest of this free space stuff, so
  1092. * look for it, and if we don't find it return so we can try
  1093. * everything over again.
  1094. */
  1095. search_start = *offset;
  1096. search_bytes = *bytes;
  1097. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1098. &search_bytes);
  1099. if (ret < 0 || search_start != *offset)
  1100. return -EAGAIN;
  1101. goto again;
  1102. } else if (!bitmap_info->bytes)
  1103. free_bitmap(block_group, bitmap_info);
  1104. return 0;
  1105. }
  1106. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1107. struct btrfs_free_space *info)
  1108. {
  1109. struct btrfs_free_space *bitmap_info;
  1110. int added = 0;
  1111. u64 bytes, offset, end;
  1112. int ret;
  1113. /*
  1114. * If we are below the extents threshold then we can add this as an
  1115. * extent, and don't have to deal with the bitmap
  1116. */
  1117. if (block_group->free_extents < block_group->extents_thresh) {
  1118. /*
  1119. * If this block group has some small extents we don't want to
  1120. * use up all of our free slots in the cache with them, we want
  1121. * to reserve them to larger extents, however if we have plent
  1122. * of cache left then go ahead an dadd them, no sense in adding
  1123. * the overhead of a bitmap if we don't have to.
  1124. */
  1125. if (info->bytes <= block_group->sectorsize * 4) {
  1126. if (block_group->free_extents * 2 <=
  1127. block_group->extents_thresh)
  1128. return 0;
  1129. } else {
  1130. return 0;
  1131. }
  1132. }
  1133. /*
  1134. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1135. * don't even bother to create a bitmap for this
  1136. */
  1137. if (BITS_PER_BITMAP * block_group->sectorsize >
  1138. block_group->key.offset)
  1139. return 0;
  1140. bytes = info->bytes;
  1141. offset = info->offset;
  1142. again:
  1143. bitmap_info = tree_search_offset(block_group,
  1144. offset_to_bitmap(block_group, offset),
  1145. 1, 0);
  1146. if (!bitmap_info) {
  1147. BUG_ON(added);
  1148. goto new_bitmap;
  1149. }
  1150. end = bitmap_info->offset +
  1151. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1152. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1153. bitmap_set_bits(block_group, bitmap_info, offset,
  1154. end - offset);
  1155. bytes -= end - offset;
  1156. offset = end;
  1157. added = 0;
  1158. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1159. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1160. bytes = 0;
  1161. } else {
  1162. BUG();
  1163. }
  1164. if (!bytes) {
  1165. ret = 1;
  1166. goto out;
  1167. } else
  1168. goto again;
  1169. new_bitmap:
  1170. if (info && info->bitmap) {
  1171. add_new_bitmap(block_group, info, offset);
  1172. added = 1;
  1173. info = NULL;
  1174. goto again;
  1175. } else {
  1176. spin_unlock(&block_group->tree_lock);
  1177. /* no pre-allocated info, allocate a new one */
  1178. if (!info) {
  1179. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1180. GFP_NOFS);
  1181. if (!info) {
  1182. spin_lock(&block_group->tree_lock);
  1183. ret = -ENOMEM;
  1184. goto out;
  1185. }
  1186. }
  1187. /* allocate the bitmap */
  1188. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1189. spin_lock(&block_group->tree_lock);
  1190. if (!info->bitmap) {
  1191. ret = -ENOMEM;
  1192. goto out;
  1193. }
  1194. goto again;
  1195. }
  1196. out:
  1197. if (info) {
  1198. if (info->bitmap)
  1199. kfree(info->bitmap);
  1200. kmem_cache_free(btrfs_free_space_cachep, info);
  1201. }
  1202. return ret;
  1203. }
  1204. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1205. struct btrfs_free_space *info, bool update_stat)
  1206. {
  1207. struct btrfs_free_space *left_info;
  1208. struct btrfs_free_space *right_info;
  1209. bool merged = false;
  1210. u64 offset = info->offset;
  1211. u64 bytes = info->bytes;
  1212. /*
  1213. * first we want to see if there is free space adjacent to the range we
  1214. * are adding, if there is remove that struct and add a new one to
  1215. * cover the entire range
  1216. */
  1217. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1218. if (right_info && rb_prev(&right_info->offset_index))
  1219. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1220. struct btrfs_free_space, offset_index);
