rt2800pci.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static int modparam_nohwcrypt = 0;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  51. {
  52. unsigned int i;
  53. u32 reg;
  54. /*
  55. * SOC devices don't support MCU requests.
  56. */
  57. if (rt2x00_is_soc(rt2x00dev))
  58. return;
  59. for (i = 0; i < 200; i++) {
  60. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  61. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  65. break;
  66. udelay(REGISTER_BUSY_DELAY);
  67. }
  68. if (i == 200)
  69. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  72. }
  73. #ifdef CONFIG_RT2800PCI_SOC
  74. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  77. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RT2800PCI_SOC */
  84. #ifdef CONFIG_RT2800PCI_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_RT2800PCI_PCI */
  156. /*
  157. * Firmware functions
  158. */
  159. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  160. {
  161. return FIRMWARE_RT2860;
  162. }
  163. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  164. const u8 *data, const size_t len)
  165. {
  166. u16 fw_crc;
  167. u16 crc;
  168. /*
  169. * Only support 8kb firmware files.
  170. */
  171. if (len != 8192)
  172. return FW_BAD_LENGTH;
  173. /*
  174. * The last 2 bytes in the firmware array are the crc checksum itself,
  175. * this means that we should never pass those 2 bytes to the crc
  176. * algorithm.
  177. */
  178. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  179. /*
  180. * Use the crc ccitt algorithm.
  181. * This will return the same value as the legacy driver which
  182. * used bit ordering reversion on the both the firmware bytes
  183. * before input input as well as on the final output.
  184. * Obviously using crc ccitt directly is much more efficient.
  185. */
  186. crc = crc_ccitt(~0, data, len - 2);
  187. /*
  188. * There is a small difference between the crc-itu-t + bitrev and
  189. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  190. * will be swapped, use swab16 to convert the crc to the correct
  191. * value.
  192. */
  193. crc = swab16(crc);
  194. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  195. }
  196. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  197. const u8 *data, const size_t len)
  198. {
  199. unsigned int i;
  200. u32 reg;
  201. /*
  202. * Wait for stable hardware.
  203. */
  204. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  205. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  206. if (reg && reg != ~0)
  207. break;
  208. msleep(1);
  209. }
  210. if (i == REGISTER_BUSY_COUNT) {
  211. ERROR(rt2x00dev, "Unstable hardware.\n");
  212. return -EBUSY;
  213. }
  214. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  215. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  216. /*
  217. * Disable DMA, will be reenabled later when enabling
  218. * the radio.
  219. */
  220. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  221. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  222. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  223. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  224. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  225. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  226. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  227. /*
  228. * enable Host program ram write selection
  229. */
  230. reg = 0;
  231. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  232. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  233. /*
  234. * Write firmware to device.
  235. */
  236. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  237. data, len);
  238. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  239. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  240. /*
  241. * Wait for device to stabilize.
  242. */
  243. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  244. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  245. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  246. break;
  247. msleep(1);
  248. }
  249. if (i == REGISTER_BUSY_COUNT) {
  250. ERROR(rt2x00dev, "PBF system register not ready.\n");
  251. return -EBUSY;
  252. }
  253. /*
  254. * Disable interrupts
  255. */
  256. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  257. /*
  258. * Initialize BBP R/W access agent
  259. */
  260. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  261. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  262. return 0;
  263. }
  264. /*
  265. * Initialization functions.
  266. */
  267. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  268. {
  269. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  270. u32 word;
  271. if (entry->queue->qid == QID_RX) {
  272. rt2x00_desc_read(entry_priv->desc, 1, &word);
  273. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  274. } else {
  275. rt2x00_desc_read(entry_priv->desc, 1, &word);
  276. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  277. }
  278. }
  279. static void rt2800pci_clear_entry(struct queue_entry *entry)
  280. {
  281. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  282. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  283. u32 word;
  284. if (entry->queue->qid == QID_RX) {
  285. rt2x00_desc_read(entry_priv->desc, 0, &word);
  286. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  287. rt2x00_desc_write(entry_priv->desc, 0, word);
  288. rt2x00_desc_read(entry_priv->desc, 1, &word);
  289. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  290. rt2x00_desc_write(entry_priv->desc, 1, word);
  291. } else {
  292. rt2x00_desc_read(entry_priv->desc, 1, &word);
  293. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  294. rt2x00_desc_write(entry_priv->desc, 1, word);
  295. }
  296. }
  297. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  298. {
  299. struct queue_entry_priv_pci *entry_priv;
  300. u32 reg;
  301. /*
  302. * Initialize registers.
