sched.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. #ifdef CONFIG_SMP
  319. static int root_task_group_empty(void)
  320. {
  321. return 1;
  322. }
  323. #endif
  324. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  325. static inline struct task_group *task_group(struct task_struct *p)
  326. {
  327. return NULL;
  328. }
  329. #endif /* CONFIG_GROUP_SCHED */
  330. /* CFS-related fields in a runqueue */
  331. struct cfs_rq {
  332. struct load_weight load;
  333. unsigned long nr_running;
  334. u64 exec_clock;
  335. u64 min_vruntime;
  336. struct rb_root tasks_timeline;
  337. struct rb_node *rb_leftmost;
  338. struct list_head tasks;
  339. struct list_head *balance_iterator;
  340. /*
  341. * 'curr' points to currently running entity on this cfs_rq.
  342. * It is set to NULL otherwise (i.e when none are currently running).
  343. */
  344. struct sched_entity *curr, *next, *last;
  345. unsigned int nr_spread_over;
  346. #ifdef CONFIG_FAIR_GROUP_SCHED
  347. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  348. /*
  349. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  350. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  351. * (like users, containers etc.)
  352. *
  353. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  354. * list is used during load balance.
  355. */
  356. struct list_head leaf_cfs_rq_list;
  357. struct task_group *tg; /* group that "owns" this runqueue */
  358. #ifdef CONFIG_SMP
  359. /*
  360. * the part of load.weight contributed by tasks
  361. */
  362. unsigned long task_weight;
  363. /*
  364. * h_load = weight * f(tg)
  365. *
  366. * Where f(tg) is the recursive weight fraction assigned to
  367. * this group.
  368. */
  369. unsigned long h_load;
  370. /*
  371. * this cpu's part of tg->shares
  372. */
  373. unsigned long shares;
  374. /*
  375. * load.weight at the time we set shares
  376. */
  377. unsigned long rq_weight;
  378. #endif
  379. #endif
  380. };
  381. /* Real-Time classes' related field in a runqueue: */
  382. struct rt_rq {
  383. struct rt_prio_array active;
  384. unsigned long rt_nr_running;
  385. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  386. struct {
  387. int curr; /* highest queued rt task prio */
  388. #ifdef CONFIG_SMP
  389. int next; /* next highest */
  390. #endif
  391. } highest_prio;
  392. #endif
  393. #ifdef CONFIG_SMP
  394. unsigned long rt_nr_migratory;
  395. unsigned long rt_nr_total;
  396. int overloaded;
  397. struct plist_head pushable_tasks;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_var_t span;
  424. cpumask_var_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_var_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  435. /*
  436. * Preferred wake up cpu nominated by sched_mc balance that will be
  437. * used when most cpus are idle in the system indicating overall very
  438. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  439. */
  440. unsigned int sched_mc_preferred_wakeup_cpu;
  441. #endif
  442. };
  443. /*
  444. * By default the system creates a single root-domain with all cpus as
  445. * members (mimicking the global state we have today).
  446. */
  447. static struct root_domain def_root_domain;
  448. #endif
  449. /*
  450. * This is the main, per-CPU runqueue data structure.
  451. *
  452. * Locking rule: those places that want to lock multiple runqueues
  453. * (such as the load balancing or the thread migration code), lock
  454. * acquire operations must be ordered by ascending &runqueue.
  455. */
  456. struct rq {
  457. /* runqueue lock: */
  458. spinlock_t lock;
  459. /*
  460. * nr_running and cpu_load should be in the same cacheline because
  461. * remote CPUs use both these fields when doing load calculation.
  462. */
  463. unsigned long nr_running;
  464. #define CPU_LOAD_IDX_MAX 5
  465. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  466. #ifdef CONFIG_NO_HZ
  467. unsigned long last_tick_seen;
  468. unsigned char in_nohz_recently;
  469. #endif
  470. /* capture load from *all* tasks on this cpu: */
  471. struct load_weight load;
  472. unsigned long nr_load_updates;
  473. u64 nr_switches;
  474. u64 nr_migrations_in;
  475. struct cfs_rq cfs;
  476. struct rt_rq rt;
  477. #ifdef CONFIG_FAIR_GROUP_SCHED
  478. /* list of leaf cfs_rq on this cpu: */
  479. struct list_head leaf_cfs_rq_list;
  480. #endif
  481. #ifdef CONFIG_RT_GROUP_SCHED
  482. struct list_head leaf_rt_rq_list;
  483. #endif
  484. /*
  485. * This is part of a global counter where only the total sum
  486. * over all CPUs matters. A task can increase this counter on
  487. * one CPU and if it got migrated afterwards it may decrease
  488. * it on another CPU. Always updated under the runqueue lock:
  489. */
  490. unsigned long nr_uninterruptible;
  491. struct task_struct *curr, *idle;
  492. unsigned long next_balance;
  493. struct mm_struct *prev_mm;
  494. u64 clock;
  495. atomic_t nr_iowait;
  496. #ifdef CONFIG_SMP
  497. struct root_domain *rd;
  498. struct sched_domain *sd;
  499. unsigned char idle_at_tick;
  500. /* For active balancing */
  501. int post_schedule;
  502. int active_balance;
  503. int push_cpu;
  504. /* cpu of this runqueue: */
  505. int cpu;
  506. int online;
  507. unsigned long avg_load_per_task;
  508. struct task_struct *migration_thread;
  509. struct list_head migration_queue;
  510. u64 rt_avg;
  511. u64 age_stamp;
  512. #endif
  513. /* calc_load related fields */
  514. unsigned long calc_load_update;
  515. long calc_load_active;
  516. #ifdef CONFIG_SCHED_HRTICK
  517. #ifdef CONFIG_SMP
  518. int hrtick_csd_pending;
  519. struct call_single_data hrtick_csd;
  520. #endif
  521. struct hrtimer hrtick_timer;
  522. #endif
  523. #ifdef CONFIG_SCHEDSTATS
  524. /* latency stats */
  525. struct sched_info rq_sched_info;
  526. unsigned long long rq_cpu_time;
  527. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  528. /* sys_sched_yield() stats */
  529. unsigned int yld_count;
  530. /* schedule() stats */
  531. unsigned int sched_switch;
  532. unsigned int sched_count;
  533. unsigned int sched_goidle;
  534. /* try_to_wake_up() stats */
  535. unsigned int ttwu_count;
  536. unsigned int ttwu_local;
  537. /* BKL stats */
  538. unsigned int bkl_count;
  539. #endif
  540. };
  541. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  542. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  543. {
  544. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  545. }
  546. static inline int cpu_of(struct rq *rq)
  547. {
  548. #ifdef CONFIG_SMP
  549. return rq->cpu;
  550. #else
  551. return 0;
  552. #endif
  553. }
  554. /*
  555. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  556. * See detach_destroy_domains: synchronize_sched for details.
  557. *
  558. * The domain tree of any CPU may only be accessed from within
  559. * preempt-disabled sections.
  560. */
  561. #define for_each_domain(cpu, __sd) \
  562. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  563. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  564. #define this_rq() (&__get_cpu_var(runqueues))
  565. #define task_rq(p) cpu_rq(task_cpu(p))
  566. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  567. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  568. inline void update_rq_clock(struct rq *rq)
  569. {
  570. rq->clock = sched_clock_cpu(cpu_of(rq));
  571. }
  572. /*
  573. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  574. */
  575. #ifdef CONFIG_SCHED_DEBUG
  576. # define const_debug __read_mostly
  577. #else
  578. # define const_debug static const
  579. #endif
  580. /**
  581. * runqueue_is_locked
  582. *
  583. * Returns true if the current cpu runqueue is locked.
  584. * This interface allows printk to be called with the runqueue lock
  585. * held and know whether or not it is OK to wake up the klogd.
  586. */
  587. int runqueue_is_locked(void)
  588. {
  589. int cpu = get_cpu();
  590. struct rq *rq = cpu_rq(cpu);
  591. int ret;
  592. ret = spin_is_locked(&rq->lock);
  593. put_cpu();
  594. return ret;
  595. }
  596. /*
  597. * Debugging: various feature bits
  598. */
  599. #define SCHED_FEAT(name, enabled) \
  600. __SCHED_FEAT_##name ,
  601. enum {
  602. #include "sched_features.h"
  603. };
  604. #undef SCHED_FEAT
  605. #define SCHED_FEAT(name, enabled) \
  606. (1UL << __SCHED_FEAT_##name) * enabled |
  607. const_debug unsigned int sysctl_sched_features =
  608. #include "sched_features.h"
  609. 0;
  610. #undef SCHED_FEAT
  611. #ifdef CONFIG_SCHED_DEBUG
  612. #define SCHED_FEAT(name, enabled) \
  613. #name ,
  614. static __read_mostly char *sched_feat_names[] = {
  615. #include "sched_features.h"
  616. NULL
  617. };
  618. #undef SCHED_FEAT
  619. static int sched_feat_show(struct seq_file *m, void *v)
  620. {
  621. int i;
  622. for (i = 0; sched_feat_names[i]; i++) {
  623. if (!(sysctl_sched_features & (1UL << i)))
  624. seq_puts(m, "NO_");
  625. seq_printf(m, "%s ", sched_feat_names[i]);
  626. }
  627. seq_puts(m, "\n");
  628. return 0;
  629. }
  630. static ssize_t
  631. sched_feat_write(struct file *filp, const char __user *ubuf,
  632. size_t cnt, loff_t *ppos)
  633. {
  634. char buf[64];
  635. char *cmp = buf;
  636. int neg = 0;
  637. int i;
  638. if (cnt > 63)
  639. cnt = 63;
  640. if (copy_from_user(&buf, ubuf, cnt))
  641. return -EFAULT;
  642. buf[cnt] = 0;
  643. if (strncmp(buf, "NO_", 3) == 0) {
  644. neg = 1;
  645. cmp += 3;
  646. }
  647. for (i = 0; sched_feat_names[i]; i++) {
  648. int len = strlen(sched_feat_names[i]);
  649. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  650. if (neg)
  651. sysctl_sched_features &= ~(1UL << i);
  652. else
  653. sysctl_sched_features |= (1UL << i);
  654. break;
  655. }
  656. }
  657. if (!sched_feat_names[i])
  658. return -EINVAL;
  659. filp->f_pos += cnt;
  660. return cnt;
  661. }
  662. static int sched_feat_open(struct inode *inode, struct file *filp)
  663. {
  664. return single_open(filp, sched_feat_show, NULL);
  665. }
  666. static struct file_operations sched_feat_fops = {
  667. .open = sched_feat_open,
  668. .write = sched_feat_write,
  669. .read = seq_read,
  670. .llseek = seq_lseek,
  671. .release = single_release,
  672. };
  673. static __init int sched_init_debug(void)
  674. {
  675. debugfs_create_file("sched_features", 0644, NULL, NULL,
  676. &sched_feat_fops);
  677. return 0;
  678. }
  679. late_initcall(sched_init_debug);
  680. #endif
  681. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  682. /*
  683. * Number of tasks to iterate in a single balance run.
  684. * Limited because this is done with IRQs disabled.
  685. */
  686. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  687. /*
  688. * ratelimit for updating the group shares.
  689. * default: 0.25ms
  690. */
  691. unsigned int sysctl_sched_shares_ratelimit = 250000;
  692. /*
  693. * Inject some fuzzyness into changing the per-cpu group shares
  694. * this avoids remote rq-locks at the expense of fairness.
  695. * default: 4
  696. */
  697. unsigned int sysctl_sched_shares_thresh = 4;
  698. /*
  699. * period over which we average the RT time consumption, measured
  700. * in ms.
  701. *
  702. * default: 1s
  703. */
  704. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  705. /*
  706. * period over which we measure -rt task cpu usage in us.
  707. * default: 1s
  708. */
  709. unsigned int sysctl_sched_rt_period = 1000000;
  710. static __read_mostly int scheduler_running;
  711. /*
  712. * part of the period that we allow rt tasks to run in us.
  713. * default: 0.95s
  714. */
  715. int sysctl_sched_rt_runtime = 950000;
  716. static inline u64 global_rt_period(void)
  717. {
  718. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  719. }
  720. static inline u64 global_rt_runtime(void)
  721. {
  722. if (sysctl_sched_rt_runtime < 0)
  723. return RUNTIME_INF;
  724. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  725. }
  726. #ifndef prepare_arch_switch
  727. # define prepare_arch_switch(next) do { } while (0)
  728. #endif
  729. #ifndef finish_arch_switch
  730. # define finish_arch_switch(prev) do { } while (0)
  731. #endif
  732. static inline int task_current(struct rq *rq, struct task_struct *p)
  733. {
  734. return rq->curr == p;
  735. }
  736. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  737. static inline int task_running(struct rq *rq, struct task_struct *p)
  738. {
  739. return task_current(rq, p);
  740. }
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. }
  744. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  745. {
  746. #ifdef CONFIG_DEBUG_SPINLOCK
  747. /* this is a valid case when another task releases the spinlock */
  748. rq->lock.owner = current;
  749. #endif
  750. /*
  751. * If we are tracking spinlock dependencies then we have to
  752. * fix up the runqueue lock - which gets 'carried over' from
  753. * prev into current:
  754. */
  755. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  756. spin_unlock_irq(&rq->lock);
  757. }
  758. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  759. static inline int task_running(struct rq *rq, struct task_struct *p)
  760. {
  761. #ifdef CONFIG_SMP
  762. return p->oncpu;
  763. #else
  764. return task_current(rq, p);
  765. #endif
  766. }
  767. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * We can optimise this out completely for !SMP, because the
  772. * SMP rebalancing from interrupt is the only thing that cares
  773. * here.
  774. */
  775. next->oncpu = 1;
  776. #endif
  777. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  778. spin_unlock_irq(&rq->lock);
  779. #else
  780. spin_unlock(&rq->lock);
  781. #endif
  782. }
  783. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  784. {
  785. #ifdef CONFIG_SMP
  786. /*
  787. * After ->oncpu is cleared, the task can be moved to a different CPU.
  788. * We must ensure this doesn't happen until the switch is completely
  789. * finished.
  790. */
  791. smp_wmb();
  792. prev->oncpu = 0;
  793. #endif
  794. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  795. local_irq_enable();
  796. #endif
  797. }
  798. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  799. /*
  800. * __task_rq_lock - lock the runqueue a given task resides on.
  801. * Must be called interrupts disabled.
  802. */
  803. static inline struct rq *__task_rq_lock(struct task_struct *p)
  804. __acquires(rq->lock)
  805. {
  806. for (;;) {
  807. struct rq *rq = task_rq(p);
  808. spin_lock(&rq->lock);
  809. if (likely(rq == task_rq(p)))
  810. return rq;
  811. spin_unlock(&rq->lock);
  812. }
  813. }
  814. /*
  815. * task_rq_lock - lock the runqueue a given task resides on and disable
  816. * interrupts. Note the ordering: we can safely lookup the task_rq without
  817. * explicitly disabling preemption.
  818. */
  819. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. for (;;) {
  824. local_irq_save(*flags);
  825. rq = task_rq(p);
  826. spin_lock(&rq->lock);
  827. if (likely(rq == task_rq(p)))
  828. return rq;
  829. spin_unlock_irqrestore(&rq->lock, *flags);
  830. }
  831. }
  832. void task_rq_unlock_wait(struct task_struct *p)
  833. {
  834. struct rq *rq = task_rq(p);
  835. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  836. spin_unlock_wait(&rq->lock);
  837. }
  838. static void __task_rq_unlock(struct rq *rq)
  839. __releases(rq->lock)
  840. {
  841. spin_unlock(&rq->lock);
  842. }
  843. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  844. __releases(rq->lock)
  845. {
  846. spin_unlock_irqrestore(&rq->lock, *flags);
  847. }
  848. /*
  849. * this_rq_lock - lock this runqueue and disable interrupts.
  850. */
  851. static struct rq *this_rq_lock(void)
  852. __acquires(rq->lock)
  853. {
  854. struct rq *rq;
  855. local_irq_disable();
  856. rq = this_rq();
  857. spin_lock(&rq->lock);
  858. return rq;
  859. }
  860. #ifdef CONFIG_SCHED_HRTICK
  861. /*
  862. * Use HR-timers to deliver accurate preemption points.
  863. *
  864. * Its all a bit involved since we cannot program an hrt while holding the
  865. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  866. * reschedule event.
  867. *
  868. * When we get rescheduled we reprogram the hrtick_timer outside of the
  869. * rq->lock.
  870. */
  871. /*
  872. * Use hrtick when:
  873. * - enabled by features
  874. * - hrtimer is actually high res
  875. */
  876. static inline int hrtick_enabled(struct rq *rq)
  877. {
  878. if (!sched_feat(HRTICK))
  879. return 0;
  880. if (!cpu_active(cpu_of(rq)))
  881. return 0;
  882. return hrtimer_is_hres_active(&rq->hrtick_timer);
  883. }
  884. static void hrtick_clear(struct rq *rq)
  885. {
  886. if (hrtimer_active(&rq->hrtick_timer))
  887. hrtimer_cancel(&rq->hrtick_timer);
  888. }
  889. /*
  890. * High-resolution timer tick.
  891. * Runs from hardirq context with interrupts disabled.
  892. */
  893. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  894. {
  895. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  896. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  897. spin_lock(&rq->lock);
  898. update_rq_clock(rq);
  899. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  900. spin_unlock(&rq->lock);
  901. return HRTIMER_NORESTART;
  902. }
  903. #ifdef CONFIG_SMP
  904. /*
  905. * called from hardirq (IPI) context
  906. */
  907. static void __hrtick_start(void *arg)
  908. {
  909. struct rq *rq = arg;
  910. spin_lock(&rq->lock);
  911. hrtimer_restart(&rq->hrtick_timer);
  912. rq->hrtick_csd_pending = 0;
  913. spin_unlock(&rq->lock);
  914. }
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. struct hrtimer *timer = &rq->hrtick_timer;
  923. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  924. hrtimer_set_expires(timer, time);
  925. if (rq == this_rq()) {
  926. hrtimer_restart(timer);
  927. } else if (!rq->hrtick_csd_pending) {
  928. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  929. rq->hrtick_csd_pending = 1;
  930. }
  931. }
  932. static int
  933. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  934. {
  935. int cpu = (int)(long)hcpu;
  936. switch (action) {
  937. case CPU_UP_CANCELED:
  938. case CPU_UP_CANCELED_FROZEN:
  939. case CPU_DOWN_PREPARE:
  940. case CPU_DOWN_PREPARE_FROZEN:
  941. case CPU_DEAD:
  942. case CPU_DEAD_FROZEN:
  943. hrtick_clear(cpu_rq(cpu));
  944. return NOTIFY_OK;
  945. }
  946. return NOTIFY_DONE;
  947. }
  948. static __init void init_hrtick(void)
  949. {
  950. hotcpu_notifier(hotplug_hrtick, 0);
  951. }
  952. #else
  953. /*
  954. * Called to set the hrtick timer state.
  955. *
  956. * called with rq->lock held and irqs disabled
  957. */
  958. static void hrtick_start(struct rq *rq, u64 delay)
  959. {
  960. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  961. HRTIMER_MODE_REL_PINNED, 0);
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SMP */
  967. static void init_rq_hrtick(struct rq *rq)
  968. {
  969. #ifdef CONFIG_SMP
  970. rq->hrtick_csd_pending = 0;
  971. rq->hrtick_csd.flags = 0;
  972. rq->hrtick_csd.func = __hrtick_start;
  973. rq->hrtick_csd.info = rq;
  974. #endif
  975. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  976. rq->hrtick_timer.function = hrtick;
  977. }
  978. #else /* CONFIG_SCHED_HRTICK */
  979. static inline void hrtick_clear(struct rq *rq)
  980. {
  981. }
  982. static inline void init_rq_hrtick(struct rq *rq)
  983. {
  984. }
  985. static inline void init_hrtick(void)
  986. {
  987. }
  988. #endif /* CONFIG_SCHED_HRTICK */
  989. /*
  990. * resched_task - mark a task 'to be rescheduled now'.
  991. *
  992. * On UP this means the setting of the need_resched flag, on SMP it
  993. * might also involve a cross-CPU call to trigger the scheduler on
  994. * the target CPU.
  995. */
  996. #ifdef CONFIG_SMP
  997. #ifndef tsk_is_polling
  998. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  999. #endif
  1000. static void resched_task(struct task_struct *p)
  1001. {
  1002. int cpu;
  1003. assert_spin_locked(&task_rq(p)->lock);
  1004. if (test_tsk_need_resched(p))
  1005. return;
  1006. set_tsk_need_resched(p);
  1007. cpu = task_cpu(p);
  1008. if (cpu == smp_processor_id())
  1009. return;
  1010. /* NEED_RESCHED must be visible before we test polling */
  1011. smp_mb();
  1012. if (!tsk_is_polling(p))
  1013. smp_send_reschedule(cpu);
  1014. }
  1015. static void resched_cpu(int cpu)
  1016. {
  1017. struct rq *rq = cpu_rq(cpu);
  1018. unsigned long flags;
  1019. if (!spin_trylock_irqsave(&rq->lock, flags))
  1020. return;
  1021. resched_task(cpu_curr(cpu));
  1022. spin_unlock_irqrestore(&rq->lock, flags);
  1023. }
  1024. #ifdef CONFIG_NO_HZ
  1025. /*
  1026. * When add_timer_on() enqueues a timer into the timer wheel of an
  1027. * idle CPU then this timer might expire before the next timer event
  1028. * which is scheduled to wake up that CPU. In case of a completely
  1029. * idle system the next event might even be infinite time into the
  1030. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1031. * leaves the inner idle loop so the newly added timer is taken into
  1032. * account when the CPU goes back to idle and evaluates the timer
  1033. * wheel for the next timer event.
  1034. */
  1035. void wake_up_idle_cpu(int cpu)
  1036. {
  1037. struct rq *rq = cpu_rq(cpu);
  1038. if (cpu == smp_processor_id())
  1039. return;
  1040. /*
  1041. * This is safe, as this function is called with the timer
  1042. * wheel base lock of (cpu) held. When the CPU is on the way
  1043. * to idle and has not yet set rq->curr to idle then it will
  1044. * be serialized on the timer wheel base lock and take the new
  1045. * timer into account automatically.
  1046. */
  1047. if (rq->curr != rq->idle)
  1048. return;
  1049. /*
  1050. * We can set TIF_RESCHED on the idle task of the other CPU
  1051. * lockless. The worst case is that the other CPU runs the
  1052. * idle task through an additional NOOP schedule()
  1053. */
  1054. set_tsk_need_resched(rq->idle);
  1055. /* NEED_RESCHED must be visible before we test polling */
  1056. smp_mb();
  1057. if (!tsk_is_polling(rq->idle))
  1058. smp_send_reschedule(cpu);
  1059. }
  1060. #endif /* CONFIG_NO_HZ */
  1061. static u64 sched_avg_period(void)
  1062. {
  1063. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1064. }
  1065. static void sched_avg_update(struct rq *rq)
  1066. {
  1067. s64 period = sched_avg_period();
  1068. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1069. rq->age_stamp += period;
  1070. rq->rt_avg /= 2;
  1071. }
  1072. }
  1073. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1074. {
  1075. rq->rt_avg += rt_delta;
  1076. sched_avg_update(rq);
  1077. }
  1078. #else /* !CONFIG_SMP */
  1079. static void resched_task(struct task_struct *p)
  1080. {
  1081. assert_spin_locked(&task_rq(p)->lock);
  1082. set_tsk_need_resched(p);
  1083. }
  1084. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1085. {
  1086. }
  1087. #endif /* CONFIG_SMP */
  1088. #if BITS_PER_LONG == 32
  1089. # define WMULT_CONST (~0UL)
  1090. #else
  1091. # define WMULT_CONST (1UL << 32)
  1092. #endif
  1093. #define WMULT_SHIFT 32
  1094. /*
  1095. * Shift right and round:
  1096. */
  1097. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1098. /*
  1099. * delta *= weight / lw
  1100. */
  1101. static unsigned long
  1102. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1103. struct load_weight *lw)
  1104. {
  1105. u64 tmp;
  1106. if (!lw->inv_weight) {
  1107. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1108. lw->inv_weight = 1;
  1109. else
  1110. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1111. / (lw->weight+1);
  1112. }
  1113. tmp = (u64)delta_exec * weight;
  1114. /*
  1115. * Check whether we'd overflow the 64-bit multiplication:
  1116. */
  1117. if (unlikely(tmp > WMULT_CONST))
  1118. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1119. WMULT_SHIFT/2);
  1120. else
  1121. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1122. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1123. }
  1124. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1125. {
  1126. lw->weight += inc;
  1127. lw->inv_weight = 0;
  1128. }
  1129. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1130. {
  1131. lw->weight -= dec;
  1132. lw->inv_weight = 0;
  1133. }
  1134. /*
  1135. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1136. * of tasks with abnormal "nice" values across CPUs the contribution that
  1137. * each task makes to its run queue's load is weighted according to its
  1138. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1139. * scaled version of the new time slice allocation that they receive on time
  1140. * slice expiry etc.
  1141. */
  1142. #define WEIGHT_IDLEPRIO 3
  1143. #define WMULT_IDLEPRIO 1431655765
  1144. /*
  1145. * Nice levels are multiplicative, with a gentle 10% change for every
  1146. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1147. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1148. * that remained on nice 0.
  1149. *
  1150. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1151. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1152. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1153. * If a task goes up by ~10% and another task goes down by ~10% then
  1154. * the relative distance between them is ~25%.)
  1155. */
  1156. static const int prio_to_weight[40] = {
  1157. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1158. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1159. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1160. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1161. /* 0 */ 1024, 820, 655, 526, 423,
  1162. /* 5 */ 335, 272, 215, 172, 137,
  1163. /* 10 */ 110, 87, 70, 56, 45,
  1164. /* 15 */ 36, 29, 23, 18, 15,
  1165. };
  1166. /*
  1167. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1168. *
  1169. * In cases where the weight does not change often, we can use the
  1170. * precalculated inverse to speed up arithmetics by turning divisions
  1171. * into multiplications:
  1172. */
  1173. static const u32 prio_to_wmult[40] = {
  1174. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1175. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1176. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1177. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1178. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1179. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1180. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1181. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1182. };
  1183. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1184. /*
  1185. * runqueue iterator, to support SMP load-balancing between different
  1186. * scheduling classes, without having to expose their internal data
  1187. * structures to the load-balancing proper:
  1188. */
  1189. struct rq_iterator {
  1190. void *arg;
  1191. struct task_struct *(*start)(void *);
  1192. struct task_struct *(*next)(void *);
  1193. };
  1194. #ifdef CONFIG_SMP
  1195. static unsigned long
  1196. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1197. unsigned long max_load_move, struct sched_domain *sd,
  1198. enum cpu_idle_type idle, int *all_pinned,
  1199. int *this_best_prio, struct rq_iterator *iterator);
  1200. static int
  1201. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1202. struct sched_domain *sd, enum cpu_idle_type idle,
  1203. struct rq_iterator *iterator);
  1204. #endif
  1205. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1206. enum cpuacct_stat_index {
  1207. CPUACCT_STAT_USER, /* ... user mode */
  1208. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1209. CPUACCT_STAT_NSTATS,
  1210. };
  1211. #ifdef CONFIG_CGROUP_CPUACCT
  1212. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1213. static void cpuacct_update_stats(struct task_struct *tsk,
  1214. enum cpuacct_stat_index idx, cputime_t val);
  1215. #else
  1216. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1217. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1218. enum cpuacct_stat_index idx, cputime_t val) {}
  1219. #endif
  1220. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1221. {
  1222. update_load_add(&rq->load, load);
  1223. }
  1224. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1225. {
  1226. update_load_sub(&rq->load, load);
  1227. }
  1228. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1229. typedef int (*tg_visitor)(struct task_group *, void *);
  1230. /*
  1231. * Iterate the full tree, calling @down when first entering a node and @up when
  1232. * leaving it for the final time.
  1233. */
  1234. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1235. {
  1236. struct task_group *parent, *child;
  1237. int ret;
  1238. rcu_read_lock();
  1239. parent = &root_task_group;
  1240. down:
  1241. ret = (*down)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1245. parent = child;
  1246. goto down;
  1247. up:
  1248. continue;
  1249. }
  1250. ret = (*up)(parent, data);
  1251. if (ret)
  1252. goto out_unlock;
  1253. child = parent;
  1254. parent = parent->parent;
  1255. if (parent)
  1256. goto up;
  1257. out_unlock:
  1258. rcu_read_unlock();
  1259. return ret;
  1260. }
  1261. static int tg_nop(struct task_group *tg, void *data)
  1262. {
  1263. return 0;
  1264. }
  1265. #endif
  1266. #ifdef CONFIG_SMP
  1267. static unsigned long source_load(int cpu, int type);
  1268. static unsigned long target_load(int cpu, int type);
  1269. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1270. static unsigned long cpu_avg_load_per_task(int cpu)
  1271. {
  1272. struct rq *rq = cpu_rq(cpu);
  1273. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1274. if (nr_running)
  1275. rq->avg_load_per_task = rq->load.weight / nr_running;
  1276. else
  1277. rq->avg_load_per_task = 0;
  1278. return rq->avg_load_per_task;
  1279. }
  1280. #ifdef CONFIG_FAIR_GROUP_SCHED
  1281. struct update_shares_data {
  1282. unsigned long rq_weight[NR_CPUS];
  1283. };
  1284. static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
  1285. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1286. /*
  1287. * Calculate and set the cpu's group shares.
  1288. */
  1289. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1290. unsigned long sd_shares,
  1291. unsigned long sd_rq_weight,
  1292. struct update_shares_data *usd)
  1293. {
  1294. unsigned long shares, rq_weight;
  1295. int boost = 0;
  1296. rq_weight = usd->rq_weight[cpu];
  1297. if (!rq_weight) {
  1298. boost = 1;
  1299. rq_weight = NICE_0_LOAD;
  1300. }
  1301. /*
  1302. * \Sum_j shares_j * rq_weight_i
  1303. * shares_i = -----------------------------
  1304. * \Sum_j rq_weight_j
  1305. */
  1306. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1307. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1308. if (abs(shares - tg->se[cpu]->load.weight) >
  1309. sysctl_sched_shares_thresh) {
  1310. struct rq *rq = cpu_rq(cpu);
  1311. unsigned long flags;
  1312. spin_lock_irqsave(&rq->lock, flags);
  1313. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1314. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1315. __set_se_shares(tg->se[cpu], shares);
  1316. spin_unlock_irqrestore(&rq->lock, flags);
  1317. }
  1318. }
  1319. /*
  1320. * Re-compute the task group their per cpu shares over the given domain.
  1321. * This needs to be done in a bottom-up fashion because the rq weight of a
  1322. * parent group depends on the shares of its child groups.
  1323. */
  1324. static int tg_shares_up(struct task_group *tg, void *data)
  1325. {
  1326. unsigned long weight, rq_weight = 0, shares = 0;
  1327. struct update_shares_data *usd;
  1328. struct sched_domain *sd = data;
  1329. unsigned long flags;
  1330. int i;
  1331. if (!tg->se[0])
  1332. return 0;
  1333. local_irq_save(flags);
  1334. usd = &__get_cpu_var(update_shares_data);
  1335. for_each_cpu(i, sched_domain_span(sd)) {
  1336. weight = tg->cfs_rq[i]->load.weight;
  1337. usd->rq_weight[i] = weight;
  1338. /*
  1339. * If there are currently no tasks on the cpu pretend there
  1340. * is one of average load so that when a new task gets to
  1341. * run here it will not get delayed by group starvation.
  1342. */
  1343. if (!weight)
  1344. weight = NICE_0_LOAD;
  1345. rq_weight += weight;
  1346. shares += tg->cfs_rq[i]->shares;
  1347. }
  1348. if ((!shares && rq_weight) || shares > tg->shares)
  1349. shares = tg->shares;
  1350. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1351. shares = tg->shares;
  1352. for_each_cpu(i, sched_domain_span(sd))
  1353. update_group_shares_cpu(tg, i, shares, rq_weight, usd);
  1354. local_irq_restore(flags);
  1355. return 0;
  1356. }
  1357. /*
  1358. * Compute the cpu's hierarchical load factor for each task group.
  1359. * This needs to be done in a top-down fashion because the load of a child
  1360. * group is a fraction of its parents load.
  1361. */
  1362. static int tg_load_down(struct task_group *tg, void *data)
  1363. {
  1364. unsigned long load;
  1365. long cpu = (long)data;
  1366. if (!tg->parent) {
  1367. load = cpu_rq(cpu)->load.weight;
  1368. } else {
  1369. load = tg->parent->cfs_rq[cpu]->h_load;
  1370. load *= tg->cfs_rq[cpu]->shares;
  1371. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1372. }
  1373. tg->cfs_rq[cpu]->h_load = load;
  1374. return 0;
  1375. }
  1376. static void update_shares(struct sched_domain *sd)
  1377. {
  1378. s64 elapsed;
  1379. u64 now;
  1380. if (root_task_group_empty())
  1381. return;
  1382. now = cpu_clock(raw_smp_processor_id());
  1383. elapsed = now - sd->last_update;
  1384. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1385. sd->last_update = now;
  1386. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1387. }
  1388. }
  1389. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1390. {
  1391. if (root_task_group_empty())
  1392. return;
  1393. spin_unlock(&rq->lock);
  1394. update_shares(sd);
  1395. spin_lock(&rq->lock);
  1396. }
  1397. static void update_h_load(long cpu)
  1398. {
  1399. if (root_task_group_empty())
  1400. return;
  1401. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1402. }
  1403. #else
  1404. static inline void update_shares(struct sched_domain *sd)
  1405. {
  1406. }
  1407. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1408. {
  1409. }
  1410. #endif
  1411. #ifdef CONFIG_PREEMPT
  1412. /*
  1413. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1414. * way at the expense of forcing extra atomic operations in all
  1415. * invocations. This assures that the double_lock is acquired using the
  1416. * same underlying policy as the spinlock_t on this architecture, which
  1417. * reduces latency compared to the unfair variant below. However, it
  1418. * also adds more overhead and therefore may reduce throughput.
  1419. */
  1420. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1421. __releases(this_rq->lock)
  1422. __acquires(busiest->lock)
  1423. __acquires(this_rq->lock)
  1424. {
  1425. spin_unlock(&this_rq->lock);
  1426. double_rq_lock(this_rq, busiest);
  1427. return 1;
  1428. }
  1429. #else
  1430. /*
  1431. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1432. * latency by eliminating extra atomic operations when the locks are
  1433. * already in proper order on entry. This favors lower cpu-ids and will
  1434. * grant the double lock to lower cpus over higher ids under contention,
  1435. * regardless of entry order into the function.
  1436. */
  1437. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1438. __releases(this_rq->lock)
  1439. __acquires(busiest->lock)
  1440. __acquires(this_rq->lock)
  1441. {
  1442. int ret = 0;
  1443. if (unlikely(!spin_trylock(&busiest->lock))) {
  1444. if (busiest < this_rq) {
  1445. spin_unlock(&this_rq->lock);
  1446. spin_lock(&busiest->lock);
  1447. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1448. ret = 1;
  1449. } else
  1450. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1451. }
  1452. return ret;
  1453. }
  1454. #endif /* CONFIG_PREEMPT */
  1455. /*
  1456. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1457. */
  1458. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1459. {
  1460. if (unlikely(!irqs_disabled())) {
  1461. /* printk() doesn't work good under rq->lock */
  1462. spin_unlock(&this_rq->lock);
  1463. BUG_ON(1);
  1464. }
  1465. return _double_lock_balance(this_rq, busiest);
  1466. }
  1467. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1468. __releases(busiest->lock)
  1469. {
  1470. spin_unlock(&busiest->lock);
  1471. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1472. }
  1473. #endif
  1474. #ifdef CONFIG_FAIR_GROUP_SCHED
  1475. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1476. {
  1477. #ifdef CONFIG_SMP
  1478. cfs_rq->shares = shares;
  1479. #endif
  1480. }
  1481. #endif
  1482. static void calc_load_account_active(struct rq *this_rq);
  1483. #include "sched_stats.h"
  1484. #include "sched_idletask.c"
  1485. #include "sched_fair.c"
  1486. #include "sched_rt.c"
  1487. #ifdef CONFIG_SCHED_DEBUG
  1488. # include "sched_debug.c"
  1489. #endif
  1490. #define sched_class_highest (&rt_sched_class)
  1491. #define for_each_class(class) \
  1492. for (class = sched_class_highest; class; class = class->next)
  1493. static void inc_nr_running(struct rq *rq)
  1494. {
  1495. rq->nr_running++;
  1496. }
  1497. static void dec_nr_running(struct rq *rq)
  1498. {
  1499. rq->nr_running--;
  1500. }
  1501. static void set_load_weight(struct task_struct *p)
  1502. {
  1503. if (task_has_rt_policy(p)) {
  1504. p->se.load.weight = prio_to_weight[0] * 2;
  1505. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1506. return;
  1507. }
  1508. /*
  1509. * SCHED_IDLE tasks get minimal weight:
  1510. */
  1511. if (p->policy == SCHED_IDLE) {
  1512. p->se.load.weight = WEIGHT_IDLEPRIO;
  1513. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1514. return;
  1515. }
  1516. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1517. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1518. }
  1519. static void update_avg(u64 *avg, u64 sample)
  1520. {
  1521. s64 diff = sample - *avg;
  1522. *avg += diff >> 3;
  1523. }
  1524. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1525. {
  1526. if (wakeup)
  1527. p->se.start_runtime = p->se.sum_exec_runtime;
  1528. sched_info_queued(p);
  1529. p->sched_class->enqueue_task(rq, p, wakeup);
  1530. p->se.on_rq = 1;
  1531. }
  1532. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1533. {
  1534. if (sleep) {
  1535. if (p->se.last_wakeup) {
  1536. update_avg(&p->se.avg_overlap,
  1537. p->se.sum_exec_runtime - p->se.last_wakeup);
  1538. p->se.last_wakeup = 0;
  1539. } else {
  1540. update_avg(&p->se.avg_wakeup,
  1541. sysctl_sched_wakeup_granularity);
  1542. }
  1543. }
  1544. sched_info_dequeued(p);
  1545. p->sched_class->dequeue_task(rq, p, sleep);
  1546. p->se.on_rq = 0;
  1547. }
  1548. /*
  1549. * __normal_prio - return the priority that is based on the static prio
  1550. */
  1551. static inline int __normal_prio(struct task_struct *p)
  1552. {
  1553. return p->static_prio;
  1554. }
  1555. /*
  1556. * Calculate the expected normal priority: i.e. priority
  1557. * without taking RT-inheritance into account. Might be
  1558. * boosted by interactivity modifiers. Changes upon fork,
  1559. * setprio syscalls, and whenever the interactivity
  1560. * estimator recalculates.
