time.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * linux/arch/i386/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. *
  6. * This file contains the PC-specific time handling details:
  7. * reading the RTC at bootup, etc..
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1995-03-26 Markus Kuhn
  11. * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
  12. * precision CMOS clock update
  13. * 1996-05-03 Ingo Molnar
  14. * fixed time warps in do_[slow|fast]_gettimeoffset()
  15. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  16. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  17. * 1998-09-05 (Various)
  18. * More robust do_fast_gettimeoffset() algorithm implemented
  19. * (works with APM, Cyrix 6x86MX and Centaur C6),
  20. * monotonic gettimeofday() with fast_get_timeoffset(),
  21. * drift-proof precision TSC calibration on boot
  22. * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
  23. * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
  24. * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
  25. * 1998-12-16 Andrea Arcangeli
  26. * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
  27. * because was not accounting lost_ticks.
  28. * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli
  29. * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  30. * serialize accesses to xtime/lost_ticks).
  31. */
  32. #include <linux/errno.h>
  33. #include <linux/sched.h>
  34. #include <linux/kernel.h>
  35. #include <linux/param.h>
  36. #include <linux/string.h>
  37. #include <linux/mm.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/time.h>
  40. #include <linux/delay.h>
  41. #include <linux/init.h>
  42. #include <linux/smp.h>
  43. #include <linux/module.h>
  44. #include <linux/sysdev.h>
  45. #include <linux/bcd.h>
  46. #include <linux/efi.h>
  47. #include <linux/mca.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/irq.h>
  51. #include <asm/msr.h>
  52. #include <asm/delay.h>
  53. #include <asm/mpspec.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/processor.h>
  56. #include <asm/timer.h>
  57. #include "mach_time.h"
  58. #include <linux/timex.h>
  59. #include <linux/config.h>
  60. #include <asm/hpet.h>
  61. #include <asm/arch_hooks.h>
  62. #include "io_ports.h"
  63. extern spinlock_t i8259A_lock;
  64. int pit_latch_buggy; /* extern */
  65. #include "do_timer.h"
  66. u64 jiffies_64 = INITIAL_JIFFIES;
  67. EXPORT_SYMBOL(jiffies_64);
  68. unsigned long cpu_khz; /* Detected as we calibrate the TSC */
  69. extern unsigned long wall_jiffies;
  70. DEFINE_SPINLOCK(rtc_lock);
  71. DEFINE_SPINLOCK(i8253_lock);
  72. EXPORT_SYMBOL(i8253_lock);
  73. struct timer_opts *cur_timer = &timer_none;
  74. /*
  75. * This is a special lock that is owned by the CPU and holds the index
  76. * register we are working with. It is required for NMI access to the
  77. * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
  78. */
  79. volatile unsigned long cmos_lock = 0;
  80. EXPORT_SYMBOL(cmos_lock);
  81. /* Routines for accessing the CMOS RAM/RTC. */
  82. unsigned char rtc_cmos_read(unsigned char addr)
  83. {
  84. unsigned char val;
  85. lock_cmos_prefix(addr);
  86. outb_p(addr, RTC_PORT(0));
  87. val = inb_p(RTC_PORT(1));
  88. lock_cmos_suffix(addr);
  89. return val;
  90. }
  91. EXPORT_SYMBOL(rtc_cmos_read);
  92. void rtc_cmos_write(unsigned char val, unsigned char addr)
  93. {
  94. lock_cmos_prefix(addr);
  95. outb_p(addr, RTC_PORT(0));
  96. outb_p(val, RTC_PORT(1));
  97. lock_cmos_suffix(addr);
  98. }
  99. EXPORT_SYMBOL(rtc_cmos_write);
  100. /*
  101. * This version of gettimeofday has microsecond resolution
  102. * and better than microsecond precision on fast x86 machines with TSC.
  103. */
  104. void do_gettimeofday(struct timeval *tv)
  105. {
  106. unsigned long seq;
  107. unsigned long usec, sec;
  108. unsigned long max_ntp_tick;
  109. do {
  110. unsigned long lost;
  111. seq = read_seqbegin(&xtime_lock);
  112. usec = cur_timer->get_offset();
  113. lost = jiffies - wall_jiffies;
  114. /*
  115. * If time_adjust is negative then NTP is slowing the clock
  116. * so make sure not to go into next possible interval.
  117. * Better to lose some accuracy than have time go backwards..
  118. */
  119. if (unlikely(time_adjust < 0)) {
  120. max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
  121. usec = min(usec, max_ntp_tick);
  122. if (lost)
  123. usec += lost * max_ntp_tick;
  124. }
  125. else if (unlikely(lost))
  126. usec += lost * (USEC_PER_SEC / HZ);
  127. sec = xtime.tv_sec;
  128. usec += (xtime.tv_nsec / 1000);
  129. } while (read_seqretry(&xtime_lock, seq));
  130. while (usec >= 1000000) {
  131. usec -= 1000000;
  132. sec++;
  133. }
  134. tv->tv_sec = sec;
  135. tv->tv_usec = usec;
  136. }
  137. EXPORT_SYMBOL(do_gettimeofday);
  138. int do_settimeofday(struct timespec *tv)
  139. {
  140. time_t wtm_sec, sec = tv->tv_sec;
  141. long wtm_nsec, nsec = tv->tv_nsec;
  142. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  143. return -EINVAL;
  144. write_seqlock_irq(&xtime_lock);
  145. /*
  146. * This is revolting. We need to set "xtime" correctly. However, the
  147. * value in this location is the value at the most recent update of
  148. * wall time. Discover what correction gettimeofday() would have
  149. * made, and then undo it!
