bootmem.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/init.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/module.h>
  19. #include <asm/dma.h>
  20. #include <asm/io.h>
  21. #include "internal.h"
  22. /*
  23. * Access to this subsystem has to be serialized externally. (this is
  24. * true for the boot process anyway)
  25. */
  26. unsigned long max_low_pfn;
  27. unsigned long min_low_pfn;
  28. unsigned long max_pfn;
  29. EXPORT_SYMBOL(max_pfn); /* This is exported so
  30. * dma_get_required_mask(), which uses
  31. * it, can be an inline function */
  32. /* return the number of _pages_ that will be allocated for the boot bitmap */
  33. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  34. {
  35. unsigned long mapsize;
  36. mapsize = (pages+7)/8;
  37. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  38. mapsize >>= PAGE_SHIFT;
  39. return mapsize;
  40. }
  41. /*
  42. * Called once to set up the allocator itself.
  43. */
  44. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  45. unsigned long mapstart, unsigned long start, unsigned long end)
  46. {
  47. bootmem_data_t *bdata = pgdat->bdata;
  48. unsigned long mapsize = ((end - start)+7)/8;
  49. pgdat->pgdat_next = pgdat_list;
  50. pgdat_list = pgdat;
  51. mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL);
  52. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  53. bdata->node_boot_start = (start << PAGE_SHIFT);
  54. bdata->node_low_pfn = end;
  55. /*
  56. * Initially all pages are reserved - setup_arch() has to
  57. * register free RAM areas explicitly.
  58. */
  59. memset(bdata->node_bootmem_map, 0xff, mapsize);
  60. return mapsize;
  61. }
  62. /*
  63. * Marks a particular physical memory range as unallocatable. Usable RAM
  64. * might be used for boot-time allocations - or it might get added
  65. * to the free page pool later on.
  66. */
  67. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  68. {
  69. unsigned long i;
  70. /*
  71. * round up, partially reserved pages are considered
  72. * fully reserved.
  73. */
  74. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  75. unsigned long eidx = (addr + size - bdata->node_boot_start +
  76. PAGE_SIZE-1)/PAGE_SIZE;
  77. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  78. BUG_ON(!size);
  79. BUG_ON(sidx >= eidx);
  80. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  81. BUG_ON(end > bdata->node_low_pfn);
  82. for (i = sidx; i < eidx; i++)
  83. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  84. #ifdef CONFIG_DEBUG_BOOTMEM
  85. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  86. #endif
  87. }
  88. }
  89. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  90. {
  91. unsigned long i;
  92. unsigned long start;
  93. /*
  94. * round down end of usable mem, partially free pages are
  95. * considered reserved.
  96. */
  97. unsigned long sidx;
  98. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  99. unsigned long end = (addr + size)/PAGE_SIZE;
  100. BUG_ON(!size);
  101. BUG_ON(end > bdata->node_low_pfn);
  102. if (addr < bdata->last_success)
  103. bdata->last_success = addr;
  104. /*
  105. * Round up the beginning of the address.
  106. */
  107. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  108. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  109. for (i = sidx; i < eidx; i++) {
  110. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  111. BUG();
  112. }
  113. }
  114. /*
  115. * We 'merge' subsequent allocations to save space. We might 'lose'
  116. * some fraction of a page if allocations cannot be satisfied due to
  117. * size constraints on boxes where there is physical RAM space
  118. * fragmentation - in these cases (mostly large memory boxes) this
  119. * is not a problem.
  120. *
  121. * On low memory boxes we get it right in 100% of the cases.
  122. *
  123. * alignment has to be a power of 2 value.
  124. *
  125. * NOTE: This function is _not_ reentrant.
  126. */
  127. static void * __init
  128. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  129. unsigned long align, unsigned long goal)
  130. {
  131. unsigned long offset, remaining_size, areasize, preferred;
  132. unsigned long i, start = 0, incr, eidx;
  133. void *ret;
  134. if(!size) {
  135. printk("__alloc_bootmem_core(): zero-sized request\n");
  136. BUG();
  137. }
  138. BUG_ON(align & (align-1));
  139. eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  140. offset = 0;
  141. if (align &&
  142. (bdata->node_boot_start & (align - 1UL)) != 0)
  143. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  144. offset >>= PAGE_SHIFT;
  145. /*
  146. * We try to allocate bootmem pages above 'goal'
  147. * first, then we try to allocate lower pages.
  148. */
  149. if (goal && (goal >= bdata->node_boot_start) &&
  150. ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
  151. preferred = goal - bdata->node_boot_start;
  152. if (bdata->last_success >= preferred)
  153. preferred = bdata->last_success;
  154. } else
  155. preferred = 0;
  156. preferred = ((preferred + align - 1) & ~(align - 1)) >> PAGE_SHIFT;
  157. preferred += offset;
  158. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  159. incr = align >> PAGE_SHIFT ? : 1;
  160. restart_scan:
  161. for (i = preferred; i < eidx; i += incr) {
  162. unsigned long j;
  163. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  164. i = ALIGN(i, incr);
  165. if (test_bit(i, bdata->node_bootmem_map))
  166. continue;
  167. for (j = i + 1; j < i + areasize; ++j) {
  168. if (j >= eidx)
  169. goto fail_block;
  170. if (test_bit (j, bdata->node_bootmem_map))
  171. goto fail_block;
  172. }
  173. start = i;
  174. goto found;
  175. fail_block:
  176. i = ALIGN(j, incr);
  177. }
  178. if (preferred > offset) {
  179. preferred = offset;
  180. goto restart_scan;
  181. }
  182. return NULL;
  183. found:
  184. bdata->last_success = start << PAGE_SHIFT;
  185. BUG_ON(start >= eidx);
  186. /*
  187. * Is the next page of the previous allocation-end the start
  188. * of this allocation's buffer? If yes then we can 'merge'
  189. * the previous partial page with this allocation.
