core.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/config.h>
  22. #include <linux/init.h>
  23. #include <linux/device.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <asm/system.h>
  28. #include <asm/hardware.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/leds.h>
  32. #include <asm/mach-types.h>
  33. #include <asm/hardware/amba.h>
  34. #include <asm/hardware/amba_clcd.h>
  35. #include <asm/hardware/icst307.h>
  36. #include <asm/mach/arch.h>
  37. #include <asm/mach/flash.h>
  38. #include <asm/mach/irq.h>
  39. #include <asm/mach/time.h>
  40. #include <asm/mach/map.h>
  41. #include <asm/mach/mmc.h>
  42. #include "core.h"
  43. #include "clock.h"
  44. /*
  45. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  46. * is the (PA >> 12).
  47. *
  48. * Setup a VA for the Versatile Vectored Interrupt Controller.
  49. */
  50. #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
  51. #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
  52. static void vic_mask_irq(unsigned int irq)
  53. {
  54. irq -= IRQ_VIC_START;
  55. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  56. }
  57. static void vic_unmask_irq(unsigned int irq)
  58. {
  59. irq -= IRQ_VIC_START;
  60. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
  61. }
  62. static struct irqchip vic_chip = {
  63. .ack = vic_mask_irq,
  64. .mask = vic_mask_irq,
  65. .unmask = vic_unmask_irq,
  66. };
  67. static void sic_mask_irq(unsigned int irq)
  68. {
  69. irq -= IRQ_SIC_START;
  70. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  71. }
  72. static void sic_unmask_irq(unsigned int irq)
  73. {
  74. irq -= IRQ_SIC_START;
  75. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  76. }
  77. static struct irqchip sic_chip = {
  78. .ack = sic_mask_irq,
  79. .mask = sic_mask_irq,
  80. .unmask = sic_unmask_irq,
  81. };
  82. static void
  83. sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  84. {
  85. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  86. if (status == 0) {
  87. do_bad_IRQ(irq, desc, regs);
  88. return;
  89. }
  90. do {
  91. irq = ffs(status) - 1;
  92. status &= ~(1 << irq);
  93. irq += IRQ_SIC_START;
  94. desc = irq_desc + irq;
  95. desc->handle(irq, desc, regs);
  96. } while (status);
  97. }
  98. #if 1
  99. #define IRQ_MMCI0A IRQ_VICSOURCE22
  100. #define IRQ_AACI IRQ_VICSOURCE24
  101. #define IRQ_ETH IRQ_VICSOURCE25
  102. #define PIC_MASK 0xFFD00000
  103. #else
  104. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  105. #define IRQ_AACI IRQ_SIC_AACI
  106. #define IRQ_ETH IRQ_SIC_ETH
  107. #define PIC_MASK 0
  108. #endif
  109. void __init versatile_init_irq(void)
  110. {
  111. unsigned int i, value;
  112. /* Disable all interrupts initially. */
  113. writel(0, VA_VIC_BASE + VIC_INT_SELECT);
  114. writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
  115. writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  116. writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
  117. writel(0, VA_VIC_BASE + VIC_ITCR);
  118. writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
  119. /*
  120. * Make sure we clear all existing interrupts
  121. */
  122. writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
  123. for (i = 0; i < 19; i++) {
  124. value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
  125. writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
  126. }
  127. for (i = 0; i < 16; i++) {
  128. value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  129. writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  130. }
  131. writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
  132. for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
  133. if (i != IRQ_VICSOURCE31) {
  134. set_irq_chip(i, &vic_chip);
  135. set_irq_handler(i, do_level_IRQ);
  136. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  137. }
  138. }
  139. set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
  140. vic_unmask_irq(IRQ_VICSOURCE31);
  141. /* Do second interrupt controller */
  142. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  143. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  144. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  145. set_irq_chip(i, &sic_chip);
  146. set_irq_handler(i, do_level_IRQ);
  147. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  148. }
  149. }
  150. /*
  151. * Interrupts on secondary controller from 0 to 8 are routed to
  152. * source 31 on PIC.
