file.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "compat.h"
  42. #include "volumes.h"
  43. static struct kmem_cache *btrfs_inode_defrag_cachep;
  44. /*
  45. * when auto defrag is enabled we
  46. * queue up these defrag structs to remember which
  47. * inodes need defragging passes
  48. */
  49. struct inode_defrag {
  50. struct rb_node rb_node;
  51. /* objectid */
  52. u64 ino;
  53. /*
  54. * transid where the defrag was added, we search for
  55. * extents newer than this
  56. */
  57. u64 transid;
  58. /* root objectid */
  59. u64 root;
  60. /* last offset we were able to defrag */
  61. u64 last_offset;
  62. /* if we've wrapped around back to zero once already */
  63. int cycled;
  64. };
  65. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  66. struct inode_defrag *defrag2)
  67. {
  68. if (defrag1->root > defrag2->root)
  69. return 1;
  70. else if (defrag1->root < defrag2->root)
  71. return -1;
  72. else if (defrag1->ino > defrag2->ino)
  73. return 1;
  74. else if (defrag1->ino < defrag2->ino)
  75. return -1;
  76. else
  77. return 0;
  78. }
  79. /* pop a record for an inode into the defrag tree. The lock
  80. * must be held already
  81. *
  82. * If you're inserting a record for an older transid than an
  83. * existing record, the transid already in the tree is lowered
  84. *
  85. * If an existing record is found the defrag item you
  86. * pass in is freed
  87. */
  88. static int __btrfs_add_inode_defrag(struct inode *inode,
  89. struct inode_defrag *defrag)
  90. {
  91. struct btrfs_root *root = BTRFS_I(inode)->root;
  92. struct inode_defrag *entry;
  93. struct rb_node **p;
  94. struct rb_node *parent = NULL;
  95. int ret;
  96. p = &root->fs_info->defrag_inodes.rb_node;
  97. while (*p) {
  98. parent = *p;
  99. entry = rb_entry(parent, struct inode_defrag, rb_node);
  100. ret = __compare_inode_defrag(defrag, entry);
  101. if (ret < 0)
  102. p = &parent->rb_left;
  103. else if (ret > 0)
  104. p = &parent->rb_right;
  105. else {
  106. /* if we're reinserting an entry for
  107. * an old defrag run, make sure to
  108. * lower the transid of our existing record
  109. */
  110. if (defrag->transid < entry->transid)
  111. entry->transid = defrag->transid;
  112. if (defrag->last_offset > entry->last_offset)
  113. entry->last_offset = defrag->last_offset;
  114. return -EEXIST;
  115. }
  116. }
  117. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  118. rb_link_node(&defrag->rb_node, parent, p);
  119. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  120. return 0;
  121. }
  122. static inline int __need_auto_defrag(struct btrfs_root *root)
  123. {
  124. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  125. return 0;
  126. if (btrfs_fs_closing(root->fs_info))
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * insert a defrag record for this inode if auto defrag is
  132. * enabled
  133. */
  134. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  135. struct inode *inode)
  136. {
  137. struct btrfs_root *root = BTRFS_I(inode)->root;
  138. struct inode_defrag *defrag;
  139. u64 transid;
  140. int ret;
  141. if (!__need_auto_defrag(root))
  142. return 0;
  143. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  144. return 0;
  145. if (trans)
  146. transid = trans->transid;
  147. else
  148. transid = BTRFS_I(inode)->root->last_trans;
  149. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  150. if (!defrag)
  151. return -ENOMEM;
  152. defrag->ino = btrfs_ino(inode);
  153. defrag->transid = transid;
  154. defrag->root = root->root_key.objectid;
  155. spin_lock(&root->fs_info->defrag_inodes_lock);
  156. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  157. /*
  158. * If we set IN_DEFRAG flag and evict the inode from memory,
  159. * and then re-read this inode, this new inode doesn't have
  160. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  161. */
  162. ret = __btrfs_add_inode_defrag(inode, defrag);
  163. if (ret)
  164. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  165. } else {
  166. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  167. }
  168. spin_unlock(&root->fs_info->defrag_inodes_lock);
  169. return 0;
  170. }
  171. /*
  172. * Requeue the defrag object. If there is a defrag object that points to
  173. * the same inode in the tree, we will merge them together (by
  174. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  175. */
  176. static void btrfs_requeue_inode_defrag(struct inode *inode,
  177. struct inode_defrag *defrag)
  178. {
  179. struct btrfs_root *root = BTRFS_I(inode)->root;
  180. int ret;
  181. if (!__need_auto_defrag(root))
  182. goto out;
  183. /*
  184. * Here we don't check the IN_DEFRAG flag, because we need merge
  185. * them together.
  186. */
  187. spin_lock(&root->fs_info->defrag_inodes_lock);
  188. ret = __btrfs_add_inode_defrag(inode, defrag);
  189. spin_unlock(&root->fs_info->defrag_inodes_lock);
  190. if (ret)
  191. goto out;
  192. return;
  193. out:
  194. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  195. }
  196. /*
  197. * pick the defragable inode that we want, if it doesn't exist, we will get
  198. * the next one.
  199. */
  200. static struct inode_defrag *
  201. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  202. {
  203. struct inode_defrag *entry = NULL;
  204. struct inode_defrag tmp;
  205. struct rb_node *p;
  206. struct rb_node *parent = NULL;
  207. int ret;
  208. tmp.ino = ino;
  209. tmp.root = root;
  210. spin_lock(&fs_info->defrag_inodes_lock);
  211. p = fs_info->defrag_inodes.rb_node;
  212. while (p) {
  213. parent = p;
  214. entry = rb_entry(parent, struct inode_defrag, rb_node);
  215. ret = __compare_inode_defrag(&tmp, entry);
  216. if (ret < 0)
  217. p = parent->rb_left;
  218. else if (ret > 0)
  219. p = parent->rb_right;
  220. else
  221. goto out;
  222. }
  223. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  224. parent = rb_next(parent);
  225. if (parent)
  226. entry = rb_entry(parent, struct inode_defrag, rb_node);
  227. else
  228. entry = NULL;
  229. }
  230. out:
  231. if (entry)
  232. rb_erase(parent, &fs_info->defrag_inodes);
  233. spin_unlock(&fs_info->defrag_inodes_lock);
  234. return entry;
  235. }
  236. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  237. {
  238. struct inode_defrag *defrag;
  239. struct rb_node *node;
  240. spin_lock(&fs_info->defrag_inodes_lock);
  241. node = rb_first(&fs_info->defrag_inodes);
  242. while (node) {
  243. rb_erase(node, &fs_info->defrag_inodes);
  244. defrag = rb_entry(node, struct inode_defrag, rb_node);
  245. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  246. if (need_resched()) {
  247. spin_unlock(&fs_info->defrag_inodes_lock);
  248. cond_resched();
  249. spin_lock(&fs_info->defrag_inodes_lock);
  250. }
  251. node = rb_first(&fs_info->defrag_inodes);
  252. }
  253. spin_unlock(&fs_info->defrag_inodes_lock);
  254. }
  255. #define BTRFS_DEFRAG_BATCH 1024
  256. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  257. struct inode_defrag *defrag)
  258. {
  259. struct btrfs_root *inode_root;
  260. struct inode *inode;
  261. struct btrfs_key key;
  262. struct btrfs_ioctl_defrag_range_args range;
  263. int num_defrag;
  264. int index;
  265. int ret;
  266. /* get the inode */
  267. key.objectid = defrag->root;
  268. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  269. key.offset = (u64)-1;
  270. index = srcu_read_lock(&fs_info->subvol_srcu);
  271. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  272. if (IS_ERR(inode_root)) {
  273. ret = PTR_ERR(inode_root);
  274. goto cleanup;
  275. }
  276. if (btrfs_root_refs(&inode_root->root_item) == 0) {
  277. ret = -ENOENT;
  278. goto cleanup;
  279. }
  280. key.objectid = defrag->ino;
  281. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  282. key.offset = 0;
  283. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  284. if (IS_ERR(inode)) {
  285. ret = PTR_ERR(inode);
  286. goto cleanup;
  287. }
  288. srcu_read_unlock(&fs_info->subvol_srcu, index);
  289. /* do a chunk of defrag */
  290. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  291. memset(&range, 0, sizeof(range));
  292. range.len = (u64)-1;
  293. range.start = defrag->last_offset;
  294. sb_start_write(fs_info->sb);
  295. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  296. BTRFS_DEFRAG_BATCH);
  297. sb_end_write(fs_info->sb);
  298. /*
  299. * if we filled the whole defrag batch, there
  300. * must be more work to do. Queue this defrag
  301. * again
  302. */
  303. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  304. defrag->last_offset = range.start;
  305. btrfs_requeue_inode_defrag(inode, defrag);
  306. } else if (defrag->last_offset && !defrag->cycled) {
  307. /*
  308. * we didn't fill our defrag batch, but
  309. * we didn't start at zero. Make sure we loop
  310. * around to the start of the file.