  1221. else
  1222. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1223. if (right_info && !right_info->bitmap) {
  1224. if (update_stat)
  1225. unlink_free_space(block_group, right_info);
  1226. else
  1227. __unlink_free_space(block_group, right_info);
  1228. info->bytes += right_info->bytes;
  1229. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1230. merged = true;
  1231. }
  1232. if (left_info && !left_info->bitmap &&
  1233. left_info->offset + left_info->bytes == offset) {
  1234. if (update_stat)
  1235. unlink_free_space(block_group, left_info);
  1236. else
  1237. __unlink_free_space(block_group, left_info);
  1238. info->offset = left_info->offset;
  1239. info->bytes += left_info->bytes;
  1240. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1241. merged = true;
  1242. }
  1243. return merged;
  1244. }
  1245. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1246. u64 offset, u64 bytes)
  1247. {
  1248. struct btrfs_free_space *info;
  1249. int ret = 0;
  1250. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1251. if (!info)
  1252. return -ENOMEM;
  1253. info->offset = offset;
  1254. info->bytes = bytes;
  1255. spin_lock(&block_group->tree_lock);
  1256. if (try_merge_free_space(block_group, info, true))
  1257. goto link;
  1258. /*
  1259. * There was no extent directly to the left or right of this new
  1260. * extent then we know we're going to have to allocate a new extent, so
  1261. * before we do that see if we need to drop this into a bitmap
  1262. */
  1263. ret = insert_into_bitmap(block_group, info);
  1264. if (ret < 0) {
  1265. goto out;
  1266. } else if (ret) {
  1267. ret = 0;
  1268. goto out;
  1269. }
  1270. link:
  1271. ret = link_free_space(block_group, info);
  1272. if (ret)
  1273. kmem_cache_free(btrfs_free_space_cachep, info);
  1274. out:
  1275. spin_unlock(&block_group->tree_lock);
  1276. if (ret) {
  1277. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1278. BUG_ON(ret == -EEXIST);
  1279. }
  1280. return ret;
  1281. }
  1282. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1283. u64 offset, u64 bytes)
  1284. {
  1285. struct btrfs_free_space *info;
  1286. struct btrfs_free_space *next_info = NULL;
  1287. int ret = 0;
  1288. spin_lock(&block_group->tree_lock);
  1289. again:
  1290. info = tree_search_offset(block_group, offset, 0, 0);
  1291. if (!info) {
  1292. /*
  1293. * oops didn't find an extent that matched the space we wanted
  1294. * to remove, look for a bitmap instead
  1295. */
  1296. info = tree_search_offset(block_group,
  1297. offset_to_bitmap(block_group, offset),
  1298. 1, 0);
  1299. if (!info) {
  1300. WARN_ON(1);
  1301. goto out_lock;
  1302. }
  1303. }
  1304. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1305. u64 end;
  1306. next_info = rb_entry(rb_next(&info->offset_index),
  1307. struct btrfs_free_space,
  1308. offset_index);
  1309. if (next_info->bitmap)
  1310. end = next_info->offset + BITS_PER_BITMAP *
  1311. block_group->sectorsize - 1;
  1312. else
  1313. end = next_info->offset + next_info->bytes;
  1314. if (next_info->bytes < bytes ||
  1315. next_info->offset > offset || offset > end) {
  1316. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1317. " trying to use %llu\n",
  1318. (unsigned long long)info->offset,
  1319. (unsigned long long)info->bytes,
  1320. (unsigned long long)bytes);
  1321. WARN_ON(1);
  1322. ret = -EINVAL;
  1323. goto out_lock;
  1324. }
  1325. info = next_info;
  1326. }
  1327. if (info->bytes == bytes) {
  1328. unlink_free_space(block_group, info);
  1329. if (info->bitmap) {
  1330. kfree(info->bitmap);
  1331. block_group->total_bitmaps--;
  1332. }
  1333. kmem_cache_free(btrfs_free_space_cachep, info);
  1334. goto out_lock;
  1335. }
  1336. if (!info->bitmap && info->offset == offset) {
  1337. unlink_free_space(block_group, info);
  1338. info->offset += bytes;
  1339. info->bytes -= bytes;
  1340. link_free_space(block_group, info);
  1341. goto out_lock;
  1342. }
  1343. if (!info->bitmap && info->offset <= offset &&
  1344. info->offset + info->bytes >= offset + bytes) {
  1345. u64 old_start = info->offset;
  1346. /*
  1347. * we're freeing space in the middle of the info,
  1348. * this can happen during tree log replay