  150. */
  151. nsec -= cur_timer->get_offset() * NSEC_PER_USEC;
  152. nsec -= (jiffies - wall_jiffies) * TICK_NSEC;
  153. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  154. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  155. set_normalized_timespec(&xtime, sec, nsec);
  156. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  157. time_adjust = 0; /* stop active adjtime() */
  158. time_status |= STA_UNSYNC;
  159. time_maxerror = NTP_PHASE_LIMIT;
  160. time_esterror = NTP_PHASE_LIMIT;
  161. write_sequnlock_irq(&xtime_lock);
  162. clock_was_set();
  163. return 0;
  164. }
  165. EXPORT_SYMBOL(do_settimeofday);
  166. static int set_rtc_mmss(unsigned long nowtime)
  167. {
  168. int retval;
  169. WARN_ON(irqs_disabled());
  170. /* gets recalled with irq locally disabled */
  171. spin_lock_irq(&rtc_lock);
  172. if (efi_enabled)
  173. retval = efi_set_rtc_mmss(nowtime);
  174. else
  175. retval = mach_set_rtc_mmss(nowtime);
  176. spin_unlock_irq(&rtc_lock);
  177. return retval;
  178. }
  179. int timer_ack;
  180. /* monotonic_clock(): returns # of nanoseconds passed since time_init()
  181. * Note: This function is required to return accurate
  182. * time even in the absence of multiple timer ticks.
  183. */
  184. unsigned long long monotonic_clock(void)
  185. {
  186. return cur_timer->monotonic_clock();
  187. }
  188. EXPORT_SYMBOL(monotonic_clock);
  189. #if defined(CONFIG_SMP) && defined(CONFIG_FRAME_POINTER)
  190. unsigned long profile_pc(struct pt_regs *regs)
  191. {
  192. unsigned long pc = instruction_pointer(regs);
  193. if (in_lock_functions(pc))
  194. return *(unsigned long *)(regs->ebp + 4);
  195. return pc;
  196. }
  197. EXPORT_SYMBOL(profile_pc);
  198. #endif
  199. /*
  200. * timer_interrupt() needs to keep up the real-time clock,
  201. * as well as call the "do_timer()" routine every clocktick
  202. */
  203. static inline void do_timer_interrupt(int irq, void *dev_id,
  204. struct pt_regs *regs)
  205. {
  206. #ifdef CONFIG_X86_IO_APIC
  207. if (timer_ack) {
  208. /*
  209. * Subtle, when I/O APICs are used we have to ack timer IRQ
  210. * manually to reset the IRR bit for do_slow_gettimeoffset().
  211. * This will also deassert NMI lines for the watchdog if run
  212. * on an 82489DX-based system.
  213. */
  214. spin_lock(&i8259A_lock);
  215. outb(0x0c, PIC_MASTER_OCW3);
  216. /* Ack the IRQ; AEOI will end it automatically. */
  217. inb(PIC_MASTER_POLL);
  218. spin_unlock(&i8259A_lock);
  219. }
  220. #endif
  221. do_timer_interrupt_hook(regs);
  222. if (MCA_bus) {
  223. /* The PS/2 uses level-triggered interrupts. You can't
  224. turn them off, nor would you want to (any attempt to
  225. enable edge-triggered interrupts usually gets intercepted by a
  226. special hardware circuit). Hence we have to acknowledge
  227. the timer interrupt. Through some incredibly stupid
  228. design idea, the reset for IRQ 0 is done by setting the
  229. high bit of the PPI port B (0x61). Note that some PS/2s,
  230. notably the 55SX, work fine if this is removed. */
  231. irq = inb_p( 0x61 ); /* read the current state */
  232. outb_p( irq|0x80, 0x61 ); /* reset the IRQ */
  233. }
  234. }
  235. /*
  236. * This is the same as the above, except we _also_ save the current
  237. * Time Stamp Counter value at the time of the timer interrupt, so that
  238. * we later on can estimate the time of day more exactly.