  311. */
  312. defrag->last_offset = 0;
  313. defrag->cycled = 1;
  314. btrfs_requeue_inode_defrag(inode, defrag);
  315. } else {
  316. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  317. }
  318. iput(inode);
  319. return 0;
  320. cleanup:
  321. srcu_read_unlock(&fs_info->subvol_srcu, index);
  322. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  323. return ret;
  324. }
  325. /*
  326. * run through the list of inodes in the FS that need
  327. * defragging
  328. */
  329. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  330. {
  331. struct inode_defrag *defrag;
  332. u64 first_ino = 0;
  333. u64 root_objectid = 0;
  334. atomic_inc(&fs_info->defrag_running);
  335. while(1) {
  336. /* Pause the auto defragger. */
  337. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  338. &fs_info->fs_state))
  339. break;
  340. if (!__need_auto_defrag(fs_info->tree_root))
  341. break;
  342. /* find an inode to defrag */
  343. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  344. first_ino);
  345. if (!defrag) {
  346. if (root_objectid || first_ino) {
  347. root_objectid = 0;
  348. first_ino = 0;
  349. continue;
  350. } else {
  351. break;
  352. }
  353. }
  354. first_ino = defrag->ino + 1;
  355. root_objectid = defrag->root;
  356. __btrfs_run_defrag_inode(fs_info, defrag);
  357. }
  358. atomic_dec(&fs_info->defrag_running);
  359. /*
  360. * during unmount, we use the transaction_wait queue to
  361. * wait for the defragger to stop
  362. */
  363. wake_up(&fs_info->transaction_wait);
  364. return 0;
  365. }
  366. /* simple helper to fault in pages and copy. This should go away
  367. * and be replaced with calls into generic code.
  368. */
  369. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  370. size_t write_bytes,
  371. struct page **prepared_pages,
  372. struct iov_iter *i)
  373. {
  374. size_t copied = 0;
  375. size_t total_copied = 0;
  376. int pg = 0;
  377. int offset = pos & (PAGE_CACHE_SIZE - 1);
  378. while (write_bytes > 0) {
  379. size_t count = min_t(size_t,
  380. PAGE_CACHE_SIZE - offset, write_bytes);
  381. struct page *page = prepared_pages[pg];
  382. /*
  383. * Copy data from userspace to the current page
  384. *
  385. * Disable pagefault to avoid recursive lock since
  386. * the pages are already locked
  387. */
  388. pagefault_disable();
  389. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  390. pagefault_enable();
  391. /* Flush processor's dcache for this page */
  392. flush_dcache_page(page);
  393. /*
  394. * if we get a partial write, we can end up with
  395. * partially up to date pages. These add
  396. * a lot of complexity, so make sure they don't
  397. * happen by forcing this copy to be retried.
  398. *
  399. * The rest of the btrfs_file_write code will fall
  400. * back to page at a time copies after we return 0.
  401. */
  402. if (!PageUptodate(page) && copied < count)
  403. copied = 0;
  404. iov_iter_advance(i, copied);
  405. write_bytes -= copied;
  406. total_copied += copied;
  407. /* Return to btrfs_file_aio_write to fault page */
  408. if (unlikely(copied == 0))
  409. break;
  410. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  411. offset += copied;
  412. } else {
  413. pg++;
  414. offset = 0;
  415. }
  416. }
  417. return total_copied;
  418. }
  419. /*
  420. * unlocks pages after btrfs_file_write is done with them
  421. */
  422. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  423. {
  424. size_t i;
  425. for (i = 0; i < num_pages; i++) {
  426. /* page checked is some magic around finding pages that
  427. * have been modified without going through btrfs_set_page_dirty
  428. * clear it here
  429. */
  430. ClearPageChecked(pages[i]);
  431. unlock_page(pages[i]);
  432. mark_page_accessed(pages[i]);
  433. page_cache_release(pages[i]);
  434. }
  435. }
  436. /*
  437. * after copy_from_user, pages need to be dirtied and we need to make
  438. * sure holes are created between the current EOF and the start of
  439. * any next extents (if required).
  440. *
  441. * this also makes the decision about creating an inline extent vs
  442. * doing real data extents, marking pages dirty and delalloc as required.
  443. */
  444. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  445. struct page **pages, size_t num_pages,
  446. loff_t pos, size_t write_bytes,
  447. struct extent_state **cached)
  448. {
  449. int err = 0;
  450. int i;
  451. u64 num_bytes;
  452. u64 start_pos;
  453. u64 end_of_last_block;
  454. u64 end_pos = pos + write_bytes;
  455. loff_t isize = i_size_read(inode);
  456. start_pos = pos & ~((u64)root->sectorsize - 1);
  457. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  458. end_of_last_block = start_pos + num_bytes - 1;
  459. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  460. cached);
  461. if (err)
  462. return err;
  463. for (i = 0; i < num_pages; i++) {
  464. struct page *p = pages[i];
  465. SetPageUptodate(p);
  466. ClearPageChecked(p);
  467. set_page_dirty(p);
  468. }
  469. /*
  470. * we've only changed i_size in ram, and we haven't updated
  471. * the disk i_size. There is no need to log the inode
  472. * at this time.
  473. */
  474. if (end_pos > isize)
  475. i_size_write(inode, end_pos);
  476. return 0;
  477. }
  478. /*
  479. * this drops all the extents in the cache that intersect the range
  480. * [start, end]. Existing extents are split as required.
  481. */
  482. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  483. int skip_pinned)
  484. {
  485. struct extent_map *em;
  486. struct extent_map *split = NULL;
  487. struct extent_map *split2 = NULL;
  488. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  489. u64 len = end - start + 1;
  490. u64 gen;
  491. int ret;
  492. int testend = 1;
  493. unsigned long flags;
  494. int compressed = 0;
  495. bool modified;
  496. WARN_ON(end < start);
  497. if (end == (u64)-1) {
  498. len = (u64)-1;
  499. testend = 0;
  500. }
  501. while (1) {
  502. int no_splits = 0;
  503. modified = false;
  504. if (!split)
  505. split = alloc_extent_map();
  506. if (!split2)
  507. split2 = alloc_extent_map();
  508. if (!split || !split2)
  509. no_splits = 1;
  510. write_lock(&em_tree->lock);
  511. em = lookup_extent_mapping(em_tree, start, len);
  512. if (!em) {
  513. write_unlock(&em_tree->lock);
  514. break;
  515. }
  516. flags = em->flags;
  517. gen = em->generation;
  518. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  519. if (testend && em->start + em->len >= start + len) {
  520. free_extent_map(em);
  521. write_unlock(&em_tree->lock);
  522. break;
  523. }
  524. start = em->start + em->len;
  525. if (testend)
  526. len = start + len - (em->start + em->len);
  527. free_extent_map(em);
  528. write_unlock(&em_tree->lock);
  529. continue;
  530. }
  531. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  532. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  533. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  534. modified = !list_empty(&em->list);
  535. remove_extent_mapping(em_tree, em);
  536. if (no_splits)
  537. goto next;
  538. if (em->start < start) {
  539. split->start = em->start;
  540. split->len = start - em->start;
  541. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  542. split->orig_start = em->orig_start;
  543. split->block_start = em->block_start;
  544. if (compressed)
  545. split->block_len = em->block_len;
  546. else
  547. split->block_len = split->len;
  548. split->orig_block_len = max(split->block_len,
  549. em->orig_block_len);
  550. split->ram_bytes = em->ram_bytes;
  551. } else {
  552. split->orig_start = split->start;
  553. split->block_len = 0;
  554. split->block_start = em->block_start;
  555. split->orig_block_len = 0;
  556. split->ram_bytes = split->len;
  557. }
  558. split->generation = gen;
  559. split->bdev = em->bdev;
  560. split->flags = flags;
  561. split->compress_type = em->compress_type;
  562. ret = add_extent_mapping(em_tree, split, modified);
  563. BUG_ON(ret); /* Logic error */
  564. free_extent_map(split);
  565. split = split2;
  566. split2 = NULL;
  567. }
  568. if (testend && em->start + em->len > start + len) {
  569. u64 diff = start + len - em->start;
  570. split->start = start + len;
  571. split->len = em->start + em->len - (start + len);
  572. split->bdev = em->bdev;
  573. split->flags = flags;
  574. split->compress_type = em->compress_type;
  575. split->generation = gen;
  576. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  577. split->orig_block_len = max(em->block_len,
  578. em->orig_block_len);
  579. split->ram_bytes = em->ram_bytes;
  580. if (compressed) {
  581. split->block_len = em->block_len;
  582. split->block_start = em->block_start;
  583. split->orig_start = em->orig_start;
  584. } else {
  585. split->block_len = split->len;
  586. split->block_start = em->block_start
  587. + diff;
  588. split->orig_start = em->orig_start;
  589. }
  590. } else {
  591. split->ram_bytes = split->len;
  592. split->orig_start = split->start;
  593. split->block_len = 0;
  594. split->block_start = em->block_start;
  595. split->orig_block_len = 0;
  596. }
  597. ret = add_extent_mapping(em_tree, split, modified);
  598. BUG_ON(ret); /* Logic error */
  599. free_extent_map(split);
  600. split = NULL;
  601. }
  602. next:
  603. write_unlock(&em_tree->lock);
  604. /* once for us */
  605. free_extent_map(em);
  606. /* once for the tree*/
  607. free_extent_map(em);
  608. }
  609. if (split)
  610. free_extent_map(split);
  611. if (split2)
  612. free_extent_map(split2);
  613. }
  614. /*
  615. * this is very complex, but the basic idea is to drop all extents
  616. * in the range start - end. hint_block is filled in with a block number
  617. * that would be a good hint to the block allocator for this file.
  618. *
  619. * If an extent intersects the range but is not entirely inside the range
  620. * it is either truncated or split. Anything entirely inside the range
  621. * is deleted from the tree.
