tsc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <asm/hpet.h>
  14. #include <asm/timer.h>
  15. #include <asm/vgtod.h>
  16. #include <asm/time.h>
  17. #include <asm/delay.h>
  18. #include <asm/hypervisor.h>
  19. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  20. EXPORT_SYMBOL(cpu_khz);
  21. unsigned int __read_mostly tsc_khz;
  22. EXPORT_SYMBOL(tsc_khz);
  23. /*
  24. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  25. */
  26. static int __read_mostly tsc_unstable;
  27. /* native_sched_clock() is called before tsc_init(), so
  28. we must start with the TSC soft disabled to prevent
  29. erroneous rdtsc usage on !cpu_has_tsc processors */
  30. static int __read_mostly tsc_disabled = -1;
  31. static int tsc_clocksource_reliable;
  32. /*
  33. * Scheduler clock - returns current time in nanosec units.
  34. */
  35. u64 native_sched_clock(void)
  36. {
  37. u64 this_offset;
  38. /*
  39. * Fall back to jiffies if there's no TSC available:
  40. * ( But note that we still use it if the TSC is marked
  41. * unstable. We do this because unlike Time Of Day,
  42. * the scheduler clock tolerates small errors and it's
  43. * very important for it to be as fast as the platform
  44. * can achive it. )
  45. */
  46. if (unlikely(tsc_disabled)) {
  47. /* No locking but a rare wrong value is not a big deal: */
  48. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  49. }
  50. /* read the Time Stamp Counter: */
  51. rdtscll(this_offset);
  52. /* return the value in ns */
  53. return __cycles_2_ns(this_offset);
  54. }
  55. /* We need to define a real function for sched_clock, to override the
  56. weak default version */
  57. #ifdef CONFIG_PARAVIRT
  58. unsigned long long sched_clock(void)
  59. {
  60. return paravirt_sched_clock();
  61. }
  62. #else
  63. unsigned long long
  64. sched_clock(void) __attribute__((alias("native_sched_clock")));
  65. #endif
  66. int check_tsc_unstable(void)
  67. {
  68. return tsc_unstable;
  69. }
  70. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  71. #ifdef CONFIG_X86_TSC
  72. int __init notsc_setup(char *str)
  73. {
  74. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  75. "cannot disable TSC completely.\n");
  76. tsc_disabled = 1;
  77. return 1;
  78. }
  79. #else
  80. /*
  81. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  82. * in cpu/common.c
  83. */
  84. int __init notsc_setup(char *str)
  85. {
  86. setup_clear_cpu_cap(X86_FEATURE_TSC);
  87. return 1;
  88. }
  89. #endif
  90. __setup("notsc", notsc_setup);
  91. static int __init tsc_setup(char *str)
  92. {
  93. if (!strcmp(str, "reliable"))
  94. tsc_clocksource_reliable = 1;
  95. return 1;
  96. }
  97. __setup("tsc=", tsc_setup);
  98. #define MAX_RETRIES 5
  99. #define SMI_TRESHOLD 50000
  100. /*
  101. * Read TSC and the reference counters. Take care of SMI disturbance
  102. */
  103. static u64 tsc_read_refs(u64 *p, int hpet)
  104. {
  105. u64 t1, t2;
  106. int i;
  107. for (i = 0; i < MAX_RETRIES; i++) {
  108. t1 = get_cycles();
  109. if (hpet)
  110. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  111. else
  112. *p = acpi_pm_read_early();
  113. t2 = get_cycles();
  114. if ((t2 - t1) < SMI_TRESHOLD)
  115. return t2;
  116. }
  117. return ULLONG_MAX;
  118. }
  119. /*
  120. * Calculate the TSC frequency from HPET reference
  121. */
  122. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  123. {
  124. u64 tmp;
  125. if (hpet2 < hpet1)
  126. hpet2 += 0x100000000ULL;
  127. hpet2 -= hpet1;
  128. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  129. do_div(tmp, 1000000);
  130. do_div(deltatsc, tmp);
  131. return (unsigned long) deltatsc;
  132. }
  133. /*
  134. * Calculate the TSC frequency from PMTimer reference
  135. */
  136. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  137. {
  138. u64 tmp;
  139. if (!pm1 && !pm2)
  140. return ULONG_MAX;
  141. if (pm2 < pm1)
  142. pm2 += (u64)ACPI_PM_OVRRUN;
  143. pm2 -= pm1;
  144. tmp = pm2 * 1000000000LL;
  145. do_div(tmp, PMTMR_TICKS_PER_SEC);
  146. do_div(deltatsc, tmp);
  147. return (unsigned long) deltatsc;
  148. }
  149. #define CAL_MS 10
  150. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  151. #define CAL_PIT_LOOPS 1000
  152. #define CAL2_MS 50
  153. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  154. #define CAL2_PIT_LOOPS 5000
  155. /*
  156. * Try to calibrate the TSC against the Programmable
  157. * Interrupt Timer and return the frequency of the TSC
  158. * in kHz.