  190. */
  191. if (align < PAGE_SIZE &&
  192. bdata->last_offset && bdata->last_pos+1 == start) {
  193. offset = (bdata->last_offset+align-1) & ~(align-1);
  194. BUG_ON(offset > PAGE_SIZE);
  195. remaining_size = PAGE_SIZE-offset;
  196. if (size < remaining_size) {
  197. areasize = 0;
  198. /* last_pos unchanged */
  199. bdata->last_offset = offset+size;
  200. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  201. bdata->node_boot_start);
  202. } else {
  203. remaining_size = size - remaining_size;
  204. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  205. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  206. bdata->node_boot_start);
  207. bdata->last_pos = start+areasize-1;
  208. bdata->last_offset = remaining_size;
  209. }
  210. bdata->last_offset &= ~PAGE_MASK;
  211. } else {
  212. bdata->last_pos = start + areasize - 1;
  213. bdata->last_offset = size & ~PAGE_MASK;
  214. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  215. }
  216. /*
  217. * Reserve the area now:
  218. */
  219. for (i = start; i < start+areasize; i++)
  220. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  221. BUG();
  222. memset(ret, 0, size);
  223. return ret;
  224. }
  225. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  226. {
  227. struct page *page;
  228. bootmem_data_t *bdata = pgdat->bdata;
  229. unsigned long i, count, total = 0;
  230. unsigned long idx;
  231. unsigned long *map;
  232. int gofast = 0;
  233. BUG_ON(!bdata->node_bootmem_map);
  234. count = 0;
  235. /* first extant page of the node */
  236. page = virt_to_page(phys_to_virt(bdata->node_boot_start));
  237. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  238. map = bdata->node_bootmem_map;
  239. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  240. if (bdata->node_boot_start == 0 ||
  241. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  242. gofast = 1;
  243. for (i = 0; i < idx; ) {
  244. unsigned long v = ~map[i / BITS_PER_LONG];
  245. if (gofast && v == ~0UL) {
  246. int j, order;
  247. count += BITS_PER_LONG;
  248. __ClearPageReserved(page);
  249. order = ffs(BITS_PER_LONG) - 1;
  250. set_page_refs(page, order);
  251. for (j = 1; j < BITS_PER_LONG; j++) {
  252. if (j + 16 < BITS_PER_LONG)
  253. prefetchw(page + j + 16);
  254. __ClearPageReserved(page + j);
  255. }
  256. __free_pages(page, order);
  257. i += BITS_PER_LONG;
  258. page += BITS_PER_LONG;
  259. } else if (v) {
  260. unsigned long m;
  261. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  262. if (v & m) {
  263. count++;
  264. __ClearPageReserved(page);
  265. set_page_refs(page, 0);
  266. __free_page(page);
  267. }
  268. }
  269. } else {
  270. i+=BITS_PER_LONG;
  271. page += BITS_PER_LONG;
  272. }
  273. }
  274. total += count;
  275. /*
  276. * Now free the allocator bitmap itself, it's not
  277. * needed anymore:
  278. */
  279. page = virt_to_page(bdata->node_bootmem_map);
  280. count = 0;
  281. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  282. count++;
  283. __ClearPageReserved(page);
  284. set_page_count(page, 1);
  285. __free_page(page);
  286. }
  287. total += count;
  288. bdata->node_bootmem_map = NULL;
  289. return total;
  290. }
  291. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
  292. {
  293. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  294. }
  295. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  296. {
  297. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  298. }
  299. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  300. {
  301. free_bootmem_core(pgdat->bdata, physaddr, size);
  302. }
  303. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  304. {
  305. return(free_all_bootmem_core(pgdat));
  306. }
  307. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  308. {
  309. max_low_pfn = pages;
  310. min_low_pfn = start;
  311. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  312. }
  313. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  314. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  315. {
  316. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  317. }
  318. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  319. void __init free_bootmem (unsigned long addr, unsigned long size)
  320. {
  321. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  322. }
  323. unsigned long __init free_all_bootmem (void)
  324. {
  325. return(free_all_bootmem_core(NODE_DATA(0)));
  326. }
  327. void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
  328. {
  329. pg_data_t *pgdat = pgdat_list;
  330. void *ptr;
  331. for_each_pgdat(pgdat)
  332. if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
  333. align, goal)))
  334. return(ptr);
  335. /*
  336. * Whoops, we cannot satisfy the allocation request.
  337. */
  338. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  339. panic("Out of memory");
  340. return NULL;
  341. }
  342. void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal)
  343. {
  344. void *ptr;
  345. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
  346. if (ptr)
  347. return (ptr);
  348. return __alloc_bootmem(size, align, goal);
  349. }