  622. */
  623. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  624. struct btrfs_root *root, struct inode *inode,
  625. struct btrfs_path *path, u64 start, u64 end,
  626. u64 *drop_end, int drop_cache)
  627. {
  628. struct extent_buffer *leaf;
  629. struct btrfs_file_extent_item *fi;
  630. struct btrfs_key key;
  631. struct btrfs_key new_key;
  632. u64 ino = btrfs_ino(inode);
  633. u64 search_start = start;
  634. u64 disk_bytenr = 0;
  635. u64 num_bytes = 0;
  636. u64 extent_offset = 0;
  637. u64 extent_end = 0;
  638. int del_nr = 0;
  639. int del_slot = 0;
  640. int extent_type;
  641. int recow;
  642. int ret;
  643. int modify_tree = -1;
  644. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  645. int found = 0;
  646. if (drop_cache)
  647. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  648. if (start >= BTRFS_I(inode)->disk_i_size)
  649. modify_tree = 0;
  650. while (1) {
  651. recow = 0;
  652. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  653. search_start, modify_tree);
  654. if (ret < 0)
  655. break;
  656. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  657. leaf = path->nodes[0];
  658. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  659. if (key.objectid == ino &&
  660. key.type == BTRFS_EXTENT_DATA_KEY)
  661. path->slots[0]--;
  662. }
  663. ret = 0;
  664. next_slot:
  665. leaf = path->nodes[0];
  666. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  667. BUG_ON(del_nr > 0);
  668. ret = btrfs_next_leaf(root, path);
  669. if (ret < 0)
  670. break;
  671. if (ret > 0) {
  672. ret = 0;
  673. break;
  674. }
  675. leaf = path->nodes[0];
  676. recow = 1;
  677. }
  678. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  679. if (key.objectid > ino ||
  680. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  681. break;
  682. fi = btrfs_item_ptr(leaf, path->slots[0],
  683. struct btrfs_file_extent_item);
  684. extent_type = btrfs_file_extent_type(leaf, fi);
  685. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  686. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  687. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  688. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  689. extent_offset = btrfs_file_extent_offset(leaf, fi);
  690. extent_end = key.offset +
  691. btrfs_file_extent_num_bytes(leaf, fi);
  692. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  693. extent_end = key.offset +
  694. btrfs_file_extent_inline_len(leaf, fi);
  695. } else {
  696. WARN_ON(1);
  697. extent_end = search_start;
  698. }
  699. if (extent_end <= search_start) {
  700. path->slots[0]++;
  701. goto next_slot;
  702. }
  703. found = 1;
  704. search_start = max(key.offset, start);
  705. if (recow || !modify_tree) {
  706. modify_tree = -1;
  707. btrfs_release_path(path);
  708. continue;
  709. }
  710. /*
  711. * | - range to drop - |
  712. * | -------- extent -------- |
  713. */
  714. if (start > key.offset && end < extent_end) {
  715. BUG_ON(del_nr > 0);
  716. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  717. memcpy(&new_key, &key, sizeof(new_key));
  718. new_key.offset = start;
  719. ret = btrfs_duplicate_item(trans, root, path,
  720. &new_key);
  721. if (ret == -EAGAIN) {
  722. btrfs_release_path(path);
  723. continue;
  724. }
  725. if (ret < 0)
  726. break;
  727. leaf = path->nodes[0];
  728. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  729. struct btrfs_file_extent_item);
  730. btrfs_set_file_extent_num_bytes(leaf, fi,
  731. start - key.offset);
  732. fi = btrfs_item_ptr(leaf, path->slots[0],
  733. struct btrfs_file_extent_item);
  734. extent_offset += start - key.offset;
  735. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  736. btrfs_set_file_extent_num_bytes(leaf, fi,
  737. extent_end - start);
  738. btrfs_mark_buffer_dirty(leaf);
  739. if (update_refs && disk_bytenr > 0) {
  740. ret = btrfs_inc_extent_ref(trans, root,
  741. disk_bytenr, num_bytes, 0,
  742. root->root_key.objectid,
  743. new_key.objectid,
  744. start - extent_offset, 0);
  745. BUG_ON(ret); /* -ENOMEM */
  746. }
  747. key.offset = start;
  748. }
  749. /*
  750. * | ---- range to drop ----- |
  751. * | -------- extent -------- |
  752. */
  753. if (start <= key.offset && end < extent_end) {
  754. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  755. memcpy(&new_key, &key, sizeof(new_key));
  756. new_key.offset = end;
  757. btrfs_set_item_key_safe(root, path, &new_key);
  758. extent_offset += end - key.offset;
  759. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  760. btrfs_set_file_extent_num_bytes(leaf, fi,
  761. extent_end - end);
  762. btrfs_mark_buffer_dirty(leaf);
  763. if (update_refs && disk_bytenr > 0)
  764. inode_sub_bytes(inode, end - key.offset);
  765. break;
  766. }
  767. search_start = extent_end;
  768. /*
  769. * | ---- range to drop ----- |
  770. * | -------- extent -------- |
  771. */
  772. if (start > key.offset && end >= extent_end) {
  773. BUG_ON(del_nr > 0);
  774. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  775. btrfs_set_file_extent_num_bytes(leaf, fi,
  776. start - key.offset);
  777. btrfs_mark_buffer_dirty(leaf);
  778. if (update_refs && disk_bytenr > 0)
  779. inode_sub_bytes(inode, extent_end - start);
  780. if (end == extent_end)
  781. break;
  782. path->slots[0]++;
  783. goto next_slot;
  784. }
  785. /*
  786. * | ---- range to drop ----- |
  787. * | ------ extent ------ |
  788. */
  789. if (start <= key.offset && end >= extent_end) {
  790. if (del_nr == 0) {
  791. del_slot = path->slots[0];
  792. del_nr = 1;
  793. } else {
  794. BUG_ON(del_slot + del_nr != path->slots[0]);
  795. del_nr++;
  796. }
  797. if (update_refs &&
  798. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  799. inode_sub_bytes(inode,
  800. extent_end - key.offset);
  801. extent_end = ALIGN(extent_end,
  802. root->sectorsize);
  803. } else if (update_refs && disk_bytenr > 0) {
  804. ret = btrfs_free_extent(trans, root,
  805. disk_bytenr, num_bytes, 0,
  806. root->root_key.objectid,
  807. key.objectid, key.offset -
  808. extent_offset, 0);
  809. BUG_ON(ret); /* -ENOMEM */
  810. inode_sub_bytes(inode,
  811. extent_end - key.offset);
  812. }
  813. if (end == extent_end)
  814. break;
  815. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  816. path->slots[0]++;
  817. goto next_slot;
  818. }
  819. ret = btrfs_del_items(trans, root, path, del_slot,
  820. del_nr);
  821. if (ret) {
  822. btrfs_abort_transaction(trans, root, ret);
  823. break;
  824. }
  825. del_nr = 0;
  826. del_slot = 0;
  827. btrfs_release_path(path);
  828. continue;
  829. }
  830. BUG_ON(1);
  831. }
  832. if (!ret && del_nr > 0) {
  833. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  834. if (ret)
  835. btrfs_abort_transaction(trans, root, ret);
  836. }
  837. if (drop_end)
  838. *drop_end = found ? min(end, extent_end) : end;
  839. btrfs_release_path(path);
  840. return ret;
  841. }
  842. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  843. struct btrfs_root *root, struct inode *inode, u64 start,
  844. u64 end, int drop_cache)
  845. {
  846. struct btrfs_path *path;
  847. int ret;
  848. path = btrfs_alloc_path();
  849. if (!path)
  850. return -ENOMEM;
  851. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  852. drop_cache);
  853. btrfs_free_path(path);
  854. return ret;
  855. }
  856. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  857. u64 objectid, u64 bytenr, u64 orig_offset,
  858. u64 *start, u64 *end)
  859. {
  860. struct btrfs_file_extent_item *fi;
  861. struct btrfs_key key;
  862. u64 extent_end;
  863. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  864. return 0;
  865. btrfs_item_key_to_cpu(leaf, &key, slot);
  866. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  867. return 0;
  868. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  869. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  870. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  871. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  872. btrfs_file_extent_compression(leaf, fi) ||
  873. btrfs_file_extent_encryption(leaf, fi) ||
  874. btrfs_file_extent_other_encoding(leaf, fi))
  875. return 0;
  876. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  877. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  878. return 0;
  879. *start = key.offset;
  880. *end = extent_end;
  881. return 1;
  882. }
  883. /*
  884. * Mark extent in the range start - end as written.
  885. *
  886. * This changes extent type from 'pre-allocated' to 'regular'. If only
  887. * part of extent is marked as written, the extent will be split into
  888. * two or three.