  159. *
  160. * Return ULONG_MAX on failure to calibrate.
  161. */
  162. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  163. {
  164. u64 tsc, t1, t2, delta;
  165. unsigned long tscmin, tscmax;
  166. int pitcnt;
  167. /* Set the Gate high, disable speaker */
  168. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  169. /*
  170. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  171. * count mode), binary count. Set the latch register to 50ms
  172. * (LSB then MSB) to begin countdown.
  173. */
  174. outb(0xb0, 0x43);
  175. outb(latch & 0xff, 0x42);
  176. outb(latch >> 8, 0x42);
  177. tsc = t1 = t2 = get_cycles();
  178. pitcnt = 0;
  179. tscmax = 0;
  180. tscmin = ULONG_MAX;
  181. while ((inb(0x61) & 0x20) == 0) {
  182. t2 = get_cycles();
  183. delta = t2 - tsc;
  184. tsc = t2;
  185. if ((unsigned long) delta < tscmin)
  186. tscmin = (unsigned int) delta;
  187. if ((unsigned long) delta > tscmax)
  188. tscmax = (unsigned int) delta;
  189. pitcnt++;
  190. }
  191. /*
  192. * Sanity checks:
  193. *
  194. * If we were not able to read the PIT more than loopmin
  195. * times, then we have been hit by a massive SMI
  196. *
  197. * If the maximum is 10 times larger than the minimum,
  198. * then we got hit by an SMI as well.
  199. */
  200. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  201. return ULONG_MAX;
  202. /* Calculate the PIT value */
  203. delta = t2 - t1;
  204. do_div(delta, ms);
  205. return delta;
  206. }
  207. /*
  208. * This reads the current MSB of the PIT counter, and
  209. * checks if we are running on sufficiently fast and
  210. * non-virtualized hardware.
  211. *
  212. * Our expectations are:
  213. *
  214. * - the PIT is running at roughly 1.19MHz
  215. *
  216. * - each IO is going to take about 1us on real hardware,
  217. * but we allow it to be much faster (by a factor of 10) or
  218. * _slightly_ slower (ie we allow up to a 2us read+counter
  219. * update - anything else implies a unacceptably slow CPU
  220. * or PIT for the fast calibration to work.
  221. *
  222. * - with 256 PIT ticks to read the value, we have 214us to
  223. * see the same MSB (and overhead like doing a single TSC
  224. * read per MSB value etc).
  225. *
  226. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  227. * them each to take about a microsecond on real hardware.
  228. * So we expect a count value of around 100. But we'll be
  229. * generous, and accept anything over 50.
  230. *
  231. * - if the PIT is stuck, and we see *many* more reads, we
  232. * return early (and the next caller of pit_expect_msb()
  233. * then consider it a failure when they don't see the
  234. * next expected value).