  153. * Interrupts from 21 to 31 are routed directly to the VIC on
  154. * the corresponding number on primary controller. This is controlled
  155. * by setting PIC_ENABLEx.
  156. */
  157. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  158. }
  159. static struct map_desc versatile_io_desc[] __initdata = {
  160. { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
  161. { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
  162. { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
  163. { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
  164. #ifdef CONFIG_MACH_VERSATILE_AB
  165. { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
  166. { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
  167. #endif
  168. #ifdef CONFIG_DEBUG_LL
  169. { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
  170. #endif
  171. #ifdef CONFIG_PCI
  172. { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
  173. { VERSATILE_PCI_VIRT_BASE, VERSATILE_PCI_BASE, VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
  174. { VERSATILE_PCI_CFG_VIRT_BASE, VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
  175. #if 0
  176. { VERSATILE_PCI_VIRT_MEM_BASE0, VERSATILE_PCI_MEM_BASE0, SZ_16M, MT_DEVICE },
  177. { VERSATILE_PCI_VIRT_MEM_BASE1, VERSATILE_PCI_MEM_BASE1, SZ_16M, MT_DEVICE },
  178. { VERSATILE_PCI_VIRT_MEM_BASE2, VERSATILE_PCI_MEM_BASE2, SZ_16M, MT_DEVICE },
  179. #endif
  180. #endif
  181. };
  182. void __init versatile_map_io(void)
  183. {
  184. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  185. }
  186. #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  187. /*
  188. * This is the Versatile sched_clock implementation. This has
  189. * a resolution of 41.7ns, and a maximum value of about 179s.
  190. */
  191. unsigned long long sched_clock(void)
  192. {
  193. unsigned long long v;
  194. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  195. do_div(v, 3);
  196. return v;
  197. }
  198. #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  199. static int versatile_flash_init(void)
  200. {
  201. u32 val;
  202. val = __raw_readl(VERSATILE_FLASHCTRL);
  203. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  204. __raw_writel(val, VERSATILE_FLASHCTRL);
  205. return 0;
  206. }
  207. static void versatile_flash_exit(void)
  208. {
  209. u32 val;
  210. val = __raw_readl(VERSATILE_FLASHCTRL);
  211. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  212. __raw_writel(val, VERSATILE_FLASHCTRL);
  213. }
  214. static void versatile_flash_set_vpp(int on)
  215. {
  216. u32 val;
  217. val = __raw_readl(VERSATILE_FLASHCTRL);
  218. if (on)
  219. val |= VERSATILE_FLASHPROG_FLVPPEN;
  220. else
  221. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  222. __raw_writel(val, VERSATILE_FLASHCTRL);
  223. }
  224. static struct flash_platform_data versatile_flash_data = {
  225. .map_name = "cfi_probe",
  226. .width = 4,
  227. .init = versatile_flash_init,
  228. .exit = versatile_flash_exit,
  229. .set_vpp = versatile_flash_set_vpp,
  230. };
  231. static struct resource versatile_flash_resource = {
  232. .start = VERSATILE_FLASH_BASE,
  233. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
  234. .flags = IORESOURCE_MEM,
  235. };
  236. static struct platform_device versatile_flash_device = {
  237. .name = "armflash",
  238. .id = 0,
  239. .dev = {
  240. .platform_data = &versatile_flash_data,
  241. },
  242. .num_resources = 1,
  243. .resource = &versatile_flash_resource,
  244. };
  245. static struct resource smc91x_resources[] = {
  246. [0] = {
  247. .start = VERSATILE_ETH_BASE,
  248. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  249. .flags = IORESOURCE_MEM,
  250. },
  251. [1] = {
  252. .start = IRQ_ETH,
  253. .end = IRQ_ETH,
  254. .flags = IORESOURCE_IRQ,
  255. },
  256. };
  257. static struct platform_device smc91x_device = {
  258. .name = "smc91x",
  259. .id = 0,
  260. .num_resources = ARRAY_SIZE(smc91x_resources),
  261. .resource = smc91x_resources,
  262. };
  263. #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  264. unsigned int mmc_status(struct device *dev)
  265. {
  266. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  267. u32 mask;
  268. if (adev->res.start == VERSATILE_MMCI0_BASE)
  269. mask = 1;
  270. else
  271. mask = 2;
  272. return readl(VERSATILE_SYSMCI) & mask;
  273. }
  274. static struct mmc_platform_data mmc0_plat_data = {
