mmu.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  105. struct kvm_rmap_desc {
  106. u64 *shadow_ptes[RMAP_EXT];
  107. struct kvm_rmap_desc *more;
  108. };
  109. struct kvm_shadow_walk {
  110. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  111. u64 addr, u64 *spte, int level);
  112. };
  113. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static u64 __read_mostly shadow_trap_nonpresent_pte;
  118. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  119. static u64 __read_mostly shadow_base_present_pte;
  120. static u64 __read_mostly shadow_nx_mask;
  121. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  122. static u64 __read_mostly shadow_user_mask;
  123. static u64 __read_mostly shadow_accessed_mask;
  124. static u64 __read_mostly shadow_dirty_mask;
  125. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  126. {
  127. shadow_trap_nonpresent_pte = trap_pte;
  128. shadow_notrap_nonpresent_pte = notrap_pte;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  131. void kvm_mmu_set_base_ptes(u64 base_pte)
  132. {
  133. shadow_base_present_pte = base_pte;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  136. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  137. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  138. {
  139. shadow_user_mask = user_mask;
  140. shadow_accessed_mask = accessed_mask;
  141. shadow_dirty_mask = dirty_mask;
  142. shadow_nx_mask = nx_mask;
  143. shadow_x_mask = x_mask;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  146. static int is_write_protection(struct kvm_vcpu *vcpu)
  147. {
  148. return vcpu->arch.cr0 & X86_CR0_WP;
  149. }
  150. static int is_cpuid_PSE36(void)
  151. {
  152. return 1;
  153. }
  154. static int is_nx(struct kvm_vcpu *vcpu)
  155. {
  156. return vcpu->arch.shadow_efer & EFER_NX;
  157. }
  158. static int is_present_pte(unsigned long pte)
  159. {
  160. return pte & PT_PRESENT_MASK;
  161. }
  162. static int is_shadow_present_pte(u64 pte)
  163. {
  164. return pte != shadow_trap_nonpresent_pte
  165. && pte != shadow_notrap_nonpresent_pte;
  166. }
  167. static int is_large_pte(u64 pte)
  168. {
  169. return pte & PT_PAGE_SIZE_MASK;
  170. }
  171. static int is_writeble_pte(unsigned long pte)
  172. {
  173. return pte & PT_WRITABLE_MASK;
  174. }
  175. static int is_dirty_pte(unsigned long pte)
  176. {
  177. return pte & shadow_dirty_mask;
  178. }
  179. static int is_rmap_pte(u64 pte)
  180. {
  181. return is_shadow_present_pte(pte);
  182. }
  183. static pfn_t spte_to_pfn(u64 pte)
  184. {
  185. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  186. }
  187. static gfn_t pse36_gfn_delta(u32 gpte)
  188. {
  189. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  190. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  191. }
  192. static void set_shadow_pte(u64 *sptep, u64 spte)
  193. {
  194. #ifdef CONFIG_X86_64
  195. set_64bit((unsigned long *)sptep, spte);
  196. #else
  197. set_64bit((unsigned long long *)sptep, spte);
  198. #endif
  199. }
  200. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  201. struct kmem_cache *base_cache, int min)
  202. {
  203. void *obj;
  204. if (cache->nobjs >= min)
  205. return 0;
  206. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  207. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  208. if (!obj)
  209. return -ENOMEM;
  210. cache->objects[cache->nobjs++] = obj;
  211. }
  212. return 0;
  213. }
  214. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  215. {
  216. while (mc->nobjs)
  217. kfree(mc->objects[--mc->nobjs]);
  218. }
  219. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  220. int min)
  221. {
  222. struct page *page;
  223. if (cache->nobjs >= min)
  224. return 0;
  225. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  226. page = alloc_page(GFP_KERNEL);
  227. if (!page)
  228. return -ENOMEM;
  229. set_page_private(page, 0);
  230. cache->objects[cache->nobjs++] = page_address(page);
  231. }
  232. return 0;
  233. }
  234. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  235. {
  236. while (mc->nobjs)
  237. free_page((unsigned long)mc->objects[--mc->nobjs]);
  238. }
  239. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  240. {
  241. int r;
  242. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  243. pte_chain_cache, 4);
  244. if (r)
  245. goto out;
  246. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  247. rmap_desc_cache, 1);
  248. if (r)
  249. goto out;
  250. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  254. mmu_page_header_cache, 4);
  255. out:
  256. return r;
  257. }
  258. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  259. {
  260. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  261. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  262. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  263. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  264. }
  265. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  266. size_t size)
  267. {
  268. void *p;
  269. BUG_ON(!mc->nobjs);
  270. p = mc->objects[--mc->nobjs];
  271. memset(p, 0, size);
  272. return p;
  273. }
  274. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  275. {
  276. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  277. sizeof(struct kvm_pte_chain));
  278. }
  279. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  280. {
  281. kfree(pc);
  282. }
  283. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  284. {
  285. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  286. sizeof(struct kvm_rmap_desc));
  287. }
  288. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  289. {
  290. kfree(rd);
  291. }
  292. /*
  293. * Return the pointer to the largepage write count for a given
  294. * gfn, handling slots that are not large page aligned.