  235. *
  236. * These expectations mean that we know that we have seen the
  237. * transition from one expected value to another with a fairly
  238. * high accuracy, and we didn't miss any events. We can thus
  239. * use the TSC value at the transitions to calculate a pretty
  240. * good value for the TSC frequencty.
  241. */
  242. static inline int pit_verify_msb(unsigned char val)
  243. {
  244. /* Ignore LSB */
  245. inb(0x42);
  246. return inb(0x42) == val;
  247. }
  248. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  249. {
  250. int count;
  251. u64 tsc = 0;
  252. for (count = 0; count < 50000; count++) {
  253. if (!pit_verify_msb(val))
  254. break;
  255. tsc = get_cycles();
  256. }
  257. *deltap = get_cycles() - tsc;
  258. *tscp = tsc;
  259. /*
  260. * We require _some_ success, but the quality control
  261. * will be based on the error terms on the TSC values.
  262. */
  263. return count > 5;
  264. }
  265. /*
  266. * How many MSB values do we want to see? We aim for
  267. * a maximum error rate of 500ppm (in practice the
  268. * real error is much smaller), but refuse to spend
  269. * more than 25ms on it.
  270. */
  271. #define MAX_QUICK_PIT_MS 25
  272. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  273. static unsigned long quick_pit_calibrate(void)
  274. {
  275. int i;
  276. u64 tsc, delta;
  277. unsigned long d1, d2;
  278. /* Set the Gate high, disable speaker */
  279. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  280. /*
  281. * Counter 2, mode 0 (one-shot), binary count
  282. *
  283. * NOTE! Mode 2 decrements by two (and then the
  284. * output is flipped each time, giving the same
  285. * final output frequency as a decrement-by-one),
  286. * so mode 0 is much better when looking at the
  287. * individual counts.
  288. */
  289. outb(0xb0, 0x43);
  290. /* Start at 0xffff */
  291. outb(0xff, 0x42);
  292. outb(0xff, 0x42);
  293. /*
  294. * The PIT starts counting at the next edge, so we
  295. * need to delay for a microsecond. The easiest way
  296. * to do that is to just read back the 16-bit counter
  297. * once from the PIT.
  298. */
  299. pit_verify_msb(0);
  300. if (pit_expect_msb(0xff, &tsc, &d1)) {
  301. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  302. if (!pit_expect_msb(0xff-i, &delta, &d2))
  303. break;
  304. /*
  305. * Iterate until the error is less than 500 ppm
  306. */
  307. delta -= tsc;
  308. if (d1+d2 >= delta >> 11)
  309. continue;
  310. /*
  311. * Check the PIT one more time to verify that
  312. * all TSC reads were stable wrt the PIT.
  313. *
  314. * This also guarantees serialization of the
  315. * last cycle read ('d2') in pit_expect_msb.
  316. */
  317. if (!pit_verify_msb(0xfe - i))
  318. break;
  319. goto success;
  320. }
  321. }
  322. printk("Fast TSC calibration failed\n");
  323. return 0;
  324. success:
  325. /*
  326. * Ok, if we get here, then we've seen the
  327. * MSB of the PIT decrement 'i' times, and the
  328. * error has shrunk to less than 500 ppm.
  329. *
  330. * As a result, we can depend on there not being
  331. * any odd delays anywhere, and the TSC reads are
  332. * reliable (within the error). We also adjust the
  333. * delta to the middle of the error bars, just
  334. * because it looks nicer.