  1349. *
  1350. * first unlink the old info and then
  1351. * insert it again after the hole we're creating
  1352. */
  1353. unlink_free_space(block_group, info);
  1354. if (offset + bytes < info->offset + info->bytes) {
  1355. u64 old_end = info->offset + info->bytes;
  1356. info->offset = offset + bytes;
  1357. info->bytes = old_end - info->offset;
  1358. ret = link_free_space(block_group, info);
  1359. WARN_ON(ret);
  1360. if (ret)
  1361. goto out_lock;
  1362. } else {
  1363. /* the hole we're creating ends at the end
  1364. * of the info struct, just free the info
  1365. */
  1366. kmem_cache_free(btrfs_free_space_cachep, info);
  1367. }
  1368. spin_unlock(&block_group->tree_lock);
  1369. /* step two, insert a new info struct to cover
  1370. * anything before the hole
  1371. */
  1372. ret = btrfs_add_free_space(block_group, old_start,
  1373. offset - old_start);
  1374. WARN_ON(ret);
  1375. goto out;
  1376. }
  1377. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1378. if (ret == -EAGAIN)
  1379. goto again;
  1380. BUG_ON(ret);
  1381. out_lock:
  1382. spin_unlock(&block_group->tree_lock);
  1383. out:
  1384. return ret;
  1385. }
  1386. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1387. u64 bytes)
  1388. {
  1389. struct btrfs_free_space *info;
  1390. struct rb_node *n;
  1391. int count = 0;
  1392. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1393. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1394. if (info->bytes >= bytes)
  1395. count++;
  1396. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1397. (unsigned long long)info->offset,
  1398. (unsigned long long)info->bytes,
  1399. (info->bitmap) ? "yes" : "no");
  1400. }
  1401. printk(KERN_INFO "block group has cluster?: %s\n",
  1402. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1403. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1404. "\n", count);
  1405. }
  1406. u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
  1407. {
  1408. struct btrfs_free_space *info;
  1409. struct rb_node *n;
  1410. u64 ret = 0;
  1411. for (n = rb_first(&block_group->free_space_offset); n;
  1412. n = rb_next(n)) {
  1413. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1414. ret += info->bytes;
  1415. }
  1416. return ret;
  1417. }
  1418. /*
  1419. * for a given cluster, put all of its extents back into the free
  1420. * space cache. If the block group passed doesn't match the block group
  1421. * pointed to by the cluster, someone else raced in and freed the
  1422. * cluster already. In that case, we just return without changing anything
  1423. */
  1424. static int
  1425. __btrfs_return_cluster_to_free_space(
  1426. struct btrfs_block_group_cache *block_group,
  1427. struct btrfs_free_cluster *cluster)
  1428. {
  1429. struct btrfs_free_space *entry;
  1430. struct rb_node *node;
  1431. spin_lock(&cluster->lock);
  1432. if (cluster->block_group != block_group)
  1433. goto out;
  1434. cluster->block_group = NULL;
  1435. cluster->window_start = 0;
  1436. list_del_init(&cluster->block_group_list);
  1437. node = rb_first(&cluster->root);
  1438. while (node) {
  1439. bool bitmap;
  1440. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1441. node = rb_next(&entry->offset_index);
  1442. rb_erase(&entry->offset_index, &cluster->root);
  1443. bitmap = (entry->bitmap != NULL);
  1444. if (!bitmap)
  1445. try_merge_free_space(block_group, entry, false);
  1446. tree_insert_offset(&block_group->free_space_offset,
  1447. entry->offset, &entry->offset_index, bitmap);
  1448. }
  1449. cluster->root = RB_ROOT;
  1450. out:
  1451. spin_unlock(&cluster->lock);
  1452. btrfs_put_block_group(block_group);
  1453. return 0;
  1454. }
  1455. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1456. {
  1457. struct btrfs_free_space *info;
  1458. struct rb_node *node;
  1459. struct btrfs_free_cluster *cluster;
  1460. struct list_head *head;
  1461. spin_lock(&block_group->tree_lock);
  1462. while ((head = block_group->cluster_list.next) !=
  1463. &block_group->cluster_list) {
  1464. cluster = list_entry(head, struct btrfs_free_cluster,
  1465. block_group_list);
  1466. WARN_ON(cluster->block_group != block_group);