  1561. */
  1562. static inline int normal_prio(struct task_struct *p)
  1563. {
  1564. int prio;
  1565. if (task_has_rt_policy(p))
  1566. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1567. else
  1568. prio = __normal_prio(p);
  1569. return prio;
  1570. }
  1571. /*
  1572. * Calculate the current priority, i.e. the priority
  1573. * taken into account by the scheduler. This value might
  1574. * be boosted by RT tasks, or might be boosted by
  1575. * interactivity modifiers. Will be RT if the task got
  1576. * RT-boosted. If not then it returns p->normal_prio.
  1577. */
  1578. static int effective_prio(struct task_struct *p)
  1579. {
  1580. p->normal_prio = normal_prio(p);
  1581. /*
  1582. * If we are RT tasks or we were boosted to RT priority,
  1583. * keep the priority unchanged. Otherwise, update priority
  1584. * to the normal priority:
  1585. */
  1586. if (!rt_prio(p->prio))
  1587. return p->normal_prio;
  1588. return p->prio;
  1589. }
  1590. /*
  1591. * activate_task - move a task to the runqueue.
  1592. */
  1593. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1594. {
  1595. if (task_contributes_to_load(p))
  1596. rq->nr_uninterruptible--;
  1597. enqueue_task(rq, p, wakeup);
  1598. inc_nr_running(rq);
  1599. }
  1600. /*
  1601. * deactivate_task - remove a task from the runqueue.
  1602. */
  1603. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1604. {
  1605. if (task_contributes_to_load(p))
  1606. rq->nr_uninterruptible++;
  1607. dequeue_task(rq, p, sleep);
  1608. dec_nr_running(rq);
  1609. }
  1610. /**
  1611. * task_curr - is this task currently executing on a CPU?
  1612. * @p: the task in question.
  1613. */
  1614. inline int task_curr(const struct task_struct *p)
  1615. {
  1616. return cpu_curr(task_cpu(p)) == p;
  1617. }
  1618. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1619. {
  1620. set_task_rq(p, cpu);
  1621. #ifdef CONFIG_SMP
  1622. /*
  1623. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1624. * successfuly executed on another CPU. We must ensure that updates of
  1625. * per-task data have been completed by this moment.
  1626. */
  1627. smp_wmb();
  1628. task_thread_info(p)->cpu = cpu;
  1629. #endif
  1630. }
  1631. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1632. const struct sched_class *prev_class,
  1633. int oldprio, int running)
  1634. {
  1635. if (prev_class != p->sched_class) {
  1636. if (prev_class->switched_from)
  1637. prev_class->switched_from(rq, p, running);
  1638. p->sched_class->switched_to(rq, p, running);
  1639. } else
  1640. p->sched_class->prio_changed(rq, p, oldprio, running);
  1641. }
  1642. #ifdef CONFIG_SMP
  1643. /* Used instead of source_load when we know the type == 0 */
  1644. static unsigned long weighted_cpuload(const int cpu)
  1645. {
  1646. return cpu_rq(cpu)->load.weight;
  1647. }
  1648. /*
  1649. * Is this task likely cache-hot:
  1650. */
  1651. static int
  1652. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1653. {
  1654. s64 delta;
  1655. /*
  1656. * Buddy candidates are cache hot:
  1657. */
  1658. if (sched_feat(CACHE_HOT_BUDDY) &&
  1659. (&p->se == cfs_rq_of(&p->se)->next ||
  1660. &p->se == cfs_rq_of(&p->se)->last))
  1661. return 1;
  1662. if (p->sched_class != &fair_sched_class)
  1663. return 0;
  1664. if (sysctl_sched_migration_cost == -1)
  1665. return 1;
  1666. if (sysctl_sched_migration_cost == 0)
  1667. return 0;
  1668. delta = now - p->se.exec_start;
  1669. return delta < (s64)sysctl_sched_migration_cost;
  1670. }
  1671. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1672. {
  1673. int old_cpu = task_cpu(p);
  1674. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1675. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1676. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1677. u64 clock_offset;
  1678. clock_offset = old_rq->clock - new_rq->clock;
  1679. trace_sched_migrate_task(p, new_cpu);
  1680. #ifdef CONFIG_SCHEDSTATS
  1681. if (p->se.wait_start)
  1682. p->se.wait_start -= clock_offset;
  1683. if (p->se.sleep_start)
  1684. p->se.sleep_start -= clock_offset;
  1685. if (p->se.block_start)
  1686. p->se.block_start -= clock_offset;
  1687. #endif
  1688. if (old_cpu != new_cpu) {
  1689. p->se.nr_migrations++;
  1690. new_rq->nr_migrations_in++;
  1691. #ifdef CONFIG_SCHEDSTATS
  1692. if (task_hot(p, old_rq->clock, NULL))
  1693. schedstat_inc(p, se.nr_forced2_migrations);
  1694. #endif
  1695. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1696. 1, 1, NULL, 0);
  1697. }
  1698. p->se.vruntime -= old_cfsrq->min_vruntime -
  1699. new_cfsrq->min_vruntime;
  1700. __set_task_cpu(p, new_cpu);
  1701. }
  1702. struct migration_req {
  1703. struct list_head list;
  1704. struct task_struct *task;
  1705. int dest_cpu;
  1706. struct completion done;
  1707. };
  1708. /*
  1709. * The task's runqueue lock must be held.
  1710. * Returns true if you have to wait for migration thread.
  1711. */
  1712. static int
  1713. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1714. {
  1715. struct rq *rq = task_rq(p);
  1716. /*
  1717. * If the task is not on a runqueue (and not running), then
  1718. * it is sufficient to simply update the task's cpu field.
  1719. */
  1720. if (!p->se.on_rq && !task_running(rq, p)) {
  1721. set_task_cpu(p, dest_cpu);
  1722. return 0;
  1723. }
  1724. init_completion(&req->done);
  1725. req->task = p;
  1726. req->dest_cpu = dest_cpu;
  1727. list_add(&req->list, &rq->migration_queue);
  1728. return 1;
  1729. }
  1730. /*
  1731. * wait_task_context_switch - wait for a thread to complete at least one
  1732. * context switch.
  1733. *
  1734. * @p must not be current.
  1735. */
  1736. void wait_task_context_switch(struct task_struct *p)
  1737. {
  1738. unsigned long nvcsw, nivcsw, flags;
  1739. int running;
  1740. struct rq *rq;
  1741. nvcsw = p->nvcsw;
  1742. nivcsw = p->nivcsw;
  1743. for (;;) {
  1744. /*
  1745. * The runqueue is assigned before the actual context
  1746. * switch. We need to take the runqueue lock.
  1747. *
  1748. * We could check initially without the lock but it is
  1749. * very likely that we need to take the lock in every
  1750. * iteration.
  1751. */
  1752. rq = task_rq_lock(p, &flags);
  1753. running = task_running(rq, p);
  1754. task_rq_unlock(rq, &flags);
  1755. if (likely(!running))
  1756. break;
  1757. /*
  1758. * The switch count is incremented before the actual
  1759. * context switch. We thus wait for two switches to be
  1760. * sure at least one completed.
  1761. */
  1762. if ((p->nvcsw - nvcsw) > 1)
  1763. break;
  1764. if ((p->nivcsw - nivcsw) > 1)
  1765. break;
  1766. cpu_relax();
  1767. }
  1768. }
  1769. /*
  1770. * wait_task_inactive - wait for a thread to unschedule.
  1771. *
  1772. * If @match_state is nonzero, it's the @p->state value just checked and
  1773. * not expected to change. If it changes, i.e. @p might have woken up,
  1774. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1775. * we return a positive number (its total switch count). If a second call
  1776. * a short while later returns the same number, the caller can be sure that
  1777. * @p has remained unscheduled the whole time.
  1778. *
  1779. * The caller must ensure that the task *will* unschedule sometime soon,
  1780. * else this function might spin for a *long* time. This function can't
  1781. * be called with interrupts off, or it may introduce deadlock with
  1782. * smp_call_function() if an IPI is sent by the same process we are
  1783. * waiting to become inactive.
  1784. */
  1785. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1786. {
  1787. unsigned long flags;
  1788. int running, on_rq;
  1789. unsigned long ncsw;
  1790. struct rq *rq;
  1791. for (;;) {
  1792. /*
  1793. * We do the initial early heuristics without holding
  1794. * any task-queue locks at all. We'll only try to get
  1795. * the runqueue lock when things look like they will
  1796. * work out!
  1797. */
  1798. rq = task_rq(p);
  1799. /*
  1800. * If the task is actively running on another CPU
  1801. * still, just relax and busy-wait without holding
  1802. * any locks.
  1803. *
  1804. * NOTE! Since we don't hold any locks, it's not
  1805. * even sure that "rq" stays as the right runqueue!
  1806. * But we don't care, since "task_running()" will
  1807. * return false if the runqueue has changed and p
  1808. * is actually now running somewhere else!
  1809. */
  1810. while (task_running(rq, p)) {
  1811. if (match_state && unlikely(p->state != match_state))
  1812. return 0;
  1813. cpu_relax();
  1814. }
  1815. /*
  1816. * Ok, time to look more closely! We need the rq
  1817. * lock now, to be *sure*. If we're wrong, we'll
  1818. * just go back and repeat.
  1819. */
  1820. rq = task_rq_lock(p, &flags);
  1821. trace_sched_wait_task(rq, p);
  1822. running = task_running(rq, p);
  1823. on_rq = p->se.on_rq;
  1824. ncsw = 0;
  1825. if (!match_state || p->state == match_state)
  1826. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1827. task_rq_unlock(rq, &flags);
  1828. /*
  1829. * If it changed from the expected state, bail out now.
  1830. */
  1831. if (unlikely(!ncsw))
  1832. break;
  1833. /*
  1834. * Was it really running after all now that we
  1835. * checked with the proper locks actually held?
  1836. *
  1837. * Oops. Go back and try again..
  1838. */
  1839. if (unlikely(running)) {
  1840. cpu_relax();
  1841. continue;
  1842. }
  1843. /*
  1844. * It's not enough that it's not actively running,
  1845. * it must be off the runqueue _entirely_, and not
  1846. * preempted!
  1847. *
  1848. * So if it was still runnable (but just not actively
  1849. * running right now), it's preempted, and we should
  1850. * yield - it could be a while.
  1851. */
  1852. if (unlikely(on_rq)) {
  1853. schedule_timeout_uninterruptible(1);
  1854. continue;
  1855. }
  1856. /*
  1857. * Ahh, all good. It wasn't running, and it wasn't
  1858. * runnable, which means that it will never become
  1859. * running in the future either. We're all done!
  1860. */
  1861. break;
  1862. }
  1863. return ncsw;
  1864. }
  1865. /***
  1866. * kick_process - kick a running thread to enter/exit the kernel
  1867. * @p: the to-be-kicked thread
  1868. *
  1869. * Cause a process which is running on another CPU to enter
  1870. * kernel-mode, without any delay. (to get signals handled.)
  1871. *
  1872. * NOTE: this function doesnt have to take the runqueue lock,
  1873. * because all it wants to ensure is that the remote task enters
  1874. * the kernel. If the IPI races and the task has been migrated
  1875. * to another CPU then no harm is done and the purpose has been
  1876. * achieved as well.
  1877. */
  1878. void kick_process(struct task_struct *p)
  1879. {
  1880. int cpu;
  1881. preempt_disable();
  1882. cpu = task_cpu(p);
  1883. if ((cpu != smp_processor_id()) && task_curr(p))
  1884. smp_send_reschedule(cpu);
  1885. preempt_enable();
  1886. }
  1887. EXPORT_SYMBOL_GPL(kick_process);
  1888. /*
  1889. * Return a low guess at the load of a migration-source cpu weighted
  1890. * according to the scheduling class and "nice" value.
  1891. *
  1892. * We want to under-estimate the load of migration sources, to
  1893. * balance conservatively.
  1894. */
  1895. static unsigned long source_load(int cpu, int type)
  1896. {
  1897. struct rq *rq = cpu_rq(cpu);
  1898. unsigned long total = weighted_cpuload(cpu);
  1899. if (type == 0 || !sched_feat(LB_BIAS))
  1900. return total;
  1901. return min(rq->cpu_load[type-1], total);
  1902. }
  1903. /*
  1904. * Return a high guess at the load of a migration-target cpu weighted
  1905. * according to the scheduling class and "nice" value.
  1906. */
  1907. static unsigned long target_load(int cpu, int type)
  1908. {
  1909. struct rq *rq = cpu_rq(cpu);
  1910. unsigned long total = weighted_cpuload(cpu);
  1911. if (type == 0 || !sched_feat(LB_BIAS))
  1912. return total;
  1913. return max(rq->cpu_load[type-1], total);
  1914. }
  1915. /*
  1916. * find_idlest_group finds and returns the least busy CPU group within the
  1917. * domain.
  1918. */
  1919. static struct sched_group *
  1920. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1921. {
  1922. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1923. unsigned long min_load = ULONG_MAX, this_load = 0;
  1924. int load_idx = sd->forkexec_idx;
  1925. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1926. do {
  1927. unsigned long load, avg_load;
  1928. int local_group;
  1929. int i;
  1930. /* Skip over this group if it has no CPUs allowed */
  1931. if (!cpumask_intersects(sched_group_cpus(group),
  1932. &p->cpus_allowed))
  1933. continue;
  1934. local_group = cpumask_test_cpu(this_cpu,
  1935. sched_group_cpus(group));
  1936. /* Tally up the load of all CPUs in the group */
  1937. avg_load = 0;
  1938. for_each_cpu(i, sched_group_cpus(group)) {
  1939. /* Bias balancing toward cpus of our domain */
  1940. if (local_group)
  1941. load = source_load(i, load_idx);
  1942. else
  1943. load = target_load(i, load_idx);
  1944. avg_load += load;
  1945. }
  1946. /* Adjust by relative CPU power of the group */
  1947. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1948. if (local_group) {
  1949. this_load = avg_load;
  1950. this = group;
  1951. } else if (avg_load < min_load) {
  1952. min_load = avg_load;
  1953. idlest = group;
  1954. }
  1955. } while (group = group->next, group != sd->groups);
  1956. if (!idlest || 100*this_load < imbalance*min_load)
  1957. return NULL;
  1958. return idlest;
  1959. }
  1960. /*
  1961. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1962. */
  1963. static int
  1964. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1965. {
  1966. unsigned long load, min_load = ULONG_MAX;
  1967. int idlest = -1;
  1968. int i;
  1969. /* Traverse only the allowed CPUs */
  1970. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1971. load = weighted_cpuload(i);
  1972. if (load < min_load || (load == min_load && i == this_cpu)) {
  1973. min_load = load;
  1974. idlest = i;
  1975. }
  1976. }
  1977. return idlest;
  1978. }
  1979. /*
  1980. * sched_balance_self: balance the current task (running on cpu) in domains
  1981. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1982. * SD_BALANCE_EXEC.
  1983. *
  1984. * Balance, ie. select the least loaded group.
  1985. *
  1986. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1987. *
  1988. * preempt must be disabled.
  1989. */
  1990. static int sched_balance_self(int cpu, int flag)
  1991. {
  1992. struct task_struct *t = current;
  1993. struct sched_domain *tmp, *sd = NULL;
  1994. for_each_domain(cpu, tmp) {
  1995. /*
  1996. * If power savings logic is enabled for a domain, stop there.
  1997. */
  1998. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1999. break;
  2000. if (tmp->flags & flag)
  2001. sd = tmp;
  2002. }
  2003. if (sd)
  2004. update_shares(sd);
  2005. while (sd) {
  2006. struct sched_group *group;
  2007. int new_cpu, weight;
  2008. if (!(sd->flags & flag)) {
  2009. sd = sd->child;
  2010. continue;
  2011. }
  2012. group = find_idlest_group(sd, t, cpu);
  2013. if (!group) {
  2014. sd = sd->child;
  2015. continue;
  2016. }
  2017. new_cpu = find_idlest_cpu(group, t, cpu);
  2018. if (new_cpu == -1 || new_cpu == cpu) {
  2019. /* Now try balancing at a lower domain level of cpu */
  2020. sd = sd->child;
  2021. continue;
  2022. }
  2023. /* Now try balancing at a lower domain level of new_cpu */
  2024. cpu = new_cpu;
  2025. weight = cpumask_weight(sched_domain_span(sd));
  2026. sd = NULL;
  2027. for_each_domain(cpu, tmp) {
  2028. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  2029. break;
  2030. if (tmp->flags & flag)
  2031. sd = tmp;
  2032. }
  2033. /* while loop will break here if sd == NULL */
  2034. }
  2035. return cpu;
  2036. }
  2037. #endif /* CONFIG_SMP */
  2038. /**
  2039. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2040. * @p: the task to evaluate
  2041. * @func: the function to be called
  2042. * @info: the function call argument
  2043. *
  2044. * Calls the function @func when the task is currently running. This might
  2045. * be on the current CPU, which just calls the function directly
  2046. */
  2047. void task_oncpu_function_call(struct task_struct *p,
  2048. void (*func) (void *info), void *info)
  2049. {
  2050. int cpu;
  2051. preempt_disable();
  2052. cpu = task_cpu(p);
  2053. if (task_curr(p))
  2054. smp_call_function_single(cpu, func, info, 1);
  2055. preempt_enable();
  2056. }
  2057. /***
  2058. * try_to_wake_up - wake up a thread
  2059. * @p: the to-be-woken-up thread
  2060. * @state: the mask of task states that can be woken
  2061. * @sync: do a synchronous wakeup?
  2062. *
  2063. * Put it on the run-queue if it's not already there. The "current"
  2064. * thread is always on the run-queue (except when the actual
  2065. * re-schedule is in progress), and as such you're allowed to do
  2066. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2067. * runnable without the overhead of this.
  2068. *
  2069. * returns failure only if the task is already active.
  2070. */
  2071. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2072. {
  2073. int cpu, orig_cpu, this_cpu, success = 0;
  2074. unsigned long flags;
  2075. long old_state;
  2076. struct rq *rq;
  2077. if (!sched_feat(SYNC_WAKEUPS))
  2078. sync = 0;
  2079. #ifdef CONFIG_SMP
  2080. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2081. struct sched_domain *sd;
  2082. this_cpu = raw_smp_processor_id();
  2083. cpu = task_cpu(p);
  2084. for_each_domain(this_cpu, sd) {
  2085. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2086. update_shares(sd);
  2087. break;
  2088. }
  2089. }
  2090. }
  2091. #endif
  2092. smp_wmb();
  2093. rq = task_rq_lock(p, &flags);
  2094. update_rq_clock(rq);
  2095. old_state = p->state;
  2096. if (!(old_state & state))
  2097. goto out;
  2098. if (p->se.on_rq)
  2099. goto out_running;
  2100. cpu = task_cpu(p);
  2101. orig_cpu = cpu;
  2102. this_cpu = smp_processor_id();
  2103. #ifdef CONFIG_SMP
  2104. if (unlikely(task_running(rq, p)))
  2105. goto out_activate;
  2106. cpu = p->sched_class->select_task_rq(p, sync);
  2107. if (cpu != orig_cpu) {
  2108. set_task_cpu(p, cpu);
  2109. task_rq_unlock(rq, &flags);
  2110. /* might preempt at this point */
  2111. rq = task_rq_lock(p, &flags);
  2112. old_state = p->state;
  2113. if (!(old_state & state))
  2114. goto out;
  2115. if (p->se.on_rq)
  2116. goto out_running;
  2117. this_cpu = smp_processor_id();
  2118. cpu = task_cpu(p);
  2119. }
  2120. #ifdef CONFIG_SCHEDSTATS
  2121. schedstat_inc(rq, ttwu_count);
  2122. if (cpu == this_cpu)
  2123. schedstat_inc(rq, ttwu_local);
  2124. else {
  2125. struct sched_domain *sd;
  2126. for_each_domain(this_cpu, sd) {
  2127. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2128. schedstat_inc(sd, ttwu_wake_remote);
  2129. break;
  2130. }
  2131. }
  2132. }
  2133. #endif /* CONFIG_SCHEDSTATS */
  2134. out_activate:
  2135. #endif /* CONFIG_SMP */
  2136. schedstat_inc(p, se.nr_wakeups);
  2137. if (sync)
  2138. schedstat_inc(p, se.nr_wakeups_sync);
  2139. if (orig_cpu != cpu)
  2140. schedstat_inc(p, se.nr_wakeups_migrate);
  2141. if (cpu == this_cpu)
  2142. schedstat_inc(p, se.nr_wakeups_local);
  2143. else
  2144. schedstat_inc(p, se.nr_wakeups_remote);
  2145. activate_task(rq, p, 1);
  2146. success = 1;
  2147. /*
  2148. * Only attribute actual wakeups done by this task.
  2149. */
  2150. if (!in_interrupt()) {
  2151. struct sched_entity *se = &current->se;
  2152. u64 sample = se->sum_exec_runtime;
  2153. if (se->last_wakeup)
  2154. sample -= se->last_wakeup;
  2155. else
  2156. sample -= se->start_runtime;
  2157. update_avg(&se->avg_wakeup, sample);
  2158. se->last_wakeup = se->sum_exec_runtime;
  2159. }
  2160. out_running:
  2161. trace_sched_wakeup(rq, p, success);
  2162. check_preempt_curr(rq, p, sync);
  2163. p->state = TASK_RUNNING;
  2164. #ifdef CONFIG_SMP
  2165. if (p->sched_class->task_wake_up)
  2166. p->sched_class->task_wake_up(rq, p);
  2167. #endif
  2168. out:
  2169. task_rq_unlock(rq, &flags);
  2170. return success;
  2171. }
  2172. /**
  2173. * wake_up_process - Wake up a specific process
  2174. * @p: The process to be woken up.
  2175. *
  2176. * Attempt to wake up the nominated process and move it to the set of runnable
  2177. * processes. Returns 1 if the process was woken up, 0 if it was already
  2178. * running.
  2179. *
  2180. * It may be assumed that this function implies a write memory barrier before
  2181. * changing the task state if and only if any tasks are woken up.
  2182. */
  2183. int wake_up_process(struct task_struct *p)
  2184. {
  2185. return try_to_wake_up(p, TASK_ALL, 0);
  2186. }
  2187. EXPORT_SYMBOL(wake_up_process);
  2188. int wake_up_state(struct task_struct *p, unsigned int state)
  2189. {
  2190. return try_to_wake_up(p, state, 0);
  2191. }
  2192. /*
  2193. * Perform scheduler related setup for a newly forked process p.
  2194. * p is forked by current.
  2195. *
  2196. * __sched_fork() is basic setup used by init_idle() too:
  2197. */
  2198. static void __sched_fork(struct task_struct *p)
  2199. {
  2200. p->se.exec_start = 0;
  2201. p->se.sum_exec_runtime = 0;
  2202. p->se.prev_sum_exec_runtime = 0;
  2203. p->se.nr_migrations = 0;
  2204. p->se.last_wakeup = 0;
  2205. p->se.avg_overlap = 0;
  2206. p->se.start_runtime = 0;
  2207. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2208. #ifdef CONFIG_SCHEDSTATS
  2209. p->se.wait_start = 0;
  2210. p->se.wait_max = 0;
  2211. p->se.wait_count = 0;
  2212. p->se.wait_sum = 0;
  2213. p->se.sleep_start = 0;
  2214. p->se.sleep_max = 0;
  2215. p->se.sum_sleep_runtime = 0;
  2216. p->se.block_start = 0;
  2217. p->se.block_max = 0;
  2218. p->se.exec_max = 0;
  2219. p->se.slice_max = 0;
  2220. p->se.nr_migrations_cold = 0;
  2221. p->se.nr_failed_migrations_affine = 0;
  2222. p->se.nr_failed_migrations_running = 0;
  2223. p->se.nr_failed_migrations_hot = 0;
  2224. p->se.nr_forced_migrations = 0;
  2225. p->se.nr_forced2_migrations = 0;
  2226. p->se.nr_wakeups = 0;
  2227. p->se.nr_wakeups_sync = 0;
  2228. p->se.nr_wakeups_migrate = 0;
  2229. p->se.nr_wakeups_local = 0;
  2230. p->se.nr_wakeups_remote = 0;
  2231. p->se.nr_wakeups_affine = 0;
  2232. p->se.nr_wakeups_affine_attempts = 0;
  2233. p->se.nr_wakeups_passive = 0;
  2234. p->se.nr_wakeups_idle = 0;
  2235. #endif
  2236. INIT_LIST_HEAD(&p->rt.run_list);
  2237. p->se.on_rq = 0;
  2238. INIT_LIST_HEAD(&p->se.group_node);
  2239. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2240. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2241. #endif
  2242. /*
  2243. * We mark the process as running here, but have not actually
  2244. * inserted it onto the runqueue yet. This guarantees that
  2245. * nobody will actually run it, and a signal or other external
  2246. * event cannot wake it up and insert it on the runqueue either.
  2247. */
  2248. p->state = TASK_RUNNING;
  2249. }
  2250. /*
  2251. * fork()/clone()-time setup:
  2252. */
  2253. void sched_fork(struct task_struct *p, int clone_flags)
  2254. {
  2255. int cpu = get_cpu();
  2256. __sched_fork(p);
  2257. #ifdef CONFIG_SMP
  2258. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2259. #endif
  2260. set_task_cpu(p, cpu);
  2261. /*
  2262. * Make sure we do not leak PI boosting priority to the child.
  2263. */
  2264. p->prio = current->normal_prio;
  2265. /*
  2266. * Revert to default priority/policy on fork if requested.
  2267. */
  2268. if (unlikely(p->sched_reset_on_fork)) {
  2269. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2270. p->policy = SCHED_NORMAL;
  2271. if (p->normal_prio < DEFAULT_PRIO)
  2272. p->prio = DEFAULT_PRIO;
  2273. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2274. p->static_prio = NICE_TO_PRIO(0);
  2275. set_load_weight(p);
  2276. }
  2277. /*
  2278. * We don't need the reset flag anymore after the fork. It has
  2279. * fulfilled its duty:
  2280. */
  2281. p->sched_reset_on_fork = 0;
  2282. }
  2283. if (!rt_prio(p->prio))
  2284. p->sched_class = &fair_sched_class;
  2285. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2286. if (likely(sched_info_on()))
  2287. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2288. #endif
  2289. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2290. p->oncpu = 0;
  2291. #endif
  2292. #ifdef CONFIG_PREEMPT
  2293. /* Want to start with kernel preemption disabled. */
  2294. task_thread_info(p)->preempt_count = 1;
  2295. #endif
  2296. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2297. put_cpu();
  2298. }
  2299. /*
  2300. * wake_up_new_task - wake up a newly created task for the first time.
  2301. *
  2302. * This function will do some initial scheduler statistics housekeeping
  2303. * that must be done for every newly created context, then puts the task
  2304. * on the runqueue and wakes it.
  2305. */
  2306. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2307. {
  2308. unsigned long flags;
  2309. struct rq *rq;
  2310. rq = task_rq_lock(p, &flags);
  2311. BUG_ON(p->state != TASK_RUNNING);
  2312. update_rq_clock(rq);
  2313. p->prio = effective_prio(p);
  2314. if (!p->sched_class->task_new || !current->se.on_rq) {
  2315. activate_task(rq, p, 0);
  2316. } else {
  2317. /*
  2318. * Let the scheduling class do new task startup
  2319. * management (if any):
  2320. */
  2321. p->sched_class->task_new(rq, p);
  2322. inc_nr_running(rq);
  2323. }
  2324. trace_sched_wakeup_new(rq, p, 1);
  2325. check_preempt_curr(rq, p, 0);
  2326. #ifdef CONFIG_SMP
  2327. if (p->sched_class->task_wake_up)
  2328. p->sched_class->task_wake_up(rq, p);
  2329. #endif
  2330. task_rq_unlock(rq, &flags);
  2331. }
  2332. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2333. /**
  2334. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2335. * @notifier: notifier struct to register
  2336. */
  2337. void preempt_notifier_register(struct preempt_notifier *notifier)
  2338. {
  2339. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2340. }
  2341. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2342. /**
  2343. * preempt_notifier_unregister - no longer interested in preemption notifications
  2344. * @notifier: notifier struct to unregister
  2345. *
  2346. * This is safe to call from within a preemption notifier.
  2347. */
  2348. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2349. {
  2350. hlist_del(&notifier->link);
  2351. }
  2352. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2353. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2354. {
  2355. struct preempt_notifier *notifier;
  2356. struct hlist_node *node;
  2357. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2358. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2359. }
  2360. static void
  2361. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2362. struct task_struct *next)
  2363. {
  2364. struct preempt_notifier *notifier;
  2365. struct hlist_node *node;
  2366. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2367. notifier->ops->sched_out(notifier, next);
  2368. }
  2369. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2370. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2371. {
  2372. }
  2373. static void
  2374. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2375. struct task_struct *next)
  2376. {
  2377. }
  2378. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2379. /**
  2380. * prepare_task_switch - prepare to switch tasks
  2381. * @rq: the runqueue preparing to switch
  2382. * @prev: the current task that is being switched out
  2383. * @next: the task we are going to switch to.
  2384. *
  2385. * This is called with the rq lock held and interrupts off. It must
  2386. * be paired with a subsequent finish_task_switch after the context
  2387. * switch.
  2388. *
  2389. * prepare_task_switch sets up locking and calls architecture specific
  2390. * hooks.
  2391. */
  2392. static inline void
  2393. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2394. struct task_struct *next)
  2395. {
  2396. fire_sched_out_preempt_notifiers(prev, next);
  2397. prepare_lock_switch(rq, next);
  2398. prepare_arch_switch(next);
  2399. }
  2400. /**
  2401. * finish_task_switch - clean up after a task-switch
  2402. * @rq: runqueue associated with task-switch
  2403. * @prev: the thread we just switched away from.
  2404. *
  2405. * finish_task_switch must be called after the context switch, paired
  2406. * with a prepare_task_switch call before the context switch.
  2407. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2408. * and do any other architecture-specific cleanup actions.
  2409. *
  2410. * Note that we may have delayed dropping an mm in context_switch(). If
  2411. * so, we finish that here outside of the runqueue lock. (Doing it
  2412. * with the lock held can cause deadlocks; see schedule() for
  2413. * details.)
  2414. */
  2415. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2416. __releases(rq->lock)
  2417. {
  2418. struct mm_struct *mm = rq->prev_mm;
  2419. long prev_state;
  2420. rq->prev_mm = NULL;
  2421. /*
  2422. * A task struct has one reference for the use as "current".
  2423. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2424. * schedule one last time. The schedule call will never return, and
  2425. * the scheduled task must drop that reference.
  2426. * The test for TASK_DEAD must occur while the runqueue locks are
  2427. * still held, otherwise prev could be scheduled on another cpu, die
  2428. * there before we look at prev->state, and then the reference would
  2429. * be dropped twice.
  2430. * Manfred Spraul <manfred@colorfullife.com>
  2431. */
  2432. prev_state = prev->state;
  2433. finish_arch_switch(prev);
  2434. perf_counter_task_sched_in(current, cpu_of(rq));
  2435. finish_lock_switch(rq, prev);
  2436. fire_sched_in_preempt_notifiers(current);
  2437. if (mm)
  2438. mmdrop(mm);
  2439. if (unlikely(prev_state == TASK_DEAD)) {
  2440. /*
  2441. * Remove function-return probe instances associated with this
  2442. * task and put them back on the free list.
  2443. */
  2444. kprobe_flush_task(prev);
  2445. put_task_struct(prev);
  2446. }
  2447. }
  2448. #ifdef CONFIG_SMP
  2449. /* assumes rq->lock is held */
  2450. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2451. {
  2452. if (prev->sched_class->pre_schedule)
  2453. prev->sched_class->pre_schedule(rq, prev);
  2454. }
  2455. /* rq->lock is NOT held, but preemption is disabled */
  2456. static inline void post_schedule(struct rq *rq)
  2457. {
  2458. if (rq->post_schedule) {
  2459. unsigned long flags;
  2460. spin_lock_irqsave(&rq->lock, flags);
  2461. if (rq->curr->sched_class->post_schedule)
  2462. rq->curr->sched_class->post_schedule(rq);
  2463. spin_unlock_irqrestore(&rq->lock, flags);
  2464. rq->post_schedule = 0;
  2465. }
  2466. }
  2467. #else
  2468. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2469. {
  2470. }
  2471. static inline void post_schedule(struct rq *rq)
  2472. {
  2473. }
  2474. #endif
  2475. /**
  2476. * schedule_tail - first thing a freshly forked thread must call.
  2477. * @prev: the thread we just switched away from.
  2478. */
  2479. asmlinkage void schedule_tail(struct task_struct *prev)
  2480. __releases(rq->lock)
  2481. {
  2482. struct rq *rq = this_rq();
  2483. finish_task_switch(rq, prev);
  2484. /*
  2485. * FIXME: do we need to worry about rq being invalidated by the
  2486. * task_switch?
  2487. */
  2488. post_schedule(rq);
  2489. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2490. /* In this case, finish_task_switch does not reenable preemption */
  2491. preempt_enable();
  2492. #endif
  2493. if (current->set_child_tid)
  2494. put_user(task_pid_vnr(current), current->set_child_tid);
  2495. }
  2496. /*
  2497. * context_switch - switch to the new MM and the new
  2498. * thread's register state.
  2499. */
  2500. static inline void
  2501. context_switch(struct rq *rq, struct task_struct *prev,
  2502. struct task_struct *next)
  2503. {
  2504. struct mm_struct *mm, *oldmm;
  2505. prepare_task_switch(rq, prev, next);
  2506. trace_sched_switch(rq, prev, next);
  2507. mm = next->mm;
  2508. oldmm = prev->active_mm;
  2509. /*
  2510. * For paravirt, this is coupled with an exit in switch_to to
  2511. * combine the page table reload and the switch backend into
  2512. * one hypercall.
  2513. */
  2514. arch_start_context_switch(prev);
  2515. if (unlikely(!mm)) {
  2516. next->active_mm = oldmm;
  2517. atomic_inc(&oldmm->mm_count);
  2518. enter_lazy_tlb(oldmm, next);
  2519. } else
  2520. switch_mm(oldmm, mm, next);
  2521. if (unlikely(!prev->mm)) {
  2522. prev->active_mm = NULL;
  2523. rq->prev_mm = oldmm;
  2524. }
  2525. /*
  2526. * Since the runqueue lock will be released by the next
  2527. * task (which is an invalid locking op but in the case
  2528. * of the scheduler it's an obvious special-case), so we
  2529. * do an early lockdep release here:
  2530. */
  2531. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2532. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2533. #endif
  2534. /* Here we just switch the register state and the stack. */
  2535. switch_to(prev, next, prev);
  2536. barrier();
  2537. /*
  2538. * this_rq must be evaluated again because prev may have moved
  2539. * CPUs since it called schedule(), thus the 'rq' on its stack
  2540. * frame will be invalid.
  2541. */
  2542. finish_task_switch(this_rq(), prev);
  2543. }
  2544. /*
  2545. * nr_running, nr_uninterruptible and nr_context_switches:
  2546. *
  2547. * externally visible scheduler statistics: current number of runnable
  2548. * threads, current number of uninterruptible-sleeping threads, total
  2549. * number of context switches performed since bootup.
  2550. */
  2551. unsigned long nr_running(void)
  2552. {
  2553. unsigned long i, sum = 0;
  2554. for_each_online_cpu(i)
  2555. sum += cpu_rq(i)->nr_running;
  2556. return sum;
  2557. }
  2558. unsigned long nr_uninterruptible(void)
  2559. {
  2560. unsigned long i, sum = 0;
  2561. for_each_possible_cpu(i)
  2562. sum += cpu_rq(i)->nr_uninterruptible;
  2563. /*
  2564. * Since we read the counters lockless, it might be slightly
  2565. * inaccurate. Do not allow it to go below zero though:
  2566. */
  2567. if (unlikely((long)sum < 0))
  2568. sum = 0;
  2569. return sum;
  2570. }
  2571. unsigned long long nr_context_switches(void)
  2572. {
  2573. int i;
  2574. unsigned long long sum = 0;
  2575. for_each_possible_cpu(i)
  2576. sum += cpu_rq(i)->nr_switches;
  2577. return sum;
  2578. }
  2579. unsigned long nr_iowait(void)
  2580. {
  2581. unsigned long i, sum = 0;
  2582. for_each_possible_cpu(i)
  2583. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2584. return sum;
  2585. }
  2586. /* Variables and functions for calc_load */
  2587. static atomic_long_t calc_load_tasks;
  2588. static unsigned long calc_load_update;
  2589. unsigned long avenrun[3];
  2590. EXPORT_SYMBOL(avenrun);
  2591. /**
  2592. * get_avenrun - get the load average array
  2593. * @loads: pointer to dest load array
  2594. * @offset: offset to add
  2595. * @shift: shift count to shift the result left
  2596. *
  2597. * These values are estimates at best, so no need for locking.
  2598. */
  2599. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2600. {
  2601. loads[0] = (avenrun[0] + offset) << shift;
  2602. loads[1] = (avenrun[1] + offset) << shift;
  2603. loads[2] = (avenrun[2] + offset) << shift;
  2604. }
  2605. static unsigned long
  2606. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2607. {
  2608. load *= exp;
  2609. load += active * (FIXED_1 - exp);
  2610. return load >> FSHIFT;
  2611. }
  2612. /*
  2613. * calc_load - update the avenrun load estimates 10 ticks after the
  2614. * CPUs have updated calc_load_tasks.
  2615. */
  2616. void calc_global_load(void)
  2617. {
  2618. unsigned long upd = calc_load_update + 10;
  2619. long active;
  2620. if (time_before(jiffies, upd))
  2621. return;
  2622. active = atomic_long_read(&calc_load_tasks);
  2623. active = active > 0 ? active * FIXED_1 : 0;
  2624. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2625. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2626. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2627. calc_load_update += LOAD_FREQ;
  2628. }
  2629. /*
  2630. * Either called from update_cpu_load() or from a cpu going idle
  2631. */
  2632. static void calc_load_account_active(struct rq *this_rq)
  2633. {
  2634. long nr_active, delta;
  2635. nr_active = this_rq->nr_running;
  2636. nr_active += (long) this_rq->nr_uninterruptible;
  2637. if (nr_active != this_rq->calc_load_active) {
  2638. delta = nr_active - this_rq->calc_load_active;
  2639. this_rq->calc_load_active = nr_active;
  2640. atomic_long_add(delta, &calc_load_tasks);
  2641. }
  2642. }
  2643. /*
  2644. * Externally visible per-cpu scheduler statistics:
  2645. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2646. */
  2647. u64 cpu_nr_migrations(int cpu)
  2648. {
  2649. return cpu_rq(cpu)->nr_migrations_in;
  2650. }
  2651. /*
  2652. * Update rq->cpu_load[] statistics. This function is usually called every
  2653. * scheduler tick (TICK_NSEC).