  239. */
  240. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  241. {
  242. /*
  243. * Here we are in the timer irq handler. We just have irqs locally
  244. * disabled but we don't know if the timer_bh is running on the other
  245. * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
  246. * the irq version of write_lock because as just said we have irq
  247. * locally disabled. -arca
  248. */
  249. write_seqlock(&xtime_lock);
  250. cur_timer->mark_offset();
  251. do_timer_interrupt(irq, NULL, regs);
  252. write_sequnlock(&xtime_lock);
  253. return IRQ_HANDLED;
  254. }
  255. /* not static: needed by APM */
  256. unsigned long get_cmos_time(void)
  257. {
  258. unsigned long retval;
  259. spin_lock(&rtc_lock);
  260. if (efi_enabled)
  261. retval = efi_get_time();
  262. else
  263. retval = mach_get_cmos_time();
  264. spin_unlock(&rtc_lock);
  265. return retval;
  266. }
  267. static void sync_cmos_clock(unsigned long dummy);
  268. static struct timer_list sync_cmos_timer =
  269. TIMER_INITIALIZER(sync_cmos_clock, 0, 0);
  270. static void sync_cmos_clock(unsigned long dummy)
  271. {
  272. struct timeval now, next;
  273. int fail = 1;
  274. /*
  275. * If we have an externally synchronized Linux clock, then update
  276. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  277. * called as close as possible to 500 ms before the new second starts.
  278. * This code is run on a timer. If the clock is set, that timer
  279. * may not expire at the correct time. Thus, we adjust...
  280. */
  281. if ((time_status & STA_UNSYNC) != 0)
  282. /*
  283. * Not synced, exit, do not restart a timer (if one is
  284. * running, let it run out).
  285. */
  286. return;
  287. do_gettimeofday(&now);
  288. if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
  289. now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
  290. fail = set_rtc_mmss(now.tv_sec);
  291. next.tv_usec = USEC_AFTER - now.tv_usec;
  292. if (next.tv_usec <= 0)
  293. next.tv_usec += USEC_PER_SEC;
  294. if (!fail)
  295. next.tv_sec = 659;
  296. else
  297. next.tv_sec = 0;
  298. if (next.tv_usec >= USEC_PER_SEC) {
  299. next.tv_sec++;
  300. next.tv_usec -= USEC_PER_SEC;
  301. }
  302. mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
  303. }
  304. void notify_arch_cmos_timer(void)
  305. {
  306. mod_timer(&sync_cmos_timer, jiffies + 1);
  307. }
  308. static long clock_cmos_diff, sleep_start;
  309. static int timer_suspend(struct sys_device *dev, pm_message_t state)
  310. {
  311. /*
  312. * Estimate time zone so that set_time can update the clock
  313. */
  314. clock_cmos_diff = -get_cmos_time();
  315. clock_cmos_diff += get_seconds();
  316. sleep_start = get_cmos_time();
  317. return 0;
  318. }
  319. static int timer_resume(struct sys_device *dev)
  320. {
  321. unsigned long flags;
  322. unsigned long sec;
  323. unsigned long sleep_length;
  324. #ifdef CONFIG_HPET_TIMER
  325. if (is_hpet_enabled())
  326. hpet_reenable();
  327. #endif
  328. sec = get_cmos_time() + clock_cmos_diff;
  329. sleep_length = (get_cmos_time() - sleep_start) * HZ;
  330. write_seqlock_irqsave(&xtime_lock, flags);
  331. xtime.tv_sec = sec;
  332. xtime.tv_nsec = 0;
  333. write_sequnlock_irqrestore(&xtime_lock, flags);
  334. jiffies += sleep_length;
  335. wall_jiffies += sleep_length;
  336. return 0;
  337. }
  338. static struct sysdev_class timer_sysclass = {
  339. .resume = timer_resume,
  340. .suspend = timer_suspend,
  341. set_kset_name("timer"),
  342. };
  343. /* XXX this driverfs stuff should probably go elsewhere later -john */
  344. static struct sys_device device_timer = {
  345. .id = 0,
  346. .cls = &timer_sysclass,
  347. };
  348. static int time_init_device(void)
  349. {
  350. int error = sysdev_class_register(&timer_sysclass);
  351. if (!error)
  352. error = sysdev_register(&device_timer);
  353. return error;
  354. }
  355. device_initcall(time_init_device);
  356. #ifdef CONFIG_HPET_TIMER
  357. extern void (*late_time_init)(void);
  358. /* Duplicate of time_init() below, with hpet_enable part added */
  359. static void __init hpet_time_init(void)
  360. {
  361. xtime.tv_sec = get_cmos_time();
  362. xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
  363. set_normalized_timespec(&wall_to_monotonic,
  364. -xtime.tv_sec, -xtime.tv_nsec);
  365. if ((hpet_enable() >= 0) && hpet_use_timer) {
  366. printk("Using HPET for base-timer\n");
  367. }
  368. cur_timer = select_timer();
  369. printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
  370. time_init_hook();
  371. }
  372. #endif
  373. void __init time_init(void)
  374. {
  375. #ifdef CONFIG_HPET_TIMER
  376. if (is_hpet_capable()) {
  377. /*
  378. * HPET initialization needs to do memory-mapped io. So, let
  379. * us do a late initialization after mem_init().
  380. */
  381. late_time_init = hpet_time_init;
  382. return;
  383. }
  384. #endif
  385. xtime.tv_sec = get_cmos_time();
  386. xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
  387. set_normalized_timespec(&wall_to_monotonic,
  388. -xtime.tv_sec, -xtime.tv_nsec);
  389. cur_timer = select_timer();
  390. printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
  391. time_init_hook();
  392. }