  889. */
  890. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  891. struct inode *inode, u64 start, u64 end)
  892. {
  893. struct btrfs_root *root = BTRFS_I(inode)->root;
  894. struct extent_buffer *leaf;
  895. struct btrfs_path *path;
  896. struct btrfs_file_extent_item *fi;
  897. struct btrfs_key key;
  898. struct btrfs_key new_key;
  899. u64 bytenr;
  900. u64 num_bytes;
  901. u64 extent_end;
  902. u64 orig_offset;
  903. u64 other_start;
  904. u64 other_end;
  905. u64 split;
  906. int del_nr = 0;
  907. int del_slot = 0;
  908. int recow;
  909. int ret;
  910. u64 ino = btrfs_ino(inode);
  911. path = btrfs_alloc_path();
  912. if (!path)
  913. return -ENOMEM;
  914. again:
  915. recow = 0;
  916. split = start;
  917. key.objectid = ino;
  918. key.type = BTRFS_EXTENT_DATA_KEY;
  919. key.offset = split;
  920. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  921. if (ret < 0)
  922. goto out;
  923. if (ret > 0 && path->slots[0] > 0)
  924. path->slots[0]--;
  925. leaf = path->nodes[0];
  926. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  927. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  928. fi = btrfs_item_ptr(leaf, path->slots[0],
  929. struct btrfs_file_extent_item);
  930. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  931. BTRFS_FILE_EXTENT_PREALLOC);
  932. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  933. BUG_ON(key.offset > start || extent_end < end);
  934. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  935. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  936. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  937. memcpy(&new_key, &key, sizeof(new_key));
  938. if (start == key.offset && end < extent_end) {
  939. other_start = 0;
  940. other_end = start;
  941. if (extent_mergeable(leaf, path->slots[0] - 1,
  942. ino, bytenr, orig_offset,
  943. &other_start, &other_end)) {
  944. new_key.offset = end;
  945. btrfs_set_item_key_safe(root, path, &new_key);
  946. fi = btrfs_item_ptr(leaf, path->slots[0],
  947. struct btrfs_file_extent_item);
  948. btrfs_set_file_extent_generation(leaf, fi,
  949. trans->transid);
  950. btrfs_set_file_extent_num_bytes(leaf, fi,
  951. extent_end - end);
  952. btrfs_set_file_extent_offset(leaf, fi,
  953. end - orig_offset);
  954. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  955. struct btrfs_file_extent_item);
  956. btrfs_set_file_extent_generation(leaf, fi,
  957. trans->transid);
  958. btrfs_set_file_extent_num_bytes(leaf, fi,
  959. end - other_start);
  960. btrfs_mark_buffer_dirty(leaf);
  961. goto out;
  962. }
  963. }
  964. if (start > key.offset && end == extent_end) {
  965. other_start = end;
  966. other_end = 0;
  967. if (extent_mergeable(leaf, path->slots[0] + 1,
  968. ino, bytenr, orig_offset,
  969. &other_start, &other_end)) {
  970. fi = btrfs_item_ptr(leaf, path->slots[0],
  971. struct btrfs_file_extent_item);
  972. btrfs_set_file_extent_num_bytes(leaf, fi,
  973. start - key.offset);
  974. btrfs_set_file_extent_generation(leaf, fi,
  975. trans->transid);
  976. path->slots[0]++;
  977. new_key.offset = start;
  978. btrfs_set_item_key_safe(root, path, &new_key);
  979. fi = btrfs_item_ptr(leaf, path->slots[0],
  980. struct btrfs_file_extent_item);
  981. btrfs_set_file_extent_generation(leaf, fi,
  982. trans->transid);
  983. btrfs_set_file_extent_num_bytes(leaf, fi,
  984. other_end - start);
  985. btrfs_set_file_extent_offset(leaf, fi,
  986. start - orig_offset);
  987. btrfs_mark_buffer_dirty(leaf);
  988. goto out;
  989. }
  990. }
  991. while (start > key.offset || end < extent_end) {
  992. if (key.offset == start)
  993. split = end;
  994. new_key.offset = split;
  995. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  996. if (ret == -EAGAIN) {
  997. btrfs_release_path(path);
  998. goto again;
  999. }
  1000. if (ret < 0) {
  1001. btrfs_abort_transaction(trans, root, ret);
  1002. goto out;
  1003. }
  1004. leaf = path->nodes[0];
  1005. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1006. struct btrfs_file_extent_item);
  1007. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1008. btrfs_set_file_extent_num_bytes(leaf, fi,
  1009. split - key.offset);
  1010. fi = btrfs_item_ptr(leaf, path->slots[0],
  1011. struct btrfs_file_extent_item);
  1012. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1013. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1014. btrfs_set_file_extent_num_bytes(leaf, fi,
  1015. extent_end - split);
  1016. btrfs_mark_buffer_dirty(leaf);
  1017. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1018. root->root_key.objectid,
  1019. ino, orig_offset, 0);
  1020. BUG_ON(ret); /* -ENOMEM */
  1021. if (split == start) {
  1022. key.offset = start;
  1023. } else {
  1024. BUG_ON(start != key.offset);
  1025. path->slots[0]--;
  1026. extent_end = end;
  1027. }
  1028. recow = 1;
  1029. }
  1030. other_start = end;
  1031. other_end = 0;
  1032. if (extent_mergeable(leaf, path->slots[0] + 1,
  1033. ino, bytenr, orig_offset,
  1034. &other_start, &other_end)) {
  1035. if (recow) {
  1036. btrfs_release_path(path);
  1037. goto again;
  1038. }
  1039. extent_end = other_end;
  1040. del_slot = path->slots[0] + 1;
  1041. del_nr++;
  1042. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1043. 0, root->root_key.objectid,
  1044. ino, orig_offset, 0);
  1045. BUG_ON(ret); /* -ENOMEM */
  1046. }
  1047. other_start = 0;
  1048. other_end = start;
  1049. if (extent_mergeable(leaf, path->slots[0] - 1,
  1050. ino, bytenr, orig_offset,
  1051. &other_start, &other_end)) {
  1052. if (recow) {
  1053. btrfs_release_path(path);
  1054. goto again;
  1055. }
  1056. key.offset = other_start;
  1057. del_slot = path->slots[0];
  1058. del_nr++;
  1059. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1060. 0, root->root_key.objectid,
  1061. ino, orig_offset, 0);
  1062. BUG_ON(ret); /* -ENOMEM */
  1063. }
  1064. if (del_nr == 0) {
  1065. fi = btrfs_item_ptr(leaf, path->slots[0],
  1066. struct btrfs_file_extent_item);
  1067. btrfs_set_file_extent_type(leaf, fi,
  1068. BTRFS_FILE_EXTENT_REG);
  1069. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1070. btrfs_mark_buffer_dirty(leaf);
  1071. } else {
  1072. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1073. struct btrfs_file_extent_item);
  1074. btrfs_set_file_extent_type(leaf, fi,
  1075. BTRFS_FILE_EXTENT_REG);
  1076. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1077. btrfs_set_file_extent_num_bytes(leaf, fi,
  1078. extent_end - key.offset);
  1079. btrfs_mark_buffer_dirty(leaf);
  1080. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1081. if (ret < 0) {
  1082. btrfs_abort_transaction(trans, root, ret);
  1083. goto out;
  1084. }
  1085. }
  1086. out:
  1087. btrfs_free_path(path);
  1088. return 0;
  1089. }
  1090. /*
  1091. * on error we return an unlocked page and the error value
  1092. * on success we return a locked page and 0
  1093. */
  1094. static int prepare_uptodate_page(struct page *page, u64 pos,
  1095. bool force_uptodate)
  1096. {
  1097. int ret = 0;
  1098. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1099. !PageUptodate(page)) {
  1100. ret = btrfs_readpage(NULL, page);
  1101. if (ret)
  1102. return ret;
  1103. lock_page(page);
  1104. if (!PageUptodate(page)) {
  1105. unlock_page(page);
  1106. return -EIO;
  1107. }
  1108. }
  1109. return 0;
  1110. }
  1111. /*
  1112. * this gets pages into the page cache and locks them down, it also properly
  1113. * waits for data=ordered extents to finish before allowing the pages to be
  1114. * modified.