  1467. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1468. if (need_resched()) {
  1469. spin_unlock(&block_group->tree_lock);
  1470. cond_resched();
  1471. spin_lock(&block_group->tree_lock);
  1472. }
  1473. }
  1474. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1475. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1476. unlink_free_space(block_group, info);
  1477. if (info->bitmap)
  1478. kfree(info->bitmap);
  1479. kmem_cache_free(btrfs_free_space_cachep, info);
  1480. if (need_resched()) {
  1481. spin_unlock(&block_group->tree_lock);
  1482. cond_resched();
  1483. spin_lock(&block_group->tree_lock);
  1484. }
  1485. }
  1486. spin_unlock(&block_group->tree_lock);
  1487. }
  1488. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1489. u64 offset, u64 bytes, u64 empty_size)
  1490. {
  1491. struct btrfs_free_space *entry = NULL;
  1492. u64 bytes_search = bytes + empty_size;
  1493. u64 ret = 0;
  1494. spin_lock(&block_group->tree_lock);
  1495. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1496. if (!entry)
  1497. goto out;
  1498. ret = offset;
  1499. if (entry->bitmap) {
  1500. bitmap_clear_bits(block_group, entry, offset, bytes);
  1501. if (!entry->bytes)
  1502. free_bitmap(block_group, entry);
  1503. } else {
  1504. unlink_free_space(block_group, entry);
  1505. entry->offset += bytes;
  1506. entry->bytes -= bytes;
  1507. if (!entry->bytes)
  1508. kmem_cache_free(btrfs_free_space_cachep, entry);
  1509. else
  1510. link_free_space(block_group, entry);
  1511. }
  1512. out:
  1513. spin_unlock(&block_group->tree_lock);
  1514. return ret;
  1515. }
  1516. /*
  1517. * given a cluster, put all of its extents back into the free space
  1518. * cache. If a block group is passed, this function will only free
  1519. * a cluster that belongs to the passed block group.
  1520. *
  1521. * Otherwise, it'll get a reference on the block group pointed to by the
  1522. * cluster and remove the cluster from it.
  1523. */
  1524. int btrfs_return_cluster_to_free_space(
  1525. struct btrfs_block_group_cache *block_group,
  1526. struct btrfs_free_cluster *cluster)
  1527. {
  1528. int ret;
  1529. /* first, get a safe pointer to the block group */
  1530. spin_lock(&cluster->lock);
  1531. if (!block_group) {
  1532. block_group = cluster->block_group;
  1533. if (!block_group) {
  1534. spin_unlock(&cluster->lock);
  1535. return 0;
  1536. }
  1537. } else if (cluster->block_group != block_group) {
  1538. /* someone else has already freed it don't redo their work */
  1539. spin_unlock(&cluster->lock);
  1540. return 0;
  1541. }
  1542. atomic_inc(&block_group->count);
  1543. spin_unlock(&cluster->lock);
  1544. /* now return any extents the cluster had on it */
  1545. spin_lock(&block_group->tree_lock);
  1546. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1547. spin_unlock(&block_group->tree_lock);
  1548. /* finally drop our ref */
  1549. btrfs_put_block_group(block_group);
  1550. return ret;
  1551. }
  1552. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1553. struct btrfs_free_cluster *cluster,
  1554. struct btrfs_free_space *entry,
  1555. u64 bytes, u64 min_start)
  1556. {
  1557. int err;
  1558. u64 search_start = cluster->window_start;
  1559. u64 search_bytes = bytes;
  1560. u64 ret = 0;
  1561. search_start = min_start;
  1562. search_bytes = bytes;
  1563. err = search_bitmap(block_group, entry, &search_start,
  1564. &search_bytes);
  1565. if (err)
  1566. return 0;
  1567. ret = search_start;
  1568. bitmap_clear_bits(block_group, entry, ret, bytes);
  1569. return ret;
  1570. }
  1571. /*
  1572. * given a cluster, try to allocate 'bytes' from it, returns 0
  1573. * if it couldn't find anything suitably large, or a logical disk offset
  1574. * if things worked out
  1575. */
  1576. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1577. struct btrfs_free_cluster *cluster, u64 bytes,
  1578. u64 min_start)
  1579. {
  1580. struct btrfs_free_space *entry = NULL;
  1581. struct rb_node *node;
  1582. u64 ret = 0;
  1583. spin_lock(&cluster->lock);
  1584. if (bytes > cluster->max_size)
  1585. goto out;
  1586. if (cluster->block_group != block_group)
  1587. goto out;
  1588. node = rb_first(&cluster->root);
  1589. if (!node)
  1590. goto out;