  335. *
  336. * kHz = ticks / time-in-seconds / 1000;
  337. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  338. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  339. */
  340. delta += (long)(d2 - d1)/2;
  341. delta *= PIT_TICK_RATE;
  342. do_div(delta, i*256*1000);
  343. printk("Fast TSC calibration using PIT\n");
  344. return delta;
  345. }
  346. /**
  347. * native_calibrate_tsc - calibrate the tsc on boot
  348. */
  349. unsigned long native_calibrate_tsc(void)
  350. {
  351. u64 tsc1, tsc2, delta, ref1, ref2;
  352. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  353. unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz;
  354. int hpet = is_hpet_enabled(), i, loopmin;
  355. hv_tsc_khz = get_hypervisor_tsc_freq();
  356. if (hv_tsc_khz) {
  357. printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
  358. return hv_tsc_khz;
  359. }
  360. local_irq_save(flags);
  361. fast_calibrate = quick_pit_calibrate();
  362. local_irq_restore(flags);
  363. if (fast_calibrate)
  364. return fast_calibrate;
  365. /*
  366. * Run 5 calibration loops to get the lowest frequency value
  367. * (the best estimate). We use two different calibration modes
  368. * here:
  369. *
  370. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  371. * load a timeout of 50ms. We read the time right after we
  372. * started the timer and wait until the PIT count down reaches
  373. * zero. In each wait loop iteration we read the TSC and check
  374. * the delta to the previous read. We keep track of the min
  375. * and max values of that delta. The delta is mostly defined
  376. * by the IO time of the PIT access, so we can detect when a
  377. * SMI/SMM disturbance happend between the two reads. If the
  378. * maximum time is significantly larger than the minimum time,
  379. * then we discard the result and have another try.
  380. *
  381. * 2) Reference counter. If available we use the HPET or the
  382. * PMTIMER as a reference to check the sanity of that value.
  383. * We use separate TSC readouts and check inside of the
  384. * reference read for a SMI/SMM disturbance. We dicard
  385. * disturbed values here as well. We do that around the PIT
  386. * calibration delay loop as we have to wait for a certain
  387. * amount of time anyway.
  388. */
  389. /* Preset PIT loop values */
  390. latch = CAL_LATCH;
  391. ms = CAL_MS;
  392. loopmin = CAL_PIT_LOOPS;
  393. for (i = 0; i < 3; i++) {
  394. unsigned long tsc_pit_khz;
  395. /*
  396. * Read the start value and the reference count of
  397. * hpet/pmtimer when available. Then do the PIT
  398. * calibration, which will take at least 50ms, and
  399. * read the end value.
  400. */
  401. local_irq_save(flags);
  402. tsc1 = tsc_read_refs(&ref1, hpet);
  403. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  404. tsc2 = tsc_read_refs(&ref2, hpet);
  405. local_irq_restore(flags);
  406. /* Pick the lowest PIT TSC calibration so far */
  407. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  408. /* hpet or pmtimer available ? */
  409. if (!hpet && !ref1 && !ref2)
  410. continue;
  411. /* Check, whether the sampling was disturbed by an SMI */
  412. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  413. continue;
  414. tsc2 = (tsc2 - tsc1) * 1000000LL;
  415. if (hpet)
  416. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  417. else
  418. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  419. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  420. /* Check the reference deviation */
  421. delta = ((u64) tsc_pit_min) * 100;
  422. do_div(delta, tsc_ref_min);
  423. /*
  424. * If both calibration results are inside a 10% window
  425. * then we can be sure, that the calibration
  426. * succeeded. We break out of the loop right away. We
  427. * use the reference value, as it is more precise.
  428. */
  429. if (delta >= 90 && delta <= 110) {
  430. printk(KERN_INFO
  431. "TSC: PIT calibration matches %s. %d loops\n",
  432. hpet ? "HPET" : "PMTIMER", i + 1);
  433. return tsc_ref_min;
  434. }
  435. /*
  436. * Check whether PIT failed more than once. This
  437. * happens in virtualized environments. We need to
  438. * give the virtual PC a slightly longer timeframe for
  439. * the HPET/PMTIMER to make the result precise.
  440. */
  441. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  442. latch = CAL2_LATCH;
  443. ms = CAL2_MS;
  444. loopmin = CAL2_PIT_LOOPS;
  445. }
  446. }
  447. /*
  448. * Now check the results.