  2654. */
  2655. static void update_cpu_load(struct rq *this_rq)
  2656. {
  2657. unsigned long this_load = this_rq->load.weight;
  2658. int i, scale;
  2659. this_rq->nr_load_updates++;
  2660. /* Update our load: */
  2661. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2662. unsigned long old_load, new_load;
  2663. /* scale is effectively 1 << i now, and >> i divides by scale */
  2664. old_load = this_rq->cpu_load[i];
  2665. new_load = this_load;
  2666. /*
  2667. * Round up the averaging division if load is increasing. This
  2668. * prevents us from getting stuck on 9 if the load is 10, for
  2669. * example.
  2670. */
  2671. if (new_load > old_load)
  2672. new_load += scale-1;
  2673. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2674. }
  2675. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2676. this_rq->calc_load_update += LOAD_FREQ;
  2677. calc_load_account_active(this_rq);
  2678. }
  2679. }
  2680. #ifdef CONFIG_SMP
  2681. /*
  2682. * double_rq_lock - safely lock two runqueues
  2683. *
  2684. * Note this does not disable interrupts like task_rq_lock,
  2685. * you need to do so manually before calling.
  2686. */
  2687. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2688. __acquires(rq1->lock)
  2689. __acquires(rq2->lock)
  2690. {
  2691. BUG_ON(!irqs_disabled());
  2692. if (rq1 == rq2) {
  2693. spin_lock(&rq1->lock);
  2694. __acquire(rq2->lock); /* Fake it out ;) */
  2695. } else {
  2696. if (rq1 < rq2) {
  2697. spin_lock(&rq1->lock);
  2698. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2699. } else {
  2700. spin_lock(&rq2->lock);
  2701. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2702. }
  2703. }
  2704. update_rq_clock(rq1);
  2705. update_rq_clock(rq2);
  2706. }
  2707. /*
  2708. * double_rq_unlock - safely unlock two runqueues
  2709. *
  2710. * Note this does not restore interrupts like task_rq_unlock,
  2711. * you need to do so manually after calling.
  2712. */
  2713. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2714. __releases(rq1->lock)
  2715. __releases(rq2->lock)
  2716. {
  2717. spin_unlock(&rq1->lock);
  2718. if (rq1 != rq2)
  2719. spin_unlock(&rq2->lock);
  2720. else
  2721. __release(rq2->lock);
  2722. }
  2723. /*
  2724. * If dest_cpu is allowed for this process, migrate the task to it.
  2725. * This is accomplished by forcing the cpu_allowed mask to only
  2726. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2727. * the cpu_allowed mask is restored.
  2728. */
  2729. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2730. {
  2731. struct migration_req req;
  2732. unsigned long flags;
  2733. struct rq *rq;
  2734. rq = task_rq_lock(p, &flags);
  2735. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2736. || unlikely(!cpu_active(dest_cpu)))
  2737. goto out;
  2738. /* force the process onto the specified CPU */
  2739. if (migrate_task(p, dest_cpu, &req)) {
  2740. /* Need to wait for migration thread (might exit: take ref). */
  2741. struct task_struct *mt = rq->migration_thread;
  2742. get_task_struct(mt);
  2743. task_rq_unlock(rq, &flags);
  2744. wake_up_process(mt);
  2745. put_task_struct(mt);
  2746. wait_for_completion(&req.done);
  2747. return;
  2748. }
  2749. out:
  2750. task_rq_unlock(rq, &flags);
  2751. }
  2752. /*
  2753. * sched_exec - execve() is a valuable balancing opportunity, because at
  2754. * this point the task has the smallest effective memory and cache footprint.
  2755. */
  2756. void sched_exec(void)
  2757. {
  2758. int new_cpu, this_cpu = get_cpu();
  2759. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2760. put_cpu();
  2761. if (new_cpu != this_cpu)
  2762. sched_migrate_task(current, new_cpu);
  2763. }
  2764. /*
  2765. * pull_task - move a task from a remote runqueue to the local runqueue.
  2766. * Both runqueues must be locked.
  2767. */
  2768. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2769. struct rq *this_rq, int this_cpu)
  2770. {
  2771. deactivate_task(src_rq, p, 0);
  2772. set_task_cpu(p, this_cpu);
  2773. activate_task(this_rq, p, 0);
  2774. /*
  2775. * Note that idle threads have a prio of MAX_PRIO, for this test
  2776. * to be always true for them.
  2777. */
  2778. check_preempt_curr(this_rq, p, 0);
  2779. }
  2780. /*
  2781. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2782. */
  2783. static
  2784. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2785. struct sched_domain *sd, enum cpu_idle_type idle,
  2786. int *all_pinned)
  2787. {
  2788. int tsk_cache_hot = 0;
  2789. /*
  2790. * We do not migrate tasks that are:
  2791. * 1) running (obviously), or
  2792. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2793. * 3) are cache-hot on their current CPU.
  2794. */
  2795. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2796. schedstat_inc(p, se.nr_failed_migrations_affine);
  2797. return 0;
  2798. }
  2799. *all_pinned = 0;
  2800. if (task_running(rq, p)) {
  2801. schedstat_inc(p, se.nr_failed_migrations_running);
  2802. return 0;
  2803. }
  2804. /*
  2805. * Aggressive migration if:
  2806. * 1) task is cache cold, or
  2807. * 2) too many balance attempts have failed.
  2808. */
  2809. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2810. if (!tsk_cache_hot ||
  2811. sd->nr_balance_failed > sd->cache_nice_tries) {
  2812. #ifdef CONFIG_SCHEDSTATS
  2813. if (tsk_cache_hot) {
  2814. schedstat_inc(sd, lb_hot_gained[idle]);
  2815. schedstat_inc(p, se.nr_forced_migrations);
  2816. }
  2817. #endif
  2818. return 1;
  2819. }
  2820. if (tsk_cache_hot) {
  2821. schedstat_inc(p, se.nr_failed_migrations_hot);
  2822. return 0;
  2823. }
  2824. return 1;
  2825. }
  2826. static unsigned long
  2827. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2828. unsigned long max_load_move, struct sched_domain *sd,
  2829. enum cpu_idle_type idle, int *all_pinned,
  2830. int *this_best_prio, struct rq_iterator *iterator)
  2831. {
  2832. int loops = 0, pulled = 0, pinned = 0;
  2833. struct task_struct *p;
  2834. long rem_load_move = max_load_move;
  2835. if (max_load_move == 0)
  2836. goto out;
  2837. pinned = 1;
  2838. /*
  2839. * Start the load-balancing iterator:
  2840. */
  2841. p = iterator->start(iterator->arg);
  2842. next:
  2843. if (!p || loops++ > sysctl_sched_nr_migrate)
  2844. goto out;
  2845. if ((p->se.load.weight >> 1) > rem_load_move ||
  2846. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2847. p = iterator->next(iterator->arg);
  2848. goto next;
  2849. }
  2850. pull_task(busiest, p, this_rq, this_cpu);
  2851. pulled++;
  2852. rem_load_move -= p->se.load.weight;
  2853. #ifdef CONFIG_PREEMPT
  2854. /*
  2855. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2856. * will stop after the first task is pulled to minimize the critical
  2857. * section.
  2858. */
  2859. if (idle == CPU_NEWLY_IDLE)
  2860. goto out;
  2861. #endif
  2862. /*
  2863. * We only want to steal up to the prescribed amount of weighted load.
  2864. */
  2865. if (rem_load_move > 0) {
  2866. if (p->prio < *this_best_prio)
  2867. *this_best_prio = p->prio;
  2868. p = iterator->next(iterator->arg);
  2869. goto next;
  2870. }
  2871. out:
  2872. /*
  2873. * Right now, this is one of only two places pull_task() is called,
  2874. * so we can safely collect pull_task() stats here rather than
  2875. * inside pull_task().
  2876. */
  2877. schedstat_add(sd, lb_gained[idle], pulled);
  2878. if (all_pinned)
  2879. *all_pinned = pinned;
  2880. return max_load_move - rem_load_move;
  2881. }
  2882. /*
  2883. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2884. * this_rq, as part of a balancing operation within domain "sd".
  2885. * Returns 1 if successful and 0 otherwise.
  2886. *
  2887. * Called with both runqueues locked.
  2888. */
  2889. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2890. unsigned long max_load_move,
  2891. struct sched_domain *sd, enum cpu_idle_type idle,
  2892. int *all_pinned)
  2893. {
  2894. const struct sched_class *class = sched_class_highest;
  2895. unsigned long total_load_moved = 0;
  2896. int this_best_prio = this_rq->curr->prio;
  2897. do {
  2898. total_load_moved +=
  2899. class->load_balance(this_rq, this_cpu, busiest,
  2900. max_load_move - total_load_moved,
  2901. sd, idle, all_pinned, &this_best_prio);
  2902. class = class->next;
  2903. #ifdef CONFIG_PREEMPT
  2904. /*
  2905. * NEWIDLE balancing is a source of latency, so preemptible
  2906. * kernels will stop after the first task is pulled to minimize
  2907. * the critical section.
  2908. */
  2909. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2910. break;
  2911. #endif
  2912. } while (class && max_load_move > total_load_moved);
  2913. return total_load_moved > 0;
  2914. }
  2915. static int
  2916. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2917. struct sched_domain *sd, enum cpu_idle_type idle,
  2918. struct rq_iterator *iterator)
  2919. {
  2920. struct task_struct *p = iterator->start(iterator->arg);
  2921. int pinned = 0;
  2922. while (p) {
  2923. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2924. pull_task(busiest, p, this_rq, this_cpu);
  2925. /*
  2926. * Right now, this is only the second place pull_task()
  2927. * is called, so we can safely collect pull_task()
  2928. * stats here rather than inside pull_task().
  2929. */
  2930. schedstat_inc(sd, lb_gained[idle]);
  2931. return 1;
  2932. }
  2933. p = iterator->next(iterator->arg);
  2934. }
  2935. return 0;
  2936. }
  2937. /*
  2938. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2939. * part of active balancing operations within "domain".
  2940. * Returns 1 if successful and 0 otherwise.
  2941. *
  2942. * Called with both runqueues locked.
  2943. */
  2944. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2945. struct sched_domain *sd, enum cpu_idle_type idle)
  2946. {
  2947. const struct sched_class *class;
  2948. for_each_class(class) {
  2949. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2950. return 1;
  2951. }
  2952. return 0;
  2953. }
  2954. /********** Helpers for find_busiest_group ************************/
  2955. /*
  2956. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2957. * during load balancing.
  2958. */
  2959. struct sd_lb_stats {
  2960. struct sched_group *busiest; /* Busiest group in this sd */
  2961. struct sched_group *this; /* Local group in this sd */
  2962. unsigned long total_load; /* Total load of all groups in sd */
  2963. unsigned long total_pwr; /* Total power of all groups in sd */
  2964. unsigned long avg_load; /* Average load across all groups in sd */
  2965. /** Statistics of this group */
  2966. unsigned long this_load;
  2967. unsigned long this_load_per_task;
  2968. unsigned long this_nr_running;
  2969. /* Statistics of the busiest group */
  2970. unsigned long max_load;
  2971. unsigned long busiest_load_per_task;
  2972. unsigned long busiest_nr_running;
  2973. int group_imb; /* Is there imbalance in this sd */
  2974. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2975. int power_savings_balance; /* Is powersave balance needed for this sd */
  2976. struct sched_group *group_min; /* Least loaded group in sd */
  2977. struct sched_group *group_leader; /* Group which relieves group_min */
  2978. unsigned long min_load_per_task; /* load_per_task in group_min */
  2979. unsigned long leader_nr_running; /* Nr running of group_leader */
  2980. unsigned long min_nr_running; /* Nr running of group_min */
  2981. #endif
  2982. };
  2983. /*
  2984. * sg_lb_stats - stats of a sched_group required for load_balancing
  2985. */
  2986. struct sg_lb_stats {
  2987. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2988. unsigned long group_load; /* Total load over the CPUs of the group */
  2989. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2990. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2991. unsigned long group_capacity;
  2992. int group_imb; /* Is there an imbalance in the group ? */
  2993. };
  2994. /**
  2995. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2996. * @group: The group whose first cpu is to be returned.
  2997. */
  2998. static inline unsigned int group_first_cpu(struct sched_group *group)
  2999. {
  3000. return cpumask_first(sched_group_cpus(group));
  3001. }
  3002. /**
  3003. * get_sd_load_idx - Obtain the load index for a given sched domain.
  3004. * @sd: The sched_domain whose load_idx is to be obtained.
  3005. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  3006. */
  3007. static inline int get_sd_load_idx(struct sched_domain *sd,
  3008. enum cpu_idle_type idle)
  3009. {
  3010. int load_idx;
  3011. switch (idle) {
  3012. case CPU_NOT_IDLE:
  3013. load_idx = sd->busy_idx;
  3014. break;
  3015. case CPU_NEWLY_IDLE:
  3016. load_idx = sd->newidle_idx;
  3017. break;
  3018. default:
  3019. load_idx = sd->idle_idx;
  3020. break;
  3021. }
  3022. return load_idx;
  3023. }
  3024. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3025. /**
  3026. * init_sd_power_savings_stats - Initialize power savings statistics for
  3027. * the given sched_domain, during load balancing.
  3028. *
  3029. * @sd: Sched domain whose power-savings statistics are to be initialized.
  3030. * @sds: Variable containing the statistics for sd.
  3031. * @idle: Idle status of the CPU at which we're performing load-balancing.
  3032. */
  3033. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3034. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3035. {
  3036. /*
  3037. * Busy processors will not participate in power savings
  3038. * balance.
  3039. */
  3040. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3041. sds->power_savings_balance = 0;
  3042. else {
  3043. sds->power_savings_balance = 1;
  3044. sds->min_nr_running = ULONG_MAX;
  3045. sds->leader_nr_running = 0;
  3046. }
  3047. }
  3048. /**
  3049. * update_sd_power_savings_stats - Update the power saving stats for a
  3050. * sched_domain while performing load balancing.
  3051. *
  3052. * @group: sched_group belonging to the sched_domain under consideration.
  3053. * @sds: Variable containing the statistics of the sched_domain
  3054. * @local_group: Does group contain the CPU for which we're performing
  3055. * load balancing ?
  3056. * @sgs: Variable containing the statistics of the group.
  3057. */
  3058. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3059. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3060. {
  3061. if (!sds->power_savings_balance)
  3062. return;
  3063. /*
  3064. * If the local group is idle or completely loaded
  3065. * no need to do power savings balance at this domain
  3066. */
  3067. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3068. !sds->this_nr_running))
  3069. sds->power_savings_balance = 0;
  3070. /*
  3071. * If a group is already running at full capacity or idle,
  3072. * don't include that group in power savings calculations
  3073. */
  3074. if (!sds->power_savings_balance ||
  3075. sgs->sum_nr_running >= sgs->group_capacity ||
  3076. !sgs->sum_nr_running)
  3077. return;
  3078. /*
  3079. * Calculate the group which has the least non-idle load.
  3080. * This is the group from where we need to pick up the load
  3081. * for saving power
  3082. */
  3083. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3084. (sgs->sum_nr_running == sds->min_nr_running &&
  3085. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3086. sds->group_min = group;
  3087. sds->min_nr_running = sgs->sum_nr_running;
  3088. sds->min_load_per_task = sgs->sum_weighted_load /
  3089. sgs->sum_nr_running;
  3090. }
  3091. /*
  3092. * Calculate the group which is almost near its
  3093. * capacity but still has some space to pick up some load
  3094. * from other group and save more power
  3095. */
  3096. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3097. return;
  3098. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3099. (sgs->sum_nr_running == sds->leader_nr_running &&
  3100. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3101. sds->group_leader = group;
  3102. sds->leader_nr_running = sgs->sum_nr_running;
  3103. }
  3104. }
  3105. /**
  3106. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3107. * @sds: Variable containing the statistics of the sched_domain
  3108. * under consideration.
  3109. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3110. * @imbalance: Variable to store the imbalance.
  3111. *
  3112. * Description:
  3113. * Check if we have potential to perform some power-savings balance.
  3114. * If yes, set the busiest group to be the least loaded group in the
  3115. * sched_domain, so that it's CPUs can be put to idle.
  3116. *
  3117. * Returns 1 if there is potential to perform power-savings balance.
  3118. * Else returns 0.
  3119. */
  3120. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3121. int this_cpu, unsigned long *imbalance)
  3122. {
  3123. if (!sds->power_savings_balance)
  3124. return 0;
  3125. if (sds->this != sds->group_leader ||
  3126. sds->group_leader == sds->group_min)
  3127. return 0;
  3128. *imbalance = sds->min_load_per_task;
  3129. sds->busiest = sds->group_min;
  3130. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3131. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3132. group_first_cpu(sds->group_leader);
  3133. }
  3134. return 1;
  3135. }
  3136. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3137. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3138. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3139. {
  3140. return;
  3141. }
  3142. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3143. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3144. {
  3145. return;
  3146. }
  3147. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3148. int this_cpu, unsigned long *imbalance)
  3149. {
  3150. return 0;
  3151. }
  3152. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3153. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3154. {
  3155. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3156. unsigned long smt_gain = sd->smt_gain;
  3157. smt_gain /= weight;
  3158. return smt_gain;
  3159. }
  3160. unsigned long scale_rt_power(int cpu)
  3161. {
  3162. struct rq *rq = cpu_rq(cpu);
  3163. u64 total, available;
  3164. sched_avg_update(rq);
  3165. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3166. available = total - rq->rt_avg;
  3167. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3168. total = SCHED_LOAD_SCALE;
  3169. total >>= SCHED_LOAD_SHIFT;
  3170. return div_u64(available, total);
  3171. }
  3172. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3173. {
  3174. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3175. unsigned long power = SCHED_LOAD_SCALE;
  3176. struct sched_group *sdg = sd->groups;
  3177. /* here we could scale based on cpufreq */
  3178. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3179. power *= arch_scale_smt_power(sd, cpu);
  3180. power >>= SCHED_LOAD_SHIFT;
  3181. }
  3182. power *= scale_rt_power(cpu);
  3183. power >>= SCHED_LOAD_SHIFT;
  3184. if (!power)
  3185. power = 1;
  3186. sdg->cpu_power = power;
  3187. }
  3188. static void update_group_power(struct sched_domain *sd, int cpu)
  3189. {
  3190. struct sched_domain *child = sd->child;
  3191. struct sched_group *group, *sdg = sd->groups;
  3192. unsigned long power;
  3193. if (!child) {
  3194. update_cpu_power(sd, cpu);
  3195. return;
  3196. }
  3197. power = 0;
  3198. group = child->groups;
  3199. do {
  3200. power += group->cpu_power;
  3201. group = group->next;
  3202. } while (group != child->groups);
  3203. sdg->cpu_power = power;
  3204. }
  3205. /**
  3206. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3207. * @group: sched_group whose statistics are to be updated.
  3208. * @this_cpu: Cpu for which load balance is currently performed.
  3209. * @idle: Idle status of this_cpu
  3210. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3211. * @sd_idle: Idle status of the sched_domain containing group.
  3212. * @local_group: Does group contain this_cpu.
  3213. * @cpus: Set of cpus considered for load balancing.
  3214. * @balance: Should we balance.
  3215. * @sgs: variable to hold the statistics for this group.
  3216. */
  3217. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3218. struct sched_group *group, int this_cpu,
  3219. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3220. int local_group, const struct cpumask *cpus,
  3221. int *balance, struct sg_lb_stats *sgs)
  3222. {
  3223. unsigned long load, max_cpu_load, min_cpu_load;
  3224. int i;
  3225. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3226. unsigned long sum_avg_load_per_task;
  3227. unsigned long avg_load_per_task;
  3228. if (local_group) {
  3229. balance_cpu = group_first_cpu(group);
  3230. if (balance_cpu == this_cpu)
  3231. update_group_power(sd, this_cpu);
  3232. }
  3233. /* Tally up the load of all CPUs in the group */
  3234. sum_avg_load_per_task = avg_load_per_task = 0;
  3235. max_cpu_load = 0;
  3236. min_cpu_load = ~0UL;
  3237. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3238. struct rq *rq = cpu_rq(i);
  3239. if (*sd_idle && rq->nr_running)
  3240. *sd_idle = 0;
  3241. /* Bias balancing toward cpus of our domain */
  3242. if (local_group) {
  3243. if (idle_cpu(i) && !first_idle_cpu) {
  3244. first_idle_cpu = 1;
  3245. balance_cpu = i;
  3246. }
  3247. load = target_load(i, load_idx);
  3248. } else {
  3249. load = source_load(i, load_idx);
  3250. if (load > max_cpu_load)
  3251. max_cpu_load = load;
  3252. if (min_cpu_load > load)
  3253. min_cpu_load = load;
  3254. }
  3255. sgs->group_load += load;
  3256. sgs->sum_nr_running += rq->nr_running;
  3257. sgs->sum_weighted_load += weighted_cpuload(i);
  3258. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3259. }
  3260. /*
  3261. * First idle cpu or the first cpu(busiest) in this sched group
  3262. * is eligible for doing load balancing at this and above
  3263. * domains. In the newly idle case, we will allow all the cpu's
  3264. * to do the newly idle load balance.
  3265. */
  3266. if (idle != CPU_NEWLY_IDLE && local_group &&
  3267. balance_cpu != this_cpu && balance) {
  3268. *balance = 0;
  3269. return;
  3270. }
  3271. /* Adjust by relative CPU power of the group */
  3272. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3273. /*
  3274. * Consider the group unbalanced when the imbalance is larger
  3275. * than the average weight of two tasks.
  3276. *
  3277. * APZ: with cgroup the avg task weight can vary wildly and
  3278. * might not be a suitable number - should we keep a
  3279. * normalized nr_running number somewhere that negates
  3280. * the hierarchy?
  3281. */
  3282. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3283. group->cpu_power;
  3284. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3285. sgs->group_imb = 1;
  3286. sgs->group_capacity =
  3287. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3288. }
  3289. /**
  3290. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3291. * @sd: sched_domain whose statistics are to be updated.
  3292. * @this_cpu: Cpu for which load balance is currently performed.
  3293. * @idle: Idle status of this_cpu
  3294. * @sd_idle: Idle status of the sched_domain containing group.
  3295. * @cpus: Set of cpus considered for load balancing.
  3296. * @balance: Should we balance.
  3297. * @sds: variable to hold the statistics for this sched_domain.
  3298. */
  3299. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3300. enum cpu_idle_type idle, int *sd_idle,
  3301. const struct cpumask *cpus, int *balance,
  3302. struct sd_lb_stats *sds)
  3303. {
  3304. struct sched_domain *child = sd->child;
  3305. struct sched_group *group = sd->groups;
  3306. struct sg_lb_stats sgs;
  3307. int load_idx, prefer_sibling = 0;
  3308. if (child && child->flags & SD_PREFER_SIBLING)
  3309. prefer_sibling = 1;
  3310. init_sd_power_savings_stats(sd, sds, idle);
  3311. load_idx = get_sd_load_idx(sd, idle);
  3312. do {
  3313. int local_group;
  3314. local_group = cpumask_test_cpu(this_cpu,
  3315. sched_group_cpus(group));
  3316. memset(&sgs, 0, sizeof(sgs));
  3317. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3318. local_group, cpus, balance, &sgs);
  3319. if (local_group && balance && !(*balance))
  3320. return;
  3321. sds->total_load += sgs.group_load;
  3322. sds->total_pwr += group->cpu_power;
  3323. /*
  3324. * In case the child domain prefers tasks go to siblings
  3325. * first, lower the group capacity to one so that we'll try
  3326. * and move all the excess tasks away.
  3327. */
  3328. if (prefer_sibling)
  3329. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3330. if (local_group) {
  3331. sds->this_load = sgs.avg_load;
  3332. sds->this = group;
  3333. sds->this_nr_running = sgs.sum_nr_running;
  3334. sds->this_load_per_task = sgs.sum_weighted_load;
  3335. } else if (sgs.avg_load > sds->max_load &&
  3336. (sgs.sum_nr_running > sgs.group_capacity ||
  3337. sgs.group_imb)) {
  3338. sds->max_load = sgs.avg_load;
  3339. sds->busiest = group;
  3340. sds->busiest_nr_running = sgs.sum_nr_running;
  3341. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3342. sds->group_imb = sgs.group_imb;
  3343. }
  3344. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3345. group = group->next;
  3346. } while (group != sd->groups);
  3347. }
  3348. /**
  3349. * fix_small_imbalance - Calculate the minor imbalance that exists
  3350. * amongst the groups of a sched_domain, during
  3351. * load balancing.
  3352. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3353. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3354. * @imbalance: Variable to store the imbalance.
  3355. */
  3356. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3357. int this_cpu, unsigned long *imbalance)
  3358. {
  3359. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3360. unsigned int imbn = 2;
  3361. if (sds->this_nr_running) {
  3362. sds->this_load_per_task /= sds->this_nr_running;
  3363. if (sds->busiest_load_per_task >
  3364. sds->this_load_per_task)
  3365. imbn = 1;
  3366. } else
  3367. sds->this_load_per_task =
  3368. cpu_avg_load_per_task(this_cpu);
  3369. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3370. sds->busiest_load_per_task * imbn) {
  3371. *imbalance = sds->busiest_load_per_task;
  3372. return;
  3373. }
  3374. /*
  3375. * OK, we don't have enough imbalance to justify moving tasks,
  3376. * however we may be able to increase total CPU power used by
  3377. * moving them.
  3378. */
  3379. pwr_now += sds->busiest->cpu_power *
  3380. min(sds->busiest_load_per_task, sds->max_load);
  3381. pwr_now += sds->this->cpu_power *
  3382. min(sds->this_load_per_task, sds->this_load);
  3383. pwr_now /= SCHED_LOAD_SCALE;
  3384. /* Amount of load we'd subtract */
  3385. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3386. sds->busiest->cpu_power;
  3387. if (sds->max_load > tmp)
  3388. pwr_move += sds->busiest->cpu_power *
  3389. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3390. /* Amount of load we'd add */
  3391. if (sds->max_load * sds->busiest->cpu_power <
  3392. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3393. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3394. sds->this->cpu_power;
  3395. else
  3396. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3397. sds->this->cpu_power;
  3398. pwr_move += sds->this->cpu_power *
  3399. min(sds->this_load_per_task, sds->this_load + tmp);
  3400. pwr_move /= SCHED_LOAD_SCALE;
  3401. /* Move if we gain throughput */
  3402. if (pwr_move > pwr_now)
  3403. *imbalance = sds->busiest_load_per_task;
  3404. }
  3405. /**
  3406. * calculate_imbalance - Calculate the amount of imbalance present within the
  3407. * groups of a given sched_domain during load balance.
  3408. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3409. * @this_cpu: Cpu for which currently load balance is being performed.
  3410. * @imbalance: The variable to store the imbalance.
  3411. */
  3412. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3413. unsigned long *imbalance)
  3414. {
  3415. unsigned long max_pull;
  3416. /*
  3417. * In the presence of smp nice balancing, certain scenarios can have
  3418. * max load less than avg load(as we skip the groups at or below
  3419. * its cpu_power, while calculating max_load..)
  3420. */
  3421. if (sds->max_load < sds->avg_load) {
  3422. *imbalance = 0;
  3423. return fix_small_imbalance(sds, this_cpu, imbalance);
  3424. }
  3425. /* Don't want to pull so many tasks that a group would go idle */
  3426. max_pull = min(sds->max_load - sds->avg_load,
  3427. sds->max_load - sds->busiest_load_per_task);
  3428. /* How much load to actually move to equalise the imbalance */
  3429. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3430. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3431. / SCHED_LOAD_SCALE;
  3432. /*
  3433. * if *imbalance is less than the average load per runnable task
  3434. * there is no gaurantee that any tasks will be moved so we'll have
  3435. * a think about bumping its value to force at least one task to be
  3436. * moved
  3437. */
  3438. if (*imbalance < sds->busiest_load_per_task)
  3439. return fix_small_imbalance(sds, this_cpu, imbalance);
  3440. }
  3441. /******* find_busiest_group() helpers end here *********************/
  3442. /**
  3443. * find_busiest_group - Returns the busiest group within the sched_domain
  3444. * if there is an imbalance. If there isn't an imbalance, and
  3445. * the user has opted for power-savings, it returns a group whose
  3446. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3447. * such a group exists.
  3448. *
  3449. * Also calculates the amount of weighted load which should be moved
  3450. * to restore balance.
  3451. *
  3452. * @sd: The sched_domain whose busiest group is to be returned.
  3453. * @this_cpu: The cpu for which load balancing is currently being performed.
  3454. * @imbalance: Variable which stores amount of weighted load which should
  3455. * be moved to restore balance/put a group to idle.
  3456. * @idle: The idle status of this_cpu.
  3457. * @sd_idle: The idleness of sd
  3458. * @cpus: The set of CPUs under consideration for load-balancing.
  3459. * @balance: Pointer to a variable indicating if this_cpu
  3460. * is the appropriate cpu to perform load balancing at this_level.
  3461. *
  3462. * Returns: - the busiest group if imbalance exists.
  3463. * - If no imbalance and user has opted for power-savings balance,
  3464. * return the least loaded group whose CPUs can be
  3465. * put to idle by rebalancing its tasks onto our group.
  3466. */
  3467. static struct sched_group *
  3468. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3469. unsigned long *imbalance, enum cpu_idle_type idle,
  3470. int *sd_idle, const struct cpumask *cpus, int *balance)
  3471. {
  3472. struct sd_lb_stats sds;
  3473. memset(&sds, 0, sizeof(sds));
  3474. /*
  3475. * Compute the various statistics relavent for load balancing at
  3476. * this level.
  3477. */
  3478. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3479. balance, &sds);
  3480. /* Cases where imbalance does not exist from POV of this_cpu */
  3481. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3482. * at this level.
  3483. * 2) There is no busy sibling group to pull from.
  3484. * 3) This group is the busiest group.
  3485. * 4) This group is more busy than the avg busieness at this
  3486. * sched_domain.
  3487. * 5) The imbalance is within the specified limit.
  3488. * 6) Any rebalance would lead to ping-pong
  3489. */
  3490. if (balance && !(*balance))
  3491. goto ret;
  3492. if (!sds.busiest || sds.busiest_nr_running == 0)
  3493. goto out_balanced;
  3494. if (sds.this_load >= sds.max_load)
  3495. goto out_balanced;
  3496. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3497. if (sds.this_load >= sds.avg_load)
  3498. goto out_balanced;
  3499. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3500. goto out_balanced;
  3501. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3502. if (sds.group_imb)
  3503. sds.busiest_load_per_task =
  3504. min(sds.busiest_load_per_task, sds.avg_load);
  3505. /*
  3506. * We're trying to get all the cpus to the average_load, so we don't
  3507. * want to push ourselves above the average load, nor do we wish to
  3508. * reduce the max loaded cpu below the average load, as either of these
  3509. * actions would just result in more rebalancing later, and ping-pong
  3510. * tasks around. Thus we look for the minimum possible imbalance.
  3511. * Negative imbalances (*we* are more loaded than anyone else) will
  3512. * be counted as no imbalance for these purposes -- we can't fix that
  3513. * by pulling tasks to us. Be careful of negative numbers as they'll
  3514. * appear as very large values with unsigned longs.
  3515. */
  3516. if (sds.max_load <= sds.busiest_load_per_task)
  3517. goto out_balanced;
  3518. /* Looks like there is an imbalance. Compute it */
  3519. calculate_imbalance(&sds, this_cpu, imbalance);
  3520. return sds.busiest;
  3521. out_balanced:
  3522. /*
  3523. * There is no obvious imbalance. But check if we can do some balancing
  3524. * to save power.
  3525. */
  3526. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3527. return sds.busiest;
  3528. ret:
  3529. *imbalance = 0;
  3530. return NULL;
  3531. }
  3532. static struct sched_group *group_of(int cpu)
  3533. {
  3534. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  3535. if (!sd)
  3536. return NULL;
  3537. return sd->groups;
  3538. }
  3539. static unsigned long power_of(int cpu)
  3540. {
  3541. struct sched_group *group = group_of(cpu);
  3542. if (!group)
  3543. return SCHED_LOAD_SCALE;
  3544. return group->cpu_power;
  3545. }
  3546. /*
  3547. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3548. */
  3549. static struct rq *
  3550. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3551. unsigned long imbalance, const struct cpumask *cpus)
  3552. {
  3553. struct rq *busiest = NULL, *rq;
  3554. unsigned long max_load = 0;
  3555. int i;
  3556. for_each_cpu(i, sched_group_cpus(group)) {
  3557. unsigned long power = power_of(i);
  3558. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3559. unsigned long wl;
  3560. if (!cpumask_test_cpu(i, cpus))
  3561. continue;
  3562. rq = cpu_rq(i);
  3563. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3564. wl /= power;
  3565. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3566. continue;
  3567. if (wl > max_load) {
  3568. max_load = wl;
  3569. busiest = rq;
  3570. }
  3571. }
  3572. return busiest;
  3573. }
  3574. /*
  3575. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3576. * so long as it is large enough.
  3577. */
  3578. #define MAX_PINNED_INTERVAL 512
  3579. /* Working cpumask for load_balance and load_balance_newidle. */
  3580. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3581. /*
  3582. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3583. * tasks if there is an imbalance.
  3584. */
  3585. static int load_balance(int this_cpu, struct rq *this_rq,
  3586. struct sched_domain *sd, enum cpu_idle_type idle,
  3587. int *balance)
  3588. {
  3589. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3590. struct sched_group *group;
  3591. unsigned long imbalance;
  3592. struct rq *busiest;
  3593. unsigned long flags;
  3594. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3595. cpumask_setall(cpus);
  3596. /*
  3597. * When power savings policy is enabled for the parent domain, idle
  3598. * sibling can pick up load irrespective of busy siblings. In this case,
  3599. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3600. * portraying it as CPU_NOT_IDLE.
  3601. */
  3602. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3603. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3604. sd_idle = 1;
  3605. schedstat_inc(sd, lb_count[idle]);
  3606. redo:
  3607. update_shares(sd);
  3608. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3609. cpus, balance);
  3610. if (*balance == 0)
  3611. goto out_balanced;
  3612. if (!group) {
  3613. schedstat_inc(sd, lb_nobusyg[idle]);
  3614. goto out_balanced;
  3615. }
  3616. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3617. if (!busiest) {
  3618. schedstat_inc(sd, lb_nobusyq[idle]);
  3619. goto out_balanced;
  3620. }
  3621. BUG_ON(busiest == this_rq);
  3622. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3623. ld_moved = 0;
  3624. if (busiest->nr_running > 1) {
  3625. /*
  3626. * Attempt to move tasks. If find_busiest_group has found
  3627. * an imbalance but busiest->nr_running <= 1, the group is
  3628. * still unbalanced. ld_moved simply stays zero, so it is
  3629. * correctly treated as an imbalance.
  3630. */
  3631. local_irq_save(flags);
  3632. double_rq_lock(this_rq, busiest);
  3633. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3634. imbalance, sd, idle, &all_pinned);
  3635. double_rq_unlock(this_rq, busiest);
  3636. local_irq_restore(flags);
  3637. /*
  3638. * some other cpu did the load balance for us.
  3639. */
  3640. if (ld_moved && this_cpu != smp_processor_id())
  3641. resched_cpu(this_cpu);
  3642. /* All tasks on this runqueue were pinned by CPU affinity */
  3643. if (unlikely(all_pinned)) {
  3644. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3645. if (!cpumask_empty(cpus))
  3646. goto redo;
  3647. goto out_balanced;
  3648. }
  3649. }
  3650. if (!ld_moved) {
  3651. schedstat_inc(sd, lb_failed[idle]);
  3652. sd->nr_balance_failed++;
  3653. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3654. spin_lock_irqsave(&busiest->lock, flags);
  3655. /* don't kick the migration_thread, if the curr
  3656. * task on busiest cpu can't be moved to this_cpu
  3657. */
  3658. if (!cpumask_test_cpu(this_cpu,
  3659. &busiest->curr->cpus_allowed)) {
  3660. spin_unlock_irqrestore(&busiest->lock, flags);
  3661. all_pinned = 1;
  3662. goto out_one_pinned;
  3663. }
  3664. if (!busiest->active_balance) {
  3665. busiest->active_balance = 1;
  3666. busiest->push_cpu = this_cpu;
  3667. active_balance = 1;
  3668. }
  3669. spin_unlock_irqrestore(&busiest->lock, flags);
  3670. if (active_balance)
  3671. wake_up_process(busiest->migration_thread);
  3672. /*
  3673. * We've kicked active balancing, reset the failure
  3674. * counter.
  3675. */
  3676. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3677. }
  3678. } else
  3679. sd->nr_balance_failed = 0;
  3680. if (likely(!active_balance)) {
  3681. /* We were unbalanced, so reset the balancing interval */
  3682. sd->balance_interval = sd->min_interval;
  3683. } else {
  3684. /*
  3685. * If we've begun active balancing, start to back off. This
  3686. * case may not be covered by the all_pinned logic if there
  3687. * is only 1 task on the busy runqueue (because we don't call
  3688. * move_tasks).
  3689. */
  3690. if (sd->balance_interval < sd->max_interval)
  3691. sd->balance_interval *= 2;
  3692. }
  3693. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3694. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3695. ld_moved = -1;
  3696. goto out;
  3697. out_balanced:
  3698. schedstat_inc(sd, lb_balanced[idle]);
  3699. sd->nr_balance_failed = 0;
  3700. out_one_pinned:
  3701. /* tune up the balancing interval */
  3702. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3703. (sd->balance_interval < sd->max_interval))
  3704. sd->balance_interval *= 2;
  3705. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3706. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3707. ld_moved = -1;
  3708. else
  3709. ld_moved = 0;
  3710. out:
  3711. if (ld_moved)
  3712. update_shares(sd);
  3713. return ld_moved;
  3714. }
  3715. /*
  3716. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3717. * tasks if there is an imbalance.
  3718. *
  3719. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3720. * this_rq is locked.
  3721. */
  3722. static int
  3723. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3724. {
  3725. struct sched_group *group;
  3726. struct rq *busiest = NULL;
  3727. unsigned long imbalance;
  3728. int ld_moved = 0;
  3729. int sd_idle = 0;
  3730. int all_pinned = 0;
  3731. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3732. cpumask_setall(cpus);
  3733. /*
  3734. * When power savings policy is enabled for the parent domain, idle
  3735. * sibling can pick up load irrespective of busy siblings. In this case,
  3736. * let the state of idle sibling percolate up as IDLE, instead of
  3737. * portraying it as CPU_NOT_IDLE.