  1591. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1592. while(1) {
  1593. if (entry->bytes < bytes ||
  1594. (!entry->bitmap && entry->offset < min_start)) {
  1595. struct rb_node *node;
  1596. node = rb_next(&entry->offset_index);
  1597. if (!node)
  1598. break;
  1599. entry = rb_entry(node, struct btrfs_free_space,
  1600. offset_index);
  1601. continue;
  1602. }
  1603. if (entry->bitmap) {
  1604. ret = btrfs_alloc_from_bitmap(block_group,
  1605. cluster, entry, bytes,
  1606. min_start);
  1607. if (ret == 0) {
  1608. struct rb_node *node;
  1609. node = rb_next(&entry->offset_index);
  1610. if (!node)
  1611. break;
  1612. entry = rb_entry(node, struct btrfs_free_space,
  1613. offset_index);
  1614. continue;
  1615. }
  1616. } else {
  1617. ret = entry->offset;
  1618. entry->offset += bytes;
  1619. entry->bytes -= bytes;
  1620. }
  1621. if (entry->bytes == 0)
  1622. rb_erase(&entry->offset_index, &cluster->root);
  1623. break;
  1624. }
  1625. out:
  1626. spin_unlock(&cluster->lock);
  1627. if (!ret)
  1628. return 0;
  1629. spin_lock(&block_group->tree_lock);
  1630. block_group->free_space -= bytes;
  1631. if (entry->bytes == 0) {
  1632. block_group->free_extents--;
  1633. if (entry->bitmap) {
  1634. kfree(entry->bitmap);
  1635. block_group->total_bitmaps--;
  1636. recalculate_thresholds(block_group);
  1637. }
  1638. kmem_cache_free(btrfs_free_space_cachep, entry);
  1639. }
  1640. spin_unlock(&block_group->tree_lock);
  1641. return ret;
  1642. }
  1643. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1644. struct btrfs_free_space *entry,
  1645. struct btrfs_free_cluster *cluster,
  1646. u64 offset, u64 bytes, u64 min_bytes)
  1647. {
  1648. unsigned long next_zero;
  1649. unsigned long i;
  1650. unsigned long search_bits;
  1651. unsigned long total_bits;
  1652. unsigned long found_bits;
  1653. unsigned long start = 0;
  1654. unsigned long total_found = 0;
  1655. int ret;
  1656. bool found = false;
  1657. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1658. max_t(u64, offset, entry->offset));
  1659. search_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1660. total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1661. again:
  1662. found_bits = 0;
  1663. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1664. i < BITS_PER_BITMAP;
  1665. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1666. next_zero = find_next_zero_bit(entry->bitmap,
  1667. BITS_PER_BITMAP, i);
  1668. if (next_zero - i >= search_bits) {
  1669. found_bits = next_zero - i;
  1670. break;
  1671. }
  1672. i = next_zero;
  1673. }
  1674. if (!found_bits)
  1675. return -ENOSPC;
  1676. if (!found) {
  1677. start = i;
  1678. found = true;
  1679. }
  1680. total_found += found_bits;
  1681. if (cluster->max_size < found_bits * block_group->sectorsize)
  1682. cluster->max_size = found_bits * block_group->sectorsize;
  1683. if (total_found < total_bits) {
  1684. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1685. if (i - start > total_bits * 2) {
  1686. total_found = 0;
  1687. cluster->max_size = 0;
  1688. found = false;
  1689. }
  1690. goto again;
  1691. }
  1692. cluster->window_start = start * block_group->sectorsize +
  1693. entry->offset;
  1694. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1695. ret = tree_insert_offset(&cluster->root, entry->offset,
  1696. &entry->offset_index, 1);
  1697. BUG_ON(ret);
  1698. return 0;
  1699. }
  1700. /*
  1701. * This searches the block group for just extents to fill the cluster with.
  1702. */
  1703. static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  1704. struct btrfs_free_cluster *cluster,
  1705. u64 offset, u64 bytes, u64 min_bytes)
  1706. {
  1707. struct btrfs_free_space *first = NULL;
  1708. struct btrfs_free_space *entry = NULL;
  1709. struct btrfs_free_space *prev = NULL;
  1710. struct btrfs_free_space *last;
  1711. struct rb_node *node;
  1712. u64 window_start;
  1713. u64 window_free;
  1714. u64 max_extent;
  1715. u64 max_gap = 128 * 1024;
  1716. entry = tree_search_offset(block_group, offset, 0, 1);
  1717. if (!entry)
  1718. return -ENOSPC;
  1719. /*
  1720. * We don't want bitmaps, so just move along until we find a normal
  1721. * extent entry.