  275. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  276. .status = mmc_status,
  277. };
  278. /*
  279. * Clock handling
  280. */
  281. static const struct icst307_params versatile_oscvco_params = {
  282. .ref = 24000,
  283. .vco_max = 200000,
  284. .vd_min = 4 + 8,
  285. .vd_max = 511 + 8,
  286. .rd_min = 1 + 2,
  287. .rd_max = 127 + 2,
  288. };
  289. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  290. {
  291. unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  292. #if defined(CONFIG_ARCH_VERSATILE_PB)
  293. unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
  294. #elif defined(CONFIG_MACH_VERSATILE_AB)
  295. unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
  296. #endif
  297. u32 val;
  298. val = readl(sys_osc) & ~0x7ffff;
  299. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  300. writel(0xa05f, sys_lock);
  301. writel(val, sys_osc);
  302. writel(0, sys_lock);
  303. }
  304. static struct clk versatile_clcd_clk = {
  305. .name = "CLCDCLK",
  306. .params = &versatile_oscvco_params,
  307. .setvco = versatile_oscvco_set,
  308. };
  309. /*
  310. * CLCD support.
  311. */
  312. #define SYS_CLCD_MODE_MASK (3 << 0)
  313. #define SYS_CLCD_MODE_888 (0 << 0)
  314. #define SYS_CLCD_MODE_5551 (1 << 0)
  315. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  316. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  317. #define SYS_CLCD_NLCDIOON (1 << 2)
  318. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  319. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  320. #define SYS_CLCD_ID_MASK (0x1f << 8)
  321. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  322. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  323. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  324. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  325. #define SYS_CLCD_ID_VGA (0x1f << 8)
  326. static struct clcd_panel vga = {
  327. .mode = {
  328. .name = "VGA",
  329. .refresh = 60,
  330. .xres = 640,
  331. .yres = 480,
  332. .pixclock = 39721,
  333. .left_margin = 40,
  334. .right_margin = 24,
  335. .upper_margin = 32,
  336. .lower_margin = 11,
  337. .hsync_len = 96,
  338. .vsync_len = 2,
  339. .sync = 0,
  340. .vmode = FB_VMODE_NONINTERLACED,
  341. },
  342. .width = -1,
  343. .height = -1,
  344. .tim2 = TIM2_BCD | TIM2_IPC,
  345. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  346. .bpp = 16,
  347. };
  348. static struct clcd_panel sanyo_3_8_in = {
  349. .mode = {
  350. .name = "Sanyo QVGA",
  351. .refresh = 116,
  352. .xres = 320,
  353. .yres = 240,
  354. .pixclock = 100000,
  355. .left_margin = 6,
  356. .right_margin = 6,
  357. .upper_margin = 5,
  358. .lower_margin = 5,
  359. .hsync_len = 6,
  360. .vsync_len = 6,
  361. .sync = 0,
  362. .vmode = FB_VMODE_NONINTERLACED,
  363. },
  364. .width = -1,
  365. .height = -1,
  366. .tim2 = TIM2_BCD,
  367. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  368. .bpp = 16,
  369. };
  370. static struct clcd_panel sanyo_2_5_in = {
  371. .mode = {
  372. .name = "Sanyo QVGA Portrait",
  373. .refresh = 116,
  374. .xres = 240,
  375. .yres = 320,
  376. .pixclock = 100000,
  377. .left_margin = 20,
  378. .right_margin = 10,
  379. .upper_margin = 2,
  380. .lower_margin = 2,
  381. .hsync_len = 10,
  382. .vsync_len = 2,
  383. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  384. .vmode = FB_VMODE_NONINTERLACED,
  385. },
  386. .width = -1,
  387. .height = -1,
  388. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  389. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  390. .bpp = 16,
  391. };
  392. static struct clcd_panel epson_2_2_in = {
  393. .mode = {
  394. .name = "Epson QCIF",
  395. .refresh = 390,
  396. .xres = 176,
  397. .yres = 220,
  398. .pixclock = 62500,
  399. .left_margin = 3,
  400. .right_margin = 2,
  401. .upper_margin = 1,
  402. .lower_margin = 0,
  403. .hsync_len = 3,
  404. .vsync_len = 2,
  405. .sync = 0,
  406. .vmode = FB_VMODE_NONINTERLACED,
  407. },
  408. .width = -1,
  409. .height = -1,
  410. .tim2 = TIM2_BCD | TIM2_IPC,
  411. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  412. .bpp = 16,
  413. };
  414. /*
  415. * Detect which LCD panel is connected, and return the appropriate
  416. * clcd_panel structure. Note: we do not have any information on
  417. * the required timings for the 8.4in panel, so we presently assume
  418. * VGA timings.