  303. */
  304. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  305. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  306. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  307. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  308. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  309. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  310. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  311. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  312. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  313. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  314. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  317. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  318. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  319. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  320. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  321. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  322. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  323. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  324. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  327. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  328. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  329. /*
  330. * Enable global DMA configuration
  331. */
  332. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  333. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  334. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  335. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  336. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  337. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  338. return 0;
  339. }
  340. /*
  341. * Device state switch handlers.
  342. */
  343. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  344. enum dev_state state)
  345. {
  346. u32 reg;
  347. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  348. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  349. (state == STATE_RADIO_RX_ON) ||
  350. (state == STATE_RADIO_RX_ON_LINK));
  351. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  352. }
  353. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  354. enum dev_state state)
  355. {
  356. int mask = (state == STATE_RADIO_IRQ_ON);
  357. u32 reg;
  358. /*
  359. * When interrupts are being enabled, the interrupt registers
  360. * should clear the register to assure a clean state.
  361. */
  362. if (state == STATE_RADIO_IRQ_ON) {
  363. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  364. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  365. }
  366. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  367. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  385. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  386. }
  387. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  388. {
  389. u32 reg;
  390. /*
  391. * Reset DMA indexes
  392. */
  393. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  394. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  395. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  396. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  397. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  398. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  399. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  400. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  401. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  402. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  403. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  404. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  405. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  406. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  407. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  408. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  409. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  410. return 0;
  411. }
  412. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  413. {
  414. u32 reg;
  415. u16 word;
  416. /*
  417. * Initialize all registers.
  418. */
  419. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  420. rt2800pci_init_queues(rt2x00dev) ||
  421. rt2800_init_registers(rt2x00dev) ||
  422. rt2800_wait_wpdma_ready(rt2x00dev) ||
  423. rt2800_init_bbp(rt2x00dev) ||
  424. rt2800_init_rfcsr(rt2x00dev)))
  425. return -EIO;
  426. /*
  427. * Send signal to firmware during boot time.
  428. */
  429. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  430. /*
  431. * Enable RX.
  432. */
  433. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  434. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  435. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  436. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  437. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  438. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  439. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  440. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  441. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  442. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  443. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  444. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  445. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  446. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  447. /*
  448. * Initialize LED control
  449. */
  450. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  451. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  452. word & 0xff, (word >> 8) & 0xff);
  453. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  454. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  455. word & 0xff, (word >> 8) & 0xff);
  456. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  457. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  458. word & 0xff, (word >> 8) & 0xff);
  459. return 0;
  460. }
  461. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  462. {
  463. u32 reg;
  464. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  465. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  466. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  467. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  468. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  469. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  470. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  471. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  472. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  473. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  474. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  475. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  476. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  477. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  478. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  479. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  480. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  481. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  482. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  483. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  484. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  485. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  486. /* Wait for DMA, ignore error */
  487. rt2800_wait_wpdma_ready(rt2x00dev);
  488. }
  489. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  490. enum dev_state state)
  491. {
  492. /*
  493. * Always put the device to sleep (even when we intend to wakeup!)
  494. * if the device is booting and wasn't asleep it will return
  495. * failure when attempting to wakeup.
  496. */
  497. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  498. if (state == STATE_AWAKE) {
  499. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  500. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  501. }
  502. return 0;
  503. }
  504. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  505. enum dev_state state)
  506. {
  507. int retval = 0;
  508. switch (state) {
  509. case STATE_RADIO_ON:
  510. /*
  511. * Before the radio can be enabled, the device first has
  512. * to be woken up. After that it needs a bit of time
  513. * to be fully awake and then the radio can be enabled.
  514. */
  515. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  516. msleep(1);
  517. retval = rt2800pci_enable_radio(rt2x00dev);
  518. break;
  519. case STATE_RADIO_OFF:
  520. /*
  521. * After the radio has been disabled, the device should
  522. * be put to sleep for powersaving.