  1722. */
  1723. while (entry->bitmap) {
  1724. node = rb_next(&entry->offset_index);
  1725. if (!node)
  1726. return -ENOSPC;
  1727. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1728. }
  1729. window_start = entry->offset;
  1730. window_free = entry->bytes;
  1731. max_extent = entry->bytes;
  1732. first = entry;
  1733. last = entry;
  1734. prev = entry;
  1735. while (window_free <= min_bytes) {
  1736. node = rb_next(&entry->offset_index);
  1737. if (!node)
  1738. return -ENOSPC;
  1739. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1740. if (entry->bitmap)
  1741. continue;
  1742. /*
  1743. * we haven't filled the empty size and the window is
  1744. * very large. reset and try again
  1745. */
  1746. if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
  1747. entry->offset - window_start > (min_bytes * 2)) {
  1748. first = entry;
  1749. window_start = entry->offset;
  1750. window_free = entry->bytes;
  1751. last = entry;
  1752. max_extent = entry->bytes;
  1753. } else {
  1754. last = entry;
  1755. window_free += entry->bytes;
  1756. if (entry->bytes > max_extent)
  1757. max_extent = entry->bytes;
  1758. }
  1759. prev = entry;
  1760. }
  1761. cluster->window_start = first->offset;
  1762. node = &first->offset_index;
  1763. /*
  1764. * now we've found our entries, pull them out of the free space
  1765. * cache and put them into the cluster rbtree
  1766. */
  1767. do {
  1768. int ret;
  1769. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1770. node = rb_next(&entry->offset_index);
  1771. if (entry->bitmap)
  1772. continue;
  1773. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1774. ret = tree_insert_offset(&cluster->root, entry->offset,
  1775. &entry->offset_index, 0);
  1776. BUG_ON(ret);
  1777. } while (node && entry != last);
  1778. cluster->max_size = max_extent;
  1779. return 0;
  1780. }
  1781. /*
  1782. * This specifically looks for bitmaps that may work in the cluster, we assume
  1783. * that we have already failed to find extents that will work.
  1784. */
  1785. static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  1786. struct btrfs_free_cluster *cluster,
  1787. u64 offset, u64 bytes, u64 min_bytes)
  1788. {
  1789. struct btrfs_free_space *entry;
  1790. struct rb_node *node;
  1791. int ret = -ENOSPC;
  1792. if (block_group->total_bitmaps == 0)
  1793. return -ENOSPC;
  1794. entry = tree_search_offset(block_group,
  1795. offset_to_bitmap(block_group, offset),
  1796. 0, 1);
  1797. if (!entry)
  1798. return -ENOSPC;
  1799. node = &entry->offset_index;
  1800. do {
  1801. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1802. node = rb_next(&entry->offset_index);
  1803. if (!entry->bitmap)
  1804. continue;
  1805. if (entry->bytes < min_bytes)
  1806. continue;
  1807. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  1808. bytes, min_bytes);
  1809. } while (ret && node);
  1810. return ret;
  1811. }
  1812. /*
  1813. * here we try to find a cluster of blocks in a block group. The goal
  1814. * is to find at least bytes free and up to empty_size + bytes free.
  1815. * We might not find them all in one contiguous area.
  1816. *
  1817. * returns zero and sets up cluster if things worked out, otherwise
  1818. * it returns -enospc
  1819. */
  1820. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1821. struct btrfs_root *root,
  1822. struct btrfs_block_group_cache *block_group,
  1823. struct btrfs_free_cluster *cluster,
  1824. u64 offset, u64 bytes, u64 empty_size)
  1825. {
  1826. u64 min_bytes;
  1827. int ret;
  1828. /* for metadata, allow allocates with more holes */
  1829. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1830. min_bytes = bytes + empty_size;
  1831. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1832. /*
  1833. * we want to do larger allocations when we are
  1834. * flushing out the delayed refs, it helps prevent
  1835. * making more work as we go along.