  419. */
  420. static struct clcd_panel *versatile_clcd_panel(void)
  421. {
  422. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  423. struct clcd_panel *panel = &vga;
  424. u32 val;
  425. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  426. if (val == SYS_CLCD_ID_SANYO_3_8)
  427. panel = &sanyo_3_8_in;
  428. else if (val == SYS_CLCD_ID_SANYO_2_5)
  429. panel = &sanyo_2_5_in;
  430. else if (val == SYS_CLCD_ID_EPSON_2_2)
  431. panel = &epson_2_2_in;
  432. else if (val == SYS_CLCD_ID_VGA)
  433. panel = &vga;
  434. else {
  435. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  436. val);
  437. panel = &vga;
  438. }
  439. return panel;
  440. }
  441. /*
  442. * Disable all display connectors on the interface module.
  443. */
  444. static void versatile_clcd_disable(struct clcd_fb *fb)
  445. {
  446. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  447. u32 val;
  448. val = readl(sys_clcd);
  449. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  450. writel(val, sys_clcd);
  451. #ifdef CONFIG_MACH_VERSATILE_AB
  452. /*
  453. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  454. */
  455. if (fb->panel == &sanyo_2_5_in) {
  456. unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
  457. unsigned long ctrl;
  458. ctrl = readl(versatile_ib2_ctrl);
  459. ctrl &= ~0x01;
  460. writel(ctrl, versatile_ib2_ctrl);
  461. }
  462. #endif
  463. }
  464. /*
  465. * Enable the relevant connector on the interface module.
  466. */
  467. static void versatile_clcd_enable(struct clcd_fb *fb)
  468. {
  469. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  470. u32 val;
  471. val = readl(sys_clcd);
  472. val &= ~SYS_CLCD_MODE_MASK;
  473. switch (fb->fb.var.green.length) {
  474. case 5:
  475. val |= SYS_CLCD_MODE_5551;
  476. break;
  477. case 6:
  478. val |= SYS_CLCD_MODE_565_RLSB;
  479. break;
  480. case 8:
  481. val |= SYS_CLCD_MODE_888;
  482. break;
  483. }
  484. /*
  485. * Set the MUX
  486. */
  487. writel(val, sys_clcd);
  488. /*
  489. * And now enable the PSUs
  490. */
  491. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  492. writel(val, sys_clcd);
  493. #ifdef CONFIG_MACH_VERSATILE_AB
  494. /*
  495. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  496. */
  497. if (fb->panel == &sanyo_2_5_in) {
  498. unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
  499. unsigned long ctrl;
  500. ctrl = readl(versatile_ib2_ctrl);
  501. ctrl |= 0x01;
  502. writel(ctrl, versatile_ib2_ctrl);
  503. }
  504. #endif
  505. }
  506. static unsigned long framesize = SZ_1M;
  507. static int versatile_clcd_setup(struct clcd_fb *fb)
  508. {
  509. dma_addr_t dma;
  510. fb->panel = versatile_clcd_panel();
  511. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  512. &dma, GFP_KERNEL);
  513. if (!fb->fb.screen_base) {
  514. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  515. return -ENOMEM;
  516. }
  517. fb->fb.fix.smem_start = dma;
  518. fb->fb.fix.smem_len = framesize;
  519. return 0;
  520. }
  521. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  522. {
  523. return dma_mmap_writecombine(&fb->dev->dev, vma,
  524. fb->fb.screen_base,
  525. fb->fb.fix.smem_start,
  526. fb->fb.fix.smem_len);
  527. }
  528. static void versatile_clcd_remove(struct clcd_fb *fb)
  529. {
  530. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  531. fb->fb.screen_base, fb->fb.fix.smem_start);
  532. }
  533. static struct clcd_board clcd_plat_data = {
  534. .name = "Versatile",
  535. .check = clcdfb_check,
  536. .decode = clcdfb_decode,
  537. .disable = versatile_clcd_disable,
  538. .enable = versatile_clcd_enable,
  539. .setup = versatile_clcd_setup,
  540. .mmap = versatile_clcd_mmap,
  541. .remove = versatile_clcd_remove,
  542. };
  543. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  544. #define AACI_DMA { 0x80, 0x81 }
  545. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  546. #define MMCI0_DMA { 0x84, 0 }
  547. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  548. #define KMI0_DMA { 0, 0 }
  549. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  550. #define KMI1_DMA { 0, 0 }
  551. /*
  552. * These devices are connected directly to the multi-layer AHB switch
  553. */