  523. */
  524. rt2800pci_disable_radio(rt2x00dev);
  525. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  526. break;
  527. case STATE_RADIO_RX_ON:
  528. case STATE_RADIO_RX_ON_LINK:
  529. case STATE_RADIO_RX_OFF:
  530. case STATE_RADIO_RX_OFF_LINK:
  531. rt2800pci_toggle_rx(rt2x00dev, state);
  532. break;
  533. case STATE_RADIO_IRQ_ON:
  534. case STATE_RADIO_IRQ_OFF:
  535. rt2800pci_toggle_irq(rt2x00dev, state);
  536. break;
  537. case STATE_DEEP_SLEEP:
  538. case STATE_SLEEP:
  539. case STATE_STANDBY:
  540. case STATE_AWAKE:
  541. retval = rt2800pci_set_state(rt2x00dev, state);
  542. break;
  543. default:
  544. retval = -ENOTSUPP;
  545. break;
  546. }
  547. if (unlikely(retval))
  548. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  549. state, retval);
  550. return retval;
  551. }
  552. /*
  553. * TX descriptor initialization
  554. */
  555. static void rt2800pci_write_tx_data(struct queue_entry* entry,
  556. struct txentry_desc *txdesc)
  557. {
  558. __le32 *txwi = (__le32 *) entry->skb->data;
  559. rt2800_write_txwi(txwi, txdesc);
  560. }
  561. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  562. struct sk_buff *skb,
  563. struct txentry_desc *txdesc)
  564. {
  565. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  566. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  567. __le32 *txd = entry_priv->desc;
  568. u32 word;
  569. /*
  570. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  571. * must contains a TXWI structure + 802.11 header + padding + 802.11
  572. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  573. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  574. * data. It means that LAST_SEC0 is always 0.
  575. */
  576. /*
  577. * Initialize TX descriptor
  578. */
  579. rt2x00_desc_read(txd, 0, &word);
  580. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  581. rt2x00_desc_write(txd, 0, word);
  582. rt2x00_desc_read(txd, 1, &word);
  583. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  584. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  585. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  586. rt2x00_set_field32(&word, TXD_W1_BURST,
  587. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  588. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  589. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  590. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  591. rt2x00_desc_write(txd, 1, word);
  592. rt2x00_desc_read(txd, 2, &word);
  593. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  594. skbdesc->skb_dma + TXWI_DESC_SIZE);
  595. rt2x00_desc_write(txd, 2, word);
  596. rt2x00_desc_read(txd, 3, &word);
  597. rt2x00_set_field32(&word, TXD_W3_WIV,
  598. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  599. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  600. rt2x00_desc_write(txd, 3, word);
  601. /*
  602. * Register descriptor details in skb frame descriptor.
  603. */
  604. skbdesc->desc = txd;
  605. skbdesc->desc_len = TXD_DESC_SIZE;
  606. }
  607. /*
  608. * TX data initialization
  609. */
  610. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  611. const enum data_queue_qid queue_idx)
  612. {
  613. struct data_queue *queue;
  614. unsigned int idx, qidx = 0;
  615. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  616. return;
  617. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  618. idx = queue->index[Q_INDEX];
  619. if (queue_idx == QID_MGMT)
  620. qidx = 5;
  621. else
  622. qidx = queue_idx;
  623. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  624. }
  625. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  626. const enum data_queue_qid qid)
  627. {
  628. u32 reg;
  629. if (qid == QID_BEACON) {
  630. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  631. return;
  632. }
  633. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  634. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  635. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  636. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  637. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  638. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  639. }
  640. /*
  641. * RX control handlers
  642. */
  643. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  644. struct rxdone_entry_desc *rxdesc)
  645. {
  646. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  647. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  648. __le32 *rxd = entry_priv->desc;
  649. u32 word;
  650. rt2x00_desc_read(rxd, 3, &word);
  651. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  652. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  653. /*
  654. * Unfortunately we don't know the cipher type used during
  655. * decryption. This prevents us from correct providing
  656. * correct statistics through debugfs.
  657. */
  658. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  659. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  660. /*
  661. * Hardware has stripped IV/EIV data from 802.11 frame during
  662. * decryption. Unfortunately the descriptor doesn't contain
  663. * any fields with the EIV/IV data either, so they can't
  664. * be restored by rt2x00lib.