  3738. */
  3739. if (sd->flags & SD_SHARE_CPUPOWER &&
  3740. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3741. sd_idle = 1;
  3742. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3743. redo:
  3744. update_shares_locked(this_rq, sd);
  3745. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3746. &sd_idle, cpus, NULL);
  3747. if (!group) {
  3748. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3749. goto out_balanced;
  3750. }
  3751. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3752. if (!busiest) {
  3753. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3754. goto out_balanced;
  3755. }
  3756. BUG_ON(busiest == this_rq);
  3757. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3758. ld_moved = 0;
  3759. if (busiest->nr_running > 1) {
  3760. /* Attempt to move tasks */
  3761. double_lock_balance(this_rq, busiest);
  3762. /* this_rq->clock is already updated */
  3763. update_rq_clock(busiest);
  3764. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3765. imbalance, sd, CPU_NEWLY_IDLE,
  3766. &all_pinned);
  3767. double_unlock_balance(this_rq, busiest);
  3768. if (unlikely(all_pinned)) {
  3769. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3770. if (!cpumask_empty(cpus))
  3771. goto redo;
  3772. }
  3773. }
  3774. if (!ld_moved) {
  3775. int active_balance = 0;
  3776. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3777. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3778. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3779. return -1;
  3780. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3781. return -1;
  3782. if (sd->nr_balance_failed++ < 2)
  3783. return -1;
  3784. /*
  3785. * The only task running in a non-idle cpu can be moved to this
  3786. * cpu in an attempt to completely freeup the other CPU
  3787. * package. The same method used to move task in load_balance()
  3788. * have been extended for load_balance_newidle() to speedup
  3789. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3790. *
  3791. * The package power saving logic comes from
  3792. * find_busiest_group(). If there are no imbalance, then
  3793. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3794. * f_b_g() will select a group from which a running task may be
  3795. * pulled to this cpu in order to make the other package idle.
  3796. * If there is no opportunity to make a package idle and if
  3797. * there are no imbalance, then f_b_g() will return NULL and no
  3798. * action will be taken in load_balance_newidle().
  3799. *
  3800. * Under normal task pull operation due to imbalance, there
  3801. * will be more than one task in the source run queue and
  3802. * move_tasks() will succeed. ld_moved will be true and this
  3803. * active balance code will not be triggered.
  3804. */
  3805. /* Lock busiest in correct order while this_rq is held */
  3806. double_lock_balance(this_rq, busiest);
  3807. /*
  3808. * don't kick the migration_thread, if the curr
  3809. * task on busiest cpu can't be moved to this_cpu
  3810. */
  3811. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3812. double_unlock_balance(this_rq, busiest);
  3813. all_pinned = 1;
  3814. return ld_moved;
  3815. }
  3816. if (!busiest->active_balance) {
  3817. busiest->active_balance = 1;
  3818. busiest->push_cpu = this_cpu;
  3819. active_balance = 1;
  3820. }
  3821. double_unlock_balance(this_rq, busiest);
  3822. /*
  3823. * Should not call ttwu while holding a rq->lock
  3824. */
  3825. spin_unlock(&this_rq->lock);
  3826. if (active_balance)
  3827. wake_up_process(busiest->migration_thread);
  3828. spin_lock(&this_rq->lock);
  3829. } else
  3830. sd->nr_balance_failed = 0;
  3831. update_shares_locked(this_rq, sd);
  3832. return ld_moved;
  3833. out_balanced:
  3834. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3835. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3836. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3837. return -1;
  3838. sd->nr_balance_failed = 0;
  3839. return 0;
  3840. }
  3841. /*
  3842. * idle_balance is called by schedule() if this_cpu is about to become
  3843. * idle. Attempts to pull tasks from other CPUs.
  3844. */
  3845. static void idle_balance(int this_cpu, struct rq *this_rq)
  3846. {
  3847. struct sched_domain *sd;
  3848. int pulled_task = 0;
  3849. unsigned long next_balance = jiffies + HZ;
  3850. for_each_domain(this_cpu, sd) {
  3851. unsigned long interval;
  3852. if (!(sd->flags & SD_LOAD_BALANCE))
  3853. continue;
  3854. if (sd->flags & SD_BALANCE_NEWIDLE)
  3855. /* If we've pulled tasks over stop searching: */
  3856. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3857. sd);
  3858. interval = msecs_to_jiffies(sd->balance_interval);
  3859. if (time_after(next_balance, sd->last_balance + interval))
  3860. next_balance = sd->last_balance + interval;
  3861. if (pulled_task)
  3862. break;
  3863. }
  3864. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3865. /*
  3866. * We are going idle. next_balance may be set based on
  3867. * a busy processor. So reset next_balance.
  3868. */
  3869. this_rq->next_balance = next_balance;
  3870. }
  3871. }
  3872. /*
  3873. * active_load_balance is run by migration threads. It pushes running tasks
  3874. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3875. * running on each physical CPU where possible, and avoids physical /
  3876. * logical imbalances.
  3877. *
  3878. * Called with busiest_rq locked.
  3879. */
  3880. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3881. {
  3882. int target_cpu = busiest_rq->push_cpu;
  3883. struct sched_domain *sd;
  3884. struct rq *target_rq;
  3885. /* Is there any task to move? */
  3886. if (busiest_rq->nr_running <= 1)
  3887. return;
  3888. target_rq = cpu_rq(target_cpu);
  3889. /*
  3890. * This condition is "impossible", if it occurs
  3891. * we need to fix it. Originally reported by
  3892. * Bjorn Helgaas on a 128-cpu setup.
  3893. */
  3894. BUG_ON(busiest_rq == target_rq);
  3895. /* move a task from busiest_rq to target_rq */
  3896. double_lock_balance(busiest_rq, target_rq);
  3897. update_rq_clock(busiest_rq);
  3898. update_rq_clock(target_rq);
  3899. /* Search for an sd spanning us and the target CPU. */
  3900. for_each_domain(target_cpu, sd) {
  3901. if ((sd->flags & SD_LOAD_BALANCE) &&
  3902. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3903. break;
  3904. }
  3905. if (likely(sd)) {
  3906. schedstat_inc(sd, alb_count);
  3907. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3908. sd, CPU_IDLE))
  3909. schedstat_inc(sd, alb_pushed);
  3910. else
  3911. schedstat_inc(sd, alb_failed);
  3912. }
  3913. double_unlock_balance(busiest_rq, target_rq);
  3914. }
  3915. #ifdef CONFIG_NO_HZ
  3916. static struct {
  3917. atomic_t load_balancer;
  3918. cpumask_var_t cpu_mask;
  3919. cpumask_var_t ilb_grp_nohz_mask;
  3920. } nohz ____cacheline_aligned = {
  3921. .load_balancer = ATOMIC_INIT(-1),
  3922. };
  3923. int get_nohz_load_balancer(void)
  3924. {
  3925. return atomic_read(&nohz.load_balancer);
  3926. }
  3927. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3928. /**
  3929. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3930. * @cpu: The cpu whose lowest level of sched domain is to
  3931. * be returned.
  3932. * @flag: The flag to check for the lowest sched_domain
  3933. * for the given cpu.
  3934. *
  3935. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3936. */
  3937. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3938. {
  3939. struct sched_domain *sd;
  3940. for_each_domain(cpu, sd)
  3941. if (sd && (sd->flags & flag))
  3942. break;
  3943. return sd;
  3944. }
  3945. /**
  3946. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3947. * @cpu: The cpu whose domains we're iterating over.
  3948. * @sd: variable holding the value of the power_savings_sd
  3949. * for cpu.
  3950. * @flag: The flag to filter the sched_domains to be iterated.
  3951. *
  3952. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3953. * set, starting from the lowest sched_domain to the highest.
  3954. */
  3955. #define for_each_flag_domain(cpu, sd, flag) \
  3956. for (sd = lowest_flag_domain(cpu, flag); \
  3957. (sd && (sd->flags & flag)); sd = sd->parent)
  3958. /**
  3959. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3960. * @ilb_group: group to be checked for semi-idleness
  3961. *
  3962. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3963. *
  3964. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3965. * and atleast one non-idle CPU. This helper function checks if the given
  3966. * sched_group is semi-idle or not.
  3967. */
  3968. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3969. {
  3970. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3971. sched_group_cpus(ilb_group));
  3972. /*
  3973. * A sched_group is semi-idle when it has atleast one busy cpu
  3974. * and atleast one idle cpu.
  3975. */
  3976. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3977. return 0;
  3978. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3979. return 0;
  3980. return 1;
  3981. }
  3982. /**
  3983. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3984. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3985. *
  3986. * Returns: Returns the id of the idle load balancer if it exists,
  3987. * Else, returns >= nr_cpu_ids.
  3988. *
  3989. * This algorithm picks the idle load balancer such that it belongs to a
  3990. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3991. * completely idle packages/cores just for the purpose of idle load balancing
  3992. * when there are other idle cpu's which are better suited for that job.
  3993. */
  3994. static int find_new_ilb(int cpu)
  3995. {
  3996. struct sched_domain *sd;
  3997. struct sched_group *ilb_group;
  3998. /*
  3999. * Have idle load balancer selection from semi-idle packages only
  4000. * when power-aware load balancing is enabled
  4001. */
  4002. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4003. goto out_done;
  4004. /*
  4005. * Optimize for the case when we have no idle CPUs or only one
  4006. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4007. */
  4008. if (cpumask_weight(nohz.cpu_mask) < 2)
  4009. goto out_done;
  4010. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4011. ilb_group = sd->groups;
  4012. do {
  4013. if (is_semi_idle_group(ilb_group))
  4014. return cpumask_first(nohz.ilb_grp_nohz_mask);
  4015. ilb_group = ilb_group->next;
  4016. } while (ilb_group != sd->groups);
  4017. }
  4018. out_done:
  4019. return cpumask_first(nohz.cpu_mask);
  4020. }
  4021. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4022. static inline int find_new_ilb(int call_cpu)
  4023. {
  4024. return cpumask_first(nohz.cpu_mask);
  4025. }
  4026. #endif
  4027. /*
  4028. * This routine will try to nominate the ilb (idle load balancing)
  4029. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  4030. * load balancing on behalf of all those cpus. If all the cpus in the system
  4031. * go into this tickless mode, then there will be no ilb owner (as there is
  4032. * no need for one) and all the cpus will sleep till the next wakeup event
  4033. * arrives...
  4034. *
  4035. * For the ilb owner, tick is not stopped. And this tick will be used
  4036. * for idle load balancing. ilb owner will still be part of
  4037. * nohz.cpu_mask..
  4038. *
  4039. * While stopping the tick, this cpu will become the ilb owner if there
  4040. * is no other owner. And will be the owner till that cpu becomes busy
  4041. * or if all cpus in the system stop their ticks at which point
  4042. * there is no need for ilb owner.
  4043. *
  4044. * When the ilb owner becomes busy, it nominates another owner, during the
  4045. * next busy scheduler_tick()
  4046. */
  4047. int select_nohz_load_balancer(int stop_tick)
  4048. {
  4049. int cpu = smp_processor_id();
  4050. if (stop_tick) {
  4051. cpu_rq(cpu)->in_nohz_recently = 1;
  4052. if (!cpu_active(cpu)) {
  4053. if (atomic_read(&nohz.load_balancer) != cpu)
  4054. return 0;
  4055. /*
  4056. * If we are going offline and still the leader,
  4057. * give up!
  4058. */
  4059. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4060. BUG();
  4061. return 0;
  4062. }
  4063. cpumask_set_cpu(cpu, nohz.cpu_mask);
  4064. /* time for ilb owner also to sleep */
  4065. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4066. if (atomic_read(&nohz.load_balancer) == cpu)
  4067. atomic_set(&nohz.load_balancer, -1);
  4068. return 0;
  4069. }
  4070. if (atomic_read(&nohz.load_balancer) == -1) {
  4071. /* make me the ilb owner */
  4072. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4073. return 1;
  4074. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4075. int new_ilb;
  4076. if (!(sched_smt_power_savings ||
  4077. sched_mc_power_savings))
  4078. return 1;
  4079. /*
  4080. * Check to see if there is a more power-efficient
  4081. * ilb.
  4082. */
  4083. new_ilb = find_new_ilb(cpu);
  4084. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4085. atomic_set(&nohz.load_balancer, -1);
  4086. resched_cpu(new_ilb);
  4087. return 0;
  4088. }
  4089. return 1;
  4090. }
  4091. } else {
  4092. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4093. return 0;
  4094. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4095. if (atomic_read(&nohz.load_balancer) == cpu)
  4096. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4097. BUG();
  4098. }
  4099. return 0;
  4100. }
  4101. #endif
  4102. static DEFINE_SPINLOCK(balancing);
  4103. /*
  4104. * It checks each scheduling domain to see if it is due to be balanced,
  4105. * and initiates a balancing operation if so.
  4106. *
  4107. * Balancing parameters are set up in arch_init_sched_domains.
  4108. */
  4109. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4110. {
  4111. int balance = 1;
  4112. struct rq *rq = cpu_rq(cpu);
  4113. unsigned long interval;
  4114. struct sched_domain *sd;
  4115. /* Earliest time when we have to do rebalance again */
  4116. unsigned long next_balance = jiffies + 60*HZ;
  4117. int update_next_balance = 0;
  4118. int need_serialize;
  4119. for_each_domain(cpu, sd) {
  4120. if (!(sd->flags & SD_LOAD_BALANCE))
  4121. continue;
  4122. interval = sd->balance_interval;
  4123. if (idle != CPU_IDLE)
  4124. interval *= sd->busy_factor;
  4125. /* scale ms to jiffies */
  4126. interval = msecs_to_jiffies(interval);
  4127. if (unlikely(!interval))
  4128. interval = 1;
  4129. if (interval > HZ*NR_CPUS/10)
  4130. interval = HZ*NR_CPUS/10;
  4131. need_serialize = sd->flags & SD_SERIALIZE;
  4132. if (need_serialize) {
  4133. if (!spin_trylock(&balancing))
  4134. goto out;
  4135. }
  4136. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4137. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4138. /*
  4139. * We've pulled tasks over so either we're no
  4140. * longer idle, or one of our SMT siblings is
  4141. * not idle.
  4142. */
  4143. idle = CPU_NOT_IDLE;
  4144. }
  4145. sd->last_balance = jiffies;
  4146. }
  4147. if (need_serialize)
  4148. spin_unlock(&balancing);
  4149. out:
  4150. if (time_after(next_balance, sd->last_balance + interval)) {
  4151. next_balance = sd->last_balance + interval;
  4152. update_next_balance = 1;
  4153. }
  4154. /*
  4155. * Stop the load balance at this level. There is another
  4156. * CPU in our sched group which is doing load balancing more
  4157. * actively.
  4158. */
  4159. if (!balance)
  4160. break;
  4161. }
  4162. /*
  4163. * next_balance will be updated only when there is a need.
  4164. * When the cpu is attached to null domain for ex, it will not be
  4165. * updated.
  4166. */
  4167. if (likely(update_next_balance))
  4168. rq->next_balance = next_balance;
  4169. }
  4170. /*
  4171. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4172. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4173. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4174. */
  4175. static void run_rebalance_domains(struct softirq_action *h)
  4176. {
  4177. int this_cpu = smp_processor_id();
  4178. struct rq *this_rq = cpu_rq(this_cpu);
  4179. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4180. CPU_IDLE : CPU_NOT_IDLE;
  4181. rebalance_domains(this_cpu, idle);
  4182. #ifdef CONFIG_NO_HZ
  4183. /*
  4184. * If this cpu is the owner for idle load balancing, then do the
  4185. * balancing on behalf of the other idle cpus whose ticks are
  4186. * stopped.
  4187. */
  4188. if (this_rq->idle_at_tick &&
  4189. atomic_read(&nohz.load_balancer) == this_cpu) {
  4190. struct rq *rq;
  4191. int balance_cpu;
  4192. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4193. if (balance_cpu == this_cpu)
  4194. continue;
  4195. /*
  4196. * If this cpu gets work to do, stop the load balancing
  4197. * work being done for other cpus. Next load
  4198. * balancing owner will pick it up.
  4199. */
  4200. if (need_resched())
  4201. break;
  4202. rebalance_domains(balance_cpu, CPU_IDLE);
  4203. rq = cpu_rq(balance_cpu);
  4204. if (time_after(this_rq->next_balance, rq->next_balance))
  4205. this_rq->next_balance = rq->next_balance;
  4206. }
  4207. }
  4208. #endif
  4209. }
  4210. static inline int on_null_domain(int cpu)
  4211. {
  4212. return !rcu_dereference(cpu_rq(cpu)->sd);
  4213. }
  4214. /*
  4215. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4216. *
  4217. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4218. * idle load balancing owner or decide to stop the periodic load balancing,
  4219. * if the whole system is idle.
  4220. */
  4221. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4222. {
  4223. #ifdef CONFIG_NO_HZ
  4224. /*
  4225. * If we were in the nohz mode recently and busy at the current
  4226. * scheduler tick, then check if we need to nominate new idle
  4227. * load balancer.
  4228. */
  4229. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4230. rq->in_nohz_recently = 0;
  4231. if (atomic_read(&nohz.load_balancer) == cpu) {
  4232. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4233. atomic_set(&nohz.load_balancer, -1);
  4234. }
  4235. if (atomic_read(&nohz.load_balancer) == -1) {
  4236. int ilb = find_new_ilb(cpu);
  4237. if (ilb < nr_cpu_ids)
  4238. resched_cpu(ilb);
  4239. }
  4240. }
  4241. /*
  4242. * If this cpu is idle and doing idle load balancing for all the
  4243. * cpus with ticks stopped, is it time for that to stop?
  4244. */
  4245. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4246. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4247. resched_cpu(cpu);
  4248. return;
  4249. }
  4250. /*
  4251. * If this cpu is idle and the idle load balancing is done by
  4252. * someone else, then no need raise the SCHED_SOFTIRQ
  4253. */
  4254. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4255. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4256. return;
  4257. #endif
  4258. /* Don't need to rebalance while attached to NULL domain */
  4259. if (time_after_eq(jiffies, rq->next_balance) &&
  4260. likely(!on_null_domain(cpu)))
  4261. raise_softirq(SCHED_SOFTIRQ);
  4262. }
  4263. #else /* CONFIG_SMP */
  4264. /*
  4265. * on UP we do not need to balance between CPUs:
  4266. */
  4267. static inline void idle_balance(int cpu, struct rq *rq)
  4268. {
  4269. }
  4270. #endif
  4271. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4272. EXPORT_PER_CPU_SYMBOL(kstat);
  4273. /*
  4274. * Return any ns on the sched_clock that have not yet been accounted in
  4275. * @p in case that task is currently running.
  4276. *
  4277. * Called with task_rq_lock() held on @rq.
  4278. */
  4279. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4280. {
  4281. u64 ns = 0;
  4282. if (task_current(rq, p)) {
  4283. update_rq_clock(rq);
  4284. ns = rq->clock - p->se.exec_start;
  4285. if ((s64)ns < 0)
  4286. ns = 0;
  4287. }
  4288. return ns;
  4289. }
  4290. unsigned long long task_delta_exec(struct task_struct *p)
  4291. {
  4292. unsigned long flags;
  4293. struct rq *rq;
  4294. u64 ns = 0;
  4295. rq = task_rq_lock(p, &flags);
  4296. ns = do_task_delta_exec(p, rq);
  4297. task_rq_unlock(rq, &flags);
  4298. return ns;
  4299. }
  4300. /*
  4301. * Return accounted runtime for the task.
  4302. * In case the task is currently running, return the runtime plus current's
  4303. * pending runtime that have not been accounted yet.
  4304. */
  4305. unsigned long long task_sched_runtime(struct task_struct *p)
  4306. {
  4307. unsigned long flags;
  4308. struct rq *rq;
  4309. u64 ns = 0;
  4310. rq = task_rq_lock(p, &flags);
  4311. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4312. task_rq_unlock(rq, &flags);
  4313. return ns;
  4314. }
  4315. /*
  4316. * Return sum_exec_runtime for the thread group.
  4317. * In case the task is currently running, return the sum plus current's
  4318. * pending runtime that have not been accounted yet.
  4319. *
  4320. * Note that the thread group might have other running tasks as well,
  4321. * so the return value not includes other pending runtime that other
  4322. * running tasks might have.
  4323. */
  4324. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4325. {
  4326. struct task_cputime totals;
  4327. unsigned long flags;
  4328. struct rq *rq;
  4329. u64 ns;
  4330. rq = task_rq_lock(p, &flags);
  4331. thread_group_cputime(p, &totals);
  4332. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4333. task_rq_unlock(rq, &flags);
  4334. return ns;
  4335. }
  4336. /*
  4337. * Account user cpu time to a process.
  4338. * @p: the process that the cpu time gets accounted to
  4339. * @cputime: the cpu time spent in user space since the last update
  4340. * @cputime_scaled: cputime scaled by cpu frequency
  4341. */
  4342. void account_user_time(struct task_struct *p, cputime_t cputime,
  4343. cputime_t cputime_scaled)
  4344. {
  4345. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4346. cputime64_t tmp;
  4347. /* Add user time to process. */
  4348. p->utime = cputime_add(p->utime, cputime);
  4349. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4350. account_group_user_time(p, cputime);
  4351. /* Add user time to cpustat. */
  4352. tmp = cputime_to_cputime64(cputime);
  4353. if (TASK_NICE(p) > 0)
  4354. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4355. else
  4356. cpustat->user = cputime64_add(cpustat->user, tmp);
  4357. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4358. /* Account for user time used */
  4359. acct_update_integrals(p);
  4360. }
  4361. /*
  4362. * Account guest cpu time to a process.
  4363. * @p: the process that the cpu time gets accounted to
  4364. * @cputime: the cpu time spent in virtual machine since the last update
  4365. * @cputime_scaled: cputime scaled by cpu frequency
  4366. */
  4367. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4368. cputime_t cputime_scaled)
  4369. {
  4370. cputime64_t tmp;
  4371. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4372. tmp = cputime_to_cputime64(cputime);
  4373. /* Add guest time to process. */
  4374. p->utime = cputime_add(p->utime, cputime);
  4375. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4376. account_group_user_time(p, cputime);
  4377. p->gtime = cputime_add(p->gtime, cputime);
  4378. /* Add guest time to cpustat. */
  4379. cpustat->user = cputime64_add(cpustat->user, tmp);
  4380. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4381. }
  4382. /*
  4383. * Account system cpu time to a process.
  4384. * @p: the process that the cpu time gets accounted to
  4385. * @hardirq_offset: the offset to subtract from hardirq_count()
  4386. * @cputime: the cpu time spent in kernel space since the last update
  4387. * @cputime_scaled: cputime scaled by cpu frequency
  4388. */
  4389. void account_system_time(struct task_struct *p, int hardirq_offset,
  4390. cputime_t cputime, cputime_t cputime_scaled)
  4391. {
  4392. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4393. cputime64_t tmp;
  4394. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4395. account_guest_time(p, cputime, cputime_scaled);
  4396. return;
  4397. }
  4398. /* Add system time to process. */
  4399. p->stime = cputime_add(p->stime, cputime);
  4400. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4401. account_group_system_time(p, cputime);
  4402. /* Add system time to cpustat. */
  4403. tmp = cputime_to_cputime64(cputime);
  4404. if (hardirq_count() - hardirq_offset)
  4405. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4406. else if (softirq_count())
  4407. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4408. else
  4409. cpustat->system = cputime64_add(cpustat->system, tmp);
  4410. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4411. /* Account for system time used */
  4412. acct_update_integrals(p);
  4413. }
  4414. /*
  4415. * Account for involuntary wait time.
  4416. * @steal: the cpu time spent in involuntary wait
  4417. */
  4418. void account_steal_time(cputime_t cputime)
  4419. {
  4420. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4421. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4422. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4423. }
  4424. /*
  4425. * Account for idle time.
  4426. * @cputime: the cpu time spent in idle wait
  4427. */
  4428. void account_idle_time(cputime_t cputime)
  4429. {
  4430. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4431. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4432. struct rq *rq = this_rq();
  4433. if (atomic_read(&rq->nr_iowait) > 0)
  4434. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4435. else
  4436. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4437. }
  4438. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4439. /*
  4440. * Account a single tick of cpu time.
  4441. * @p: the process that the cpu time gets accounted to
  4442. * @user_tick: indicates if the tick is a user or a system tick
  4443. */
  4444. void account_process_tick(struct task_struct *p, int user_tick)
  4445. {
  4446. cputime_t one_jiffy = jiffies_to_cputime(1);
  4447. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4448. struct rq *rq = this_rq();
  4449. if (user_tick)
  4450. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4451. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4452. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4453. one_jiffy_scaled);
  4454. else
  4455. account_idle_time(one_jiffy);
  4456. }
  4457. /*
  4458. * Account multiple ticks of steal time.
  4459. * @p: the process from which the cpu time has been stolen
  4460. * @ticks: number of stolen ticks
  4461. */
  4462. void account_steal_ticks(unsigned long ticks)
  4463. {
  4464. account_steal_time(jiffies_to_cputime(ticks));
  4465. }
  4466. /*
  4467. * Account multiple ticks of idle time.
  4468. * @ticks: number of stolen ticks
  4469. */
  4470. void account_idle_ticks(unsigned long ticks)
  4471. {
  4472. account_idle_time(jiffies_to_cputime(ticks));
  4473. }
  4474. #endif
  4475. /*
  4476. * Use precise platform statistics if available:
  4477. */
  4478. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4479. cputime_t task_utime(struct task_struct *p)
  4480. {
  4481. return p->utime;
  4482. }
  4483. cputime_t task_stime(struct task_struct *p)
  4484. {
  4485. return p->stime;
  4486. }
  4487. #else
  4488. cputime_t task_utime(struct task_struct *p)
  4489. {
  4490. clock_t utime = cputime_to_clock_t(p->utime),
  4491. total = utime + cputime_to_clock_t(p->stime);
  4492. u64 temp;
  4493. /*
  4494. * Use CFS's precise accounting:
  4495. */
  4496. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4497. if (total) {
  4498. temp *= utime;
  4499. do_div(temp, total);
  4500. }
  4501. utime = (clock_t)temp;
  4502. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4503. return p->prev_utime;
  4504. }
  4505. cputime_t task_stime(struct task_struct *p)
  4506. {
  4507. clock_t stime;
  4508. /*
  4509. * Use CFS's precise accounting. (we subtract utime from
  4510. * the total, to make sure the total observed by userspace
  4511. * grows monotonically - apps rely on that):
  4512. */
  4513. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4514. cputime_to_clock_t(task_utime(p));
  4515. if (stime >= 0)
  4516. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4517. return p->prev_stime;
  4518. }
  4519. #endif
  4520. inline cputime_t task_gtime(struct task_struct *p)
  4521. {
  4522. return p->gtime;
  4523. }
  4524. /*
  4525. * This function gets called by the timer code, with HZ frequency.
  4526. * We call it with interrupts disabled.
  4527. *
  4528. * It also gets called by the fork code, when changing the parent's
  4529. * timeslices.
  4530. */
  4531. void scheduler_tick(void)
  4532. {
  4533. int cpu = smp_processor_id();
  4534. struct rq *rq = cpu_rq(cpu);
  4535. struct task_struct *curr = rq->curr;
  4536. sched_clock_tick();
  4537. spin_lock(&rq->lock);
  4538. update_rq_clock(rq);
  4539. update_cpu_load(rq);
  4540. curr->sched_class->task_tick(rq, curr, 0);
  4541. spin_unlock(&rq->lock);
  4542. perf_counter_task_tick(curr, cpu);
  4543. #ifdef CONFIG_SMP
  4544. rq->idle_at_tick = idle_cpu(cpu);
  4545. trigger_load_balance(rq, cpu);
  4546. #endif
  4547. }
  4548. notrace unsigned long get_parent_ip(unsigned long addr)
  4549. {
  4550. if (in_lock_functions(addr)) {
  4551. addr = CALLER_ADDR2;
  4552. if (in_lock_functions(addr))
  4553. addr = CALLER_ADDR3;
  4554. }
  4555. return addr;
  4556. }
  4557. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4558. defined(CONFIG_PREEMPT_TRACER))
  4559. void __kprobes add_preempt_count(int val)
  4560. {
  4561. #ifdef CONFIG_DEBUG_PREEMPT
  4562. /*
  4563. * Underflow?
  4564. */
  4565. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4566. return;
  4567. #endif
  4568. preempt_count() += val;
  4569. #ifdef CONFIG_DEBUG_PREEMPT
  4570. /*
  4571. * Spinlock count overflowing soon?
  4572. */
  4573. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4574. PREEMPT_MASK - 10);
  4575. #endif
  4576. if (preempt_count() == val)
  4577. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4578. }
  4579. EXPORT_SYMBOL(add_preempt_count);
  4580. void __kprobes sub_preempt_count(int val)
  4581. {
  4582. #ifdef CONFIG_DEBUG_PREEMPT
  4583. /*
  4584. * Underflow?
  4585. */
  4586. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4587. return;
  4588. /*
  4589. * Is the spinlock portion underflowing?
  4590. */
  4591. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4592. !(preempt_count() & PREEMPT_MASK)))
  4593. return;
  4594. #endif
  4595. if (preempt_count() == val)
  4596. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4597. preempt_count() -= val;
  4598. }
  4599. EXPORT_SYMBOL(sub_preempt_count);
  4600. #endif
  4601. /*
  4602. * Print scheduling while atomic bug:
  4603. */
  4604. static noinline void __schedule_bug(struct task_struct *prev)
  4605. {
  4606. struct pt_regs *regs = get_irq_regs();
  4607. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4608. prev->comm, prev->pid, preempt_count());
  4609. debug_show_held_locks(prev);
  4610. print_modules();
  4611. if (irqs_disabled())
  4612. print_irqtrace_events(prev);
  4613. if (regs)
  4614. show_regs(regs);
  4615. else
  4616. dump_stack();
  4617. }
  4618. /*
  4619. * Various schedule()-time debugging checks and statistics:
  4620. */
  4621. static inline void schedule_debug(struct task_struct *prev)
  4622. {
  4623. /*
  4624. * Test if we are atomic. Since do_exit() needs to call into
  4625. * schedule() atomically, we ignore that path for now.
  4626. * Otherwise, whine if we are scheduling when we should not be.
  4627. */
  4628. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4629. __schedule_bug(prev);
  4630. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4631. schedstat_inc(this_rq(), sched_count);
  4632. #ifdef CONFIG_SCHEDSTATS
  4633. if (unlikely(prev->lock_depth >= 0)) {
  4634. schedstat_inc(this_rq(), bkl_count);
  4635. schedstat_inc(prev, sched_info.bkl_count);
  4636. }
  4637. #endif
  4638. }
  4639. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4640. {
  4641. if (prev->state == TASK_RUNNING) {
  4642. u64 runtime = prev->se.sum_exec_runtime;
  4643. runtime -= prev->se.prev_sum_exec_runtime;
  4644. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4645. /*
  4646. * In order to avoid avg_overlap growing stale when we are
  4647. * indeed overlapping and hence not getting put to sleep, grow
  4648. * the avg_overlap on preemption.
  4649. *
  4650. * We use the average preemption runtime because that
  4651. * correlates to the amount of cache footprint a task can
  4652. * build up.
  4653. */
  4654. update_avg(&prev->se.avg_overlap, runtime);
  4655. }
  4656. prev->sched_class->put_prev_task(rq, prev);
  4657. }
  4658. /*
  4659. * Pick up the highest-prio task:
  4660. */
  4661. static inline struct task_struct *
  4662. pick_next_task(struct rq *rq)
  4663. {
  4664. const struct sched_class *class;
  4665. struct task_struct *p;
  4666. /*
  4667. * Optimization: we know that if all tasks are in
  4668. * the fair class we can call that function directly:
  4669. */
  4670. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4671. p = fair_sched_class.pick_next_task(rq);
  4672. if (likely(p))
  4673. return p;
  4674. }
  4675. class = sched_class_highest;
  4676. for ( ; ; ) {
  4677. p = class->pick_next_task(rq);
  4678. if (p)
  4679. return p;
  4680. /*
  4681. * Will never be NULL as the idle class always
  4682. * returns a non-NULL p:
  4683. */
  4684. class = class->next;
  4685. }
  4686. }
  4687. /*
  4688. * schedule() is the main scheduler function.
  4689. */
  4690. asmlinkage void __sched schedule(void)
  4691. {
  4692. struct task_struct *prev, *next;
  4693. unsigned long *switch_count;
  4694. struct rq *rq;
  4695. int cpu;
  4696. need_resched:
  4697. preempt_disable();
  4698. cpu = smp_processor_id();
  4699. rq = cpu_rq(cpu);
  4700. rcu_sched_qs(cpu);
  4701. prev = rq->curr;
  4702. switch_count = &prev->nivcsw;
  4703. release_kernel_lock(prev);
  4704. need_resched_nonpreemptible:
  4705. schedule_debug(prev);
  4706. if (sched_feat(HRTICK))
  4707. hrtick_clear(rq);
  4708. spin_lock_irq(&rq->lock);
  4709. update_rq_clock(rq);
  4710. clear_tsk_need_resched(prev);
  4711. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4712. if (unlikely(signal_pending_state(prev->state, prev)))
  4713. prev->state = TASK_RUNNING;
  4714. else
  4715. deactivate_task(rq, prev, 1);
  4716. switch_count = &prev->nvcsw;
  4717. }
  4718. pre_schedule(rq, prev);
  4719. if (unlikely(!rq->nr_running))
  4720. idle_balance(cpu, rq);
  4721. put_prev_task(rq, prev);
  4722. next = pick_next_task(rq);
  4723. if (likely(prev != next)) {
  4724. sched_info_switch(prev, next);
  4725. perf_counter_task_sched_out(prev, next, cpu);
  4726. rq->nr_switches++;
  4727. rq->curr = next;
  4728. ++*switch_count;
  4729. context_switch(rq, prev, next); /* unlocks the rq */
  4730. /*
  4731. * the context switch might have flipped the stack from under
  4732. * us, hence refresh the local variables.
  4733. */
  4734. cpu = smp_processor_id();
  4735. rq = cpu_rq(cpu);
  4736. } else
  4737. spin_unlock_irq(&rq->lock);
  4738. post_schedule(rq);
  4739. if (unlikely(reacquire_kernel_lock(current) < 0))
  4740. goto need_resched_nonpreemptible;
  4741. preempt_enable_no_resched();
  4742. if (need_resched())
  4743. goto need_resched;
  4744. }
  4745. EXPORT_SYMBOL(schedule);
  4746. #ifdef CONFIG_SMP
  4747. /*
  4748. * Look out! "owner" is an entirely speculative pointer
  4749. * access and not reliable.
  4750. */
  4751. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4752. {
  4753. unsigned int cpu;
  4754. struct rq *rq;
  4755. if (!sched_feat(OWNER_SPIN))
  4756. return 0;
  4757. #ifdef CONFIG_DEBUG_PAGEALLOC
  4758. /*
  4759. * Need to access the cpu field knowing that
  4760. * DEBUG_PAGEALLOC could have unmapped it if
  4761. * the mutex owner just released it and exited.
  4762. */
  4763. if (probe_kernel_address(&owner->cpu, cpu))
  4764. goto out;
  4765. #else
  4766. cpu = owner->cpu;
  4767. #endif
  4768. /*
  4769. * Even if the access succeeded (likely case),
  4770. * the cpu field may no longer be valid.
  4771. */
  4772. if (cpu >= nr_cpumask_bits)
  4773. goto out;
  4774. /*
  4775. * We need to validate that we can do a
  4776. * get_cpu() and that we have the percpu area.
  4777. */
  4778. if (!cpu_online(cpu))
  4779. goto out;
  4780. rq = cpu_rq(cpu);
  4781. for (;;) {
  4782. /*
  4783. * Owner changed, break to re-assess state.
  4784. */
  4785. if (lock->owner != owner)
  4786. break;
  4787. /*
  4788. * Is that owner really running on that cpu?
  4789. */
  4790. if (task_thread_info(rq->curr) != owner || need_resched())
  4791. return 0;
  4792. cpu_relax();
  4793. }
  4794. out:
  4795. return 1;
  4796. }
  4797. #endif
  4798. #ifdef CONFIG_PREEMPT
  4799. /*
  4800. * this is the entry point to schedule() from in-kernel preemption
  4801. * off of preempt_enable. Kernel preemptions off return from interrupt
  4802. * occur there and call schedule directly.
  4803. */
  4804. asmlinkage void __sched preempt_schedule(void)
  4805. {
  4806. struct thread_info *ti = current_thread_info();
  4807. /*
  4808. * If there is a non-zero preempt_count or interrupts are disabled,
  4809. * we do not want to preempt the current task. Just return..
  4810. */
  4811. if (likely(ti->preempt_count || irqs_disabled()))
  4812. return;
  4813. do {
  4814. add_preempt_count(PREEMPT_ACTIVE);
  4815. schedule();
  4816. sub_preempt_count(PREEMPT_ACTIVE);
  4817. /*
  4818. * Check again in case we missed a preemption opportunity
  4819. * between schedule and now.
  4820. */
  4821. barrier();
  4822. } while (need_resched());
  4823. }
  4824. EXPORT_SYMBOL(preempt_schedule);
  4825. /*
  4826. * this is the entry point to schedule() from kernel preemption
  4827. * off of irq context.
  4828. * Note, that this is called and return with irqs disabled. This will
  4829. * protect us against recursive calling from irq.
  4830. */
  4831. asmlinkage void __sched preempt_schedule_irq(void)
  4832. {
  4833. struct thread_info *ti = current_thread_info();
  4834. /* Catch callers which need to be fixed */
  4835. BUG_ON(ti->preempt_count || !irqs_disabled());
  4836. do {
  4837. add_preempt_count(PREEMPT_ACTIVE);
  4838. local_irq_enable();
  4839. schedule();
  4840. local_irq_disable();
  4841. sub_preempt_count(PREEMPT_ACTIVE);
  4842. /*
  4843. * Check again in case we missed a preemption opportunity
  4844. * between schedule and now.
  4845. */
  4846. barrier();
  4847. } while (need_resched());
  4848. }
  4849. #endif /* CONFIG_PREEMPT */
  4850. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4851. void *key)
  4852. {
  4853. return try_to_wake_up(curr->private, mode, sync);
  4854. }
  4855. EXPORT_SYMBOL(default_wake_function);
  4856. /*
  4857. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4858. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4859. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4860. *
  4861. * There are circumstances in which we can try to wake a task which has already
  4862. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4863. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4864. */
  4865. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4866. int nr_exclusive, int sync, void *key)
  4867. {
  4868. wait_queue_t *curr, *next;
  4869. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4870. unsigned flags = curr->flags;
  4871. if (curr->func(curr, mode, sync, key) &&
  4872. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4873. break;
  4874. }
  4875. }
  4876. /**
  4877. * __wake_up - wake up threads blocked on a waitqueue.