  1115. */
  1116. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1117. struct page **pages, size_t num_pages,
  1118. loff_t pos, unsigned long first_index,
  1119. size_t write_bytes, bool force_uptodate)
  1120. {
  1121. struct extent_state *cached_state = NULL;
  1122. int i;
  1123. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1124. struct inode *inode = file_inode(file);
  1125. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1126. int err = 0;
  1127. int faili = 0;
  1128. u64 start_pos;
  1129. u64 last_pos;
  1130. start_pos = pos & ~((u64)root->sectorsize - 1);
  1131. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1132. again:
  1133. for (i = 0; i < num_pages; i++) {
  1134. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1135. mask | __GFP_WRITE);
  1136. if (!pages[i]) {
  1137. faili = i - 1;
  1138. err = -ENOMEM;
  1139. goto fail;
  1140. }
  1141. if (i == 0)
  1142. err = prepare_uptodate_page(pages[i], pos,
  1143. force_uptodate);
  1144. if (i == num_pages - 1)
  1145. err = prepare_uptodate_page(pages[i],
  1146. pos + write_bytes, false);
  1147. if (err) {
  1148. page_cache_release(pages[i]);
  1149. faili = i - 1;
  1150. goto fail;
  1151. }
  1152. wait_on_page_writeback(pages[i]);
  1153. }
  1154. err = 0;
  1155. if (start_pos < inode->i_size) {
  1156. struct btrfs_ordered_extent *ordered;
  1157. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1158. start_pos, last_pos - 1, 0, &cached_state);
  1159. ordered = btrfs_lookup_first_ordered_extent(inode,
  1160. last_pos - 1);
  1161. if (ordered &&
  1162. ordered->file_offset + ordered->len > start_pos &&
  1163. ordered->file_offset < last_pos) {
  1164. btrfs_put_ordered_extent(ordered);
  1165. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1166. start_pos, last_pos - 1,
  1167. &cached_state, GFP_NOFS);
  1168. for (i = 0; i < num_pages; i++) {
  1169. unlock_page(pages[i]);
  1170. page_cache_release(pages[i]);
  1171. }
  1172. btrfs_wait_ordered_range(inode, start_pos,
  1173. last_pos - start_pos);
  1174. goto again;
  1175. }
  1176. if (ordered)
  1177. btrfs_put_ordered_extent(ordered);
  1178. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1179. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1180. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1181. 0, 0, &cached_state, GFP_NOFS);
  1182. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1183. start_pos, last_pos - 1, &cached_state,
  1184. GFP_NOFS);
  1185. }
  1186. for (i = 0; i < num_pages; i++) {
  1187. if (clear_page_dirty_for_io(pages[i]))
  1188. account_page_redirty(pages[i]);
  1189. set_page_extent_mapped(pages[i]);
  1190. WARN_ON(!PageLocked(pages[i]));
  1191. }
  1192. return 0;
  1193. fail:
  1194. while (faili >= 0) {
  1195. unlock_page(pages[faili]);
  1196. page_cache_release(pages[faili]);
  1197. faili--;
  1198. }
  1199. return err;
  1200. }
  1201. static noinline int check_can_nocow(struct inode *inode, loff_t pos,
  1202. size_t *write_bytes)
  1203. {
  1204. struct btrfs_trans_handle *trans;
  1205. struct btrfs_root *root = BTRFS_I(inode)->root;
  1206. struct btrfs_ordered_extent *ordered;
  1207. u64 lockstart, lockend;
  1208. u64 num_bytes;
  1209. int ret;
  1210. lockstart = round_down(pos, root->sectorsize);
  1211. lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
  1212. while (1) {
  1213. lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1214. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1215. lockend - lockstart + 1);
  1216. if (!ordered) {
  1217. break;
  1218. }
  1219. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1220. btrfs_start_ordered_extent(inode, ordered, 1);
  1221. btrfs_put_ordered_extent(ordered);
  1222. }
  1223. trans = btrfs_join_transaction(root);
  1224. if (IS_ERR(trans)) {
  1225. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1226. return PTR_ERR(trans);
  1227. }
  1228. num_bytes = lockend - lockstart + 1;
  1229. ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
  1230. NULL);
  1231. btrfs_end_transaction(trans, root);
  1232. if (ret <= 0) {
  1233. ret = 0;
  1234. } else {
  1235. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1236. EXTENT_DIRTY | EXTENT_DELALLOC |
  1237. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
  1238. NULL, GFP_NOFS);
  1239. *write_bytes = min_t(size_t, *write_bytes, num_bytes);
  1240. }
  1241. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1242. return ret;
  1243. }
  1244. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1245. struct iov_iter *i,
  1246. loff_t pos)
  1247. {
  1248. struct inode *inode = file_inode(file);
  1249. struct btrfs_root *root = BTRFS_I(inode)->root;
  1250. struct page **pages = NULL;
  1251. u64 release_bytes = 0;
  1252. unsigned long first_index;
  1253. size_t num_written = 0;
  1254. int nrptrs;
  1255. int ret = 0;
  1256. bool only_release_metadata = false;
  1257. bool force_page_uptodate = false;
  1258. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1259. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1260. (sizeof(struct page *)));
  1261. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1262. nrptrs = max(nrptrs, 8);
  1263. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1264. if (!pages)
  1265. return -ENOMEM;
  1266. first_index = pos >> PAGE_CACHE_SHIFT;
  1267. while (iov_iter_count(i) > 0) {
  1268. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1269. size_t write_bytes = min(iov_iter_count(i),
  1270. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1271. offset);
  1272. size_t num_pages = (write_bytes + offset +
  1273. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1274. size_t reserve_bytes;
  1275. size_t dirty_pages;
  1276. size_t copied;
  1277. WARN_ON(num_pages > nrptrs);
  1278. /*
  1279. * Fault pages before locking them in prepare_pages
  1280. * to avoid recursive lock
  1281. */
  1282. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1283. ret = -EFAULT;
  1284. break;
  1285. }
  1286. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1287. ret = btrfs_check_data_free_space(inode, reserve_bytes);
  1288. if (ret == -ENOSPC &&
  1289. (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1290. BTRFS_INODE_PREALLOC))) {
  1291. ret = check_can_nocow(inode, pos, &write_bytes);
  1292. if (ret > 0) {
  1293. only_release_metadata = true;
  1294. /*
  1295. * our prealloc extent may be smaller than
  1296. * write_bytes, so scale down.
  1297. */
  1298. num_pages = (write_bytes + offset +
  1299. PAGE_CACHE_SIZE - 1) >>
  1300. PAGE_CACHE_SHIFT;
  1301. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1302. ret = 0;
  1303. } else {
  1304. ret = -ENOSPC;
  1305. }
  1306. }
  1307. if (ret)
  1308. break;
  1309. ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
  1310. if (ret) {
  1311. if (!only_release_metadata)
  1312. btrfs_free_reserved_data_space(inode,
  1313. reserve_bytes);
  1314. break;
  1315. }
  1316. release_bytes = reserve_bytes;
  1317. /*
  1318. * This is going to setup the pages array with the number of
  1319. * pages we want, so we don't really need to worry about the
  1320. * contents of pages from loop to loop
  1321. */
  1322. ret = prepare_pages(root, file, pages, num_pages,
  1323. pos, first_index, write_bytes,
  1324. force_page_uptodate);
  1325. if (ret)
  1326. break;
  1327. copied = btrfs_copy_from_user(pos, num_pages,
  1328. write_bytes, pages, i);
  1329. /*
  1330. * if we have trouble faulting in the pages, fall
  1331. * back to one page at a time
  1332. */
  1333. if (copied < write_bytes)
  1334. nrptrs = 1;
  1335. if (copied == 0) {
  1336. force_page_uptodate = true;
  1337. dirty_pages = 0;
  1338. } else {
  1339. force_page_uptodate = false;
  1340. dirty_pages = (copied + offset +
  1341. PAGE_CACHE_SIZE - 1) >>
  1342. PAGE_CACHE_SHIFT;
  1343. }
  1344. /*
  1345. * If we had a short copy we need to release the excess delaloc
  1346. * bytes we reserved. We need to increment outstanding_extents
  1347. * because btrfs_delalloc_release_space will decrement it, but
  1348. * we still have an outstanding extent for the chunk we actually
  1349. * managed to copy.
  1350. */
  1351. if (num_pages > dirty_pages) {
  1352. release_bytes = (num_pages - dirty_pages) <<
  1353. PAGE_CACHE_SHIFT;
  1354. if (copied > 0) {
  1355. spin_lock(&BTRFS_I(inode)->lock);
  1356. BTRFS_I(inode)->outstanding_extents++;
  1357. spin_unlock(&BTRFS_I(inode)->lock);
  1358. }
  1359. if (only_release_metadata)
  1360. btrfs_delalloc_release_metadata(inode,
  1361. release_bytes);
  1362. else
  1363. btrfs_delalloc_release_space(inode,
  1364. release_bytes);
  1365. }
  1366. release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
  1367. if (copied > 0) {
  1368. ret = btrfs_dirty_pages(root, inode, pages,
  1369. dirty_pages, pos, copied,
  1370. NULL);
  1371. if (ret) {
  1372. btrfs_drop_pages(pages, num_pages);
  1373. break;
  1374. }
  1375. }
  1376. release_bytes = 0;
  1377. btrfs_drop_pages(pages, num_pages);
  1378. if (only_release_metadata && copied > 0) {
  1379. u64 lockstart = round_down(pos, root->sectorsize);
  1380. u64 lockend = lockstart +
  1381. (dirty_pages << PAGE_CACHE_SHIFT) - 1;
  1382. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1383. lockend, EXTENT_NORESERVE, NULL,
  1384. NULL, GFP_NOFS);
  1385. only_release_metadata = false;
  1386. }
  1387. cond_resched();
  1388. balance_dirty_pages_ratelimited(inode->i_mapping);
  1389. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1390. btrfs_btree_balance_dirty(root);
  1391. pos += copied;
  1392. num_written += copied;
  1393. }
  1394. kfree(pages);
  1395. if (release_bytes) {
  1396. if (only_release_metadata)
  1397. btrfs_delalloc_release_metadata(inode, release_bytes);
  1398. else
  1399. btrfs_delalloc_release_space(inode, release_bytes);
  1400. }
  1401. return num_written ? num_written : ret;
  1402. }
  1403. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1404. const struct iovec *iov,
  1405. unsigned long nr_segs, loff_t pos,
  1406. loff_t *ppos, size_t count, size_t ocount)
  1407. {
  1408. struct file *file = iocb->ki_filp;
  1409. struct iov_iter i;
  1410. ssize_t written;
  1411. ssize_t written_buffered;
  1412. loff_t endbyte;
  1413. int err;
  1414. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1415. count, ocount);
  1416. if (written < 0 || written == count)
  1417. return written;
  1418. pos += written;
  1419. count -= written;
  1420. iov_iter_init(&i, iov, nr_segs, count, written);
  1421. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1422. if (written_buffered < 0) {
  1423. err = written_buffered;
  1424. goto out;
  1425. }
  1426. endbyte = pos + written_buffered - 1;
  1427. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1428. if (err)
  1429. goto out;
  1430. written += written_buffered;
  1431. *ppos = pos + written_buffered;
  1432. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1433. endbyte >> PAGE_CACHE_SHIFT);
  1434. out:
  1435. return written ? written : err;
  1436. }
  1437. static void update_time_for_write(struct inode *inode)
  1438. {
  1439. struct timespec now;
  1440. if (IS_NOCMTIME(inode))
  1441. return;
  1442. now = current_fs_time(inode->i_sb);
  1443. if (!timespec_equal(&inode->i_mtime, &now))
  1444. inode->i_mtime = now;
  1445. if (!timespec_equal(&inode->i_ctime, &now))
  1446. inode->i_ctime = now;
  1447. if (IS_I_VERSION(inode))
  1448. inode_inc_iversion(inode);
  1449. }
  1450. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1451. const struct iovec *iov,
  1452. unsigned long nr_segs, loff_t pos)
  1453. {
  1454. struct file *file = iocb->ki_filp;
  1455. struct inode *inode = file_inode(file);
  1456. struct btrfs_root *root = BTRFS_I(inode)->root;
  1457. loff_t *ppos = &iocb->ki_pos;
  1458. u64 start_pos;
  1459. ssize_t num_written = 0;
  1460. ssize_t err = 0;
  1461. size_t count, ocount;
  1462. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1463. mutex_lock(&inode->i_mutex);
  1464. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1465. if (err) {
  1466. mutex_unlock(&inode->i_mutex);
  1467. goto out;
  1468. }
  1469. count = ocount;
  1470. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1471. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1472. if (err) {
  1473. mutex_unlock(&inode->i_mutex);
  1474. goto out;
  1475. }
  1476. if (count == 0) {
  1477. mutex_unlock(&inode->i_mutex);
  1478. goto out;
  1479. }
  1480. err = file_remove_suid(file);
  1481. if (err) {
  1482. mutex_unlock(&inode->i_mutex);
  1483. goto out;
  1484. }
  1485. /*
  1486. * If BTRFS flips readonly due to some impossible error
  1487. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1488. * although we have opened a file as writable, we have
  1489. * to stop this write operation to ensure FS consistency.