  449. */
  450. if (tsc_pit_min == ULONG_MAX) {
  451. /* PIT gave no useful value */
  452. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  453. /* We don't have an alternative source, disable TSC */
  454. if (!hpet && !ref1 && !ref2) {
  455. printk("TSC: No reference (HPET/PMTIMER) available\n");
  456. return 0;
  457. }
  458. /* The alternative source failed as well, disable TSC */
  459. if (tsc_ref_min == ULONG_MAX) {
  460. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  461. "failed.\n");
  462. return 0;
  463. }
  464. /* Use the alternative source */
  465. printk(KERN_INFO "TSC: using %s reference calibration\n",
  466. hpet ? "HPET" : "PMTIMER");
  467. return tsc_ref_min;
  468. }
  469. /* We don't have an alternative source, use the PIT calibration value */
  470. if (!hpet && !ref1 && !ref2) {
  471. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  472. return tsc_pit_min;
  473. }
  474. /* The alternative source failed, use the PIT calibration value */
  475. if (tsc_ref_min == ULONG_MAX) {
  476. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  477. "Using PIT calibration\n");
  478. return tsc_pit_min;
  479. }
  480. /*
  481. * The calibration values differ too much. In doubt, we use
  482. * the PIT value as we know that there are PMTIMERs around
  483. * running at double speed. At least we let the user know:
  484. */
  485. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  486. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  487. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  488. return tsc_pit_min;
  489. }
  490. int recalibrate_cpu_khz(void)
  491. {
  492. #ifndef CONFIG_SMP
  493. unsigned long cpu_khz_old = cpu_khz;
  494. if (cpu_has_tsc) {
  495. tsc_khz = calibrate_tsc();
  496. cpu_khz = tsc_khz;
  497. cpu_data(0).loops_per_jiffy =
  498. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  499. cpu_khz_old, cpu_khz);
  500. return 0;
  501. } else
  502. return -ENODEV;
  503. #else
  504. return -ENODEV;
  505. #endif
  506. }
  507. EXPORT_SYMBOL(recalibrate_cpu_khz);
  508. /* Accelerators for sched_clock()
  509. * convert from cycles(64bits) => nanoseconds (64bits)
  510. * basic equation:
  511. * ns = cycles / (freq / ns_per_sec)
  512. * ns = cycles * (ns_per_sec / freq)
  513. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  514. * ns = cycles * (10^6 / cpu_khz)
  515. *
  516. * Then we use scaling math (suggested by george@mvista.com) to get:
  517. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  518. * ns = cycles * cyc2ns_scale / SC
  519. *
  520. * And since SC is a constant power of two, we can convert the div
  521. * into a shift.
  522. *
  523. * We can use khz divisor instead of mhz to keep a better precision, since
  524. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  525. * (mathieu.desnoyers@polymtl.ca)
  526. *
  527. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  528. */
  529. DEFINE_PER_CPU(unsigned long, cyc2ns);
  530. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  531. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  532. {
  533. unsigned long long tsc_now, ns_now, *offset;
  534. unsigned long flags, *scale;
  535. local_irq_save(flags);
  536. sched_clock_idle_sleep_event();
  537. scale = &per_cpu(cyc2ns, cpu);
  538. offset = &per_cpu(cyc2ns_offset, cpu);
  539. rdtscll(tsc_now);
  540. ns_now = __cycles_2_ns(tsc_now);
  541. if (cpu_khz) {
  542. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  543. *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
  544. }
  545. sched_clock_idle_wakeup_event(0);
  546. local_irq_restore(flags);
  547. }
  548. #ifdef CONFIG_CPU_FREQ
  549. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  550. * changes.
  551. *
  552. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  553. * not that important because current Opteron setups do not support
  554. * scaling on SMP anyroads.