  4878. * @q: the waitqueue
  4879. * @mode: which threads
  4880. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4881. * @key: is directly passed to the wakeup function
  4882. *
  4883. * It may be assumed that this function implies a write memory barrier before
  4884. * changing the task state if and only if any tasks are woken up.
  4885. */
  4886. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4887. int nr_exclusive, void *key)
  4888. {
  4889. unsigned long flags;
  4890. spin_lock_irqsave(&q->lock, flags);
  4891. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4892. spin_unlock_irqrestore(&q->lock, flags);
  4893. }
  4894. EXPORT_SYMBOL(__wake_up);
  4895. /*
  4896. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4897. */
  4898. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4899. {
  4900. __wake_up_common(q, mode, 1, 0, NULL);
  4901. }
  4902. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4903. {
  4904. __wake_up_common(q, mode, 1, 0, key);
  4905. }
  4906. /**
  4907. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4908. * @q: the waitqueue
  4909. * @mode: which threads
  4910. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4911. * @key: opaque value to be passed to wakeup targets
  4912. *
  4913. * The sync wakeup differs that the waker knows that it will schedule
  4914. * away soon, so while the target thread will be woken up, it will not
  4915. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4916. * with each other. This can prevent needless bouncing between CPUs.
  4917. *
  4918. * On UP it can prevent extra preemption.
  4919. *
  4920. * It may be assumed that this function implies a write memory barrier before
  4921. * changing the task state if and only if any tasks are woken up.
  4922. */
  4923. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4924. int nr_exclusive, void *key)
  4925. {
  4926. unsigned long flags;
  4927. int sync = 1;
  4928. if (unlikely(!q))
  4929. return;
  4930. if (unlikely(!nr_exclusive))
  4931. sync = 0;
  4932. spin_lock_irqsave(&q->lock, flags);
  4933. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4934. spin_unlock_irqrestore(&q->lock, flags);
  4935. }
  4936. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4937. /*
  4938. * __wake_up_sync - see __wake_up_sync_key()
  4939. */
  4940. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4941. {
  4942. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4943. }
  4944. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4945. /**
  4946. * complete: - signals a single thread waiting on this completion
  4947. * @x: holds the state of this particular completion
  4948. *
  4949. * This will wake up a single thread waiting on this completion. Threads will be
  4950. * awakened in the same order in which they were queued.
  4951. *
  4952. * See also complete_all(), wait_for_completion() and related routines.
  4953. *
  4954. * It may be assumed that this function implies a write memory barrier before
  4955. * changing the task state if and only if any tasks are woken up.
  4956. */
  4957. void complete(struct completion *x)
  4958. {
  4959. unsigned long flags;
  4960. spin_lock_irqsave(&x->wait.lock, flags);
  4961. x->done++;
  4962. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4963. spin_unlock_irqrestore(&x->wait.lock, flags);
  4964. }
  4965. EXPORT_SYMBOL(complete);
  4966. /**
  4967. * complete_all: - signals all threads waiting on this completion
  4968. * @x: holds the state of this particular completion
  4969. *
  4970. * This will wake up all threads waiting on this particular completion event.
  4971. *
  4972. * It may be assumed that this function implies a write memory barrier before
  4973. * changing the task state if and only if any tasks are woken up.
  4974. */
  4975. void complete_all(struct completion *x)
  4976. {
  4977. unsigned long flags;
  4978. spin_lock_irqsave(&x->wait.lock, flags);
  4979. x->done += UINT_MAX/2;
  4980. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4981. spin_unlock_irqrestore(&x->wait.lock, flags);
  4982. }
  4983. EXPORT_SYMBOL(complete_all);
  4984. static inline long __sched
  4985. do_wait_for_common(struct completion *x, long timeout, int state)
  4986. {
  4987. if (!x->done) {
  4988. DECLARE_WAITQUEUE(wait, current);
  4989. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4990. __add_wait_queue_tail(&x->wait, &wait);
  4991. do {
  4992. if (signal_pending_state(state, current)) {
  4993. timeout = -ERESTARTSYS;
  4994. break;
  4995. }
  4996. __set_current_state(state);
  4997. spin_unlock_irq(&x->wait.lock);
  4998. timeout = schedule_timeout(timeout);
  4999. spin_lock_irq(&x->wait.lock);
  5000. } while (!x->done && timeout);
  5001. __remove_wait_queue(&x->wait, &wait);
  5002. if (!x->done)
  5003. return timeout;
  5004. }
  5005. x->done--;
  5006. return timeout ?: 1;
  5007. }
  5008. static long __sched
  5009. wait_for_common(struct completion *x, long timeout, int state)
  5010. {
  5011. might_sleep();
  5012. spin_lock_irq(&x->wait.lock);
  5013. timeout = do_wait_for_common(x, timeout, state);
  5014. spin_unlock_irq(&x->wait.lock);
  5015. return timeout;
  5016. }
  5017. /**
  5018. * wait_for_completion: - waits for completion of a task
  5019. * @x: holds the state of this particular completion
  5020. *
  5021. * This waits to be signaled for completion of a specific task. It is NOT
  5022. * interruptible and there is no timeout.
  5023. *
  5024. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  5025. * and interrupt capability. Also see complete().
  5026. */
  5027. void __sched wait_for_completion(struct completion *x)
  5028. {
  5029. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  5030. }
  5031. EXPORT_SYMBOL(wait_for_completion);
  5032. /**
  5033. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  5034. * @x: holds the state of this particular completion
  5035. * @timeout: timeout value in jiffies
  5036. *
  5037. * This waits for either a completion of a specific task to be signaled or for a
  5038. * specified timeout to expire. The timeout is in jiffies. It is not
  5039. * interruptible.
  5040. */
  5041. unsigned long __sched
  5042. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  5043. {
  5044. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  5045. }
  5046. EXPORT_SYMBOL(wait_for_completion_timeout);
  5047. /**
  5048. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  5049. * @x: holds the state of this particular completion
  5050. *
  5051. * This waits for completion of a specific task to be signaled. It is
  5052. * interruptible.
  5053. */
  5054. int __sched wait_for_completion_interruptible(struct completion *x)
  5055. {
  5056. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5057. if (t == -ERESTARTSYS)
  5058. return t;
  5059. return 0;
  5060. }
  5061. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5062. /**
  5063. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5064. * @x: holds the state of this particular completion
  5065. * @timeout: timeout value in jiffies
  5066. *
  5067. * This waits for either a completion of a specific task to be signaled or for a
  5068. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5069. */
  5070. unsigned long __sched
  5071. wait_for_completion_interruptible_timeout(struct completion *x,
  5072. unsigned long timeout)
  5073. {
  5074. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5075. }
  5076. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5077. /**
  5078. * wait_for_completion_killable: - waits for completion of a task (killable)
  5079. * @x: holds the state of this particular completion
  5080. *
  5081. * This waits to be signaled for completion of a specific task. It can be
  5082. * interrupted by a kill signal.
  5083. */
  5084. int __sched wait_for_completion_killable(struct completion *x)
  5085. {
  5086. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5087. if (t == -ERESTARTSYS)
  5088. return t;
  5089. return 0;
  5090. }
  5091. EXPORT_SYMBOL(wait_for_completion_killable);
  5092. /**
  5093. * try_wait_for_completion - try to decrement a completion without blocking
  5094. * @x: completion structure
  5095. *
  5096. * Returns: 0 if a decrement cannot be done without blocking
  5097. * 1 if a decrement succeeded.
  5098. *
  5099. * If a completion is being used as a counting completion,
  5100. * attempt to decrement the counter without blocking. This
  5101. * enables us to avoid waiting if the resource the completion
  5102. * is protecting is not available.
  5103. */
  5104. bool try_wait_for_completion(struct completion *x)
  5105. {
  5106. int ret = 1;
  5107. spin_lock_irq(&x->wait.lock);
  5108. if (!x->done)
  5109. ret = 0;
  5110. else
  5111. x->done--;
  5112. spin_unlock_irq(&x->wait.lock);
  5113. return ret;
  5114. }
  5115. EXPORT_SYMBOL(try_wait_for_completion);
  5116. /**
  5117. * completion_done - Test to see if a completion has any waiters
  5118. * @x: completion structure
  5119. *
  5120. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5121. * 1 if there are no waiters.
  5122. *
  5123. */
  5124. bool completion_done(struct completion *x)
  5125. {
  5126. int ret = 1;
  5127. spin_lock_irq(&x->wait.lock);
  5128. if (!x->done)
  5129. ret = 0;
  5130. spin_unlock_irq(&x->wait.lock);
  5131. return ret;
  5132. }
  5133. EXPORT_SYMBOL(completion_done);
  5134. static long __sched
  5135. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5136. {
  5137. unsigned long flags;
  5138. wait_queue_t wait;
  5139. init_waitqueue_entry(&wait, current);
  5140. __set_current_state(state);
  5141. spin_lock_irqsave(&q->lock, flags);
  5142. __add_wait_queue(q, &wait);
  5143. spin_unlock(&q->lock);
  5144. timeout = schedule_timeout(timeout);
  5145. spin_lock_irq(&q->lock);
  5146. __remove_wait_queue(q, &wait);
  5147. spin_unlock_irqrestore(&q->lock, flags);
  5148. return timeout;
  5149. }
  5150. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5151. {
  5152. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5153. }
  5154. EXPORT_SYMBOL(interruptible_sleep_on);
  5155. long __sched
  5156. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5157. {
  5158. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5159. }
  5160. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5161. void __sched sleep_on(wait_queue_head_t *q)
  5162. {
  5163. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5164. }
  5165. EXPORT_SYMBOL(sleep_on);
  5166. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5167. {
  5168. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5169. }
  5170. EXPORT_SYMBOL(sleep_on_timeout);
  5171. #ifdef CONFIG_RT_MUTEXES
  5172. /*
  5173. * rt_mutex_setprio - set the current priority of a task
  5174. * @p: task
  5175. * @prio: prio value (kernel-internal form)
  5176. *
  5177. * This function changes the 'effective' priority of a task. It does
  5178. * not touch ->normal_prio like __setscheduler().
  5179. *
  5180. * Used by the rt_mutex code to implement priority inheritance logic.
  5181. */
  5182. void rt_mutex_setprio(struct task_struct *p, int prio)
  5183. {
  5184. unsigned long flags;
  5185. int oldprio, on_rq, running;
  5186. struct rq *rq;
  5187. const struct sched_class *prev_class = p->sched_class;
  5188. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5189. rq = task_rq_lock(p, &flags);
  5190. update_rq_clock(rq);
  5191. oldprio = p->prio;
  5192. on_rq = p->se.on_rq;
  5193. running = task_current(rq, p);
  5194. if (on_rq)
  5195. dequeue_task(rq, p, 0);
  5196. if (running)
  5197. p->sched_class->put_prev_task(rq, p);
  5198. if (rt_prio(prio))
  5199. p->sched_class = &rt_sched_class;
  5200. else
  5201. p->sched_class = &fair_sched_class;
  5202. p->prio = prio;
  5203. if (running)
  5204. p->sched_class->set_curr_task(rq);
  5205. if (on_rq) {
  5206. enqueue_task(rq, p, 0);
  5207. check_class_changed(rq, p, prev_class, oldprio, running);
  5208. }
  5209. task_rq_unlock(rq, &flags);
  5210. }
  5211. #endif
  5212. void set_user_nice(struct task_struct *p, long nice)
  5213. {
  5214. int old_prio, delta, on_rq;
  5215. unsigned long flags;
  5216. struct rq *rq;
  5217. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5218. return;
  5219. /*
  5220. * We have to be careful, if called from sys_setpriority(),
  5221. * the task might be in the middle of scheduling on another CPU.
  5222. */
  5223. rq = task_rq_lock(p, &flags);
  5224. update_rq_clock(rq);
  5225. /*
  5226. * The RT priorities are set via sched_setscheduler(), but we still
  5227. * allow the 'normal' nice value to be set - but as expected
  5228. * it wont have any effect on scheduling until the task is
  5229. * SCHED_FIFO/SCHED_RR:
  5230. */
  5231. if (task_has_rt_policy(p)) {
  5232. p->static_prio = NICE_TO_PRIO(nice);
  5233. goto out_unlock;
  5234. }
  5235. on_rq = p->se.on_rq;
  5236. if (on_rq)
  5237. dequeue_task(rq, p, 0);
  5238. p->static_prio = NICE_TO_PRIO(nice);
  5239. set_load_weight(p);
  5240. old_prio = p->prio;
  5241. p->prio = effective_prio(p);
  5242. delta = p->prio - old_prio;
  5243. if (on_rq) {
  5244. enqueue_task(rq, p, 0);
  5245. /*
  5246. * If the task increased its priority or is running and
  5247. * lowered its priority, then reschedule its CPU:
  5248. */
  5249. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5250. resched_task(rq->curr);
  5251. }
  5252. out_unlock:
  5253. task_rq_unlock(rq, &flags);
  5254. }
  5255. EXPORT_SYMBOL(set_user_nice);
  5256. /*
  5257. * can_nice - check if a task can reduce its nice value
  5258. * @p: task
  5259. * @nice: nice value
  5260. */
  5261. int can_nice(const struct task_struct *p, const int nice)
  5262. {
  5263. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5264. int nice_rlim = 20 - nice;
  5265. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5266. capable(CAP_SYS_NICE));
  5267. }
  5268. #ifdef __ARCH_WANT_SYS_NICE
  5269. /*
  5270. * sys_nice - change the priority of the current process.
  5271. * @increment: priority increment
  5272. *
  5273. * sys_setpriority is a more generic, but much slower function that
  5274. * does similar things.
  5275. */
  5276. SYSCALL_DEFINE1(nice, int, increment)
  5277. {
  5278. long nice, retval;
  5279. /*
  5280. * Setpriority might change our priority at the same moment.
  5281. * We don't have to worry. Conceptually one call occurs first
  5282. * and we have a single winner.
  5283. */
  5284. if (increment < -40)
  5285. increment = -40;
  5286. if (increment > 40)
  5287. increment = 40;
  5288. nice = TASK_NICE(current) + increment;
  5289. if (nice < -20)
  5290. nice = -20;
  5291. if (nice > 19)
  5292. nice = 19;
  5293. if (increment < 0 && !can_nice(current, nice))
  5294. return -EPERM;
  5295. retval = security_task_setnice(current, nice);
  5296. if (retval)
  5297. return retval;
  5298. set_user_nice(current, nice);
  5299. return 0;
  5300. }
  5301. #endif
  5302. /**
  5303. * task_prio - return the priority value of a given task.
  5304. * @p: the task in question.
  5305. *
  5306. * This is the priority value as seen by users in /proc.
  5307. * RT tasks are offset by -200. Normal tasks are centered
  5308. * around 0, value goes from -16 to +15.
  5309. */
  5310. int task_prio(const struct task_struct *p)
  5311. {
  5312. return p->prio - MAX_RT_PRIO;
  5313. }
  5314. /**
  5315. * task_nice - return the nice value of a given task.
  5316. * @p: the task in question.
  5317. */
  5318. int task_nice(const struct task_struct *p)
  5319. {
  5320. return TASK_NICE(p);
  5321. }
  5322. EXPORT_SYMBOL(task_nice);
  5323. /**
  5324. * idle_cpu - is a given cpu idle currently?
  5325. * @cpu: the processor in question.
  5326. */
  5327. int idle_cpu(int cpu)
  5328. {
  5329. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5330. }
  5331. /**
  5332. * idle_task - return the idle task for a given cpu.
  5333. * @cpu: the processor in question.
  5334. */
  5335. struct task_struct *idle_task(int cpu)
  5336. {
  5337. return cpu_rq(cpu)->idle;
  5338. }
  5339. /**
  5340. * find_process_by_pid - find a process with a matching PID value.
  5341. * @pid: the pid in question.
  5342. */
  5343. static struct task_struct *find_process_by_pid(pid_t pid)
  5344. {
  5345. return pid ? find_task_by_vpid(pid) : current;
  5346. }
  5347. /* Actually do priority change: must hold rq lock. */
  5348. static void
  5349. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5350. {
  5351. BUG_ON(p->se.on_rq);
  5352. p->policy = policy;
  5353. switch (p->policy) {
  5354. case SCHED_NORMAL:
  5355. case SCHED_BATCH:
  5356. case SCHED_IDLE:
  5357. p->sched_class = &fair_sched_class;
  5358. break;
  5359. case SCHED_FIFO:
  5360. case SCHED_RR:
  5361. p->sched_class = &rt_sched_class;
  5362. break;
  5363. }
  5364. p->rt_priority = prio;
  5365. p->normal_prio = normal_prio(p);
  5366. /* we are holding p->pi_lock already */
  5367. p->prio = rt_mutex_getprio(p);
  5368. set_load_weight(p);
  5369. }
  5370. /*
  5371. * check the target process has a UID that matches the current process's
  5372. */
  5373. static bool check_same_owner(struct task_struct *p)
  5374. {
  5375. const struct cred *cred = current_cred(), *pcred;
  5376. bool match;
  5377. rcu_read_lock();
  5378. pcred = __task_cred(p);
  5379. match = (cred->euid == pcred->euid ||
  5380. cred->euid == pcred->uid);
  5381. rcu_read_unlock();
  5382. return match;
  5383. }
  5384. static int __sched_setscheduler(struct task_struct *p, int policy,
  5385. struct sched_param *param, bool user)
  5386. {
  5387. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5388. unsigned long flags;
  5389. const struct sched_class *prev_class = p->sched_class;
  5390. struct rq *rq;
  5391. int reset_on_fork;
  5392. /* may grab non-irq protected spin_locks */
  5393. BUG_ON(in_interrupt());
  5394. recheck:
  5395. /* double check policy once rq lock held */
  5396. if (policy < 0) {
  5397. reset_on_fork = p->sched_reset_on_fork;
  5398. policy = oldpolicy = p->policy;
  5399. } else {
  5400. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5401. policy &= ~SCHED_RESET_ON_FORK;
  5402. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5403. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5404. policy != SCHED_IDLE)
  5405. return -EINVAL;
  5406. }
  5407. /*
  5408. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5409. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5410. * SCHED_BATCH and SCHED_IDLE is 0.
  5411. */
  5412. if (param->sched_priority < 0 ||
  5413. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5414. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5415. return -EINVAL;
  5416. if (rt_policy(policy) != (param->sched_priority != 0))
  5417. return -EINVAL;
  5418. /*
  5419. * Allow unprivileged RT tasks to decrease priority:
  5420. */
  5421. if (user && !capable(CAP_SYS_NICE)) {
  5422. if (rt_policy(policy)) {
  5423. unsigned long rlim_rtprio;
  5424. if (!lock_task_sighand(p, &flags))
  5425. return -ESRCH;
  5426. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5427. unlock_task_sighand(p, &flags);
  5428. /* can't set/change the rt policy */
  5429. if (policy != p->policy && !rlim_rtprio)
  5430. return -EPERM;
  5431. /* can't increase priority */
  5432. if (param->sched_priority > p->rt_priority &&
  5433. param->sched_priority > rlim_rtprio)
  5434. return -EPERM;
  5435. }
  5436. /*
  5437. * Like positive nice levels, dont allow tasks to
  5438. * move out of SCHED_IDLE either:
  5439. */
  5440. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5441. return -EPERM;
  5442. /* can't change other user's priorities */
  5443. if (!check_same_owner(p))
  5444. return -EPERM;
  5445. /* Normal users shall not reset the sched_reset_on_fork flag */
  5446. if (p->sched_reset_on_fork && !reset_on_fork)
  5447. return -EPERM;
  5448. }
  5449. if (user) {
  5450. #ifdef CONFIG_RT_GROUP_SCHED
  5451. /*
  5452. * Do not allow realtime tasks into groups that have no runtime
  5453. * assigned.
  5454. */
  5455. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5456. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5457. return -EPERM;
  5458. #endif
  5459. retval = security_task_setscheduler(p, policy, param);
  5460. if (retval)
  5461. return retval;
  5462. }
  5463. /*
  5464. * make sure no PI-waiters arrive (or leave) while we are
  5465. * changing the priority of the task:
  5466. */
  5467. spin_lock_irqsave(&p->pi_lock, flags);
  5468. /*
  5469. * To be able to change p->policy safely, the apropriate
  5470. * runqueue lock must be held.
  5471. */
  5472. rq = __task_rq_lock(p);
  5473. /* recheck policy now with rq lock held */
  5474. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5475. policy = oldpolicy = -1;
  5476. __task_rq_unlock(rq);
  5477. spin_unlock_irqrestore(&p->pi_lock, flags);
  5478. goto recheck;
  5479. }
  5480. update_rq_clock(rq);
  5481. on_rq = p->se.on_rq;
  5482. running = task_current(rq, p);
  5483. if (on_rq)
  5484. deactivate_task(rq, p, 0);
  5485. if (running)
  5486. p->sched_class->put_prev_task(rq, p);
  5487. p->sched_reset_on_fork = reset_on_fork;
  5488. oldprio = p->prio;
  5489. __setscheduler(rq, p, policy, param->sched_priority);
  5490. if (running)
  5491. p->sched_class->set_curr_task(rq);
  5492. if (on_rq) {
  5493. activate_task(rq, p, 0);
  5494. check_class_changed(rq, p, prev_class, oldprio, running);
  5495. }
  5496. __task_rq_unlock(rq);
  5497. spin_unlock_irqrestore(&p->pi_lock, flags);
  5498. rt_mutex_adjust_pi(p);
  5499. return 0;
  5500. }
  5501. /**
  5502. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5503. * @p: the task in question.
  5504. * @policy: new policy.
  5505. * @param: structure containing the new RT priority.
  5506. *
  5507. * NOTE that the task may be already dead.
  5508. */
  5509. int sched_setscheduler(struct task_struct *p, int policy,
  5510. struct sched_param *param)
  5511. {
  5512. return __sched_setscheduler(p, policy, param, true);
  5513. }
  5514. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5515. /**
  5516. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5517. * @p: the task in question.
  5518. * @policy: new policy.
  5519. * @param: structure containing the new RT priority.
  5520. *
  5521. * Just like sched_setscheduler, only don't bother checking if the
  5522. * current context has permission. For example, this is needed in
  5523. * stop_machine(): we create temporary high priority worker threads,
  5524. * but our caller might not have that capability.
  5525. */
  5526. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5527. struct sched_param *param)
  5528. {
  5529. return __sched_setscheduler(p, policy, param, false);
  5530. }
  5531. static int
  5532. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5533. {
  5534. struct sched_param lparam;
  5535. struct task_struct *p;
  5536. int retval;
  5537. if (!param || pid < 0)
  5538. return -EINVAL;
  5539. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5540. return -EFAULT;
  5541. rcu_read_lock();
  5542. retval = -ESRCH;
  5543. p = find_process_by_pid(pid);
  5544. if (p != NULL)
  5545. retval = sched_setscheduler(p, policy, &lparam);
  5546. rcu_read_unlock();
  5547. return retval;
  5548. }
  5549. /**
  5550. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5551. * @pid: the pid in question.
  5552. * @policy: new policy.
  5553. * @param: structure containing the new RT priority.
  5554. */
  5555. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5556. struct sched_param __user *, param)
  5557. {
  5558. /* negative values for policy are not valid */
  5559. if (policy < 0)
  5560. return -EINVAL;
  5561. return do_sched_setscheduler(pid, policy, param);
  5562. }
  5563. /**
  5564. * sys_sched_setparam - set/change the RT priority of a thread
  5565. * @pid: the pid in question.
  5566. * @param: structure containing the new RT priority.
  5567. */
  5568. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5569. {
  5570. return do_sched_setscheduler(pid, -1, param);
  5571. }
  5572. /**
  5573. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5574. * @pid: the pid in question.
  5575. */
  5576. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5577. {
  5578. struct task_struct *p;
  5579. int retval;
  5580. if (pid < 0)
  5581. return -EINVAL;
  5582. retval = -ESRCH;
  5583. read_lock(&tasklist_lock);
  5584. p = find_process_by_pid(pid);
  5585. if (p) {
  5586. retval = security_task_getscheduler(p);
  5587. if (!retval)
  5588. retval = p->policy
  5589. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5590. }
  5591. read_unlock(&tasklist_lock);
  5592. return retval;
  5593. }
  5594. /**
  5595. * sys_sched_getparam - get the RT priority of a thread
  5596. * @pid: the pid in question.
  5597. * @param: structure containing the RT priority.
  5598. */
  5599. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5600. {
  5601. struct sched_param lp;
  5602. struct task_struct *p;
  5603. int retval;
  5604. if (!param || pid < 0)
  5605. return -EINVAL;
  5606. read_lock(&tasklist_lock);
  5607. p = find_process_by_pid(pid);
  5608. retval = -ESRCH;
  5609. if (!p)
  5610. goto out_unlock;
  5611. retval = security_task_getscheduler(p);
  5612. if (retval)
  5613. goto out_unlock;
  5614. lp.sched_priority = p->rt_priority;
  5615. read_unlock(&tasklist_lock);
  5616. /*
  5617. * This one might sleep, we cannot do it with a spinlock held ...
  5618. */
  5619. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5620. return retval;
  5621. out_unlock:
  5622. read_unlock(&tasklist_lock);
  5623. return retval;
  5624. }
  5625. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5626. {
  5627. cpumask_var_t cpus_allowed, new_mask;
  5628. struct task_struct *p;
  5629. int retval;
  5630. get_online_cpus();
  5631. read_lock(&tasklist_lock);
  5632. p = find_process_by_pid(pid);
  5633. if (!p) {
  5634. read_unlock(&tasklist_lock);
  5635. put_online_cpus();
  5636. return -ESRCH;
  5637. }
  5638. /*
  5639. * It is not safe to call set_cpus_allowed with the
  5640. * tasklist_lock held. We will bump the task_struct's
  5641. * usage count and then drop tasklist_lock.
  5642. */
  5643. get_task_struct(p);
  5644. read_unlock(&tasklist_lock);
  5645. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5646. retval = -ENOMEM;
  5647. goto out_put_task;
  5648. }
  5649. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5650. retval = -ENOMEM;
  5651. goto out_free_cpus_allowed;
  5652. }
  5653. retval = -EPERM;
  5654. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5655. goto out_unlock;
  5656. retval = security_task_setscheduler(p, 0, NULL);
  5657. if (retval)
  5658. goto out_unlock;
  5659. cpuset_cpus_allowed(p, cpus_allowed);
  5660. cpumask_and(new_mask, in_mask, cpus_allowed);
  5661. again:
  5662. retval = set_cpus_allowed_ptr(p, new_mask);
  5663. if (!retval) {
  5664. cpuset_cpus_allowed(p, cpus_allowed);
  5665. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5666. /*
  5667. * We must have raced with a concurrent cpuset
  5668. * update. Just reset the cpus_allowed to the
  5669. * cpuset's cpus_allowed
  5670. */
  5671. cpumask_copy(new_mask, cpus_allowed);
  5672. goto again;
  5673. }
  5674. }
  5675. out_unlock:
  5676. free_cpumask_var(new_mask);
  5677. out_free_cpus_allowed:
  5678. free_cpumask_var(cpus_allowed);
  5679. out_put_task:
  5680. put_task_struct(p);
  5681. put_online_cpus();
  5682. return retval;
  5683. }
  5684. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5685. struct cpumask *new_mask)
  5686. {
  5687. if (len < cpumask_size())
  5688. cpumask_clear(new_mask);
  5689. else if (len > cpumask_size())
  5690. len = cpumask_size();
  5691. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5692. }
  5693. /**
  5694. * sys_sched_setaffinity - set the cpu affinity of a process
  5695. * @pid: pid of the process
  5696. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5697. * @user_mask_ptr: user-space pointer to the new cpu mask
  5698. */
  5699. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5700. unsigned long __user *, user_mask_ptr)
  5701. {
  5702. cpumask_var_t new_mask;
  5703. int retval;
  5704. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5705. return -ENOMEM;
  5706. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5707. if (retval == 0)
  5708. retval = sched_setaffinity(pid, new_mask);
  5709. free_cpumask_var(new_mask);
  5710. return retval;
  5711. }
  5712. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5713. {
  5714. struct task_struct *p;
  5715. int retval;
  5716. get_online_cpus();
  5717. read_lock(&tasklist_lock);
  5718. retval = -ESRCH;
  5719. p = find_process_by_pid(pid);
  5720. if (!p)
  5721. goto out_unlock;
  5722. retval = security_task_getscheduler(p);
  5723. if (retval)
  5724. goto out_unlock;
  5725. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5726. out_unlock:
  5727. read_unlock(&tasklist_lock);
  5728. put_online_cpus();
  5729. return retval;
  5730. }
  5731. /**
  5732. * sys_sched_getaffinity - get the cpu affinity of a process
  5733. * @pid: pid of the process
  5734. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5735. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5736. */
  5737. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5738. unsigned long __user *, user_mask_ptr)
  5739. {
  5740. int ret;
  5741. cpumask_var_t mask;
  5742. if (len < cpumask_size())
  5743. return -EINVAL;
  5744. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5745. return -ENOMEM;
  5746. ret = sched_getaffinity(pid, mask);
  5747. if (ret == 0) {
  5748. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5749. ret = -EFAULT;
  5750. else
  5751. ret = cpumask_size();
  5752. }
  5753. free_cpumask_var(mask);
  5754. return ret;
  5755. }
  5756. /**
  5757. * sys_sched_yield - yield the current processor to other threads.
  5758. *
  5759. * This function yields the current CPU to other tasks. If there are no
  5760. * other threads running on this CPU then this function will return.
  5761. */
  5762. SYSCALL_DEFINE0(sched_yield)
  5763. {
  5764. struct rq *rq = this_rq_lock();
  5765. schedstat_inc(rq, yld_count);
  5766. current->sched_class->yield_task(rq);
  5767. /*
  5768. * Since we are going to call schedule() anyway, there's
  5769. * no need to preempt or enable interrupts:
  5770. */
  5771. __release(rq->lock);
  5772. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5773. _raw_spin_unlock(&rq->lock);
  5774. preempt_enable_no_resched();
  5775. schedule();
  5776. return 0;
  5777. }
  5778. static inline int should_resched(void)
  5779. {
  5780. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5781. }
  5782. static void __cond_resched(void)
  5783. {
  5784. add_preempt_count(PREEMPT_ACTIVE);
  5785. schedule();
  5786. sub_preempt_count(PREEMPT_ACTIVE);
  5787. }
  5788. int __sched _cond_resched(void)
  5789. {
  5790. if (should_resched()) {
  5791. __cond_resched();
  5792. return 1;
  5793. }
  5794. return 0;
  5795. }
  5796. EXPORT_SYMBOL(_cond_resched);
  5797. /*
  5798. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5799. * call schedule, and on return reacquire the lock.
  5800. *
  5801. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5802. * operations here to prevent schedule() from being called twice (once via
  5803. * spin_unlock(), once by hand).
  5804. */
  5805. int __cond_resched_lock(spinlock_t *lock)
  5806. {
  5807. int resched = should_resched();
  5808. int ret = 0;
  5809. lockdep_assert_held(lock);
  5810. if (spin_needbreak(lock) || resched) {
  5811. spin_unlock(lock);
  5812. if (resched)
  5813. __cond_resched();
  5814. else
  5815. cpu_relax();
  5816. ret = 1;
  5817. spin_lock(lock);
  5818. }
  5819. return ret;
  5820. }
  5821. EXPORT_SYMBOL(__cond_resched_lock);
  5822. int __sched __cond_resched_softirq(void)
  5823. {
  5824. BUG_ON(!in_softirq());
  5825. if (should_resched()) {
  5826. local_bh_enable();
  5827. __cond_resched();
  5828. local_bh_disable();
  5829. return 1;
  5830. }
  5831. return 0;
  5832. }
  5833. EXPORT_SYMBOL(__cond_resched_softirq);
  5834. /**
  5835. * yield - yield the current processor to other threads.
  5836. *
  5837. * This is a shortcut for kernel-space yielding - it marks the
  5838. * thread runnable and calls sys_sched_yield().
  5839. */
  5840. void __sched yield(void)
  5841. {
  5842. set_current_state(TASK_RUNNING);
  5843. sys_sched_yield();
  5844. }
  5845. EXPORT_SYMBOL(yield);
  5846. /*
  5847. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5848. * that process accounting knows that this is a task in IO wait state.
  5849. *
  5850. * But don't do that if it is a deliberate, throttling IO wait (this task
  5851. * has set its backing_dev_info: the queue against which it should throttle)
  5852. */
  5853. void __sched io_schedule(void)
  5854. {
  5855. struct rq *rq = raw_rq();
  5856. delayacct_blkio_start();
  5857. atomic_inc(&rq->nr_iowait);
  5858. current->in_iowait = 1;
  5859. schedule();
  5860. current->in_iowait = 0;
  5861. atomic_dec(&rq->nr_iowait);
  5862. delayacct_blkio_end();
  5863. }
  5864. EXPORT_SYMBOL(io_schedule);
  5865. long __sched io_schedule_timeout(long timeout)
  5866. {
  5867. struct rq *rq = raw_rq();
  5868. long ret;
  5869. delayacct_blkio_start();
  5870. atomic_inc(&rq->nr_iowait);
  5871. current->in_iowait = 1;
  5872. ret = schedule_timeout(timeout);
  5873. current->in_iowait = 0;
  5874. atomic_dec(&rq->nr_iowait);
  5875. delayacct_blkio_end();
  5876. return ret;
  5877. }
  5878. /**
  5879. * sys_sched_get_priority_max - return maximum RT priority.
  5880. * @policy: scheduling class.
  5881. *
  5882. * this syscall returns the maximum rt_priority that can be used
  5883. * by a given scheduling class.
  5884. */
  5885. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5886. {
  5887. int ret = -EINVAL;
  5888. switch (policy) {
  5889. case SCHED_FIFO:
  5890. case SCHED_RR:
  5891. ret = MAX_USER_RT_PRIO-1;
  5892. break;
  5893. case SCHED_NORMAL:
  5894. case SCHED_BATCH:
  5895. case SCHED_IDLE:
  5896. ret = 0;
  5897. break;
  5898. }
  5899. return ret;
  5900. }
  5901. /**
  5902. * sys_sched_get_priority_min - return minimum RT priority.
  5903. * @policy: scheduling class.
  5904. *
  5905. * this syscall returns the minimum rt_priority that can be used
  5906. * by a given scheduling class.
  5907. */
  5908. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5909. {
  5910. int ret = -EINVAL;
  5911. switch (policy) {
  5912. case SCHED_FIFO:
  5913. case SCHED_RR:
  5914. ret = 1;
  5915. break;
  5916. case SCHED_NORMAL:
  5917. case SCHED_BATCH:
  5918. case SCHED_IDLE:
  5919. ret = 0;
  5920. }
  5921. return ret;
  5922. }
  5923. /**
  5924. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5925. * @pid: pid of the process.
  5926. * @interval: userspace pointer to the timeslice value.
  5927. *
  5928. * this syscall writes the default timeslice value of a given process
  5929. * into the user-space timespec buffer. A value of '0' means infinity.
  5930. */
  5931. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5932. struct timespec __user *, interval)
  5933. {
  5934. struct task_struct *p;
  5935. unsigned int time_slice;
  5936. int retval;
  5937. struct timespec t;
  5938. if (pid < 0)
  5939. return -EINVAL;
  5940. retval = -ESRCH;
  5941. read_lock(&tasklist_lock);
  5942. p = find_process_by_pid(pid);
  5943. if (!p)
  5944. goto out_unlock;
  5945. retval = security_task_getscheduler(p);
  5946. if (retval)
  5947. goto out_unlock;
  5948. /*
  5949. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5950. * tasks that are on an otherwise idle runqueue:
  5951. */
  5952. time_slice = 0;
  5953. if (p->policy == SCHED_RR) {
  5954. time_slice = DEF_TIMESLICE;
  5955. } else if (p->policy != SCHED_FIFO) {
  5956. struct sched_entity *se = &p->se;
  5957. unsigned long flags;
  5958. struct rq *rq;
  5959. rq = task_rq_lock(p, &flags);
  5960. if (rq->cfs.load.weight)
  5961. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5962. task_rq_unlock(rq, &flags);
  5963. }
  5964. read_unlock(&tasklist_lock);
  5965. jiffies_to_timespec(time_slice, &t);
  5966. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5967. return retval;
  5968. out_unlock:
  5969. read_unlock(&tasklist_lock);
  5970. return retval;
  5971. }
  5972. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5973. void sched_show_task(struct task_struct *p)
  5974. {
  5975. unsigned long free = 0;
  5976. unsigned state;
  5977. state = p->state ? __ffs(p->state) + 1 : 0;
  5978. printk(KERN_INFO "%-13.13s %c", p->comm,
  5979. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5980. #if BITS_PER_LONG == 32
  5981. if (state == TASK_RUNNING)
  5982. printk(KERN_CONT " running ");
  5983. else
  5984. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5985. #else
  5986. if (state == TASK_RUNNING)
  5987. printk(KERN_CONT " running task ");
  5988. else
  5989. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5990. #endif
  5991. #ifdef CONFIG_DEBUG_STACK_USAGE
  5992. free = stack_not_used(p);
  5993. #endif
  5994. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5995. task_pid_nr(p), task_pid_nr(p->real_parent),
  5996. (unsigned long)task_thread_info(p)->flags);
  5997. show_stack(p, NULL);
  5998. }
  5999. void show_state_filter(unsigned long state_filter)
  6000. {
  6001. struct task_struct *g, *p;
  6002. #if BITS_PER_LONG == 32
  6003. printk(KERN_INFO
  6004. " task PC stack pid father\n");
  6005. #else
  6006. printk(KERN_INFO
  6007. " task PC stack pid father\n");
  6008. #endif
  6009. read_lock(&tasklist_lock);
  6010. do_each_thread(g, p) {
  6011. /*
  6012. * reset the NMI-timeout, listing all files on a slow
  6013. * console might take alot of time:
  6014. */
  6015. touch_nmi_watchdog();
  6016. if (!state_filter || (p->state & state_filter))
  6017. sched_show_task(p);
  6018. } while_each_thread(g, p);
  6019. touch_all_softlockup_watchdogs();
  6020. #ifdef CONFIG_SCHED_DEBUG
  6021. sysrq_sched_debug_show();
  6022. #endif
  6023. read_unlock(&tasklist_lock);
  6024. /*
  6025. * Only show locks if all tasks are dumped:
  6026. */
  6027. if (state_filter == -1)
  6028. debug_show_all_locks();
  6029. }
  6030. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  6031. {
  6032. idle->sched_class = &idle_sched_class;
  6033. }
  6034. /**
  6035. * init_idle - set up an idle thread for a given CPU
  6036. * @idle: task in question
  6037. * @cpu: cpu the idle task belongs to
  6038. *
  6039. * NOTE: this function does not set the idle thread's NEED_RESCHED
  6040. * flag, to make booting more robust.