  1490. */
  1491. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1492. mutex_unlock(&inode->i_mutex);
  1493. err = -EROFS;
  1494. goto out;
  1495. }
  1496. /*
  1497. * We reserve space for updating the inode when we reserve space for the
  1498. * extent we are going to write, so we will enospc out there. We don't
  1499. * need to start yet another transaction to update the inode as we will
  1500. * update the inode when we finish writing whatever data we write.
  1501. */
  1502. update_time_for_write(inode);
  1503. start_pos = round_down(pos, root->sectorsize);
  1504. if (start_pos > i_size_read(inode)) {
  1505. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1506. if (err) {
  1507. mutex_unlock(&inode->i_mutex);
  1508. goto out;
  1509. }
  1510. }
  1511. if (sync)
  1512. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1513. if (unlikely(file->f_flags & O_DIRECT)) {
  1514. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1515. pos, ppos, count, ocount);
  1516. } else {
  1517. struct iov_iter i;
  1518. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1519. num_written = __btrfs_buffered_write(file, &i, pos);
  1520. if (num_written > 0)
  1521. *ppos = pos + num_written;
  1522. }
  1523. mutex_unlock(&inode->i_mutex);
  1524. /*
  1525. * we want to make sure fsync finds this change
  1526. * but we haven't joined a transaction running right now.
  1527. *
  1528. * Later on, someone is sure to update the inode and get the
  1529. * real transid recorded.
  1530. *
  1531. * We set last_trans now to the fs_info generation + 1,
  1532. * this will either be one more than the running transaction
  1533. * or the generation used for the next transaction if there isn't
  1534. * one running right now.
  1535. *
  1536. * We also have to set last_sub_trans to the current log transid,
  1537. * otherwise subsequent syncs to a file that's been synced in this
  1538. * transaction will appear to have already occured.
  1539. */
  1540. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1541. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1542. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1543. err = generic_write_sync(file, pos, num_written);
  1544. if (err < 0 && num_written > 0)
  1545. num_written = err;
  1546. }
  1547. if (sync)
  1548. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1549. out:
  1550. current->backing_dev_info = NULL;
  1551. return num_written ? num_written : err;
  1552. }
  1553. int btrfs_release_file(struct inode *inode, struct file *filp)
  1554. {
  1555. /*
  1556. * ordered_data_close is set by settattr when we are about to truncate
  1557. * a file from a non-zero size to a zero size. This tries to
  1558. * flush down new bytes that may have been written if the
  1559. * application were using truncate to replace a file in place.
  1560. */
  1561. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1562. &BTRFS_I(inode)->runtime_flags)) {
  1563. struct btrfs_trans_handle *trans;
  1564. struct btrfs_root *root = BTRFS_I(inode)->root;
  1565. /*
  1566. * We need to block on a committing transaction to keep us from
  1567. * throwing a ordered operation on to the list and causing
  1568. * something like sync to deadlock trying to flush out this
  1569. * inode.
  1570. */
  1571. trans = btrfs_start_transaction(root, 0);
  1572. if (IS_ERR(trans))
  1573. return PTR_ERR(trans);
  1574. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1575. btrfs_end_transaction(trans, root);
  1576. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1577. filemap_flush(inode->i_mapping);
  1578. }
  1579. if (filp->private_data)
  1580. btrfs_ioctl_trans_end(filp);
  1581. return 0;
  1582. }
  1583. /*
  1584. * fsync call for both files and directories. This logs the inode into
  1585. * the tree log instead of forcing full commits whenever possible.
  1586. *
  1587. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1588. * in the metadata btree are up to date for copying to the log.
  1589. *
  1590. * It drops the inode mutex before doing the tree log commit. This is an
  1591. * important optimization for directories because holding the mutex prevents
  1592. * new operations on the dir while we write to disk.
  1593. */
  1594. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1595. {
  1596. struct dentry *dentry = file->f_path.dentry;
  1597. struct inode *inode = dentry->d_inode;
  1598. struct btrfs_root *root = BTRFS_I(inode)->root;
  1599. int ret = 0;
  1600. struct btrfs_trans_handle *trans;
  1601. bool full_sync = 0;
  1602. trace_btrfs_sync_file(file, datasync);
  1603. /*
  1604. * We write the dirty pages in the range and wait until they complete
  1605. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1606. * multi-task, and make the performance up. See
  1607. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1608. */
  1609. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1610. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1611. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1612. &BTRFS_I(inode)->runtime_flags))
  1613. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1614. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1615. if (ret)
  1616. return ret;
  1617. mutex_lock(&inode->i_mutex);
  1618. /*
  1619. * We flush the dirty pages again to avoid some dirty pages in the
  1620. * range being left.
  1621. */
  1622. atomic_inc(&root->log_batch);
  1623. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1624. &BTRFS_I(inode)->runtime_flags);
  1625. if (full_sync)
  1626. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1627. atomic_inc(&root->log_batch);
  1628. /*
  1629. * check the transaction that last modified this inode
  1630. * and see if its already been committed
  1631. */
  1632. if (!BTRFS_I(inode)->last_trans) {
  1633. mutex_unlock(&inode->i_mutex);
  1634. goto out;
  1635. }
  1636. /*
  1637. * if the last transaction that changed this file was before
  1638. * the current transaction, we can bail out now without any
  1639. * syncing
  1640. */
  1641. smp_mb();
  1642. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1643. BTRFS_I(inode)->last_trans <=
  1644. root->fs_info->last_trans_committed) {
  1645. BTRFS_I(inode)->last_trans = 0;
  1646. /*
  1647. * We'v had everything committed since the last time we were
  1648. * modified so clear this flag in case it was set for whatever
  1649. * reason, it's no longer relevant.
  1650. */
  1651. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1652. &BTRFS_I(inode)->runtime_flags);
  1653. mutex_unlock(&inode->i_mutex);
  1654. goto out;
  1655. }
  1656. /*
  1657. * ok we haven't committed the transaction yet, lets do a commit
  1658. */
  1659. if (file->private_data)
  1660. btrfs_ioctl_trans_end(file);
  1661. trans = btrfs_start_transaction(root, 0);
  1662. if (IS_ERR(trans)) {
  1663. ret = PTR_ERR(trans);
  1664. mutex_unlock(&inode->i_mutex);
  1665. goto out;
  1666. }
  1667. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1668. if (ret < 0) {
  1669. mutex_unlock(&inode->i_mutex);
  1670. goto out;
  1671. }
  1672. /* we've logged all the items and now have a consistent
  1673. * version of the file in the log. It is possible that
  1674. * someone will come in and modify the file, but that's
  1675. * fine because the log is consistent on disk, and we
  1676. * have references to all of the file's extents
  1677. *
  1678. * It is possible that someone will come in and log the
  1679. * file again, but that will end up using the synchronization
  1680. * inside btrfs_sync_log to keep things safe.
  1681. */
  1682. mutex_unlock(&inode->i_mutex);
  1683. if (ret != BTRFS_NO_LOG_SYNC) {
  1684. if (ret > 0) {
  1685. /*
  1686. * If we didn't already wait for ordered extents we need
  1687. * to do that now.