  554. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  555. #define SMC_DMA { 0, 0 }
  556. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  557. #define MPMC_DMA { 0, 0 }
  558. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  559. #define CLCD_DMA { 0, 0 }
  560. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  561. #define DMAC_DMA { 0, 0 }
  562. /*
  563. * These devices are connected via the core APB bridge
  564. */
  565. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  566. #define SCTL_DMA { 0, 0 }
  567. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  568. #define WATCHDOG_DMA { 0, 0 }
  569. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  570. #define GPIO0_DMA { 0, 0 }
  571. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  572. #define GPIO1_DMA { 0, 0 }
  573. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  574. #define RTC_DMA { 0, 0 }
  575. /*
  576. * These devices are connected via the DMA APB bridge
  577. */
  578. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  579. #define SCI_DMA { 7, 6 }
  580. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  581. #define UART0_DMA { 15, 14 }
  582. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  583. #define UART1_DMA { 13, 12 }
  584. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  585. #define UART2_DMA { 11, 10 }
  586. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  587. #define SSP_DMA { 9, 8 }
  588. /* FPGA Primecells */
  589. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  590. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  591. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  592. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  593. /* DevChip Primecells */
  594. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  595. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  596. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  597. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  598. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  599. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  600. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  601. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  602. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  603. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  604. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  605. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  606. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  607. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  608. static struct amba_device *amba_devs[] __initdata = {
  609. &dmac_device,
  610. &uart0_device,
  611. &uart1_device,
  612. &uart2_device,
  613. &smc_device,
  614. &mpmc_device,
  615. &clcd_device,
  616. &sctl_device,
  617. &wdog_device,
  618. &gpio0_device,
  619. &gpio1_device,
  620. &rtc_device,
  621. &sci0_device,
  622. &ssp0_device,
  623. &aaci_device,
  624. &mmc0_device,
  625. &kmi0_device,
  626. &kmi1_device,
  627. };
  628. #ifdef CONFIG_LEDS
  629. #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  630. static void versatile_leds_event(led_event_t ledevt)
  631. {
  632. unsigned long flags;
  633. u32 val;
  634. local_irq_save(flags);
  635. val = readl(VA_LEDS_BASE);
  636. switch (ledevt) {
  637. case led_idle_start:
  638. val = val & ~VERSATILE_SYS_LED0;
  639. break;
  640. case led_idle_end:
  641. val = val | VERSATILE_SYS_LED0;
  642. break;
  643. case led_timer:
  644. val = val ^ VERSATILE_SYS_LED1;
  645. break;
  646. case led_halted:
  647. val = 0;
  648. break;
  649. default:
  650. break;
  651. }
  652. writel(val, VA_LEDS_BASE);
  653. local_irq_restore(flags);
  654. }
  655. #endif /* CONFIG_LEDS */
  656. void __init versatile_init(void)
  657. {
  658. int i;
  659. clk_register(&versatile_clcd_clk);
  660. platform_device_register(&versatile_flash_device);
  661. platform_device_register(&smc91x_device);
  662. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  663. struct amba_device *d = amba_devs[i];
  664. amba_device_register(d, &iomem_resource);
  665. }
  666. #ifdef CONFIG_LEDS
  667. leds_event = versatile_leds_event;
  668. #endif
  669. }
  670. /*
  671. * Where is the timer (VA)?