  6041. */
  6042. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  6043. {
  6044. struct rq *rq = cpu_rq(cpu);
  6045. unsigned long flags;
  6046. spin_lock_irqsave(&rq->lock, flags);
  6047. __sched_fork(idle);
  6048. idle->se.exec_start = sched_clock();
  6049. idle->prio = idle->normal_prio = MAX_PRIO;
  6050. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  6051. __set_task_cpu(idle, cpu);
  6052. rq->curr = rq->idle = idle;
  6053. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  6054. idle->oncpu = 1;
  6055. #endif
  6056. spin_unlock_irqrestore(&rq->lock, flags);
  6057. /* Set the preempt count _outside_ the spinlocks! */
  6058. #if defined(CONFIG_PREEMPT)
  6059. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  6060. #else
  6061. task_thread_info(idle)->preempt_count = 0;
  6062. #endif
  6063. /*
  6064. * The idle tasks have their own, simple scheduling class:
  6065. */
  6066. idle->sched_class = &idle_sched_class;
  6067. ftrace_graph_init_task(idle);
  6068. }
  6069. /*
  6070. * In a system that switches off the HZ timer nohz_cpu_mask
  6071. * indicates which cpus entered this state. This is used
  6072. * in the rcu update to wait only for active cpus. For system
  6073. * which do not switch off the HZ timer nohz_cpu_mask should
  6074. * always be CPU_BITS_NONE.
  6075. */
  6076. cpumask_var_t nohz_cpu_mask;
  6077. /*
  6078. * Increase the granularity value when there are more CPUs,
  6079. * because with more CPUs the 'effective latency' as visible
  6080. * to users decreases. But the relationship is not linear,
  6081. * so pick a second-best guess by going with the log2 of the
  6082. * number of CPUs.
  6083. *
  6084. * This idea comes from the SD scheduler of Con Kolivas:
  6085. */
  6086. static inline void sched_init_granularity(void)
  6087. {
  6088. unsigned int factor = 1 + ilog2(num_online_cpus());
  6089. const unsigned long limit = 200000000;
  6090. sysctl_sched_min_granularity *= factor;
  6091. if (sysctl_sched_min_granularity > limit)
  6092. sysctl_sched_min_granularity = limit;
  6093. sysctl_sched_latency *= factor;
  6094. if (sysctl_sched_latency > limit)
  6095. sysctl_sched_latency = limit;
  6096. sysctl_sched_wakeup_granularity *= factor;
  6097. sysctl_sched_shares_ratelimit *= factor;
  6098. }
  6099. #ifdef CONFIG_SMP
  6100. /*
  6101. * This is how migration works:
  6102. *
  6103. * 1) we queue a struct migration_req structure in the source CPU's
  6104. * runqueue and wake up that CPU's migration thread.
  6105. * 2) we down() the locked semaphore => thread blocks.
  6106. * 3) migration thread wakes up (implicitly it forces the migrated
  6107. * thread off the CPU)
  6108. * 4) it gets the migration request and checks whether the migrated
  6109. * task is still in the wrong runqueue.
  6110. * 5) if it's in the wrong runqueue then the migration thread removes
  6111. * it and puts it into the right queue.
  6112. * 6) migration thread up()s the semaphore.
  6113. * 7) we wake up and the migration is done.
  6114. */
  6115. /*
  6116. * Change a given task's CPU affinity. Migrate the thread to a
  6117. * proper CPU and schedule it away if the CPU it's executing on
  6118. * is removed from the allowed bitmask.
  6119. *
  6120. * NOTE: the caller must have a valid reference to the task, the
  6121. * task must not exit() & deallocate itself prematurely. The
  6122. * call is not atomic; no spinlocks may be held.
  6123. */
  6124. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6125. {
  6126. struct migration_req req;
  6127. unsigned long flags;
  6128. struct rq *rq;
  6129. int ret = 0;
  6130. rq = task_rq_lock(p, &flags);
  6131. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  6132. ret = -EINVAL;
  6133. goto out;
  6134. }
  6135. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6136. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6137. ret = -EINVAL;
  6138. goto out;
  6139. }
  6140. if (p->sched_class->set_cpus_allowed)
  6141. p->sched_class->set_cpus_allowed(p, new_mask);
  6142. else {
  6143. cpumask_copy(&p->cpus_allowed, new_mask);
  6144. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6145. }
  6146. /* Can the task run on the task's current CPU? If so, we're done */
  6147. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6148. goto out;
  6149. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6150. /* Need help from migration thread: drop lock and wait. */
  6151. struct task_struct *mt = rq->migration_thread;
  6152. get_task_struct(mt);
  6153. task_rq_unlock(rq, &flags);
  6154. wake_up_process(rq->migration_thread);
  6155. put_task_struct(mt);
  6156. wait_for_completion(&req.done);
  6157. tlb_migrate_finish(p->mm);
  6158. return 0;
  6159. }
  6160. out:
  6161. task_rq_unlock(rq, &flags);
  6162. return ret;
  6163. }
  6164. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6165. /*
  6166. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6167. * this because either it can't run here any more (set_cpus_allowed()
  6168. * away from this CPU, or CPU going down), or because we're
  6169. * attempting to rebalance this task on exec (sched_exec).
  6170. *
  6171. * So we race with normal scheduler movements, but that's OK, as long
  6172. * as the task is no longer on this CPU.
  6173. *
  6174. * Returns non-zero if task was successfully migrated.
  6175. */
  6176. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6177. {
  6178. struct rq *rq_dest, *rq_src;
  6179. int ret = 0, on_rq;
  6180. if (unlikely(!cpu_active(dest_cpu)))
  6181. return ret;
  6182. rq_src = cpu_rq(src_cpu);
  6183. rq_dest = cpu_rq(dest_cpu);
  6184. double_rq_lock(rq_src, rq_dest);
  6185. /* Already moved. */
  6186. if (task_cpu(p) != src_cpu)
  6187. goto done;
  6188. /* Affinity changed (again). */
  6189. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6190. goto fail;
  6191. on_rq = p->se.on_rq;
  6192. if (on_rq)
  6193. deactivate_task(rq_src, p, 0);
  6194. set_task_cpu(p, dest_cpu);
  6195. if (on_rq) {
  6196. activate_task(rq_dest, p, 0);
  6197. check_preempt_curr(rq_dest, p, 0);
  6198. }
  6199. done:
  6200. ret = 1;
  6201. fail:
  6202. double_rq_unlock(rq_src, rq_dest);
  6203. return ret;
  6204. }
  6205. #define RCU_MIGRATION_IDLE 0
  6206. #define RCU_MIGRATION_NEED_QS 1
  6207. #define RCU_MIGRATION_GOT_QS 2
  6208. #define RCU_MIGRATION_MUST_SYNC 3
  6209. /*
  6210. * migration_thread - this is a highprio system thread that performs
  6211. * thread migration by bumping thread off CPU then 'pushing' onto
  6212. * another runqueue.
  6213. */
  6214. static int migration_thread(void *data)
  6215. {
  6216. int badcpu;
  6217. int cpu = (long)data;
  6218. struct rq *rq;
  6219. rq = cpu_rq(cpu);
  6220. BUG_ON(rq->migration_thread != current);
  6221. set_current_state(TASK_INTERRUPTIBLE);
  6222. while (!kthread_should_stop()) {
  6223. struct migration_req *req;
  6224. struct list_head *head;
  6225. spin_lock_irq(&rq->lock);
  6226. if (cpu_is_offline(cpu)) {
  6227. spin_unlock_irq(&rq->lock);
  6228. break;
  6229. }
  6230. if (rq->active_balance) {
  6231. active_load_balance(rq, cpu);
  6232. rq->active_balance = 0;
  6233. }
  6234. head = &rq->migration_queue;
  6235. if (list_empty(head)) {
  6236. spin_unlock_irq(&rq->lock);
  6237. schedule();
  6238. set_current_state(TASK_INTERRUPTIBLE);
  6239. continue;
  6240. }
  6241. req = list_entry(head->next, struct migration_req, list);
  6242. list_del_init(head->next);
  6243. if (req->task != NULL) {
  6244. spin_unlock(&rq->lock);
  6245. __migrate_task(req->task, cpu, req->dest_cpu);
  6246. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6247. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6248. spin_unlock(&rq->lock);
  6249. } else {
  6250. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6251. spin_unlock(&rq->lock);
  6252. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6253. }
  6254. local_irq_enable();
  6255. complete(&req->done);
  6256. }
  6257. __set_current_state(TASK_RUNNING);
  6258. return 0;
  6259. }
  6260. #ifdef CONFIG_HOTPLUG_CPU
  6261. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6262. {
  6263. int ret;
  6264. local_irq_disable();
  6265. ret = __migrate_task(p, src_cpu, dest_cpu);
  6266. local_irq_enable();
  6267. return ret;
  6268. }
  6269. /*
  6270. * Figure out where task on dead CPU should go, use force if necessary.
  6271. */
  6272. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6273. {
  6274. int dest_cpu;
  6275. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6276. again:
  6277. /* Look for allowed, online CPU in same node. */
  6278. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6279. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6280. goto move;
  6281. /* Any allowed, online CPU? */
  6282. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6283. if (dest_cpu < nr_cpu_ids)
  6284. goto move;
  6285. /* No more Mr. Nice Guy. */
  6286. if (dest_cpu >= nr_cpu_ids) {
  6287. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6288. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6289. /*
  6290. * Don't tell them about moving exiting tasks or
  6291. * kernel threads (both mm NULL), since they never
  6292. * leave kernel.
  6293. */
  6294. if (p->mm && printk_ratelimit()) {
  6295. printk(KERN_INFO "process %d (%s) no "
  6296. "longer affine to cpu%d\n",
  6297. task_pid_nr(p), p->comm, dead_cpu);
  6298. }
  6299. }
  6300. move:
  6301. /* It can have affinity changed while we were choosing. */
  6302. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6303. goto again;
  6304. }
  6305. /*
  6306. * While a dead CPU has no uninterruptible tasks queued at this point,
  6307. * it might still have a nonzero ->nr_uninterruptible counter, because
  6308. * for performance reasons the counter is not stricly tracking tasks to
  6309. * their home CPUs. So we just add the counter to another CPU's counter,
  6310. * to keep the global sum constant after CPU-down:
  6311. */
  6312. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6313. {
  6314. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6315. unsigned long flags;
  6316. local_irq_save(flags);
  6317. double_rq_lock(rq_src, rq_dest);
  6318. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6319. rq_src->nr_uninterruptible = 0;
  6320. double_rq_unlock(rq_src, rq_dest);
  6321. local_irq_restore(flags);
  6322. }
  6323. /* Run through task list and migrate tasks from the dead cpu. */
  6324. static void migrate_live_tasks(int src_cpu)
  6325. {
  6326. struct task_struct *p, *t;
  6327. read_lock(&tasklist_lock);
  6328. do_each_thread(t, p) {
  6329. if (p == current)
  6330. continue;
  6331. if (task_cpu(p) == src_cpu)
  6332. move_task_off_dead_cpu(src_cpu, p);
  6333. } while_each_thread(t, p);
  6334. read_unlock(&tasklist_lock);
  6335. }
  6336. /*
  6337. * Schedules idle task to be the next runnable task on current CPU.
  6338. * It does so by boosting its priority to highest possible.
  6339. * Used by CPU offline code.
  6340. */
  6341. void sched_idle_next(void)
  6342. {
  6343. int this_cpu = smp_processor_id();
  6344. struct rq *rq = cpu_rq(this_cpu);
  6345. struct task_struct *p = rq->idle;
  6346. unsigned long flags;
  6347. /* cpu has to be offline */
  6348. BUG_ON(cpu_online(this_cpu));
  6349. /*
  6350. * Strictly not necessary since rest of the CPUs are stopped by now
  6351. * and interrupts disabled on the current cpu.
  6352. */
  6353. spin_lock_irqsave(&rq->lock, flags);
  6354. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6355. update_rq_clock(rq);
  6356. activate_task(rq, p, 0);
  6357. spin_unlock_irqrestore(&rq->lock, flags);
  6358. }
  6359. /*
  6360. * Ensures that the idle task is using init_mm right before its cpu goes
  6361. * offline.
  6362. */
  6363. void idle_task_exit(void)
  6364. {
  6365. struct mm_struct *mm = current->active_mm;
  6366. BUG_ON(cpu_online(smp_processor_id()));
  6367. if (mm != &init_mm)
  6368. switch_mm(mm, &init_mm, current);
  6369. mmdrop(mm);
  6370. }
  6371. /* called under rq->lock with disabled interrupts */
  6372. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6373. {
  6374. struct rq *rq = cpu_rq(dead_cpu);
  6375. /* Must be exiting, otherwise would be on tasklist. */
  6376. BUG_ON(!p->exit_state);
  6377. /* Cannot have done final schedule yet: would have vanished. */
  6378. BUG_ON(p->state == TASK_DEAD);
  6379. get_task_struct(p);
  6380. /*
  6381. * Drop lock around migration; if someone else moves it,
  6382. * that's OK. No task can be added to this CPU, so iteration is
  6383. * fine.
  6384. */
  6385. spin_unlock_irq(&rq->lock);
  6386. move_task_off_dead_cpu(dead_cpu, p);
  6387. spin_lock_irq(&rq->lock);
  6388. put_task_struct(p);
  6389. }
  6390. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6391. static void migrate_dead_tasks(unsigned int dead_cpu)
  6392. {
  6393. struct rq *rq = cpu_rq(dead_cpu);
  6394. struct task_struct *next;
  6395. for ( ; ; ) {
  6396. if (!rq->nr_running)
  6397. break;
  6398. update_rq_clock(rq);
  6399. next = pick_next_task(rq);
  6400. if (!next)
  6401. break;
  6402. next->sched_class->put_prev_task(rq, next);
  6403. migrate_dead(dead_cpu, next);
  6404. }
  6405. }
  6406. /*
  6407. * remove the tasks which were accounted by rq from calc_load_tasks.
  6408. */
  6409. static void calc_global_load_remove(struct rq *rq)
  6410. {
  6411. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6412. rq->calc_load_active = 0;
  6413. }
  6414. #endif /* CONFIG_HOTPLUG_CPU */
  6415. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6416. static struct ctl_table sd_ctl_dir[] = {
  6417. {
  6418. .procname = "sched_domain",
  6419. .mode = 0555,
  6420. },
  6421. {0, },
  6422. };
  6423. static struct ctl_table sd_ctl_root[] = {
  6424. {
  6425. .ctl_name = CTL_KERN,
  6426. .procname = "kernel",
  6427. .mode = 0555,
  6428. .child = sd_ctl_dir,
  6429. },
  6430. {0, },
  6431. };
  6432. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6433. {
  6434. struct ctl_table *entry =
  6435. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6436. return entry;
  6437. }
  6438. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6439. {
  6440. struct ctl_table *entry;
  6441. /*
  6442. * In the intermediate directories, both the child directory and
  6443. * procname are dynamically allocated and could fail but the mode
  6444. * will always be set. In the lowest directory the names are
  6445. * static strings and all have proc handlers.
  6446. */
  6447. for (entry = *tablep; entry->mode; entry++) {
  6448. if (entry->child)
  6449. sd_free_ctl_entry(&entry->child);
  6450. if (entry->proc_handler == NULL)
  6451. kfree(entry->procname);
  6452. }
  6453. kfree(*tablep);
  6454. *tablep = NULL;
  6455. }
  6456. static void
  6457. set_table_entry(struct ctl_table *entry,
  6458. const char *procname, void *data, int maxlen,
  6459. mode_t mode, proc_handler *proc_handler)
  6460. {
  6461. entry->procname = procname;
  6462. entry->data = data;
  6463. entry->maxlen = maxlen;
  6464. entry->mode = mode;
  6465. entry->proc_handler = proc_handler;
  6466. }
  6467. static struct ctl_table *
  6468. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6469. {
  6470. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6471. if (table == NULL)
  6472. return NULL;
  6473. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6474. sizeof(long), 0644, proc_doulongvec_minmax);
  6475. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6476. sizeof(long), 0644, proc_doulongvec_minmax);
  6477. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6478. sizeof(int), 0644, proc_dointvec_minmax);
  6479. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6480. sizeof(int), 0644, proc_dointvec_minmax);
  6481. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6482. sizeof(int), 0644, proc_dointvec_minmax);
  6483. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6484. sizeof(int), 0644, proc_dointvec_minmax);
  6485. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6486. sizeof(int), 0644, proc_dointvec_minmax);
  6487. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6488. sizeof(int), 0644, proc_dointvec_minmax);
  6489. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6490. sizeof(int), 0644, proc_dointvec_minmax);
  6491. set_table_entry(&table[9], "cache_nice_tries",
  6492. &sd->cache_nice_tries,
  6493. sizeof(int), 0644, proc_dointvec_minmax);
  6494. set_table_entry(&table[10], "flags", &sd->flags,
  6495. sizeof(int), 0644, proc_dointvec_minmax);
  6496. set_table_entry(&table[11], "name", sd->name,
  6497. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6498. /* &table[12] is terminator */
  6499. return table;
  6500. }
  6501. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6502. {
  6503. struct ctl_table *entry, *table;
  6504. struct sched_domain *sd;
  6505. int domain_num = 0, i;
  6506. char buf[32];
  6507. for_each_domain(cpu, sd)
  6508. domain_num++;
  6509. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6510. if (table == NULL)
  6511. return NULL;
  6512. i = 0;
  6513. for_each_domain(cpu, sd) {
  6514. snprintf(buf, 32, "domain%d", i);
  6515. entry->procname = kstrdup(buf, GFP_KERNEL);
  6516. entry->mode = 0555;
  6517. entry->child = sd_alloc_ctl_domain_table(sd);
  6518. entry++;
  6519. i++;
  6520. }
  6521. return table;
  6522. }
  6523. static struct ctl_table_header *sd_sysctl_header;
  6524. static void register_sched_domain_sysctl(void)
  6525. {
  6526. int i, cpu_num = num_online_cpus();
  6527. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6528. char buf[32];
  6529. WARN_ON(sd_ctl_dir[0].child);
  6530. sd_ctl_dir[0].child = entry;
  6531. if (entry == NULL)
  6532. return;
  6533. for_each_online_cpu(i) {
  6534. snprintf(buf, 32, "cpu%d", i);
  6535. entry->procname = kstrdup(buf, GFP_KERNEL);
  6536. entry->mode = 0555;
  6537. entry->child = sd_alloc_ctl_cpu_table(i);
  6538. entry++;
  6539. }
  6540. WARN_ON(sd_sysctl_header);
  6541. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6542. }
  6543. /* may be called multiple times per register */
  6544. static void unregister_sched_domain_sysctl(void)
  6545. {
  6546. if (sd_sysctl_header)
  6547. unregister_sysctl_table(sd_sysctl_header);
  6548. sd_sysctl_header = NULL;
  6549. if (sd_ctl_dir[0].child)
  6550. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6551. }
  6552. #else
  6553. static void register_sched_domain_sysctl(void)
  6554. {
  6555. }
  6556. static void unregister_sched_domain_sysctl(void)
  6557. {
  6558. }
  6559. #endif
  6560. static void set_rq_online(struct rq *rq)
  6561. {
  6562. if (!rq->online) {
  6563. const struct sched_class *class;
  6564. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6565. rq->online = 1;
  6566. for_each_class(class) {
  6567. if (class->rq_online)
  6568. class->rq_online(rq);
  6569. }
  6570. }
  6571. }
  6572. static void set_rq_offline(struct rq *rq)
  6573. {
  6574. if (rq->online) {
  6575. const struct sched_class *class;
  6576. for_each_class(class) {
  6577. if (class->rq_offline)
  6578. class->rq_offline(rq);
  6579. }
  6580. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6581. rq->online = 0;
  6582. }
  6583. }
  6584. /*
  6585. * migration_call - callback that gets triggered when a CPU is added.
  6586. * Here we can start up the necessary migration thread for the new CPU.
  6587. */
  6588. static int __cpuinit
  6589. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6590. {
  6591. struct task_struct *p;
  6592. int cpu = (long)hcpu;
  6593. unsigned long flags;
  6594. struct rq *rq;
  6595. switch (action) {
  6596. case CPU_UP_PREPARE:
  6597. case CPU_UP_PREPARE_FROZEN:
  6598. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6599. if (IS_ERR(p))
  6600. return NOTIFY_BAD;
  6601. kthread_bind(p, cpu);
  6602. /* Must be high prio: stop_machine expects to yield to it. */
  6603. rq = task_rq_lock(p, &flags);
  6604. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6605. task_rq_unlock(rq, &flags);
  6606. get_task_struct(p);
  6607. cpu_rq(cpu)->migration_thread = p;
  6608. rq->calc_load_update = calc_load_update;
  6609. break;
  6610. case CPU_ONLINE:
  6611. case CPU_ONLINE_FROZEN:
  6612. /* Strictly unnecessary, as first user will wake it. */
  6613. wake_up_process(cpu_rq(cpu)->migration_thread);
  6614. /* Update our root-domain */
  6615. rq = cpu_rq(cpu);
  6616. spin_lock_irqsave(&rq->lock, flags);
  6617. if (rq->rd) {
  6618. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6619. set_rq_online(rq);
  6620. }
  6621. spin_unlock_irqrestore(&rq->lock, flags);
  6622. break;
  6623. #ifdef CONFIG_HOTPLUG_CPU
  6624. case CPU_UP_CANCELED:
  6625. case CPU_UP_CANCELED_FROZEN:
  6626. if (!cpu_rq(cpu)->migration_thread)
  6627. break;
  6628. /* Unbind it from offline cpu so it can run. Fall thru. */
  6629. kthread_bind(cpu_rq(cpu)->migration_thread,
  6630. cpumask_any(cpu_online_mask));
  6631. kthread_stop(cpu_rq(cpu)->migration_thread);
  6632. put_task_struct(cpu_rq(cpu)->migration_thread);
  6633. cpu_rq(cpu)->migration_thread = NULL;
  6634. break;
  6635. case CPU_DEAD:
  6636. case CPU_DEAD_FROZEN:
  6637. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6638. migrate_live_tasks(cpu);
  6639. rq = cpu_rq(cpu);
  6640. kthread_stop(rq->migration_thread);
  6641. put_task_struct(rq->migration_thread);
  6642. rq->migration_thread = NULL;
  6643. /* Idle task back to normal (off runqueue, low prio) */
  6644. spin_lock_irq(&rq->lock);
  6645. update_rq_clock(rq);
  6646. deactivate_task(rq, rq->idle, 0);
  6647. rq->idle->static_prio = MAX_PRIO;
  6648. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6649. rq->idle->sched_class = &idle_sched_class;
  6650. migrate_dead_tasks(cpu);
  6651. spin_unlock_irq(&rq->lock);
  6652. cpuset_unlock();
  6653. migrate_nr_uninterruptible(rq);
  6654. BUG_ON(rq->nr_running != 0);
  6655. calc_global_load_remove(rq);
  6656. /*
  6657. * No need to migrate the tasks: it was best-effort if
  6658. * they didn't take sched_hotcpu_mutex. Just wake up
  6659. * the requestors.
  6660. */
  6661. spin_lock_irq(&rq->lock);
  6662. while (!list_empty(&rq->migration_queue)) {
  6663. struct migration_req *req;
  6664. req = list_entry(rq->migration_queue.next,
  6665. struct migration_req, list);
  6666. list_del_init(&req->list);
  6667. spin_unlock_irq(&rq->lock);
  6668. complete(&req->done);
  6669. spin_lock_irq(&rq->lock);
  6670. }
  6671. spin_unlock_irq(&rq->lock);
  6672. break;
  6673. case CPU_DYING:
  6674. case CPU_DYING_FROZEN:
  6675. /* Update our root-domain */
  6676. rq = cpu_rq(cpu);
  6677. spin_lock_irqsave(&rq->lock, flags);
  6678. if (rq->rd) {
  6679. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6680. set_rq_offline(rq);
  6681. }
  6682. spin_unlock_irqrestore(&rq->lock, flags);
  6683. break;
  6684. #endif
  6685. }
  6686. return NOTIFY_OK;
  6687. }
  6688. /*
  6689. * Register at high priority so that task migration (migrate_all_tasks)
  6690. * happens before everything else. This has to be lower priority than
  6691. * the notifier in the perf_counter subsystem, though.
  6692. */
  6693. static struct notifier_block __cpuinitdata migration_notifier = {
  6694. .notifier_call = migration_call,
  6695. .priority = 10
  6696. };
  6697. static int __init migration_init(void)
  6698. {
  6699. void *cpu = (void *)(long)smp_processor_id();
  6700. int err;
  6701. /* Start one for the boot CPU: */
  6702. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6703. BUG_ON(err == NOTIFY_BAD);
  6704. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6705. register_cpu_notifier(&migration_notifier);
  6706. return 0;
  6707. }
  6708. early_initcall(migration_init);
  6709. #endif
  6710. #ifdef CONFIG_SMP
  6711. #ifdef CONFIG_SCHED_DEBUG
  6712. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6713. struct cpumask *groupmask)
  6714. {
  6715. struct sched_group *group = sd->groups;
  6716. char str[256];
  6717. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6718. cpumask_clear(groupmask);
  6719. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6720. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6721. printk("does not load-balance\n");
  6722. if (sd->parent)
  6723. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6724. " has parent");
  6725. return -1;
  6726. }
  6727. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6728. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6729. printk(KERN_ERR "ERROR: domain->span does not contain "
  6730. "CPU%d\n", cpu);
  6731. }
  6732. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6733. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6734. " CPU%d\n", cpu);
  6735. }
  6736. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6737. do {
  6738. if (!group) {
  6739. printk("\n");
  6740. printk(KERN_ERR "ERROR: group is NULL\n");
  6741. break;
  6742. }
  6743. if (!group->cpu_power) {
  6744. printk(KERN_CONT "\n");
  6745. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6746. "set\n");
  6747. break;
  6748. }
  6749. if (!cpumask_weight(sched_group_cpus(group))) {
  6750. printk(KERN_CONT "\n");
  6751. printk(KERN_ERR "ERROR: empty group\n");
  6752. break;
  6753. }
  6754. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6755. printk(KERN_CONT "\n");
  6756. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6757. break;
  6758. }
  6759. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6760. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6761. printk(KERN_CONT " %s", str);
  6762. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6763. printk(KERN_CONT " (cpu_power = %d)",
  6764. group->cpu_power);
  6765. }
  6766. group = group->next;
  6767. } while (group != sd->groups);
  6768. printk(KERN_CONT "\n");
  6769. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6770. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6771. if (sd->parent &&
  6772. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6773. printk(KERN_ERR "ERROR: parent span is not a superset "
  6774. "of domain->span\n");
  6775. return 0;
  6776. }
  6777. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6778. {
  6779. cpumask_var_t groupmask;
  6780. int level = 0;
  6781. if (!sd) {
  6782. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6783. return;
  6784. }
  6785. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6786. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6787. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6788. return;
  6789. }
  6790. for (;;) {
  6791. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6792. break;
  6793. level++;
  6794. sd = sd->parent;
  6795. if (!sd)
  6796. break;
  6797. }
  6798. free_cpumask_var(groupmask);
  6799. }
  6800. #else /* !CONFIG_SCHED_DEBUG */
  6801. # define sched_domain_debug(sd, cpu) do { } while (0)
  6802. #endif /* CONFIG_SCHED_DEBUG */
  6803. static int sd_degenerate(struct sched_domain *sd)
  6804. {
  6805. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6806. return 1;
  6807. /* Following flags need at least 2 groups */
  6808. if (sd->flags & (SD_LOAD_BALANCE |
  6809. SD_BALANCE_NEWIDLE |
  6810. SD_BALANCE_FORK |
  6811. SD_BALANCE_EXEC |
  6812. SD_SHARE_CPUPOWER |
  6813. SD_SHARE_PKG_RESOURCES)) {
  6814. if (sd->groups != sd->groups->next)
  6815. return 0;
  6816. }
  6817. /* Following flags don't use groups */
  6818. if (sd->flags & (SD_WAKE_IDLE |
  6819. SD_WAKE_AFFINE |
  6820. SD_WAKE_BALANCE))
  6821. return 0;
  6822. return 1;
  6823. }
  6824. static int
  6825. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6826. {
  6827. unsigned long cflags = sd->flags, pflags = parent->flags;
  6828. if (sd_degenerate(parent))
  6829. return 1;
  6830. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6831. return 0;
  6832. /* Does parent contain flags not in child? */
  6833. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6834. if (cflags & SD_WAKE_AFFINE)
  6835. pflags &= ~SD_WAKE_BALANCE;
  6836. /* Flags needing groups don't count if only 1 group in parent */
  6837. if (parent->groups == parent->groups->next) {
  6838. pflags &= ~(SD_LOAD_BALANCE |
  6839. SD_BALANCE_NEWIDLE |
  6840. SD_BALANCE_FORK |
  6841. SD_BALANCE_EXEC |
  6842. SD_SHARE_CPUPOWER |
  6843. SD_SHARE_PKG_RESOURCES);
  6844. if (nr_node_ids == 1)
  6845. pflags &= ~SD_SERIALIZE;
  6846. }
  6847. if (~cflags & pflags)
  6848. return 0;
  6849. return 1;
  6850. }
  6851. static void free_rootdomain(struct root_domain *rd)
  6852. {
  6853. cpupri_cleanup(&rd->cpupri);
  6854. free_cpumask_var(rd->rto_mask);
  6855. free_cpumask_var(rd->online);
  6856. free_cpumask_var(rd->span);
  6857. kfree(rd);
  6858. }
  6859. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6860. {
  6861. struct root_domain *old_rd = NULL;
  6862. unsigned long flags;
  6863. spin_lock_irqsave(&rq->lock, flags);
  6864. if (rq->rd) {
  6865. old_rd = rq->rd;
  6866. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6867. set_rq_offline(rq);
  6868. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6869. /*
  6870. * If we dont want to free the old_rt yet then
  6871. * set old_rd to NULL to skip the freeing later
  6872. * in this function:
  6873. */
  6874. if (!atomic_dec_and_test(&old_rd->refcount))
  6875. old_rd = NULL;
  6876. }
  6877. atomic_inc(&rd->refcount);
  6878. rq->rd = rd;
  6879. cpumask_set_cpu(rq->cpu, rd->span);
  6880. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6881. set_rq_online(rq);
  6882. spin_unlock_irqrestore(&rq->lock, flags);
  6883. if (old_rd)
  6884. free_rootdomain(old_rd);
  6885. }
  6886. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6887. {
  6888. gfp_t gfp = GFP_KERNEL;
  6889. memset(rd, 0, sizeof(*rd));
  6890. if (bootmem)
  6891. gfp = GFP_NOWAIT;
  6892. if (!alloc_cpumask_var(&rd->span, gfp))
  6893. goto out;
  6894. if (!alloc_cpumask_var(&rd->online, gfp))
  6895. goto free_span;
  6896. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6897. goto free_online;
  6898. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6899. goto free_rto_mask;
  6900. return 0;
  6901. free_rto_mask:
  6902. free_cpumask_var(rd->rto_mask);
  6903. free_online:
  6904. free_cpumask_var(rd->online);
  6905. free_span:
  6906. free_cpumask_var(rd->span);
  6907. out:
  6908. return -ENOMEM;
  6909. }
  6910. static void init_defrootdomain(void)
  6911. {
  6912. init_rootdomain(&def_root_domain, true);
  6913. atomic_set(&def_root_domain.refcount, 1);
  6914. }
  6915. static struct root_domain *alloc_rootdomain(void)
  6916. {
  6917. struct root_domain *rd;
  6918. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6919. if (!rd)
  6920. return NULL;
  6921. if (init_rootdomain(rd, false) != 0) {
  6922. kfree(rd);
  6923. return NULL;
  6924. }
  6925. return rd;
  6926. }
  6927. /*
  6928. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6929. * hold the hotplug lock.
  6930. */
  6931. static void
  6932. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6933. {
  6934. struct rq *rq = cpu_rq(cpu);
  6935. struct sched_domain *tmp;
  6936. /* Remove the sched domains which do not contribute to scheduling. */
  6937. for (tmp = sd; tmp; ) {
  6938. struct sched_domain *parent = tmp->parent;
  6939. if (!parent)
  6940. break;
  6941. if (sd_parent_degenerate(tmp, parent)) {
  6942. tmp->parent = parent->parent;
  6943. if (parent->parent)
  6944. parent->parent->child = tmp;
  6945. } else
  6946. tmp = tmp->parent;
  6947. }
  6948. if (sd && sd_degenerate(sd)) {
  6949. sd = sd->parent;
  6950. if (sd)
  6951. sd->child = NULL;
  6952. }
  6953. sched_domain_debug(sd, cpu);
  6954. rq_attach_root(rq, rd);
  6955. rcu_assign_pointer(rq->sd, sd);
  6956. }
  6957. /* cpus with isolated domains */
  6958. static cpumask_var_t cpu_isolated_map;
  6959. /* Setup the mask of cpus configured for isolated domains */
  6960. static int __init isolated_cpu_setup(char *str)
  6961. {
  6962. cpulist_parse(str, cpu_isolated_map);
  6963. return 1;
  6964. }
  6965. __setup("isolcpus=", isolated_cpu_setup);
  6966. /*
  6967. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6968. * to a function which identifies what group(along with sched group) a CPU
  6969. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6970. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6971. *
  6972. * init_sched_build_groups will build a circular linked list of the groups
  6973. * covered by the given span, and will set each group's ->cpumask correctly,
  6974. * and ->cpu_power to 0.
  6975. */
  6976. static void
  6977. init_sched_build_groups(const struct cpumask *span,
  6978. const struct cpumask *cpu_map,
  6979. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6980. struct sched_group **sg,
  6981. struct cpumask *tmpmask),
  6982. struct cpumask *covered, struct cpumask *tmpmask)
  6983. {
  6984. struct sched_group *first = NULL, *last = NULL;
  6985. int i;
  6986. cpumask_clear(covered);
  6987. for_each_cpu(i, span) {
  6988. struct sched_group *sg;
  6989. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6990. int j;
  6991. if (cpumask_test_cpu(i, covered))
  6992. continue;
  6993. cpumask_clear(sched_group_cpus(sg));
  6994. sg->cpu_power = 0;
  6995. for_each_cpu(j, span) {
  6996. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6997. continue;
  6998. cpumask_set_cpu(j, covered);
  6999. cpumask_set_cpu(j, sched_group_cpus(sg));
  7000. }
  7001. if (!first)
  7002. first = sg;
  7003. if (last)
  7004. last->next = sg;
  7005. last = sg;
  7006. }
  7007. last->next = first;
  7008. }
  7009. #define SD_NODES_PER_DOMAIN 16
  7010. #ifdef CONFIG_NUMA
  7011. /**
  7012. * find_next_best_node - find the next node to include in a sched_domain
  7013. * @node: node whose sched_domain we're building
  7014. * @used_nodes: nodes already in the sched_domain
  7015. *
  7016. * Find the next node to include in a given scheduling domain. Simply
  7017. * finds the closest node not already in the @used_nodes map.
  7018. *
  7019. * Should use nodemask_t.
  7020. */
  7021. static int find_next_best_node(int node, nodemask_t *used_nodes)
  7022. {
  7023. int i, n, val, min_val, best_node = 0;
  7024. min_val = INT_MAX;
  7025. for (i = 0; i < nr_node_ids; i++) {
  7026. /* Start at @node */
  7027. n = (node + i) % nr_node_ids;
  7028. if (!nr_cpus_node(n))
  7029. continue;
  7030. /* Skip already used nodes */
  7031. if (node_isset(n, *used_nodes))
  7032. continue;
  7033. /* Simple min distance search */
  7034. val = node_distance(node, n);
  7035. if (val < min_val) {
  7036. min_val = val;
  7037. best_node = n;
  7038. }
  7039. }
  7040. node_set(best_node, *used_nodes);
  7041. return best_node;
  7042. }
  7043. /**
  7044. * sched_domain_node_span - get a cpumask for a node's sched_domain
  7045. * @node: node whose cpumask we're constructing
  7046. * @span: resulting cpumask
  7047. *
  7048. * Given a node, construct a good cpumask for its sched_domain to span. It
  7049. * should be one that prevents unnecessary balancing, but also spreads tasks
  7050. * out optimally.
  7051. */
  7052. static void sched_domain_node_span(int node, struct cpumask *span)
  7053. {
  7054. nodemask_t used_nodes;
  7055. int i;
  7056. cpumask_clear(span);
  7057. nodes_clear(used_nodes);
  7058. cpumask_or(span, span, cpumask_of_node(node));
  7059. node_set(node, used_nodes);
  7060. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  7061. int next_node = find_next_best_node(node, &used_nodes);
  7062. cpumask_or(span, span, cpumask_of_node(next_node));
  7063. }
  7064. }
  7065. #endif /* CONFIG_NUMA */
  7066. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7067. /*
  7068. * The cpus mask in sched_group and sched_domain hangs off the end.