  1836. */
  1837. if (trans->transaction->delayed_refs.flushing)
  1838. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1839. else
  1840. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1841. } else
  1842. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1843. spin_lock(&block_group->tree_lock);
  1844. /*
  1845. * If we know we don't have enough space to make a cluster don't even
  1846. * bother doing all the work to try and find one.
  1847. */
  1848. if (block_group->free_space < min_bytes) {
  1849. spin_unlock(&block_group->tree_lock);
  1850. return -ENOSPC;
  1851. }
  1852. spin_lock(&cluster->lock);
  1853. /* someone already found a cluster, hooray */
  1854. if (cluster->block_group) {
  1855. ret = 0;
  1856. goto out;
  1857. }
  1858. ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
  1859. min_bytes);
  1860. if (ret)
  1861. ret = setup_cluster_bitmap(block_group, cluster, offset,
  1862. bytes, min_bytes);
  1863. if (!ret) {
  1864. atomic_inc(&block_group->count);
  1865. list_add_tail(&cluster->block_group_list,
  1866. &block_group->cluster_list);
  1867. cluster->block_group = block_group;
  1868. }
  1869. out:
  1870. spin_unlock(&cluster->lock);
  1871. spin_unlock(&block_group->tree_lock);
  1872. return ret;
  1873. }
  1874. /*
  1875. * simple code to zero out a cluster
  1876. */
  1877. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1878. {
  1879. spin_lock_init(&cluster->lock);
  1880. spin_lock_init(&cluster->refill_lock);
  1881. cluster->root = RB_ROOT;
  1882. cluster->max_size = 0;
  1883. INIT_LIST_HEAD(&cluster->block_group_list);
  1884. cluster->block_group = NULL;
  1885. }
  1886. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  1887. u64 *trimmed, u64 start, u64 end, u64 minlen)
  1888. {
  1889. struct btrfs_free_space *entry = NULL;
  1890. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1891. u64 bytes = 0;
  1892. u64 actually_trimmed;
  1893. int ret = 0;
  1894. *trimmed = 0;
  1895. while (start < end) {
  1896. spin_lock(&block_group->tree_lock);
  1897. if (block_group->free_space < minlen) {
  1898. spin_unlock(&block_group->tree_lock);
  1899. break;
  1900. }
  1901. entry = tree_search_offset(block_group, start, 0, 1);
  1902. if (!entry)
  1903. entry = tree_search_offset(block_group,
  1904. offset_to_bitmap(block_group,
  1905. start),
  1906. 1, 1);
  1907. if (!entry || entry->offset >= end) {
  1908. spin_unlock(&block_group->tree_lock);
  1909. break;
  1910. }
  1911. if (entry->bitmap) {
  1912. ret = search_bitmap(block_group, entry, &start, &bytes);
  1913. if (!ret) {
  1914. if (start >= end) {
  1915. spin_unlock(&block_group->tree_lock);
  1916. break;
  1917. }
  1918. bytes = min(bytes, end - start);
  1919. bitmap_clear_bits(block_group, entry,
  1920. start, bytes);
  1921. if (entry->bytes == 0)
  1922. free_bitmap(block_group, entry);
  1923. } else {
  1924. start = entry->offset + BITS_PER_BITMAP *
  1925. block_group->sectorsize;
  1926. spin_unlock(&block_group->tree_lock);
  1927. ret = 0;
  1928. continue;
  1929. }
  1930. } else {
  1931. start = entry->offset;
  1932. bytes = min(entry->bytes, end - start);
  1933. unlink_free_space(block_group, entry);
  1934. kfree(entry);
  1935. }
  1936. spin_unlock(&block_group->tree_lock);
  1937. if (bytes >= minlen) {
  1938. int update_ret;
  1939. update_ret = btrfs_update_reserved_bytes(block_group,
  1940. bytes, 1, 1);
  1941. ret = btrfs_error_discard_extent(fs_info->extent_root,
  1942. start,
  1943. bytes,
  1944. &actually_trimmed);
  1945. btrfs_add_free_space(block_group,
  1946. start, bytes);
  1947. if (!update_ret)
  1948. btrfs_update_reserved_bytes(block_group,
  1949. bytes, 0, 1);
  1950. if (ret)
  1951. break;
  1952. *trimmed += actually_trimmed;
  1953. }
  1954. start += bytes;
  1955. bytes = 0;
  1956. if (fatal_signal_pending(current)) {
  1957. ret = -ERESTARTSYS;
  1958. break;
  1959. }
  1960. cond_resched();
  1961. }
  1962. return ret;
  1963. }