  665. */
  666. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  667. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  668. rxdesc->flags |= RX_FLAG_DECRYPTED;
  669. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  670. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  671. }
  672. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  673. rxdesc->dev_flags |= RXDONE_MY_BSS;
  674. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  675. rxdesc->dev_flags |= RXDONE_L2PAD;
  676. /*
  677. * Process the RXWI structure that is at the start of the buffer.
  678. */
  679. rt2800_process_rxwi(entry->skb, rxdesc);
  680. /*
  681. * Set RX IDX in register to inform hardware that we have handled
  682. * this entry and it is available for reuse again.
  683. */
  684. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  685. }
  686. /*
  687. * Interrupt functions.
  688. */
  689. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  690. {
  691. struct data_queue *queue;
  692. struct queue_entry *entry;
  693. __le32 *txwi;
  694. struct txdone_entry_desc txdesc;
  695. u32 word;
  696. u32 reg;
  697. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  698. u16 mcs, real_mcs;
  699. int i;
  700. /*
  701. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  702. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  703. * flag is not set anymore.
  704. *
  705. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  706. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  707. * tx ring size for now.
  708. */
  709. for (i = 0; i < TX_ENTRIES; i++) {
  710. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  711. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  712. break;
  713. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  714. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  715. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  716. /*
  717. * Skip this entry when it contains an invalid
  718. * queue identication number.
  719. */
  720. if (pid <= 0 || pid > QID_RX)
  721. continue;
  722. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  723. if (unlikely(!queue))
  724. continue;
  725. /*
  726. * Inside each queue, we process each entry in a chronological
  727. * order. We first check that the queue is not empty.
  728. */
  729. if (rt2x00queue_empty(queue))
  730. continue;
  731. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  732. /* Check if we got a match by looking at WCID/ACK/PID
  733. * fields */
  734. txwi = (__le32 *) entry->skb->data;
  735. rt2x00_desc_read(txwi, 1, &word);
  736. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  737. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  738. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  739. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  740. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  741. /*
  742. * Obtain the status about this packet.
  743. */
  744. txdesc.flags = 0;
  745. rt2x00_desc_read(txwi, 0, &word);
  746. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  747. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  748. /*
  749. * Ralink has a retry mechanism using a global fallback
  750. * table. We setup this fallback table to try the immediate
  751. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  752. * always contains the MCS used for the last transmission, be
  753. * it successful or not.
  754. */
  755. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  756. /*
  757. * Transmission succeeded. The number of retries is
  758. * mcs - real_mcs
  759. */
  760. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  761. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  762. } else {
  763. /*
  764. * Transmission failed. The number of retries is
  765. * always 7 in this case (for a total number of 8
  766. * frames sent).
  767. */
  768. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  769. txdesc.retry = 7;
  770. }
  771. /*
  772. * the frame was retried at least once
  773. * -> hw used fallback rates
  774. */
  775. if (txdesc.retry)
  776. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  777. rt2x00lib_txdone(entry, &txdesc);
  778. }
  779. }
  780. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  781. {
  782. struct ieee80211_conf conf = { .flags = 0 };
  783. struct rt2x00lib_conf libconf = { .conf = &conf };
  784. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  785. }
  786. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  787. {
  788. struct rt2x00_dev *rt2x00dev = dev_instance;
  789. u32 reg;
  790. /* Read status and ACK all interrupts */
  791. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  792. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  793. if (!reg)
  794. return IRQ_NONE;
  795. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  796. return IRQ_HANDLED;
  797. /*
  798. * 1 - Rx ring done interrupt.
  799. */
  800. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  801. rt2x00pci_rxdone(rt2x00dev);
  802. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  803. rt2800pci_txdone(rt2x00dev);
  804. /*
  805. * Current beacon was sent out, fetch the next one
  806. */
  807. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  808. rt2x00lib_beacondone(rt2x00dev);
  809. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  810. rt2800pci_wakeup(rt2x00dev);
  811. return IRQ_HANDLED;
  812. }
  813. /*
  814. * Device probe functions.