  555. *
  556. * Should fix up last_tsc too. Currently gettimeofday in the
  557. * first tick after the change will be slightly wrong.
  558. */
  559. static unsigned int ref_freq;
  560. static unsigned long loops_per_jiffy_ref;
  561. static unsigned long tsc_khz_ref;
  562. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  563. void *data)
  564. {
  565. struct cpufreq_freqs *freq = data;
  566. unsigned long *lpj;
  567. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  568. return 0;
  569. lpj = &boot_cpu_data.loops_per_jiffy;
  570. #ifdef CONFIG_SMP
  571. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  572. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  573. #endif
  574. if (!ref_freq) {
  575. ref_freq = freq->old;
  576. loops_per_jiffy_ref = *lpj;
  577. tsc_khz_ref = tsc_khz;
  578. }
  579. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  580. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  581. (val == CPUFREQ_RESUMECHANGE)) {
  582. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  583. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  584. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  585. mark_tsc_unstable("cpufreq changes");
  586. }
  587. set_cyc2ns_scale(tsc_khz, freq->cpu);
  588. return 0;
  589. }
  590. static struct notifier_block time_cpufreq_notifier_block = {
  591. .notifier_call = time_cpufreq_notifier
  592. };
  593. static int __init cpufreq_tsc(void)
  594. {
  595. if (!cpu_has_tsc)
  596. return 0;
  597. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  598. return 0;
  599. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  600. CPUFREQ_TRANSITION_NOTIFIER);
  601. return 0;
  602. }
  603. core_initcall(cpufreq_tsc);
  604. #endif /* CONFIG_CPU_FREQ */
  605. /* clocksource code */
  606. static struct clocksource clocksource_tsc;
  607. /*
  608. * We compare the TSC to the cycle_last value in the clocksource
  609. * structure to avoid a nasty time-warp. This can be observed in a
  610. * very small window right after one CPU updated cycle_last under
  611. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  612. * is smaller than the cycle_last reference value due to a TSC which
  613. * is slighty behind. This delta is nowhere else observable, but in
  614. * that case it results in a forward time jump in the range of hours
  615. * due to the unsigned delta calculation of the time keeping core
  616. * code, which is necessary to support wrapping clocksources like pm
  617. * timer.
  618. */
  619. static cycle_t read_tsc(struct clocksource *cs)
  620. {
  621. cycle_t ret = (cycle_t)get_cycles();
  622. return ret >= clocksource_tsc.cycle_last ?
  623. ret : clocksource_tsc.cycle_last;
  624. }
  625. #ifdef CONFIG_X86_64
  626. static cycle_t __vsyscall_fn vread_tsc(void)
  627. {
  628. cycle_t ret;
  629. /*
  630. * Surround the RDTSC by barriers, to make sure it's not
  631. * speculated to outside the seqlock critical section and
  632. * does not cause time warps:
  633. */
  634. rdtsc_barrier();
  635. ret = (cycle_t)vget_cycles();
  636. rdtsc_barrier();
  637. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  638. ret : __vsyscall_gtod_data.clock.cycle_last;
  639. }
  640. #endif
  641. static struct clocksource clocksource_tsc = {
  642. .name = "tsc",
  643. .rating = 300,
  644. .read = read_tsc,
  645. .mask = CLOCKSOURCE_MASK(64),
  646. .shift = 22,
  647. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  648. CLOCK_SOURCE_MUST_VERIFY,
  649. #ifdef CONFIG_X86_64
  650. .vread = vread_tsc,
  651. #endif
  652. };
  653. void mark_tsc_unstable(char *reason)
  654. {
  655. if (!tsc_unstable) {
  656. tsc_unstable = 1;
  657. printk("Marking TSC unstable due to %s\n", reason);
  658. /* Change only the rating, when not registered */
  659. if (clocksource_tsc.mult)
  660. clocksource_change_rating(&clocksource_tsc, 0);
  661. else
  662. clocksource_tsc.rating = 0;
  663. }
  664. }
  665. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  666. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  667. {
  668. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  669. d->ident);
  670. tsc_unstable = 1;
  671. return 0;
  672. }
  673. /* List of systems that have known TSC problems */
  674. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  675. {
  676. .callback = dmi_mark_tsc_unstable,
  677. .ident = "IBM Thinkpad 380XD",
  678. .matches = {
  679. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  680. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  681. },
  682. },
  683. {}
  684. };
  685. static void __init check_system_tsc_reliable(void)
  686. {
  687. #ifdef CONFIG_MGEODE_LX
  688. /* RTSC counts during suspend */
  689. #define RTSC_SUSP 0x100
  690. unsigned long res_low, res_high;
  691. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  692. /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
  693. if (res_low & RTSC_SUSP)
  694. tsc_clocksource_reliable = 1;
  695. #endif
  696. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  697. tsc_clocksource_reliable = 1;
  698. }
  699. /*
  700. * Make an educated guess if the TSC is trustworthy and synchronized
  701. * over all CPUs.