  7069. *
  7070. * ( See the the comments in include/linux/sched.h:struct sched_group
  7071. * and struct sched_domain. )
  7072. */
  7073. struct static_sched_group {
  7074. struct sched_group sg;
  7075. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7076. };
  7077. struct static_sched_domain {
  7078. struct sched_domain sd;
  7079. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7080. };
  7081. struct s_data {
  7082. #ifdef CONFIG_NUMA
  7083. int sd_allnodes;
  7084. cpumask_var_t domainspan;
  7085. cpumask_var_t covered;
  7086. cpumask_var_t notcovered;
  7087. #endif
  7088. cpumask_var_t nodemask;
  7089. cpumask_var_t this_sibling_map;
  7090. cpumask_var_t this_core_map;
  7091. cpumask_var_t send_covered;
  7092. cpumask_var_t tmpmask;
  7093. struct sched_group **sched_group_nodes;
  7094. struct root_domain *rd;
  7095. };
  7096. enum s_alloc {
  7097. sa_sched_groups = 0,
  7098. sa_rootdomain,
  7099. sa_tmpmask,
  7100. sa_send_covered,
  7101. sa_this_core_map,
  7102. sa_this_sibling_map,
  7103. sa_nodemask,
  7104. sa_sched_group_nodes,
  7105. #ifdef CONFIG_NUMA
  7106. sa_notcovered,
  7107. sa_covered,
  7108. sa_domainspan,
  7109. #endif
  7110. sa_none,
  7111. };
  7112. /*
  7113. * SMT sched-domains:
  7114. */
  7115. #ifdef CONFIG_SCHED_SMT
  7116. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7117. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7118. static int
  7119. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7120. struct sched_group **sg, struct cpumask *unused)
  7121. {
  7122. if (sg)
  7123. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7124. return cpu;
  7125. }
  7126. #endif /* CONFIG_SCHED_SMT */
  7127. /*
  7128. * multi-core sched-domains:
  7129. */
  7130. #ifdef CONFIG_SCHED_MC
  7131. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7132. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7133. #endif /* CONFIG_SCHED_MC */
  7134. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7135. static int
  7136. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7137. struct sched_group **sg, struct cpumask *mask)
  7138. {
  7139. int group;
  7140. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7141. group = cpumask_first(mask);
  7142. if (sg)
  7143. *sg = &per_cpu(sched_group_core, group).sg;
  7144. return group;
  7145. }
  7146. #elif defined(CONFIG_SCHED_MC)
  7147. static int
  7148. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7149. struct sched_group **sg, struct cpumask *unused)
  7150. {
  7151. if (sg)
  7152. *sg = &per_cpu(sched_group_core, cpu).sg;
  7153. return cpu;
  7154. }
  7155. #endif
  7156. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7157. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7158. static int
  7159. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7160. struct sched_group **sg, struct cpumask *mask)
  7161. {
  7162. int group;
  7163. #ifdef CONFIG_SCHED_MC
  7164. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7165. group = cpumask_first(mask);
  7166. #elif defined(CONFIG_SCHED_SMT)
  7167. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7168. group = cpumask_first(mask);
  7169. #else
  7170. group = cpu;
  7171. #endif
  7172. if (sg)
  7173. *sg = &per_cpu(sched_group_phys, group).sg;
  7174. return group;
  7175. }
  7176. #ifdef CONFIG_NUMA
  7177. /*
  7178. * The init_sched_build_groups can't handle what we want to do with node
  7179. * groups, so roll our own. Now each node has its own list of groups which
  7180. * gets dynamically allocated.
  7181. */
  7182. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7183. static struct sched_group ***sched_group_nodes_bycpu;
  7184. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7185. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7186. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7187. struct sched_group **sg,
  7188. struct cpumask *nodemask)
  7189. {
  7190. int group;
  7191. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7192. group = cpumask_first(nodemask);
  7193. if (sg)
  7194. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7195. return group;
  7196. }
  7197. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7198. {
  7199. struct sched_group *sg = group_head;
  7200. int j;
  7201. if (!sg)
  7202. return;
  7203. do {
  7204. for_each_cpu(j, sched_group_cpus(sg)) {
  7205. struct sched_domain *sd;
  7206. sd = &per_cpu(phys_domains, j).sd;
  7207. if (j != group_first_cpu(sd->groups)) {
  7208. /*
  7209. * Only add "power" once for each
  7210. * physical package.
  7211. */
  7212. continue;
  7213. }
  7214. sg->cpu_power += sd->groups->cpu_power;
  7215. }
  7216. sg = sg->next;
  7217. } while (sg != group_head);
  7218. }
  7219. static int build_numa_sched_groups(struct s_data *d,
  7220. const struct cpumask *cpu_map, int num)
  7221. {
  7222. struct sched_domain *sd;
  7223. struct sched_group *sg, *prev;
  7224. int n, j;
  7225. cpumask_clear(d->covered);
  7226. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7227. if (cpumask_empty(d->nodemask)) {
  7228. d->sched_group_nodes[num] = NULL;
  7229. goto out;
  7230. }
  7231. sched_domain_node_span(num, d->domainspan);
  7232. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7233. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7234. GFP_KERNEL, num);
  7235. if (!sg) {
  7236. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7237. num);
  7238. return -ENOMEM;
  7239. }
  7240. d->sched_group_nodes[num] = sg;
  7241. for_each_cpu(j, d->nodemask) {
  7242. sd = &per_cpu(node_domains, j).sd;
  7243. sd->groups = sg;
  7244. }
  7245. sg->cpu_power = 0;
  7246. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7247. sg->next = sg;
  7248. cpumask_or(d->covered, d->covered, d->nodemask);
  7249. prev = sg;
  7250. for (j = 0; j < nr_node_ids; j++) {
  7251. n = (num + j) % nr_node_ids;
  7252. cpumask_complement(d->notcovered, d->covered);
  7253. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7254. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7255. if (cpumask_empty(d->tmpmask))
  7256. break;
  7257. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7258. if (cpumask_empty(d->tmpmask))
  7259. continue;
  7260. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7261. GFP_KERNEL, num);
  7262. if (!sg) {
  7263. printk(KERN_WARNING
  7264. "Can not alloc domain group for node %d\n", j);
  7265. return -ENOMEM;
  7266. }
  7267. sg->cpu_power = 0;
  7268. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7269. sg->next = prev->next;
  7270. cpumask_or(d->covered, d->covered, d->tmpmask);
  7271. prev->next = sg;
  7272. prev = sg;
  7273. }
  7274. out:
  7275. return 0;
  7276. }
  7277. #endif /* CONFIG_NUMA */
  7278. #ifdef CONFIG_NUMA
  7279. /* Free memory allocated for various sched_group structures */
  7280. static void free_sched_groups(const struct cpumask *cpu_map,
  7281. struct cpumask *nodemask)
  7282. {
  7283. int cpu, i;
  7284. for_each_cpu(cpu, cpu_map) {
  7285. struct sched_group **sched_group_nodes
  7286. = sched_group_nodes_bycpu[cpu];
  7287. if (!sched_group_nodes)
  7288. continue;
  7289. for (i = 0; i < nr_node_ids; i++) {
  7290. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7291. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7292. if (cpumask_empty(nodemask))
  7293. continue;
  7294. if (sg == NULL)
  7295. continue;
  7296. sg = sg->next;
  7297. next_sg:
  7298. oldsg = sg;
  7299. sg = sg->next;
  7300. kfree(oldsg);
  7301. if (oldsg != sched_group_nodes[i])
  7302. goto next_sg;
  7303. }
  7304. kfree(sched_group_nodes);
  7305. sched_group_nodes_bycpu[cpu] = NULL;
  7306. }
  7307. }
  7308. #else /* !CONFIG_NUMA */
  7309. static void free_sched_groups(const struct cpumask *cpu_map,
  7310. struct cpumask *nodemask)
  7311. {
  7312. }
  7313. #endif /* CONFIG_NUMA */
  7314. /*
  7315. * Initialize sched groups cpu_power.
  7316. *
  7317. * cpu_power indicates the capacity of sched group, which is used while
  7318. * distributing the load between different sched groups in a sched domain.
  7319. * Typically cpu_power for all the groups in a sched domain will be same unless
  7320. * there are asymmetries in the topology. If there are asymmetries, group
  7321. * having more cpu_power will pickup more load compared to the group having
  7322. * less cpu_power.
  7323. */
  7324. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7325. {
  7326. struct sched_domain *child;
  7327. struct sched_group *group;
  7328. long power;
  7329. int weight;
  7330. WARN_ON(!sd || !sd->groups);
  7331. if (cpu != group_first_cpu(sd->groups))
  7332. return;
  7333. child = sd->child;
  7334. sd->groups->cpu_power = 0;
  7335. if (!child) {
  7336. power = SCHED_LOAD_SCALE;
  7337. weight = cpumask_weight(sched_domain_span(sd));
  7338. /*
  7339. * SMT siblings share the power of a single core.
  7340. * Usually multiple threads get a better yield out of
  7341. * that one core than a single thread would have,
  7342. * reflect that in sd->smt_gain.
  7343. */
  7344. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7345. power *= sd->smt_gain;
  7346. power /= weight;
  7347. power >>= SCHED_LOAD_SHIFT;
  7348. }
  7349. sd->groups->cpu_power += power;
  7350. return;
  7351. }
  7352. /*
  7353. * Add cpu_power of each child group to this groups cpu_power.
  7354. */
  7355. group = child->groups;
  7356. do {
  7357. sd->groups->cpu_power += group->cpu_power;
  7358. group = group->next;
  7359. } while (group != child->groups);
  7360. }
  7361. /*
  7362. * Initializers for schedule domains
  7363. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7364. */
  7365. #ifdef CONFIG_SCHED_DEBUG
  7366. # define SD_INIT_NAME(sd, type) sd->name = #type
  7367. #else
  7368. # define SD_INIT_NAME(sd, type) do { } while (0)
  7369. #endif
  7370. #define SD_INIT(sd, type) sd_init_##type(sd)
  7371. #define SD_INIT_FUNC(type) \
  7372. static noinline void sd_init_##type(struct sched_domain *sd) \
  7373. { \
  7374. memset(sd, 0, sizeof(*sd)); \
  7375. *sd = SD_##type##_INIT; \
  7376. sd->level = SD_LV_##type; \
  7377. SD_INIT_NAME(sd, type); \
  7378. }
  7379. SD_INIT_FUNC(CPU)
  7380. #ifdef CONFIG_NUMA
  7381. SD_INIT_FUNC(ALLNODES)
  7382. SD_INIT_FUNC(NODE)
  7383. #endif
  7384. #ifdef CONFIG_SCHED_SMT
  7385. SD_INIT_FUNC(SIBLING)
  7386. #endif
  7387. #ifdef CONFIG_SCHED_MC
  7388. SD_INIT_FUNC(MC)
  7389. #endif
  7390. static int default_relax_domain_level = -1;
  7391. static int __init setup_relax_domain_level(char *str)
  7392. {
  7393. unsigned long val;
  7394. val = simple_strtoul(str, NULL, 0);
  7395. if (val < SD_LV_MAX)
  7396. default_relax_domain_level = val;
  7397. return 1;
  7398. }
  7399. __setup("relax_domain_level=", setup_relax_domain_level);
  7400. static void set_domain_attribute(struct sched_domain *sd,
  7401. struct sched_domain_attr *attr)
  7402. {
  7403. int request;
  7404. if (!attr || attr->relax_domain_level < 0) {
  7405. if (default_relax_domain_level < 0)
  7406. return;
  7407. else
  7408. request = default_relax_domain_level;
  7409. } else
  7410. request = attr->relax_domain_level;
  7411. if (request < sd->level) {
  7412. /* turn off idle balance on this domain */
  7413. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7414. } else {
  7415. /* turn on idle balance on this domain */
  7416. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7417. }
  7418. }
  7419. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7420. const struct cpumask *cpu_map)
  7421. {
  7422. switch (what) {
  7423. case sa_sched_groups:
  7424. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7425. d->sched_group_nodes = NULL;
  7426. case sa_rootdomain:
  7427. free_rootdomain(d->rd); /* fall through */
  7428. case sa_tmpmask:
  7429. free_cpumask_var(d->tmpmask); /* fall through */
  7430. case sa_send_covered:
  7431. free_cpumask_var(d->send_covered); /* fall through */
  7432. case sa_this_core_map:
  7433. free_cpumask_var(d->this_core_map); /* fall through */
  7434. case sa_this_sibling_map:
  7435. free_cpumask_var(d->this_sibling_map); /* fall through */
  7436. case sa_nodemask:
  7437. free_cpumask_var(d->nodemask); /* fall through */
  7438. case sa_sched_group_nodes:
  7439. #ifdef CONFIG_NUMA
  7440. kfree(d->sched_group_nodes); /* fall through */
  7441. case sa_notcovered:
  7442. free_cpumask_var(d->notcovered); /* fall through */
  7443. case sa_covered:
  7444. free_cpumask_var(d->covered); /* fall through */
  7445. case sa_domainspan:
  7446. free_cpumask_var(d->domainspan); /* fall through */
  7447. #endif
  7448. case sa_none:
  7449. break;
  7450. }
  7451. }
  7452. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7453. const struct cpumask *cpu_map)
  7454. {
  7455. #ifdef CONFIG_NUMA
  7456. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7457. return sa_none;
  7458. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7459. return sa_domainspan;
  7460. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7461. return sa_covered;
  7462. /* Allocate the per-node list of sched groups */
  7463. d->sched_group_nodes = kcalloc(nr_node_ids,
  7464. sizeof(struct sched_group *), GFP_KERNEL);
  7465. if (!d->sched_group_nodes) {
  7466. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7467. return sa_notcovered;
  7468. }
  7469. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7470. #endif
  7471. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7472. return sa_sched_group_nodes;
  7473. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7474. return sa_nodemask;
  7475. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7476. return sa_this_sibling_map;
  7477. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7478. return sa_this_core_map;
  7479. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7480. return sa_send_covered;
  7481. d->rd = alloc_rootdomain();
  7482. if (!d->rd) {
  7483. printk(KERN_WARNING "Cannot alloc root domain\n");
  7484. return sa_tmpmask;
  7485. }
  7486. return sa_rootdomain;
  7487. }
  7488. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7489. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7490. {
  7491. struct sched_domain *sd = NULL;
  7492. #ifdef CONFIG_NUMA
  7493. struct sched_domain *parent;
  7494. d->sd_allnodes = 0;
  7495. if (cpumask_weight(cpu_map) >
  7496. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7497. sd = &per_cpu(allnodes_domains, i).sd;
  7498. SD_INIT(sd, ALLNODES);
  7499. set_domain_attribute(sd, attr);
  7500. cpumask_copy(sched_domain_span(sd), cpu_map);
  7501. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7502. d->sd_allnodes = 1;
  7503. }
  7504. parent = sd;
  7505. sd = &per_cpu(node_domains, i).sd;
  7506. SD_INIT(sd, NODE);
  7507. set_domain_attribute(sd, attr);
  7508. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7509. sd->parent = parent;
  7510. if (parent)
  7511. parent->child = sd;
  7512. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7513. #endif
  7514. return sd;
  7515. }
  7516. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7517. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7518. struct sched_domain *parent, int i)
  7519. {
  7520. struct sched_domain *sd;
  7521. sd = &per_cpu(phys_domains, i).sd;
  7522. SD_INIT(sd, CPU);
  7523. set_domain_attribute(sd, attr);
  7524. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7525. sd->parent = parent;
  7526. if (parent)
  7527. parent->child = sd;
  7528. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7529. return sd;
  7530. }
  7531. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7532. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7533. struct sched_domain *parent, int i)
  7534. {
  7535. struct sched_domain *sd = parent;
  7536. #ifdef CONFIG_SCHED_MC
  7537. sd = &per_cpu(core_domains, i).sd;
  7538. SD_INIT(sd, MC);
  7539. set_domain_attribute(sd, attr);
  7540. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7541. sd->parent = parent;
  7542. parent->child = sd;
  7543. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7544. #endif
  7545. return sd;
  7546. }
  7547. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7548. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7549. struct sched_domain *parent, int i)
  7550. {
  7551. struct sched_domain *sd = parent;
  7552. #ifdef CONFIG_SCHED_SMT
  7553. sd = &per_cpu(cpu_domains, i).sd;
  7554. SD_INIT(sd, SIBLING);
  7555. set_domain_attribute(sd, attr);
  7556. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7557. sd->parent = parent;
  7558. parent->child = sd;
  7559. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7560. #endif
  7561. return sd;
  7562. }
  7563. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7564. const struct cpumask *cpu_map, int cpu)
  7565. {
  7566. switch (l) {
  7567. #ifdef CONFIG_SCHED_SMT
  7568. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7569. cpumask_and(d->this_sibling_map, cpu_map,
  7570. topology_thread_cpumask(cpu));
  7571. if (cpu == cpumask_first(d->this_sibling_map))
  7572. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7573. &cpu_to_cpu_group,
  7574. d->send_covered, d->tmpmask);
  7575. break;
  7576. #endif
  7577. #ifdef CONFIG_SCHED_MC
  7578. case SD_LV_MC: /* set up multi-core groups */
  7579. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7580. if (cpu == cpumask_first(d->this_core_map))
  7581. init_sched_build_groups(d->this_core_map, cpu_map,
  7582. &cpu_to_core_group,
  7583. d->send_covered, d->tmpmask);
  7584. break;
  7585. #endif
  7586. case SD_LV_CPU: /* set up physical groups */
  7587. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7588. if (!cpumask_empty(d->nodemask))
  7589. init_sched_build_groups(d->nodemask, cpu_map,
  7590. &cpu_to_phys_group,
  7591. d->send_covered, d->tmpmask);
  7592. break;
  7593. #ifdef CONFIG_NUMA
  7594. case SD_LV_ALLNODES:
  7595. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7596. d->send_covered, d->tmpmask);
  7597. break;
  7598. #endif
  7599. default:
  7600. break;
  7601. }
  7602. }
  7603. /*
  7604. * Build sched domains for a given set of cpus and attach the sched domains
  7605. * to the individual cpus
  7606. */
  7607. static int __build_sched_domains(const struct cpumask *cpu_map,
  7608. struct sched_domain_attr *attr)
  7609. {
  7610. enum s_alloc alloc_state = sa_none;
  7611. struct s_data d;
  7612. struct sched_domain *sd;
  7613. int i;
  7614. #ifdef CONFIG_NUMA
  7615. d.sd_allnodes = 0;
  7616. #endif
  7617. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7618. if (alloc_state != sa_rootdomain)
  7619. goto error;
  7620. alloc_state = sa_sched_groups;
  7621. /*
  7622. * Set up domains for cpus specified by the cpu_map.
  7623. */
  7624. for_each_cpu(i, cpu_map) {
  7625. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7626. cpu_map);
  7627. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7628. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7629. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7630. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7631. }
  7632. for_each_cpu(i, cpu_map) {
  7633. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7634. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7635. }
  7636. /* Set up physical groups */
  7637. for (i = 0; i < nr_node_ids; i++)
  7638. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7639. #ifdef CONFIG_NUMA
  7640. /* Set up node groups */
  7641. if (d.sd_allnodes)
  7642. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7643. for (i = 0; i < nr_node_ids; i++)
  7644. if (build_numa_sched_groups(&d, cpu_map, i))
  7645. goto error;
  7646. #endif
  7647. /* Calculate CPU power for physical packages and nodes */
  7648. #ifdef CONFIG_SCHED_SMT
  7649. for_each_cpu(i, cpu_map) {
  7650. sd = &per_cpu(cpu_domains, i).sd;
  7651. init_sched_groups_power(i, sd);
  7652. }
  7653. #endif
  7654. #ifdef CONFIG_SCHED_MC
  7655. for_each_cpu(i, cpu_map) {
  7656. sd = &per_cpu(core_domains, i).sd;
  7657. init_sched_groups_power(i, sd);
  7658. }
  7659. #endif
  7660. for_each_cpu(i, cpu_map) {
  7661. sd = &per_cpu(phys_domains, i).sd;
  7662. init_sched_groups_power(i, sd);
  7663. }
  7664. #ifdef CONFIG_NUMA
  7665. for (i = 0; i < nr_node_ids; i++)
  7666. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7667. if (d.sd_allnodes) {
  7668. struct sched_group *sg;
  7669. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7670. d.tmpmask);
  7671. init_numa_sched_groups_power(sg);
  7672. }
  7673. #endif
  7674. /* Attach the domains */
  7675. for_each_cpu(i, cpu_map) {
  7676. #ifdef CONFIG_SCHED_SMT
  7677. sd = &per_cpu(cpu_domains, i).sd;
  7678. #elif defined(CONFIG_SCHED_MC)
  7679. sd = &per_cpu(core_domains, i).sd;
  7680. #else
  7681. sd = &per_cpu(phys_domains, i).sd;
  7682. #endif
  7683. cpu_attach_domain(sd, d.rd, i);
  7684. }
  7685. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7686. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7687. return 0;
  7688. error:
  7689. __free_domain_allocs(&d, alloc_state, cpu_map);
  7690. return -ENOMEM;
  7691. }
  7692. static int build_sched_domains(const struct cpumask *cpu_map)
  7693. {
  7694. return __build_sched_domains(cpu_map, NULL);
  7695. }
  7696. static struct cpumask *doms_cur; /* current sched domains */
  7697. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7698. static struct sched_domain_attr *dattr_cur;
  7699. /* attribues of custom domains in 'doms_cur' */
  7700. /*
  7701. * Special case: If a kmalloc of a doms_cur partition (array of
  7702. * cpumask) fails, then fallback to a single sched domain,
  7703. * as determined by the single cpumask fallback_doms.
  7704. */
  7705. static cpumask_var_t fallback_doms;
  7706. /*
  7707. * arch_update_cpu_topology lets virtualized architectures update the
  7708. * cpu core maps. It is supposed to return 1 if the topology changed
  7709. * or 0 if it stayed the same.
  7710. */
  7711. int __attribute__((weak)) arch_update_cpu_topology(void)
  7712. {
  7713. return 0;
  7714. }
  7715. /*
  7716. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7717. * For now this just excludes isolated cpus, but could be used to
  7718. * exclude other special cases in the future.
  7719. */
  7720. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7721. {
  7722. int err;
  7723. arch_update_cpu_topology();
  7724. ndoms_cur = 1;
  7725. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7726. if (!doms_cur)
  7727. doms_cur = fallback_doms;
  7728. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7729. dattr_cur = NULL;
  7730. err = build_sched_domains(doms_cur);
  7731. register_sched_domain_sysctl();
  7732. return err;
  7733. }
  7734. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7735. struct cpumask *tmpmask)
  7736. {
  7737. free_sched_groups(cpu_map, tmpmask);
  7738. }
  7739. /*
  7740. * Detach sched domains from a group of cpus specified in cpu_map
  7741. * These cpus will now be attached to the NULL domain
  7742. */
  7743. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7744. {
  7745. /* Save because hotplug lock held. */
  7746. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7747. int i;
  7748. for_each_cpu(i, cpu_map)
  7749. cpu_attach_domain(NULL, &def_root_domain, i);
  7750. synchronize_sched();
  7751. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7752. }
  7753. /* handle null as "default" */
  7754. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7755. struct sched_domain_attr *new, int idx_new)
  7756. {
  7757. struct sched_domain_attr tmp;
  7758. /* fast path */
  7759. if (!new && !cur)
  7760. return 1;
  7761. tmp = SD_ATTR_INIT;
  7762. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7763. new ? (new + idx_new) : &tmp,
  7764. sizeof(struct sched_domain_attr));
  7765. }
  7766. /*
  7767. * Partition sched domains as specified by the 'ndoms_new'
  7768. * cpumasks in the array doms_new[] of cpumasks. This compares
  7769. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7770. * It destroys each deleted domain and builds each new domain.
  7771. *
  7772. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7773. * The masks don't intersect (don't overlap.) We should setup one
  7774. * sched domain for each mask. CPUs not in any of the cpumasks will
  7775. * not be load balanced. If the same cpumask appears both in the
  7776. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7777. * it as it is.
  7778. *
  7779. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7780. * ownership of it and will kfree it when done with it. If the caller
  7781. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7782. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7783. * the single partition 'fallback_doms', it also forces the domains
  7784. * to be rebuilt.
  7785. *
  7786. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7787. * ndoms_new == 0 is a special case for destroying existing domains,
  7788. * and it will not create the default domain.
  7789. *
  7790. * Call with hotplug lock held
  7791. */
  7792. /* FIXME: Change to struct cpumask *doms_new[] */
  7793. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7794. struct sched_domain_attr *dattr_new)
  7795. {
  7796. int i, j, n;
  7797. int new_topology;
  7798. mutex_lock(&sched_domains_mutex);
  7799. /* always unregister in case we don't destroy any domains */
  7800. unregister_sched_domain_sysctl();
  7801. /* Let architecture update cpu core mappings. */
  7802. new_topology = arch_update_cpu_topology();
  7803. n = doms_new ? ndoms_new : 0;
  7804. /* Destroy deleted domains */
  7805. for (i = 0; i < ndoms_cur; i++) {
  7806. for (j = 0; j < n && !new_topology; j++) {
  7807. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7808. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7809. goto match1;
  7810. }
  7811. /* no match - a current sched domain not in new doms_new[] */
  7812. detach_destroy_domains(doms_cur + i);
  7813. match1:
  7814. ;
  7815. }
  7816. if (doms_new == NULL) {
  7817. ndoms_cur = 0;
  7818. doms_new = fallback_doms;
  7819. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7820. WARN_ON_ONCE(dattr_new);
  7821. }
  7822. /* Build new domains */
  7823. for (i = 0; i < ndoms_new; i++) {
  7824. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7825. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7826. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7827. goto match2;
  7828. }
  7829. /* no match - add a new doms_new */
  7830. __build_sched_domains(doms_new + i,
  7831. dattr_new ? dattr_new + i : NULL);
  7832. match2:
  7833. ;
  7834. }
  7835. /* Remember the new sched domains */
  7836. if (doms_cur != fallback_doms)
  7837. kfree(doms_cur);
  7838. kfree(dattr_cur); /* kfree(NULL) is safe */
  7839. doms_cur = doms_new;
  7840. dattr_cur = dattr_new;
  7841. ndoms_cur = ndoms_new;
  7842. register_sched_domain_sysctl();
  7843. mutex_unlock(&sched_domains_mutex);
  7844. }
  7845. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7846. static void arch_reinit_sched_domains(void)
  7847. {
  7848. get_online_cpus();
  7849. /* Destroy domains first to force the rebuild */
  7850. partition_sched_domains(0, NULL, NULL);
  7851. rebuild_sched_domains();
  7852. put_online_cpus();
  7853. }
  7854. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7855. {
  7856. unsigned int level = 0;
  7857. if (sscanf(buf, "%u", &level) != 1)
  7858. return -EINVAL;
  7859. /*
  7860. * level is always be positive so don't check for
  7861. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7862. * What happens on 0 or 1 byte write,
  7863. * need to check for count as well?
  7864. */
  7865. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7866. return -EINVAL;
  7867. if (smt)
  7868. sched_smt_power_savings = level;
  7869. else
  7870. sched_mc_power_savings = level;
  7871. arch_reinit_sched_domains();
  7872. return count;
  7873. }
  7874. #ifdef CONFIG_SCHED_MC
  7875. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7876. char *page)
  7877. {
  7878. return sprintf(page, "%u\n", sched_mc_power_savings);
  7879. }
  7880. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7881. const char *buf, size_t count)
  7882. {
  7883. return sched_power_savings_store(buf, count, 0);
  7884. }
  7885. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7886. sched_mc_power_savings_show,
  7887. sched_mc_power_savings_store);
  7888. #endif
  7889. #ifdef CONFIG_SCHED_SMT
  7890. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7891. char *page)
  7892. {
  7893. return sprintf(page, "%u\n", sched_smt_power_savings);
  7894. }
  7895. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7896. const char *buf, size_t count)
  7897. {
  7898. return sched_power_savings_store(buf, count, 1);
  7899. }
  7900. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7901. sched_smt_power_savings_show,
  7902. sched_smt_power_savings_store);
  7903. #endif
  7904. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7905. {
  7906. int err = 0;
  7907. #ifdef CONFIG_SCHED_SMT
  7908. if (smt_capable())
  7909. err = sysfs_create_file(&cls->kset.kobj,
  7910. &attr_sched_smt_power_savings.attr);
  7911. #endif
  7912. #ifdef CONFIG_SCHED_MC
  7913. if (!err && mc_capable())
  7914. err = sysfs_create_file(&cls->kset.kobj,
  7915. &attr_sched_mc_power_savings.attr);
  7916. #endif
  7917. return err;
  7918. }
  7919. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7920. #ifndef CONFIG_CPUSETS
  7921. /*
  7922. * Add online and remove offline CPUs from the scheduler domains.
  7923. * When cpusets are enabled they take over this function.
  7924. */
  7925. static int update_sched_domains(struct notifier_block *nfb,
  7926. unsigned long action, void *hcpu)
  7927. {
  7928. switch (action) {
  7929. case CPU_ONLINE:
  7930. case CPU_ONLINE_FROZEN:
  7931. case CPU_DEAD:
  7932. case CPU_DEAD_FROZEN:
  7933. partition_sched_domains(1, NULL, NULL);
  7934. return NOTIFY_OK;
  7935. default:
  7936. return NOTIFY_DONE;
  7937. }
  7938. }
  7939. #endif
  7940. static int update_runtime(struct notifier_block *nfb,
  7941. unsigned long action, void *hcpu)
  7942. {
  7943. int cpu = (int)(long)hcpu;
  7944. switch (action) {
  7945. case CPU_DOWN_PREPARE:
  7946. case CPU_DOWN_PREPARE_FROZEN:
  7947. disable_runtime(cpu_rq(cpu));
  7948. return NOTIFY_OK;
  7949. case CPU_DOWN_FAILED:
  7950. case CPU_DOWN_FAILED_FROZEN:
  7951. case CPU_ONLINE:
  7952. case CPU_ONLINE_FROZEN:
  7953. enable_runtime(cpu_rq(cpu));
  7954. return NOTIFY_OK;
  7955. default:
  7956. return NOTIFY_DONE;
  7957. }
  7958. }
  7959. void __init sched_init_smp(void)
  7960. {
  7961. cpumask_var_t non_isolated_cpus;
  7962. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7963. #if defined(CONFIG_NUMA)
  7964. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7965. GFP_KERNEL);
  7966. BUG_ON(sched_group_nodes_bycpu == NULL);
  7967. #endif
  7968. get_online_cpus();
  7969. mutex_lock(&sched_domains_mutex);
  7970. arch_init_sched_domains(cpu_online_mask);
  7971. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7972. if (cpumask_empty(non_isolated_cpus))
  7973. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7974. mutex_unlock(&sched_domains_mutex);
  7975. put_online_cpus();
  7976. #ifndef CONFIG_CPUSETS
  7977. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7978. hotcpu_notifier(update_sched_domains, 0);
  7979. #endif
  7980. /* RT runtime code needs to handle some hotplug events */
  7981. hotcpu_notifier(update_runtime, 0);
  7982. init_hrtick();
  7983. /* Move init over to a non-isolated CPU */
  7984. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7985. BUG();
  7986. sched_init_granularity();
  7987. free_cpumask_var(non_isolated_cpus);
  7988. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7989. init_sched_rt_class();
  7990. }
  7991. #else
  7992. void __init sched_init_smp(void)
  7993. {
  7994. sched_init_granularity();
  7995. }
  7996. #endif /* CONFIG_SMP */
  7997. const_debug unsigned int sysctl_timer_migration = 1;
  7998. int in_sched_functions(unsigned long addr)
  7999. {
  8000. return in_lock_functions(addr) ||
  8001. (addr >= (unsigned long)__sched_text_start
  8002. && addr < (unsigned long)__sched_text_end);
  8003. }
  8004. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  8005. {
  8006. cfs_rq->tasks_timeline = RB_ROOT;
  8007. INIT_LIST_HEAD(&cfs_rq->tasks);
  8008. #ifdef CONFIG_FAIR_GROUP_SCHED
  8009. cfs_rq->rq = rq;
  8010. #endif
  8011. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  8012. }
  8013. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  8014. {
  8015. struct rt_prio_array *array;
  8016. int i;
  8017. array = &rt_rq->active;
  8018. for (i = 0; i < MAX_RT_PRIO; i++) {
  8019. INIT_LIST_HEAD(array->queue + i);
  8020. __clear_bit(i, array->bitmap);
  8021. }
  8022. /* delimiter for bitsearch: */
  8023. __set_bit(MAX_RT_PRIO, array->bitmap);
  8024. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  8025. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  8026. #ifdef CONFIG_SMP
  8027. rt_rq->highest_prio.next = MAX_RT_PRIO;
  8028. #endif
  8029. #endif
  8030. #ifdef CONFIG_SMP
  8031. rt_rq->rt_nr_migratory = 0;
  8032. rt_rq->overloaded = 0;
  8033. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  8034. #endif
  8035. rt_rq->rt_time = 0;
  8036. rt_rq->rt_throttled = 0;
  8037. rt_rq->rt_runtime = 0;
  8038. spin_lock_init(&rt_rq->rt_runtime_lock);
  8039. #ifdef CONFIG_RT_GROUP_SCHED
  8040. rt_rq->rt_nr_boosted = 0;
  8041. rt_rq->rq = rq;
  8042. #endif
  8043. }
  8044. #ifdef CONFIG_FAIR_GROUP_SCHED
  8045. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8046. struct sched_entity *se, int cpu, int add,
  8047. struct sched_entity *parent)
  8048. {
  8049. struct rq *rq = cpu_rq(cpu);
  8050. tg->cfs_rq[cpu] = cfs_rq;
  8051. init_cfs_rq(cfs_rq, rq);
  8052. cfs_rq->tg = tg;
  8053. if (add)
  8054. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8055. tg->se[cpu] = se;
  8056. /* se could be NULL for init_task_group */
  8057. if (!se)
  8058. return;
  8059. if (!parent)
  8060. se->cfs_rq = &rq->cfs;
  8061. else
  8062. se->cfs_rq = parent->my_q;
  8063. se->my_q = cfs_rq;
  8064. se->load.weight = tg->shares;
  8065. se->load.inv_weight = 0;
  8066. se->parent = parent;
  8067. }
  8068. #endif
  8069. #ifdef CONFIG_RT_GROUP_SCHED
  8070. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8071. struct sched_rt_entity *rt_se, int cpu, int add,
  8072. struct sched_rt_entity *parent)
  8073. {
  8074. struct rq *rq = cpu_rq(cpu);
  8075. tg->rt_rq[cpu] = rt_rq;
  8076. init_rt_rq(rt_rq, rq);
  8077. rt_rq->tg = tg;
  8078. rt_rq->rt_se = rt_se;
  8079. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8080. if (add)
  8081. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8082. tg->rt_se[cpu] = rt_se;
  8083. if (!rt_se)
  8084. return;
  8085. if (!parent)
  8086. rt_se->rt_rq = &rq->rt;
  8087. else
  8088. rt_se->rt_rq = parent->my_q;
  8089. rt_se->my_q = rt_rq;
  8090. rt_se->parent = parent;
  8091. INIT_LIST_HEAD(&rt_se->run_list);
  8092. }
  8093. #endif
  8094. void __init sched_init(void)
  8095. {
  8096. int i, j;
  8097. unsigned long alloc_size = 0, ptr;
  8098. #ifdef CONFIG_FAIR_GROUP_SCHED
  8099. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8100. #endif
  8101. #ifdef CONFIG_RT_GROUP_SCHED
  8102. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8103. #endif
  8104. #ifdef CONFIG_USER_SCHED
  8105. alloc_size *= 2;
  8106. #endif
  8107. #ifdef CONFIG_CPUMASK_OFFSTACK
  8108. alloc_size += num_possible_cpus() * cpumask_size();
  8109. #endif
  8110. /*
  8111. * As sched_init() is called before page_alloc is setup,
  8112. * we use alloc_bootmem().
  8113. */
  8114. if (alloc_size) {
  8115. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8116. #ifdef CONFIG_FAIR_GROUP_SCHED
  8117. init_task_group.se = (struct sched_entity **)ptr;
  8118. ptr += nr_cpu_ids * sizeof(void **);
  8119. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8120. ptr += nr_cpu_ids * sizeof(void **);
  8121. #ifdef CONFIG_USER_SCHED
  8122. root_task_group.se = (struct sched_entity **)ptr;
  8123. ptr += nr_cpu_ids * sizeof(void **);
  8124. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8125. ptr += nr_cpu_ids * sizeof(void **);
  8126. #endif /* CONFIG_USER_SCHED */
  8127. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8128. #ifdef CONFIG_RT_GROUP_SCHED
  8129. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8130. ptr += nr_cpu_ids * sizeof(void **);
  8131. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8132. ptr += nr_cpu_ids * sizeof(void **);
  8133. #ifdef CONFIG_USER_SCHED
  8134. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8135. ptr += nr_cpu_ids * sizeof(void **);
  8136. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8137. ptr += nr_cpu_ids * sizeof(void **);
  8138. #endif /* CONFIG_USER_SCHED */
  8139. #endif /* CONFIG_RT_GROUP_SCHED */
  8140. #ifdef CONFIG_CPUMASK_OFFSTACK
  8141. for_each_possible_cpu(i) {
  8142. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8143. ptr += cpumask_size();
  8144. }
  8145. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8146. }
  8147. #ifdef CONFIG_SMP
  8148. init_defrootdomain();
  8149. #endif
  8150. init_rt_bandwidth(&def_rt_bandwidth,
  8151. global_rt_period(), global_rt_runtime());
  8152. #ifdef CONFIG_RT_GROUP_SCHED
  8153. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8154. global_rt_period(), global_rt_runtime());
  8155. #ifdef CONFIG_USER_SCHED
  8156. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8157. global_rt_period(), RUNTIME_INF);
  8158. #endif /* CONFIG_USER_SCHED */
  8159. #endif /* CONFIG_RT_GROUP_SCHED */
  8160. #ifdef CONFIG_GROUP_SCHED
  8161. list_add(&init_task_group.list, &task_groups);
  8162. INIT_LIST_HEAD(&init_task_group.children);
  8163. #ifdef CONFIG_USER_SCHED
  8164. INIT_LIST_HEAD(&root_task_group.children);
  8165. init_task_group.parent = &root_task_group;
  8166. list_add(&init_task_group.siblings, &root_task_group.children);
  8167. #endif /* CONFIG_USER_SCHED */
  8168. #endif /* CONFIG_GROUP_SCHED */
  8169. for_each_possible_cpu(i) {
  8170. struct rq *rq;
  8171. rq = cpu_rq(i);
  8172. spin_lock_init(&rq->lock);
  8173. rq->nr_running = 0;
  8174. rq->calc_load_active = 0;
  8175. rq->calc_load_update = jiffies + LOAD_FREQ;
  8176. init_cfs_rq(&rq->cfs, rq);
  8177. init_rt_rq(&rq->rt, rq);
  8178. #ifdef CONFIG_FAIR_GROUP_SCHED
  8179. init_task_group.shares = init_task_group_load;
  8180. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8181. #ifdef CONFIG_CGROUP_SCHED
  8182. /*
  8183. * How much cpu bandwidth does init_task_group get?
  8184. *
  8185. * In case of task-groups formed thr' the cgroup filesystem, it
  8186. * gets 100% of the cpu resources in the system. This overall
  8187. * system cpu resource is divided among the tasks of
  8188. * init_task_group and its child task-groups in a fair manner,
  8189. * based on each entity's (task or task-group's) weight
  8190. * (se->load.weight).
  8191. *
  8192. * In other words, if init_task_group has 10 tasks of weight
  8193. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8194. * then A0's share of the cpu resource is:
  8195. *
  8196. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8197. *
  8198. * We achieve this by letting init_task_group's tasks sit
  8199. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8200. */
  8201. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8202. #elif defined CONFIG_USER_SCHED
  8203. root_task_group.shares = NICE_0_LOAD;
  8204. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8205. /*
  8206. * In case of task-groups formed thr' the user id of tasks,
  8207. * init_task_group represents tasks belonging to root user.