  1688. */
  1689. if (!full_sync)
  1690. btrfs_wait_ordered_range(inode, start,
  1691. end - start + 1);
  1692. ret = btrfs_commit_transaction(trans, root);
  1693. } else {
  1694. ret = btrfs_sync_log(trans, root);
  1695. if (ret == 0) {
  1696. ret = btrfs_end_transaction(trans, root);
  1697. } else {
  1698. if (!full_sync)
  1699. btrfs_wait_ordered_range(inode, start,
  1700. end -
  1701. start + 1);
  1702. ret = btrfs_commit_transaction(trans, root);
  1703. }
  1704. }
  1705. } else {
  1706. ret = btrfs_end_transaction(trans, root);
  1707. }
  1708. out:
  1709. return ret > 0 ? -EIO : ret;
  1710. }
  1711. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1712. .fault = filemap_fault,
  1713. .page_mkwrite = btrfs_page_mkwrite,
  1714. .remap_pages = generic_file_remap_pages,
  1715. };
  1716. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1717. {
  1718. struct address_space *mapping = filp->f_mapping;
  1719. if (!mapping->a_ops->readpage)
  1720. return -ENOEXEC;
  1721. file_accessed(filp);
  1722. vma->vm_ops = &btrfs_file_vm_ops;
  1723. return 0;
  1724. }
  1725. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1726. int slot, u64 start, u64 end)
  1727. {
  1728. struct btrfs_file_extent_item *fi;
  1729. struct btrfs_key key;
  1730. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1731. return 0;
  1732. btrfs_item_key_to_cpu(leaf, &key, slot);
  1733. if (key.objectid != btrfs_ino(inode) ||
  1734. key.type != BTRFS_EXTENT_DATA_KEY)
  1735. return 0;
  1736. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1737. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1738. return 0;
  1739. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1740. return 0;
  1741. if (key.offset == end)
  1742. return 1;
  1743. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1744. return 1;
  1745. return 0;
  1746. }
  1747. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1748. struct btrfs_path *path, u64 offset, u64 end)
  1749. {
  1750. struct btrfs_root *root = BTRFS_I(inode)->root;
  1751. struct extent_buffer *leaf;
  1752. struct btrfs_file_extent_item *fi;
  1753. struct extent_map *hole_em;
  1754. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1755. struct btrfs_key key;
  1756. int ret;
  1757. key.objectid = btrfs_ino(inode);
  1758. key.type = BTRFS_EXTENT_DATA_KEY;
  1759. key.offset = offset;
  1760. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1761. if (ret < 0)
  1762. return ret;
  1763. BUG_ON(!ret);
  1764. leaf = path->nodes[0];
  1765. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1766. u64 num_bytes;
  1767. path->slots[0]--;
  1768. fi = btrfs_item_ptr(leaf, path->slots[0],
  1769. struct btrfs_file_extent_item);
  1770. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1771. end - offset;
  1772. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1773. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1774. btrfs_set_file_extent_offset(leaf, fi, 0);
  1775. btrfs_mark_buffer_dirty(leaf);
  1776. goto out;
  1777. }
  1778. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1779. u64 num_bytes;
  1780. path->slots[0]++;
  1781. key.offset = offset;
  1782. btrfs_set_item_key_safe(root, path, &key);
  1783. fi = btrfs_item_ptr(leaf, path->slots[0],
  1784. struct btrfs_file_extent_item);
  1785. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1786. offset;
  1787. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1788. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1789. btrfs_set_file_extent_offset(leaf, fi, 0);
  1790. btrfs_mark_buffer_dirty(leaf);
  1791. goto out;
  1792. }
  1793. btrfs_release_path(path);
  1794. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1795. 0, 0, end - offset, 0, end - offset,
  1796. 0, 0, 0);
  1797. if (ret)
  1798. return ret;
  1799. out:
  1800. btrfs_release_path(path);
  1801. hole_em = alloc_extent_map();
  1802. if (!hole_em) {
  1803. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1804. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1805. &BTRFS_I(inode)->runtime_flags);
  1806. } else {
  1807. hole_em->start = offset;
  1808. hole_em->len = end - offset;
  1809. hole_em->ram_bytes = hole_em->len;
  1810. hole_em->orig_start = offset;
  1811. hole_em->block_start = EXTENT_MAP_HOLE;
  1812. hole_em->block_len = 0;
  1813. hole_em->orig_block_len = 0;
  1814. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1815. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1816. hole_em->generation = trans->transid;
  1817. do {
  1818. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1819. write_lock(&em_tree->lock);
  1820. ret = add_extent_mapping(em_tree, hole_em, 1);
  1821. write_unlock(&em_tree->lock);
  1822. } while (ret == -EEXIST);
  1823. free_extent_map(hole_em);
  1824. if (ret)
  1825. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1826. &BTRFS_I(inode)->runtime_flags);
  1827. }
  1828. return 0;
  1829. }
  1830. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1831. {
  1832. struct btrfs_root *root = BTRFS_I(inode)->root;
  1833. struct extent_state *cached_state = NULL;
  1834. struct btrfs_path *path;
  1835. struct btrfs_block_rsv *rsv;
  1836. struct btrfs_trans_handle *trans;
  1837. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1838. u64 lockend = round_down(offset + len,
  1839. BTRFS_I(inode)->root->sectorsize) - 1;
  1840. u64 cur_offset = lockstart;
  1841. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1842. u64 drop_end;
  1843. int ret = 0;
  1844. int err = 0;
  1845. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1846. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1847. btrfs_wait_ordered_range(inode, offset, len);
  1848. mutex_lock(&inode->i_mutex);
  1849. /*
  1850. * We needn't truncate any page which is beyond the end of the file
  1851. * because we are sure there is no data there.
  1852. */
  1853. /*
  1854. * Only do this if we are in the same page and we aren't doing the
  1855. * entire page.
  1856. */
  1857. if (same_page && len < PAGE_CACHE_SIZE) {
  1858. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1859. ret = btrfs_truncate_page(inode, offset, len, 0);
  1860. mutex_unlock(&inode->i_mutex);
  1861. return ret;
  1862. }
  1863. /* zero back part of the first page */
  1864. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1865. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1866. if (ret) {
  1867. mutex_unlock(&inode->i_mutex);
  1868. return ret;
  1869. }
  1870. }
  1871. /* zero the front end of the last page */
  1872. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1873. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1874. if (ret) {
  1875. mutex_unlock(&inode->i_mutex);
  1876. return ret;
  1877. }
  1878. }
  1879. if (lockend < lockstart) {
  1880. mutex_unlock(&inode->i_mutex);
  1881. return 0;
  1882. }
  1883. while (1) {
  1884. struct btrfs_ordered_extent *ordered;
  1885. truncate_pagecache_range(inode, lockstart, lockend);
  1886. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1887. 0, &cached_state);
  1888. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1889. /*
  1890. * We need to make sure we have no ordered extents in this range
  1891. * and nobody raced in and read a page in this range, if we did
  1892. * we need to try again.
  1893. */
  1894. if ((!ordered ||
  1895. (ordered->file_offset + ordered->len < lockstart ||
  1896. ordered->file_offset > lockend)) &&
  1897. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1898. lockend, EXTENT_UPTODATE, 0,
  1899. cached_state)) {
  1900. if (ordered)
  1901. btrfs_put_ordered_extent(ordered);
  1902. break;
  1903. }
  1904. if (ordered)
  1905. btrfs_put_ordered_extent(ordered);
  1906. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1907. lockend, &cached_state, GFP_NOFS);
  1908. btrfs_wait_ordered_range(inode, lockstart,
  1909. lockend - lockstart + 1);
  1910. }
  1911. path = btrfs_alloc_path();
  1912. if (!path) {
  1913. ret = -ENOMEM;
  1914. goto out;
  1915. }
  1916. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1917. if (!rsv) {
  1918. ret = -ENOMEM;
  1919. goto out_free;
  1920. }
  1921. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1922. rsv->failfast = 1;
  1923. /*
  1924. * 1 - update the inode
  1925. * 1 - removing the extents in the range
  1926. * 1 - adding the hole extent
  1927. */
  1928. trans = btrfs_start_transaction(root, 3);
  1929. if (IS_ERR(trans)) {
  1930. err = PTR_ERR(trans);
  1931. goto out_free;
  1932. }
  1933. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1934. min_size);
  1935. BUG_ON(ret);
  1936. trans->block_rsv = rsv;
  1937. while (cur_offset < lockend) {
  1938. ret = __btrfs_drop_extents(trans, root, inode, path,
  1939. cur_offset, lockend + 1,
  1940. &drop_end, 1);
  1941. if (ret != -ENOSPC)
  1942. break;
  1943. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1944. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1945. if (ret) {
  1946. err = ret;
  1947. break;
  1948. }
  1949. cur_offset = drop_end;
  1950. ret = btrfs_update_inode(trans, root, inode);
  1951. if (ret) {
  1952. err = ret;
  1953. break;
  1954. }
  1955. btrfs_end_transaction(trans, root);
  1956. btrfs_btree_balance_dirty(root);
  1957. trans = btrfs_start_transaction(root, 3);
  1958. if (IS_ERR(trans)) {
  1959. ret = PTR_ERR(trans);
  1960. trans = NULL;
  1961. break;
  1962. }
  1963. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1964. rsv, min_size);
  1965. BUG_ON(ret); /* shouldn't happen */
  1966. trans->block_rsv = rsv;
  1967. }
  1968. if (ret) {
  1969. err = ret;
  1970. goto out_trans;
  1971. }
  1972. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1973. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1974. if (ret) {
  1975. err = ret;
  1976. goto out_trans;
  1977. }
  1978. out_trans:
  1979. if (!trans)
  1980. goto out_free;
  1981. inode_inc_iversion(inode);
  1982. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1983. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1984. ret = btrfs_update_inode(trans, root, inode);
  1985. btrfs_end_transaction(trans, root);
  1986. btrfs_btree_balance_dirty(root);
  1987. out_free:
  1988. btrfs_free_path(path);
  1989. btrfs_free_block_rsv(root, rsv);
  1990. out:
  1991. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1992. &cached_state, GFP_NOFS);
  1993. mutex_unlock(&inode->i_mutex);
  1994. if (ret && !err)
  1995. err = ret;
  1996. return err;
  1997. }
  1998. static long btrfs_fallocate(struct file *file, int mode,
  1999. loff_t offset, loff_t len)
  2000. {
  2001. struct inode *inode = file_inode(file);
  2002. struct extent_state *cached_state = NULL;
  2003. struct btrfs_root *root = BTRFS_I(inode)->root;
  2004. u64 cur_offset;
  2005. u64 last_byte;
  2006. u64 alloc_start;
  2007. u64 alloc_end;
  2008. u64 alloc_hint = 0;
  2009. u64 locked_end;
  2010. struct extent_map *em;
  2011. int blocksize = BTRFS_I(inode)->root->sectorsize;
  2012. int ret;
  2013. alloc_start = round_down(offset, blocksize);
  2014. alloc_end = round_up(offset + len, blocksize);
  2015. /* Make sure we aren't being give some crap mode */
  2016. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  2017. return -EOPNOTSUPP;
  2018. if (mode & FALLOC_FL_PUNCH_HOLE)
  2019. return btrfs_punch_hole(inode, offset, len);
  2020. /*
  2021. * Make sure we have enough space before we do the
  2022. * allocation.