  672. */
  673. #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
  674. #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
  675. #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
  676. #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
  677. #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
  678. /*
  679. * How long is the timer interval?
  680. */
  681. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  682. #if TIMER_INTERVAL >= 0x100000
  683. #define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
  684. #define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
  685. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  686. #elif TIMER_INTERVAL >= 0x10000
  687. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  688. #define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
  689. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  690. #else
  691. #define TIMER_RELOAD (TIMER_INTERVAL)
  692. #define TIMER_CTRL 0x80 /* Enable */
  693. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  694. #endif
  695. #define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
  696. /*
  697. * What does it look like?
  698. */
  699. typedef struct TimerStruct {
  700. unsigned long TimerLoad;
  701. unsigned long TimerValue;
  702. unsigned long TimerControl;
  703. unsigned long TimerClear;
  704. } TimerStruct_t;
  705. /*
  706. * Returns number of ms since last clock interrupt. Note that interrupts
  707. * will have been disabled by do_gettimeoffset()
  708. */
  709. static unsigned long versatile_gettimeoffset(void)
  710. {
  711. volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
  712. unsigned long ticks1, ticks2, status;
  713. /*
  714. * Get the current number of ticks. Note that there is a race
  715. * condition between us reading the timer and checking for
  716. * an interrupt. We get around this by ensuring that the
  717. * counter has not reloaded between our two reads.
  718. */
  719. ticks2 = timer0->TimerValue & 0xffff;
  720. do {
  721. ticks1 = ticks2;
  722. status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
  723. ticks2 = timer0->TimerValue & 0xffff;
  724. } while (ticks2 > ticks1);
  725. /*
  726. * Number of ticks since last interrupt.
  727. */
  728. ticks1 = TIMER_RELOAD - ticks2;
  729. /*
  730. * Interrupt pending? If so, we've reloaded once already.
  731. *
  732. * FIXME: Need to check this is effectively timer 0 that expires
  733. */
  734. if (status & IRQMASK_TIMERINT0_1)
  735. ticks1 += TIMER_RELOAD;
  736. /*
  737. * Convert the ticks to usecs
  738. */
  739. return TICKS2USECS(ticks1);
  740. }
  741. /*
  742. * IRQ handler for the timer
  743. */
  744. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  745. {
  746. volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
  747. write_seqlock(&xtime_lock);
  748. // ...clear the interrupt
  749. timer0->TimerClear = 1;
  750. timer_tick(regs);
  751. write_sequnlock(&xtime_lock);
  752. return IRQ_HANDLED;
  753. }
  754. static struct irqaction versatile_timer_irq = {
  755. .name = "Versatile Timer Tick",
  756. .flags = SA_INTERRUPT,
  757. .handler = versatile_timer_interrupt
  758. };
  759. /*
  760. * Set up timer interrupt, and return the current time in seconds.
  761. */
  762. static void __init versatile_timer_init(void)
  763. {
  764. volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
  765. volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
  766. volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
  767. volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
  768. /*
  769. * set clock frequency:
  770. * VERSATILE_REFCLK is 32KHz
  771. * VERSATILE_TIMCLK is 1MHz
  772. */
  773. *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
  774. ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  775. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
  776. /*
  777. * Initialise to a known state (all timers off)
  778. */
  779. timer0->TimerControl = 0;
  780. timer1->TimerControl = 0;
  781. timer2->TimerControl = 0;
  782. timer3->TimerControl = 0;
  783. timer0->TimerLoad = TIMER_RELOAD;
  784. timer0->TimerValue = TIMER_RELOAD;
  785. timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
  786. /*
  787. * Make irqs happen for the system timer
  788. */
  789. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  790. }
  791. struct sys_timer versatile_timer = {
  792. .init = versatile_timer_init,
  793. .offset = versatile_gettimeoffset,
  794. };