  8208. * Hence it forms a sibling of all subsequent groups formed.
  8209. * In this case, init_task_group gets only a fraction of overall
  8210. * system cpu resource, based on the weight assigned to root
  8211. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8212. * by letting tasks of init_task_group sit in a separate cfs_rq
  8213. * (init_tg_cfs_rq) and having one entity represent this group of
  8214. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8215. */
  8216. init_tg_cfs_entry(&init_task_group,
  8217. &per_cpu(init_tg_cfs_rq, i),
  8218. &per_cpu(init_sched_entity, i), i, 1,
  8219. root_task_group.se[i]);
  8220. #endif
  8221. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8222. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8223. #ifdef CONFIG_RT_GROUP_SCHED
  8224. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8225. #ifdef CONFIG_CGROUP_SCHED
  8226. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8227. #elif defined CONFIG_USER_SCHED
  8228. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8229. init_tg_rt_entry(&init_task_group,
  8230. &per_cpu(init_rt_rq, i),
  8231. &per_cpu(init_sched_rt_entity, i), i, 1,
  8232. root_task_group.rt_se[i]);
  8233. #endif
  8234. #endif
  8235. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8236. rq->cpu_load[j] = 0;
  8237. #ifdef CONFIG_SMP
  8238. rq->sd = NULL;
  8239. rq->rd = NULL;
  8240. rq->post_schedule = 0;
  8241. rq->active_balance = 0;
  8242. rq->next_balance = jiffies;
  8243. rq->push_cpu = 0;
  8244. rq->cpu = i;
  8245. rq->online = 0;
  8246. rq->migration_thread = NULL;
  8247. INIT_LIST_HEAD(&rq->migration_queue);
  8248. rq_attach_root(rq, &def_root_domain);
  8249. #endif
  8250. init_rq_hrtick(rq);
  8251. atomic_set(&rq->nr_iowait, 0);
  8252. }
  8253. set_load_weight(&init_task);
  8254. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8255. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8256. #endif
  8257. #ifdef CONFIG_SMP
  8258. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8259. #endif
  8260. #ifdef CONFIG_RT_MUTEXES
  8261. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8262. #endif
  8263. /*
  8264. * The boot idle thread does lazy MMU switching as well:
  8265. */
  8266. atomic_inc(&init_mm.mm_count);
  8267. enter_lazy_tlb(&init_mm, current);
  8268. /*
  8269. * Make us the idle thread. Technically, schedule() should not be
  8270. * called from this thread, however somewhere below it might be,
  8271. * but because we are the idle thread, we just pick up running again
  8272. * when this runqueue becomes "idle".
  8273. */
  8274. init_idle(current, smp_processor_id());
  8275. calc_load_update = jiffies + LOAD_FREQ;
  8276. /*
  8277. * During early bootup we pretend to be a normal task:
  8278. */
  8279. current->sched_class = &fair_sched_class;
  8280. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8281. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8282. #ifdef CONFIG_SMP
  8283. #ifdef CONFIG_NO_HZ
  8284. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8285. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8286. #endif
  8287. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8288. #endif /* SMP */
  8289. perf_counter_init();
  8290. scheduler_running = 1;
  8291. }
  8292. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8293. static inline int preempt_count_equals(int preempt_offset)
  8294. {
  8295. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8296. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8297. }
  8298. void __might_sleep(char *file, int line, int preempt_offset)
  8299. {
  8300. #ifdef in_atomic
  8301. static unsigned long prev_jiffy; /* ratelimiting */
  8302. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8303. system_state != SYSTEM_RUNNING || oops_in_progress)
  8304. return;
  8305. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8306. return;
  8307. prev_jiffy = jiffies;
  8308. printk(KERN_ERR
  8309. "BUG: sleeping function called from invalid context at %s:%d\n",
  8310. file, line);
  8311. printk(KERN_ERR
  8312. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8313. in_atomic(), irqs_disabled(),
  8314. current->pid, current->comm);
  8315. debug_show_held_locks(current);
  8316. if (irqs_disabled())
  8317. print_irqtrace_events(current);
  8318. dump_stack();
  8319. #endif
  8320. }
  8321. EXPORT_SYMBOL(__might_sleep);
  8322. #endif
  8323. #ifdef CONFIG_MAGIC_SYSRQ
  8324. static void normalize_task(struct rq *rq, struct task_struct *p)
  8325. {
  8326. int on_rq;
  8327. update_rq_clock(rq);
  8328. on_rq = p->se.on_rq;
  8329. if (on_rq)
  8330. deactivate_task(rq, p, 0);
  8331. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8332. if (on_rq) {
  8333. activate_task(rq, p, 0);
  8334. resched_task(rq->curr);
  8335. }
  8336. }
  8337. void normalize_rt_tasks(void)
  8338. {
  8339. struct task_struct *g, *p;
  8340. unsigned long flags;
  8341. struct rq *rq;
  8342. read_lock_irqsave(&tasklist_lock, flags);
  8343. do_each_thread(g, p) {
  8344. /*
  8345. * Only normalize user tasks:
  8346. */
  8347. if (!p->mm)
  8348. continue;
  8349. p->se.exec_start = 0;
  8350. #ifdef CONFIG_SCHEDSTATS
  8351. p->se.wait_start = 0;
  8352. p->se.sleep_start = 0;
  8353. p->se.block_start = 0;
  8354. #endif
  8355. if (!rt_task(p)) {
  8356. /*
  8357. * Renice negative nice level userspace
  8358. * tasks back to 0:
  8359. */
  8360. if (TASK_NICE(p) < 0 && p->mm)
  8361. set_user_nice(p, 0);
  8362. continue;
  8363. }
  8364. spin_lock(&p->pi_lock);
  8365. rq = __task_rq_lock(p);
  8366. normalize_task(rq, p);
  8367. __task_rq_unlock(rq);
  8368. spin_unlock(&p->pi_lock);
  8369. } while_each_thread(g, p);
  8370. read_unlock_irqrestore(&tasklist_lock, flags);
  8371. }
  8372. #endif /* CONFIG_MAGIC_SYSRQ */
  8373. #ifdef CONFIG_IA64
  8374. /*
  8375. * These functions are only useful for the IA64 MCA handling.
  8376. *
  8377. * They can only be called when the whole system has been
  8378. * stopped - every CPU needs to be quiescent, and no scheduling
  8379. * activity can take place. Using them for anything else would
  8380. * be a serious bug, and as a result, they aren't even visible
  8381. * under any other configuration.
  8382. */
  8383. /**
  8384. * curr_task - return the current task for a given cpu.
  8385. * @cpu: the processor in question.
  8386. *
  8387. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8388. */
  8389. struct task_struct *curr_task(int cpu)
  8390. {
  8391. return cpu_curr(cpu);
  8392. }
  8393. /**
  8394. * set_curr_task - set the current task for a given cpu.
  8395. * @cpu: the processor in question.
  8396. * @p: the task pointer to set.
  8397. *
  8398. * Description: This function must only be used when non-maskable interrupts
  8399. * are serviced on a separate stack. It allows the architecture to switch the
  8400. * notion of the current task on a cpu in a non-blocking manner. This function
  8401. * must be called with all CPU's synchronized, and interrupts disabled, the
  8402. * and caller must save the original value of the current task (see
  8403. * curr_task() above) and restore that value before reenabling interrupts and
  8404. * re-starting the system.
  8405. *
  8406. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8407. */
  8408. void set_curr_task(int cpu, struct task_struct *p)
  8409. {
  8410. cpu_curr(cpu) = p;
  8411. }
  8412. #endif
  8413. #ifdef CONFIG_FAIR_GROUP_SCHED
  8414. static void free_fair_sched_group(struct task_group *tg)
  8415. {
  8416. int i;
  8417. for_each_possible_cpu(i) {
  8418. if (tg->cfs_rq)
  8419. kfree(tg->cfs_rq[i]);
  8420. if (tg->se)
  8421. kfree(tg->se[i]);
  8422. }
  8423. kfree(tg->cfs_rq);
  8424. kfree(tg->se);
  8425. }
  8426. static
  8427. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8428. {
  8429. struct cfs_rq *cfs_rq;
  8430. struct sched_entity *se;
  8431. struct rq *rq;
  8432. int i;
  8433. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8434. if (!tg->cfs_rq)
  8435. goto err;
  8436. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8437. if (!tg->se)
  8438. goto err;
  8439. tg->shares = NICE_0_LOAD;
  8440. for_each_possible_cpu(i) {
  8441. rq = cpu_rq(i);
  8442. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8443. GFP_KERNEL, cpu_to_node(i));
  8444. if (!cfs_rq)
  8445. goto err;
  8446. se = kzalloc_node(sizeof(struct sched_entity),
  8447. GFP_KERNEL, cpu_to_node(i));
  8448. if (!se)
  8449. goto err;
  8450. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8451. }
  8452. return 1;
  8453. err:
  8454. return 0;
  8455. }
  8456. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8457. {
  8458. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8459. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8460. }
  8461. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8462. {
  8463. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8464. }
  8465. #else /* !CONFG_FAIR_GROUP_SCHED */
  8466. static inline void free_fair_sched_group(struct task_group *tg)
  8467. {
  8468. }
  8469. static inline
  8470. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8471. {
  8472. return 1;
  8473. }
  8474. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8475. {
  8476. }
  8477. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8478. {
  8479. }
  8480. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8481. #ifdef CONFIG_RT_GROUP_SCHED
  8482. static void free_rt_sched_group(struct task_group *tg)
  8483. {
  8484. int i;
  8485. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8486. for_each_possible_cpu(i) {
  8487. if (tg->rt_rq)
  8488. kfree(tg->rt_rq[i]);
  8489. if (tg->rt_se)
  8490. kfree(tg->rt_se[i]);
  8491. }
  8492. kfree(tg->rt_rq);
  8493. kfree(tg->rt_se);
  8494. }
  8495. static
  8496. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8497. {
  8498. struct rt_rq *rt_rq;
  8499. struct sched_rt_entity *rt_se;
  8500. struct rq *rq;
  8501. int i;
  8502. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8503. if (!tg->rt_rq)
  8504. goto err;
  8505. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8506. if (!tg->rt_se)
  8507. goto err;
  8508. init_rt_bandwidth(&tg->rt_bandwidth,
  8509. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8510. for_each_possible_cpu(i) {
  8511. rq = cpu_rq(i);
  8512. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8513. GFP_KERNEL, cpu_to_node(i));
  8514. if (!rt_rq)
  8515. goto err;
  8516. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8517. GFP_KERNEL, cpu_to_node(i));
  8518. if (!rt_se)
  8519. goto err;
  8520. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8521. }
  8522. return 1;
  8523. err:
  8524. return 0;
  8525. }
  8526. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8527. {
  8528. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8529. &cpu_rq(cpu)->leaf_rt_rq_list);
  8530. }
  8531. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8532. {
  8533. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8534. }
  8535. #else /* !CONFIG_RT_GROUP_SCHED */
  8536. static inline void free_rt_sched_group(struct task_group *tg)
  8537. {
  8538. }
  8539. static inline
  8540. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8541. {
  8542. return 1;
  8543. }
  8544. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8545. {
  8546. }
  8547. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8548. {
  8549. }
  8550. #endif /* CONFIG_RT_GROUP_SCHED */
  8551. #ifdef CONFIG_GROUP_SCHED
  8552. static void free_sched_group(struct task_group *tg)
  8553. {
  8554. free_fair_sched_group(tg);
  8555. free_rt_sched_group(tg);
  8556. kfree(tg);
  8557. }
  8558. /* allocate runqueue etc for a new task group */
  8559. struct task_group *sched_create_group(struct task_group *parent)
  8560. {
  8561. struct task_group *tg;
  8562. unsigned long flags;
  8563. int i;
  8564. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8565. if (!tg)
  8566. return ERR_PTR(-ENOMEM);
  8567. if (!alloc_fair_sched_group(tg, parent))
  8568. goto err;
  8569. if (!alloc_rt_sched_group(tg, parent))
  8570. goto err;
  8571. spin_lock_irqsave(&task_group_lock, flags);
  8572. for_each_possible_cpu(i) {
  8573. register_fair_sched_group(tg, i);
  8574. register_rt_sched_group(tg, i);
  8575. }
  8576. list_add_rcu(&tg->list, &task_groups);
  8577. WARN_ON(!parent); /* root should already exist */
  8578. tg->parent = parent;
  8579. INIT_LIST_HEAD(&tg->children);
  8580. list_add_rcu(&tg->siblings, &parent->children);
  8581. spin_unlock_irqrestore(&task_group_lock, flags);
  8582. return tg;
  8583. err:
  8584. free_sched_group(tg);
  8585. return ERR_PTR(-ENOMEM);
  8586. }
  8587. /* rcu callback to free various structures associated with a task group */
  8588. static void free_sched_group_rcu(struct rcu_head *rhp)
  8589. {
  8590. /* now it should be safe to free those cfs_rqs */
  8591. free_sched_group(container_of(rhp, struct task_group, rcu));
  8592. }
  8593. /* Destroy runqueue etc associated with a task group */
  8594. void sched_destroy_group(struct task_group *tg)
  8595. {
  8596. unsigned long flags;
  8597. int i;
  8598. spin_lock_irqsave(&task_group_lock, flags);
  8599. for_each_possible_cpu(i) {
  8600. unregister_fair_sched_group(tg, i);
  8601. unregister_rt_sched_group(tg, i);
  8602. }
  8603. list_del_rcu(&tg->list);
  8604. list_del_rcu(&tg->siblings);
  8605. spin_unlock_irqrestore(&task_group_lock, flags);
  8606. /* wait for possible concurrent references to cfs_rqs complete */
  8607. call_rcu(&tg->rcu, free_sched_group_rcu);
  8608. }
  8609. /* change task's runqueue when it moves between groups.
  8610. * The caller of this function should have put the task in its new group
  8611. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8612. * reflect its new group.
  8613. */
  8614. void sched_move_task(struct task_struct *tsk)
  8615. {
  8616. int on_rq, running;
  8617. unsigned long flags;
  8618. struct rq *rq;
  8619. rq = task_rq_lock(tsk, &flags);
  8620. update_rq_clock(rq);
  8621. running = task_current(rq, tsk);
  8622. on_rq = tsk->se.on_rq;
  8623. if (on_rq)
  8624. dequeue_task(rq, tsk, 0);
  8625. if (unlikely(running))
  8626. tsk->sched_class->put_prev_task(rq, tsk);
  8627. set_task_rq(tsk, task_cpu(tsk));
  8628. #ifdef CONFIG_FAIR_GROUP_SCHED
  8629. if (tsk->sched_class->moved_group)
  8630. tsk->sched_class->moved_group(tsk);
  8631. #endif
  8632. if (unlikely(running))
  8633. tsk->sched_class->set_curr_task(rq);
  8634. if (on_rq)
  8635. enqueue_task(rq, tsk, 0);
  8636. task_rq_unlock(rq, &flags);
  8637. }
  8638. #endif /* CONFIG_GROUP_SCHED */
  8639. #ifdef CONFIG_FAIR_GROUP_SCHED
  8640. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8641. {
  8642. struct cfs_rq *cfs_rq = se->cfs_rq;
  8643. int on_rq;
  8644. on_rq = se->on_rq;
  8645. if (on_rq)
  8646. dequeue_entity(cfs_rq, se, 0);
  8647. se->load.weight = shares;
  8648. se->load.inv_weight = 0;
  8649. if (on_rq)
  8650. enqueue_entity(cfs_rq, se, 0);
  8651. }
  8652. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8653. {
  8654. struct cfs_rq *cfs_rq = se->cfs_rq;
  8655. struct rq *rq = cfs_rq->rq;
  8656. unsigned long flags;
  8657. spin_lock_irqsave(&rq->lock, flags);
  8658. __set_se_shares(se, shares);
  8659. spin_unlock_irqrestore(&rq->lock, flags);
  8660. }
  8661. static DEFINE_MUTEX(shares_mutex);
  8662. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8663. {
  8664. int i;
  8665. unsigned long flags;
  8666. /*
  8667. * We can't change the weight of the root cgroup.
  8668. */
  8669. if (!tg->se[0])
  8670. return -EINVAL;
  8671. if (shares < MIN_SHARES)
  8672. shares = MIN_SHARES;
  8673. else if (shares > MAX_SHARES)
  8674. shares = MAX_SHARES;
  8675. mutex_lock(&shares_mutex);
  8676. if (tg->shares == shares)
  8677. goto done;
  8678. spin_lock_irqsave(&task_group_lock, flags);
  8679. for_each_possible_cpu(i)
  8680. unregister_fair_sched_group(tg, i);
  8681. list_del_rcu(&tg->siblings);
  8682. spin_unlock_irqrestore(&task_group_lock, flags);
  8683. /* wait for any ongoing reference to this group to finish */
  8684. synchronize_sched();
  8685. /*
  8686. * Now we are free to modify the group's share on each cpu
  8687. * w/o tripping rebalance_share or load_balance_fair.
  8688. */
  8689. tg->shares = shares;
  8690. for_each_possible_cpu(i) {
  8691. /*
  8692. * force a rebalance
  8693. */
  8694. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8695. set_se_shares(tg->se[i], shares);
  8696. }
  8697. /*
  8698. * Enable load balance activity on this group, by inserting it back on
  8699. * each cpu's rq->leaf_cfs_rq_list.
  8700. */
  8701. spin_lock_irqsave(&task_group_lock, flags);
  8702. for_each_possible_cpu(i)
  8703. register_fair_sched_group(tg, i);
  8704. list_add_rcu(&tg->siblings, &tg->parent->children);
  8705. spin_unlock_irqrestore(&task_group_lock, flags);
  8706. done:
  8707. mutex_unlock(&shares_mutex);
  8708. return 0;
  8709. }
  8710. unsigned long sched_group_shares(struct task_group *tg)
  8711. {
  8712. return tg->shares;
  8713. }
  8714. #endif
  8715. #ifdef CONFIG_RT_GROUP_SCHED
  8716. /*
  8717. * Ensure that the real time constraints are schedulable.
  8718. */
  8719. static DEFINE_MUTEX(rt_constraints_mutex);
  8720. static unsigned long to_ratio(u64 period, u64 runtime)
  8721. {
  8722. if (runtime == RUNTIME_INF)
  8723. return 1ULL << 20;
  8724. return div64_u64(runtime << 20, period);
  8725. }
  8726. /* Must be called with tasklist_lock held */
  8727. static inline int tg_has_rt_tasks(struct task_group *tg)
  8728. {
  8729. struct task_struct *g, *p;
  8730. do_each_thread(g, p) {
  8731. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8732. return 1;
  8733. } while_each_thread(g, p);
  8734. return 0;
  8735. }
  8736. struct rt_schedulable_data {
  8737. struct task_group *tg;
  8738. u64 rt_period;
  8739. u64 rt_runtime;
  8740. };
  8741. static int tg_schedulable(struct task_group *tg, void *data)
  8742. {
  8743. struct rt_schedulable_data *d = data;
  8744. struct task_group *child;
  8745. unsigned long total, sum = 0;
  8746. u64 period, runtime;
  8747. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8748. runtime = tg->rt_bandwidth.rt_runtime;
  8749. if (tg == d->tg) {
  8750. period = d->rt_period;
  8751. runtime = d->rt_runtime;
  8752. }
  8753. #ifdef CONFIG_USER_SCHED
  8754. if (tg == &root_task_group) {
  8755. period = global_rt_period();
  8756. runtime = global_rt_runtime();
  8757. }
  8758. #endif
  8759. /*
  8760. * Cannot have more runtime than the period.
  8761. */
  8762. if (runtime > period && runtime != RUNTIME_INF)
  8763. return -EINVAL;
  8764. /*
  8765. * Ensure we don't starve existing RT tasks.
  8766. */
  8767. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8768. return -EBUSY;
  8769. total = to_ratio(period, runtime);
  8770. /*
  8771. * Nobody can have more than the global setting allows.
  8772. */
  8773. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8774. return -EINVAL;
  8775. /*
  8776. * The sum of our children's runtime should not exceed our own.
  8777. */
  8778. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8779. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8780. runtime = child->rt_bandwidth.rt_runtime;
  8781. if (child == d->tg) {
  8782. period = d->rt_period;
  8783. runtime = d->rt_runtime;
  8784. }
  8785. sum += to_ratio(period, runtime);
  8786. }
  8787. if (sum > total)
  8788. return -EINVAL;
  8789. return 0;
  8790. }
  8791. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8792. {
  8793. struct rt_schedulable_data data = {
  8794. .tg = tg,
  8795. .rt_period = period,
  8796. .rt_runtime = runtime,
  8797. };
  8798. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8799. }
  8800. static int tg_set_bandwidth(struct task_group *tg,
  8801. u64 rt_period, u64 rt_runtime)
  8802. {
  8803. int i, err = 0;
  8804. mutex_lock(&rt_constraints_mutex);
  8805. read_lock(&tasklist_lock);
  8806. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8807. if (err)
  8808. goto unlock;
  8809. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8810. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8811. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8812. for_each_possible_cpu(i) {
  8813. struct rt_rq *rt_rq = tg->rt_rq[i];
  8814. spin_lock(&rt_rq->rt_runtime_lock);
  8815. rt_rq->rt_runtime = rt_runtime;
  8816. spin_unlock(&rt_rq->rt_runtime_lock);
  8817. }
  8818. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8819. unlock:
  8820. read_unlock(&tasklist_lock);
  8821. mutex_unlock(&rt_constraints_mutex);
  8822. return err;
  8823. }
  8824. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8825. {
  8826. u64 rt_runtime, rt_period;
  8827. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8828. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8829. if (rt_runtime_us < 0)
  8830. rt_runtime = RUNTIME_INF;
  8831. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8832. }
  8833. long sched_group_rt_runtime(struct task_group *tg)
  8834. {
  8835. u64 rt_runtime_us;
  8836. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8837. return -1;
  8838. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8839. do_div(rt_runtime_us, NSEC_PER_USEC);
  8840. return rt_runtime_us;
  8841. }
  8842. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8843. {
  8844. u64 rt_runtime, rt_period;
  8845. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8846. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8847. if (rt_period == 0)
  8848. return -EINVAL;
  8849. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8850. }
  8851. long sched_group_rt_period(struct task_group *tg)
  8852. {
  8853. u64 rt_period_us;
  8854. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8855. do_div(rt_period_us, NSEC_PER_USEC);
  8856. return rt_period_us;
  8857. }
  8858. static int sched_rt_global_constraints(void)
  8859. {
  8860. u64 runtime, period;
  8861. int ret = 0;
  8862. if (sysctl_sched_rt_period <= 0)
  8863. return -EINVAL;
  8864. runtime = global_rt_runtime();
  8865. period = global_rt_period();
  8866. /*
  8867. * Sanity check on the sysctl variables.
  8868. */
  8869. if (runtime > period && runtime != RUNTIME_INF)
  8870. return -EINVAL;
  8871. mutex_lock(&rt_constraints_mutex);
  8872. read_lock(&tasklist_lock);
  8873. ret = __rt_schedulable(NULL, 0, 0);
  8874. read_unlock(&tasklist_lock);
  8875. mutex_unlock(&rt_constraints_mutex);
  8876. return ret;
  8877. }
  8878. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8879. {
  8880. /* Don't accept realtime tasks when there is no way for them to run */
  8881. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8882. return 0;
  8883. return 1;
  8884. }
  8885. #else /* !CONFIG_RT_GROUP_SCHED */
  8886. static int sched_rt_global_constraints(void)
  8887. {
  8888. unsigned long flags;
  8889. int i;
  8890. if (sysctl_sched_rt_period <= 0)
  8891. return -EINVAL;
  8892. /*
  8893. * There's always some RT tasks in the root group
  8894. * -- migration, kstopmachine etc..
  8895. */
  8896. if (sysctl_sched_rt_runtime == 0)
  8897. return -EBUSY;
  8898. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8899. for_each_possible_cpu(i) {
  8900. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8901. spin_lock(&rt_rq->rt_runtime_lock);
  8902. rt_rq->rt_runtime = global_rt_runtime();
  8903. spin_unlock(&rt_rq->rt_runtime_lock);
  8904. }
  8905. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8906. return 0;
  8907. }
  8908. #endif /* CONFIG_RT_GROUP_SCHED */
  8909. int sched_rt_handler(struct ctl_table *table, int write,
  8910. struct file *filp, void __user *buffer, size_t *lenp,
  8911. loff_t *ppos)
  8912. {
  8913. int ret;
  8914. int old_period, old_runtime;
  8915. static DEFINE_MUTEX(mutex);
  8916. mutex_lock(&mutex);
  8917. old_period = sysctl_sched_rt_period;
  8918. old_runtime = sysctl_sched_rt_runtime;
  8919. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8920. if (!ret && write) {
  8921. ret = sched_rt_global_constraints();
  8922. if (ret) {
  8923. sysctl_sched_rt_period = old_period;
  8924. sysctl_sched_rt_runtime = old_runtime;
  8925. } else {
  8926. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8927. def_rt_bandwidth.rt_period =
  8928. ns_to_ktime(global_rt_period());
  8929. }
  8930. }
  8931. mutex_unlock(&mutex);
  8932. return ret;
  8933. }
  8934. #ifdef CONFIG_CGROUP_SCHED
  8935. /* return corresponding task_group object of a cgroup */
  8936. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8937. {
  8938. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8939. struct task_group, css);
  8940. }
  8941. static struct cgroup_subsys_state *
  8942. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8943. {
  8944. struct task_group *tg, *parent;
  8945. if (!cgrp->parent) {
  8946. /* This is early initialization for the top cgroup */
  8947. return &init_task_group.css;
  8948. }
  8949. parent = cgroup_tg(cgrp->parent);
  8950. tg = sched_create_group(parent);
  8951. if (IS_ERR(tg))
  8952. return ERR_PTR(-ENOMEM);
  8953. return &tg->css;
  8954. }
  8955. static void
  8956. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8957. {
  8958. struct task_group *tg = cgroup_tg(cgrp);
  8959. sched_destroy_group(tg);
  8960. }
  8961. static int
  8962. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8963. struct task_struct *tsk)
  8964. {
  8965. #ifdef CONFIG_RT_GROUP_SCHED
  8966. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8967. return -EINVAL;
  8968. #else
  8969. /* We don't support RT-tasks being in separate groups */
  8970. if (tsk->sched_class != &fair_sched_class)
  8971. return -EINVAL;
  8972. #endif
  8973. return 0;
  8974. }
  8975. static void
  8976. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8977. struct cgroup *old_cont, struct task_struct *tsk)
  8978. {
  8979. sched_move_task(tsk);
  8980. }
  8981. #ifdef CONFIG_FAIR_GROUP_SCHED
  8982. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8983. u64 shareval)
  8984. {
  8985. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8986. }
  8987. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8988. {
  8989. struct task_group *tg = cgroup_tg(cgrp);
  8990. return (u64) tg->shares;
  8991. }
  8992. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8993. #ifdef CONFIG_RT_GROUP_SCHED
  8994. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8995. s64 val)
  8996. {
  8997. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8998. }
  8999. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  9000. {
  9001. return sched_group_rt_runtime(cgroup_tg(cgrp));
  9002. }
  9003. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  9004. u64 rt_period_us)
  9005. {
  9006. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9007. }
  9008. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9009. {
  9010. return sched_group_rt_period(cgroup_tg(cgrp));
  9011. }
  9012. #endif /* CONFIG_RT_GROUP_SCHED */
  9013. static struct cftype cpu_files[] = {
  9014. #ifdef CONFIG_FAIR_GROUP_SCHED
  9015. {
  9016. .name = "shares",
  9017. .read_u64 = cpu_shares_read_u64,
  9018. .write_u64 = cpu_shares_write_u64,
  9019. },
  9020. #endif
  9021. #ifdef CONFIG_RT_GROUP_SCHED
  9022. {
  9023. .name = "rt_runtime_us",
  9024. .read_s64 = cpu_rt_runtime_read,
  9025. .write_s64 = cpu_rt_runtime_write,
  9026. },
  9027. {
  9028. .name = "rt_period_us",
  9029. .read_u64 = cpu_rt_period_read_uint,
  9030. .write_u64 = cpu_rt_period_write_uint,
  9031. },
  9032. #endif
  9033. };
  9034. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9035. {
  9036. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9037. }
  9038. struct cgroup_subsys cpu_cgroup_subsys = {
  9039. .name = "cpu",
  9040. .create = cpu_cgroup_create,
  9041. .destroy = cpu_cgroup_destroy,
  9042. .can_attach = cpu_cgroup_can_attach,
  9043. .attach = cpu_cgroup_attach,
  9044. .populate = cpu_cgroup_populate,
  9045. .subsys_id = cpu_cgroup_subsys_id,
  9046. .early_init = 1,
  9047. };
  9048. #endif /* CONFIG_CGROUP_SCHED */
  9049. #ifdef CONFIG_CGROUP_CPUACCT
  9050. /*
  9051. * CPU accounting code for task groups.
  9052. *
  9053. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9054. * (balbir@in.ibm.com).
  9055. */
  9056. /* track cpu usage of a group of tasks and its child groups */
  9057. struct cpuacct {
  9058. struct cgroup_subsys_state css;
  9059. /* cpuusage holds pointer to a u64-type object on every cpu */
  9060. u64 *cpuusage;
  9061. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9062. struct cpuacct *parent;
  9063. };
  9064. struct cgroup_subsys cpuacct_subsys;
  9065. /* return cpu accounting group corresponding to this container */
  9066. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9067. {
  9068. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9069. struct cpuacct, css);
  9070. }
  9071. /* return cpu accounting group to which this task belongs */
  9072. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9073. {
  9074. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9075. struct cpuacct, css);
  9076. }
  9077. /* create a new cpu accounting group */
  9078. static struct cgroup_subsys_state *cpuacct_create(
  9079. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9080. {
  9081. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9082. int i;
  9083. if (!ca)
  9084. goto out;
  9085. ca->cpuusage = alloc_percpu(u64);
  9086. if (!ca->cpuusage)
  9087. goto out_free_ca;
  9088. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9089. if (percpu_counter_init(&ca->cpustat[i], 0))
  9090. goto out_free_counters;
  9091. if (cgrp->parent)
  9092. ca->parent = cgroup_ca(cgrp->parent);
  9093. return &ca->css;
  9094. out_free_counters:
  9095. while (--i >= 0)
  9096. percpu_counter_destroy(&ca->cpustat[i]);
  9097. free_percpu(ca->cpuusage);
  9098. out_free_ca:
  9099. kfree(ca);
  9100. out:
  9101. return ERR_PTR(-ENOMEM);
  9102. }
  9103. /* destroy an existing cpu accounting group */
  9104. static void
  9105. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9106. {
  9107. struct cpuacct *ca = cgroup_ca(cgrp);
  9108. int i;
  9109. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9110. percpu_counter_destroy(&ca->cpustat[i]);
  9111. free_percpu(ca->cpuusage);
  9112. kfree(ca);
  9113. }
  9114. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9115. {
  9116. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9117. u64 data;
  9118. #ifndef CONFIG_64BIT
  9119. /*
  9120. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9121. */
  9122. spin_lock_irq(&cpu_rq(cpu)->lock);
  9123. data = *cpuusage;
  9124. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9125. #else
  9126. data = *cpuusage;
  9127. #endif
  9128. return data;
  9129. }
  9130. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9131. {
  9132. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9133. #ifndef CONFIG_64BIT
  9134. /*
  9135. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9136. */
  9137. spin_lock_irq(&cpu_rq(cpu)->lock);
  9138. *cpuusage = val;
  9139. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9140. #else
  9141. *cpuusage = val;
  9142. #endif
  9143. }
  9144. /* return total cpu usage (in nanoseconds) of a group */
  9145. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9146. {
  9147. struct cpuacct *ca = cgroup_ca(cgrp);
  9148. u64 totalcpuusage = 0;
  9149. int i;
  9150. for_each_present_cpu(i)
  9151. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9152. return totalcpuusage;
  9153. }
  9154. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9155. u64 reset)
  9156. {
  9157. struct cpuacct *ca = cgroup_ca(cgrp);
  9158. int err = 0;
  9159. int i;
  9160. if (reset) {
  9161. err = -EINVAL;
  9162. goto out;
  9163. }
  9164. for_each_present_cpu(i)
  9165. cpuacct_cpuusage_write(ca, i, 0);
  9166. out:
  9167. return err;
  9168. }
  9169. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9170. struct seq_file *m)
  9171. {
  9172. struct cpuacct *ca = cgroup_ca(cgroup);
  9173. u64 percpu;
  9174. int i;
  9175. for_each_present_cpu(i) {
  9176. percpu = cpuacct_cpuusage_read(ca, i);
  9177. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9178. }
  9179. seq_printf(m, "\n");
  9180. return 0;
  9181. }
  9182. static const char *cpuacct_stat_desc[] = {
  9183. [CPUACCT_STAT_USER] = "user",
  9184. [CPUACCT_STAT_SYSTEM] = "system",
  9185. };
  9186. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9187. struct cgroup_map_cb *cb)
  9188. {
  9189. struct cpuacct *ca = cgroup_ca(cgrp);
  9190. int i;
  9191. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9192. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9193. val = cputime64_to_clock_t(val);
  9194. cb->fill(cb, cpuacct_stat_desc[i], val);
  9195. }
  9196. return 0;
  9197. }
  9198. static struct cftype files[] = {
  9199. {
  9200. .name = "usage",
  9201. .read_u64 = cpuusage_read,
  9202. .write_u64 = cpuusage_write,
  9203. },
  9204. {
  9205. .name = "usage_percpu",
  9206. .read_seq_string = cpuacct_percpu_seq_read,
  9207. },
  9208. {
  9209. .name = "stat",
  9210. .read_map = cpuacct_stats_show,
  9211. },
  9212. };
  9213. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9214. {
  9215. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9216. }
  9217. /*
  9218. * charge this task's execution time to its accounting group.
  9219. *
  9220. * called with rq->lock held.
  9221. */
  9222. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9223. {
  9224. struct cpuacct *ca;
  9225. int cpu;
  9226. if (unlikely(!cpuacct_subsys.active))
  9227. return;
  9228. cpu = task_cpu(tsk);
  9229. rcu_read_lock();
  9230. ca = task_ca(tsk);
  9231. for (; ca; ca = ca->parent) {
  9232. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9233. *cpuusage += cputime;
  9234. }
  9235. rcu_read_unlock();
  9236. }
  9237. /*
  9238. * Charge the system/user time to the task's accounting group.
  9239. */
  9240. static void cpuacct_update_stats(struct task_struct *tsk,
  9241. enum cpuacct_stat_index idx, cputime_t val)
  9242. {
  9243. struct cpuacct *ca;
  9244. if (unlikely(!cpuacct_subsys.active))
  9245. return;
  9246. rcu_read_lock();
  9247. ca = task_ca(tsk);
  9248. do {
  9249. percpu_counter_add(&ca->cpustat[idx], val);
  9250. ca = ca->parent;
  9251. } while (ca);
  9252. rcu_read_unlock();
  9253. }
  9254. struct cgroup_subsys cpuacct_subsys = {
  9255. .name = "cpuacct",
  9256. .create = cpuacct_create,
  9257. .destroy = cpuacct_destroy,
  9258. .populate = cpuacct_populate,
  9259. .subsys_id = cpuacct_subsys_id,
  9260. };
  9261. #endif /* CONFIG_CGROUP_CPUACCT */
  9262. #ifndef CONFIG_SMP
  9263. int rcu_expedited_torture_stats(char *page)
  9264. {
  9265. return 0;
  9266. }
  9267. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9268. void synchronize_sched_expedited(void)
  9269. {
  9270. }
  9271. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9272. #else /* #ifndef CONFIG_SMP */
  9273. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9274. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9275. #define RCU_EXPEDITED_STATE_POST -2
  9276. #define RCU_EXPEDITED_STATE_IDLE -1
  9277. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9278. int rcu_expedited_torture_stats(char *page)
  9279. {
  9280. int cnt = 0;
  9281. int cpu;
  9282. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9283. for_each_online_cpu(cpu) {
  9284. cnt += sprintf(&page[cnt], " %d:%d",
  9285. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9286. }
  9287. cnt += sprintf(&page[cnt], "\n");
  9288. return cnt;
  9289. }
  9290. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9291. static long synchronize_sched_expedited_count;
  9292. /*
  9293. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9294. * approach to force grace period to end quickly. This consumes
  9295. * significant time on all CPUs, and is thus not recommended for
  9296. * any sort of common-case code.
  9297. *
  9298. * Note that it is illegal to call this function while holding any
  9299. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9300. * observe this restriction will result in deadlock.
  9301. */
  9302. void synchronize_sched_expedited(void)
  9303. {
  9304. int cpu;
  9305. unsigned long flags;
  9306. bool need_full_sync = 0;
  9307. struct rq *rq;
  9308. struct migration_req *req;
  9309. long snap;
  9310. int trycount = 0;
  9311. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9312. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9313. get_online_cpus();
  9314. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9315. put_online_cpus();
  9316. if (trycount++ < 10)
  9317. udelay(trycount * num_online_cpus());
  9318. else {
  9319. synchronize_sched();
  9320. return;
  9321. }
  9322. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9323. smp_mb(); /* ensure test happens before caller kfree */
  9324. return;
  9325. }
  9326. get_online_cpus();
  9327. }
  9328. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9329. for_each_online_cpu(cpu) {
  9330. rq = cpu_rq(cpu);
  9331. req = &per_cpu(rcu_migration_req, cpu);
  9332. init_completion(&req->done);
  9333. req->task = NULL;
  9334. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9335. spin_lock_irqsave(&rq->lock, flags);
  9336. list_add(&req->list, &rq->migration_queue);
  9337. spin_unlock_irqrestore(&rq->lock, flags);
  9338. wake_up_process(rq->migration_thread);
  9339. }
  9340. for_each_online_cpu(cpu) {
  9341. rcu_expedited_state = cpu;
  9342. req = &per_cpu(rcu_migration_req, cpu);
  9343. rq = cpu_rq(cpu);
  9344. wait_for_completion(&req->done);
  9345. spin_lock_irqsave(&rq->lock, flags);
  9346. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9347. need_full_sync = 1;
  9348. req->dest_cpu = RCU_MIGRATION_IDLE;
  9349. spin_unlock_irqrestore(&rq->lock, flags);
  9350. }
  9351. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9352. mutex_unlock(&rcu_sched_expedited_mutex);
  9353. put_online_cpus();
  9354. if (need_full_sync)
  9355. synchronize_sched();
  9356. }
  9357. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9358. #endif /* #else #ifndef CONFIG_SMP */