  2023. */
  2024. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  2025. if (ret)
  2026. return ret;
  2027. if (root->fs_info->quota_enabled) {
  2028. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  2029. if (ret)
  2030. goto out_reserve_fail;
  2031. }
  2032. mutex_lock(&inode->i_mutex);
  2033. ret = inode_newsize_ok(inode, alloc_end);
  2034. if (ret)
  2035. goto out;
  2036. if (alloc_start > inode->i_size) {
  2037. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2038. alloc_start);
  2039. if (ret)
  2040. goto out;
  2041. } else {
  2042. /*
  2043. * If we are fallocating from the end of the file onward we
  2044. * need to zero out the end of the page if i_size lands in the
  2045. * middle of a page.
  2046. */
  2047. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  2048. if (ret)
  2049. goto out;
  2050. }
  2051. /*
  2052. * wait for ordered IO before we have any locks. We'll loop again
  2053. * below with the locks held.
  2054. */
  2055. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  2056. locked_end = alloc_end - 1;
  2057. while (1) {
  2058. struct btrfs_ordered_extent *ordered;
  2059. /* the extent lock is ordered inside the running
  2060. * transaction
  2061. */
  2062. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2063. locked_end, 0, &cached_state);
  2064. ordered = btrfs_lookup_first_ordered_extent(inode,
  2065. alloc_end - 1);
  2066. if (ordered &&
  2067. ordered->file_offset + ordered->len > alloc_start &&
  2068. ordered->file_offset < alloc_end) {
  2069. btrfs_put_ordered_extent(ordered);
  2070. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2071. alloc_start, locked_end,
  2072. &cached_state, GFP_NOFS);
  2073. /*
  2074. * we can't wait on the range with the transaction
  2075. * running or with the extent lock held
  2076. */
  2077. btrfs_wait_ordered_range(inode, alloc_start,
  2078. alloc_end - alloc_start);
  2079. } else {
  2080. if (ordered)
  2081. btrfs_put_ordered_extent(ordered);
  2082. break;
  2083. }
  2084. }
  2085. cur_offset = alloc_start;
  2086. while (1) {
  2087. u64 actual_end;
  2088. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2089. alloc_end - cur_offset, 0);
  2090. if (IS_ERR_OR_NULL(em)) {
  2091. if (!em)
  2092. ret = -ENOMEM;
  2093. else
  2094. ret = PTR_ERR(em);
  2095. break;
  2096. }
  2097. last_byte = min(extent_map_end(em), alloc_end);
  2098. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2099. last_byte = ALIGN(last_byte, blocksize);
  2100. if (em->block_start == EXTENT_MAP_HOLE ||
  2101. (cur_offset >= inode->i_size &&
  2102. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2103. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  2104. last_byte - cur_offset,
  2105. 1 << inode->i_blkbits,
  2106. offset + len,
  2107. &alloc_hint);
  2108. if (ret < 0) {
  2109. free_extent_map(em);
  2110. break;
  2111. }
  2112. } else if (actual_end > inode->i_size &&
  2113. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2114. /*
  2115. * We didn't need to allocate any more space, but we
  2116. * still extended the size of the file so we need to
  2117. * update i_size.
  2118. */
  2119. inode->i_ctime = CURRENT_TIME;
  2120. i_size_write(inode, actual_end);
  2121. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2122. }
  2123. free_extent_map(em);
  2124. cur_offset = last_byte;
  2125. if (cur_offset >= alloc_end) {
  2126. ret = 0;
  2127. break;
  2128. }
  2129. }
  2130. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2131. &cached_state, GFP_NOFS);
  2132. out:
  2133. mutex_unlock(&inode->i_mutex);
  2134. if (root->fs_info->quota_enabled)
  2135. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2136. out_reserve_fail:
  2137. /* Let go of our reservation. */
  2138. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2139. return ret;
  2140. }
  2141. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2142. {
  2143. struct btrfs_root *root = BTRFS_I(inode)->root;
  2144. struct extent_map *em;
  2145. struct extent_state *cached_state = NULL;
  2146. u64 lockstart = *offset;
  2147. u64 lockend = i_size_read(inode);
  2148. u64 start = *offset;
  2149. u64 orig_start = *offset;
  2150. u64 len = i_size_read(inode);
  2151. u64 last_end = 0;
  2152. int ret = 0;
  2153. lockend = max_t(u64, root->sectorsize, lockend);
  2154. if (lockend <= lockstart)
  2155. lockend = lockstart + root->sectorsize;
  2156. lockend--;
  2157. len = lockend - lockstart + 1;
  2158. len = max_t(u64, len, root->sectorsize);
  2159. if (inode->i_size == 0)
  2160. return -ENXIO;
  2161. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2162. &cached_state);
  2163. /*
  2164. * Delalloc is such a pain. If we have a hole and we have pending
  2165. * delalloc for a portion of the hole we will get back a hole that
  2166. * exists for the entire range since it hasn't been actually written
  2167. * yet. So to take care of this case we need to look for an extent just
  2168. * before the position we want in case there is outstanding delalloc
  2169. * going on here.
  2170. */
  2171. if (whence == SEEK_HOLE && start != 0) {
  2172. if (start <= root->sectorsize)
  2173. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2174. root->sectorsize, 0);
  2175. else
  2176. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2177. start - root->sectorsize,
  2178. root->sectorsize, 0);
  2179. if (IS_ERR(em)) {
  2180. ret = PTR_ERR(em);
  2181. goto out;
  2182. }
  2183. last_end = em->start + em->len;
  2184. if (em->block_start == EXTENT_MAP_DELALLOC)
  2185. last_end = min_t(u64, last_end, inode->i_size);
  2186. free_extent_map(em);
  2187. }
  2188. while (1) {
  2189. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2190. if (IS_ERR(em)) {
  2191. ret = PTR_ERR(em);
  2192. break;
  2193. }
  2194. if (em->block_start == EXTENT_MAP_HOLE) {
  2195. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2196. if (last_end <= orig_start) {
  2197. free_extent_map(em);
  2198. ret = -ENXIO;
  2199. break;
  2200. }
  2201. }
  2202. if (whence == SEEK_HOLE) {
  2203. *offset = start;
  2204. free_extent_map(em);
  2205. break;
  2206. }
  2207. } else {
  2208. if (whence == SEEK_DATA) {
  2209. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2210. if (start >= inode->i_size) {
  2211. free_extent_map(em);
  2212. ret = -ENXIO;
  2213. break;
  2214. }
  2215. }
  2216. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2217. &em->flags)) {
  2218. *offset = start;
  2219. free_extent_map(em);
  2220. break;
  2221. }
  2222. }
  2223. }
  2224. start = em->start + em->len;
  2225. last_end = em->start + em->len;
  2226. if (em->block_start == EXTENT_MAP_DELALLOC)
  2227. last_end = min_t(u64, last_end, inode->i_size);
  2228. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2229. free_extent_map(em);
  2230. ret = -ENXIO;
  2231. break;
  2232. }
  2233. free_extent_map(em);
  2234. cond_resched();
  2235. }
  2236. if (!ret)
  2237. *offset = min(*offset, inode->i_size);
  2238. out:
  2239. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2240. &cached_state, GFP_NOFS);
  2241. return ret;
  2242. }
  2243. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2244. {
  2245. struct inode *inode = file->f_mapping->host;
  2246. int ret;
  2247. mutex_lock(&inode->i_mutex);
  2248. switch (whence) {
  2249. case SEEK_END:
  2250. case SEEK_CUR:
  2251. offset = generic_file_llseek(file, offset, whence);
  2252. goto out;
  2253. case SEEK_DATA:
  2254. case SEEK_HOLE:
  2255. if (offset >= i_size_read(inode)) {
  2256. mutex_unlock(&inode->i_mutex);
  2257. return -ENXIO;
  2258. }
  2259. ret = find_desired_extent(inode, &offset, whence);
  2260. if (ret) {
  2261. mutex_unlock(&inode->i_mutex);
  2262. return ret;
  2263. }
  2264. }
  2265. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2266. out:
  2267. mutex_unlock(&inode->i_mutex);
  2268. return offset;
  2269. }
  2270. const struct file_operations btrfs_file_operations = {
  2271. .llseek = btrfs_file_llseek,
  2272. .read = do_sync_read,
  2273. .write = do_sync_write,
  2274. .aio_read = generic_file_aio_read,
  2275. .splice_read = generic_file_splice_read,
  2276. .aio_write = btrfs_file_aio_write,
  2277. .mmap = btrfs_file_mmap,
  2278. .open = generic_file_open,
  2279. .release = btrfs_release_file,
  2280. .fsync = btrfs_sync_file,
  2281. .fallocate = btrfs_fallocate,
  2282. .unlocked_ioctl = btrfs_ioctl,
  2283. #ifdef CONFIG_COMPAT
  2284. .compat_ioctl = btrfs_ioctl,
  2285. #endif
  2286. };
  2287. void btrfs_auto_defrag_exit(void)
  2288. {
  2289. if (btrfs_inode_defrag_cachep)
  2290. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2291. }
  2292. int btrfs_auto_defrag_init(void)
  2293. {
  2294. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2295. sizeof(struct inode_defrag), 0,
  2296. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2297. NULL);
  2298. if (!btrfs_inode_defrag_cachep)
  2299. return -ENOMEM;
  2300. return 0;
  2301. }