  815. */
  816. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  817. {
  818. /*
  819. * Read EEPROM into buffer
  820. */
  821. if (rt2x00_is_soc(rt2x00dev))
  822. rt2800pci_read_eeprom_soc(rt2x00dev);
  823. else if (rt2800pci_efuse_detect(rt2x00dev))
  824. rt2800pci_read_eeprom_efuse(rt2x00dev);
  825. else
  826. rt2800pci_read_eeprom_pci(rt2x00dev);
  827. return rt2800_validate_eeprom(rt2x00dev);
  828. }
  829. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  830. .register_read = rt2x00pci_register_read,
  831. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  832. .register_write = rt2x00pci_register_write,
  833. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  834. .register_multiread = rt2x00pci_register_multiread,
  835. .register_multiwrite = rt2x00pci_register_multiwrite,
  836. .regbusy_read = rt2x00pci_regbusy_read,
  837. .drv_init_registers = rt2800pci_init_registers,
  838. };
  839. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  840. {
  841. int retval;
  842. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  843. /*
  844. * Allocate eeprom data.
  845. */
  846. retval = rt2800pci_validate_eeprom(rt2x00dev);
  847. if (retval)
  848. return retval;
  849. retval = rt2800_init_eeprom(rt2x00dev);
  850. if (retval)
  851. return retval;
  852. /*
  853. * Initialize hw specifications.
  854. */
  855. retval = rt2800_probe_hw_mode(rt2x00dev);
  856. if (retval)
  857. return retval;
  858. /*
  859. * This device has multiple filters for control frames
  860. * and has a separate filter for PS Poll frames.
  861. */
  862. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  863. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  864. /*
  865. * This device requires firmware.
  866. */
  867. if (!rt2x00_is_soc(rt2x00dev))
  868. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  869. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  870. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  871. if (!modparam_nohwcrypt)
  872. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  873. /*
  874. * Set the rssi offset.
  875. */
  876. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  877. return 0;
  878. }
  879. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  880. .irq_handler = rt2800pci_interrupt,
  881. .probe_hw = rt2800pci_probe_hw,
  882. .get_firmware_name = rt2800pci_get_firmware_name,
  883. .check_firmware = rt2800pci_check_firmware,
  884. .load_firmware = rt2800pci_load_firmware,
  885. .initialize = rt2x00pci_initialize,
  886. .uninitialize = rt2x00pci_uninitialize,
  887. .get_entry_state = rt2800pci_get_entry_state,
  888. .clear_entry = rt2800pci_clear_entry,
  889. .set_device_state = rt2800pci_set_device_state,
  890. .rfkill_poll = rt2800_rfkill_poll,
  891. .link_stats = rt2800_link_stats,
  892. .reset_tuner = rt2800_reset_tuner,
  893. .link_tuner = rt2800_link_tuner,
  894. .write_tx_desc = rt2800pci_write_tx_desc,
  895. .write_tx_data = rt2800pci_write_tx_data,
  896. .write_beacon = rt2800_write_beacon,
  897. .kick_tx_queue = rt2800pci_kick_tx_queue,
  898. .kill_tx_queue = rt2800pci_kill_tx_queue,
  899. .fill_rxdone = rt2800pci_fill_rxdone,
  900. .config_shared_key = rt2800_config_shared_key,
  901. .config_pairwise_key = rt2800_config_pairwise_key,
  902. .config_filter = rt2800_config_filter,
  903. .config_intf = rt2800_config_intf,
  904. .config_erp = rt2800_config_erp,
  905. .config_ant = rt2800_config_ant,
  906. .config = rt2800_config,
  907. };
  908. static const struct data_queue_desc rt2800pci_queue_rx = {
  909. .entry_num = RX_ENTRIES,
  910. .data_size = AGGREGATION_SIZE,
  911. .desc_size = RXD_DESC_SIZE,
  912. .priv_size = sizeof(struct queue_entry_priv_pci),
  913. };
  914. static const struct data_queue_desc rt2800pci_queue_tx = {
  915. .entry_num = TX_ENTRIES,
  916. .data_size = AGGREGATION_SIZE,
  917. .desc_size = TXD_DESC_SIZE,
  918. .priv_size = sizeof(struct queue_entry_priv_pci),
  919. };
  920. static const struct data_queue_desc rt2800pci_queue_bcn = {
  921. .entry_num = 8 * BEACON_ENTRIES,
  922. .data_size = 0, /* No DMA required for beacons */
  923. .desc_size = TXWI_DESC_SIZE,
  924. .priv_size = sizeof(struct queue_entry_priv_pci),
  925. };
  926. static const struct rt2x00_ops rt2800pci_ops = {
  927. .name = KBUILD_MODNAME,
  928. .max_sta_intf = 1,
  929. .max_ap_intf = 8,
  930. .eeprom_size = EEPROM_SIZE,
  931. .rf_size = RF_SIZE,
  932. .tx_queues = NUM_TX_QUEUES,
  933. .extra_tx_headroom = TXWI_DESC_SIZE,
  934. .rx = &rt2800pci_queue_rx,
  935. .tx = &rt2800pci_queue_tx,
  936. .bcn = &rt2800pci_queue_bcn,
  937. .lib = &rt2800pci_rt2x00_ops,
  938. .hw = &rt2800_mac80211_ops,
  939. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  940. .debugfs = &rt2800_rt2x00debug,
  941. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  942. };
  943. /*
  944. * RT2800pci module information.