  702. */
  703. __cpuinit int unsynchronized_tsc(void)
  704. {
  705. if (!cpu_has_tsc || tsc_unstable)
  706. return 1;
  707. #ifdef CONFIG_SMP
  708. if (apic_is_clustered_box())
  709. return 1;
  710. #endif
  711. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  712. return 0;
  713. /*
  714. * Intel systems are normally all synchronized.
  715. * Exceptions must mark TSC as unstable:
  716. */
  717. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  718. /* assume multi socket systems are not synchronized: */
  719. if (num_possible_cpus() > 1)
  720. tsc_unstable = 1;
  721. }
  722. return tsc_unstable;
  723. }
  724. static void __init init_tsc_clocksource(void)
  725. {
  726. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  727. clocksource_tsc.shift);
  728. if (tsc_clocksource_reliable)
  729. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  730. /* lower the rating if we already know its unstable: */
  731. if (check_tsc_unstable()) {
  732. clocksource_tsc.rating = 0;
  733. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  734. }
  735. clocksource_register(&clocksource_tsc);
  736. }
  737. void __init tsc_init(void)
  738. {
  739. u64 lpj;
  740. int cpu;
  741. if (!cpu_has_tsc)
  742. return;
  743. tsc_khz = calibrate_tsc();
  744. cpu_khz = tsc_khz;
  745. if (!tsc_khz) {
  746. mark_tsc_unstable("could not calculate TSC khz");
  747. return;
  748. }
  749. #ifdef CONFIG_X86_64
  750. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  751. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  752. cpu_khz = calibrate_cpu();
  753. #endif
  754. printk("Detected %lu.%03lu MHz processor.\n",
  755. (unsigned long)cpu_khz / 1000,
  756. (unsigned long)cpu_khz % 1000);
  757. /*
  758. * Secondary CPUs do not run through tsc_init(), so set up
  759. * all the scale factors for all CPUs, assuming the same
  760. * speed as the bootup CPU. (cpufreq notifiers will fix this
  761. * up if their speed diverges)
  762. */
  763. for_each_possible_cpu(cpu)
  764. set_cyc2ns_scale(cpu_khz, cpu);
  765. if (tsc_disabled > 0)
  766. return;
  767. /* now allow native_sched_clock() to use rdtsc */
  768. tsc_disabled = 0;
  769. lpj = ((u64)tsc_khz * 1000);
  770. do_div(lpj, HZ);
  771. lpj_fine = lpj;
  772. use_tsc_delay();
  773. /* Check and install the TSC clocksource */
  774. dmi_check_system(bad_tsc_dmi_table);
  775. if (unsynchronized_tsc())
  776. mark_tsc_unstable("TSCs unsynchronized");
  777. check_system_tsc_reliable();
  778. init_tsc_clocksource();
  779. }