  945. */
  946. #ifdef CONFIG_RT2800PCI_PCI
  947. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  948. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  949. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  950. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  951. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  952. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  953. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  954. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  955. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  956. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  957. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  958. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  959. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  960. #ifdef CONFIG_RT2800PCI_RT30XX
  961. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  962. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  963. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  964. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  965. #endif
  966. #ifdef CONFIG_RT2800PCI_RT35XX
  967. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  968. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  969. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  970. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  971. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  972. #endif
  973. { 0, }
  974. };
  975. #endif /* CONFIG_RT2800PCI_PCI */
  976. MODULE_AUTHOR(DRV_PROJECT);
  977. MODULE_VERSION(DRV_VERSION);
  978. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  979. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  980. #ifdef CONFIG_RT2800PCI_PCI
  981. MODULE_FIRMWARE(FIRMWARE_RT2860);
  982. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  983. #endif /* CONFIG_RT2800PCI_PCI */
  984. MODULE_LICENSE("GPL");
  985. #ifdef CONFIG_RT2800PCI_SOC
  986. static int rt2800soc_probe(struct platform_device *pdev)
  987. {
  988. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  989. }
  990. static struct platform_driver rt2800soc_driver = {
  991. .driver = {
  992. .name = "rt2800_wmac",
  993. .owner = THIS_MODULE,
  994. .mod_name = KBUILD_MODNAME,
  995. },
  996. .probe = rt2800soc_probe,
  997. .remove = __devexit_p(rt2x00soc_remove),
  998. .suspend = rt2x00soc_suspend,
  999. .resume = rt2x00soc_resume,
  1000. };
  1001. #endif /* CONFIG_RT2800PCI_SOC */
  1002. #ifdef CONFIG_RT2800PCI_PCI
  1003. static struct pci_driver rt2800pci_driver = {
  1004. .name = KBUILD_MODNAME,
  1005. .id_table = rt2800pci_device_table,
  1006. .probe = rt2x00pci_probe,
  1007. .remove = __devexit_p(rt2x00pci_remove),
  1008. .suspend = rt2x00pci_suspend,
  1009. .resume = rt2x00pci_resume,
  1010. };
  1011. #endif /* CONFIG_RT2800PCI_PCI */
  1012. static int __init rt2800pci_init(void)
  1013. {
  1014. int ret = 0;
  1015. #ifdef CONFIG_RT2800PCI_SOC
  1016. ret = platform_driver_register(&rt2800soc_driver);
  1017. if (ret)
  1018. return ret;
  1019. #endif
  1020. #ifdef CONFIG_RT2800PCI_PCI
  1021. ret = pci_register_driver(&rt2800pci_driver);
  1022. if (ret) {
  1023. #ifdef CONFIG_RT2800PCI_SOC
  1024. platform_driver_unregister(&rt2800soc_driver);
  1025. #endif
  1026. return ret;
  1027. }
  1028. #endif
  1029. return ret;
  1030. }
  1031. static void __exit rt2800pci_exit(void)
  1032. {
  1033. #ifdef CONFIG_RT2800PCI_PCI
  1034. pci_unregister_driver(&rt2800pci_driver);
  1035. #endif
  1036. #ifdef CONFIG_RT2800PCI_SOC
  1037. platform_driver_unregister(&rt2800soc_driver);
  1038. #endif
  1039. }
  1040. module_init(rt2800pci_init);
  1041. module_exit(rt2800pci_exit);