  295. */
  296. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  297. {
  298. unsigned long idx;
  299. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  300. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  301. return &slot->lpage_info[idx].write_count;
  302. }
  303. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  304. {
  305. int *write_count;
  306. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  307. *write_count += 1;
  308. }
  309. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  310. {
  311. int *write_count;
  312. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  313. *write_count -= 1;
  314. WARN_ON(*write_count < 0);
  315. }
  316. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  317. {
  318. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  319. int *largepage_idx;
  320. if (slot) {
  321. largepage_idx = slot_largepage_idx(gfn, slot);
  322. return *largepage_idx;
  323. }
  324. return 1;
  325. }
  326. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  327. {
  328. struct vm_area_struct *vma;
  329. unsigned long addr;
  330. int ret = 0;
  331. addr = gfn_to_hva(kvm, gfn);
  332. if (kvm_is_error_hva(addr))
  333. return ret;
  334. down_read(&current->mm->mmap_sem);
  335. vma = find_vma(current->mm, addr);
  336. if (vma && is_vm_hugetlb_page(vma))
  337. ret = 1;
  338. up_read(&current->mm->mmap_sem);
  339. return ret;
  340. }
  341. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  345. return 0;
  346. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  347. return 0;
  348. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  349. if (slot && slot->dirty_bitmap)
  350. return 0;
  351. return 1;
  352. }
  353. /*
  354. * Take gfn and return the reverse mapping to it.
  355. * Note: gfn must be unaliased before this function get called
  356. */
  357. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  358. {
  359. struct kvm_memory_slot *slot;
  360. unsigned long idx;
  361. slot = gfn_to_memslot(kvm, gfn);
  362. if (!lpage)
  363. return &slot->rmap[gfn - slot->base_gfn];
  364. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  365. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  366. return &slot->lpage_info[idx].rmap_pde;
  367. }
  368. /*
  369. * Reverse mapping data structures:
  370. *
  371. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  372. * that points to page_address(page).
  373. *
  374. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  375. * containing more mappings.
  376. */
  377. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  378. {
  379. struct kvm_mmu_page *sp;
  380. struct kvm_rmap_desc *desc;
  381. unsigned long *rmapp;
  382. int i;
  383. if (!is_rmap_pte(*spte))
  384. return;
  385. gfn = unalias_gfn(vcpu->kvm, gfn);
  386. sp = page_header(__pa(spte));
  387. sp->gfns[spte - sp->spt] = gfn;
  388. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  389. if (!*rmapp) {
  390. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  391. *rmapp = (unsigned long)spte;
  392. } else if (!(*rmapp & 1)) {
  393. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  394. desc = mmu_alloc_rmap_desc(vcpu);
  395. desc->shadow_ptes[0] = (u64 *)*rmapp;
  396. desc->shadow_ptes[1] = spte;
  397. *rmapp = (unsigned long)desc | 1;
  398. } else {
  399. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  400. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  401. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  402. desc = desc->more;
  403. if (desc->shadow_ptes[RMAP_EXT-1]) {
  404. desc->more = mmu_alloc_rmap_desc(vcpu);
  405. desc = desc->more;
  406. }
  407. for (i = 0; desc->shadow_ptes[i]; ++i)
  408. ;
  409. desc->shadow_ptes[i] = spte;
  410. }
  411. }
  412. static void rmap_desc_remove_entry(unsigned long *rmapp,
  413. struct kvm_rmap_desc *desc,
  414. int i,
  415. struct kvm_rmap_desc *prev_desc)
  416. {
  417. int j;
  418. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  419. ;
  420. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  421. desc->shadow_ptes[j] = NULL;
  422. if (j != 0)
  423. return;
  424. if (!prev_desc && !desc->more)
  425. *rmapp = (unsigned long)desc->shadow_ptes[0];
  426. else
  427. if (prev_desc)
  428. prev_desc->more = desc->more;
  429. else
  430. *rmapp = (unsigned long)desc->more | 1;
  431. mmu_free_rmap_desc(desc);
  432. }
  433. static void rmap_remove(struct kvm *kvm, u64 *spte)
  434. {
  435. struct kvm_rmap_desc *desc;
  436. struct kvm_rmap_desc *prev_desc;
  437. struct kvm_mmu_page *sp;
  438. pfn_t pfn;
  439. unsigned long *rmapp;
  440. int i;
  441. if (!is_rmap_pte(*spte))
  442. return;
  443. sp = page_header(__pa(spte));
  444. pfn = spte_to_pfn(*spte);
  445. if (*spte & shadow_accessed_mask)
  446. kvm_set_pfn_accessed(pfn);
  447. if (is_writeble_pte(*spte))
  448. kvm_release_pfn_dirty(pfn);
  449. else
  450. kvm_release_pfn_clean(pfn);
  451. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  452. if (!*rmapp) {
  453. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  454. BUG();
  455. } else if (!(*rmapp & 1)) {
  456. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  457. if ((u64 *)*rmapp != spte) {
  458. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  459. spte, *spte);
  460. BUG();
  461. }
  462. *rmapp = 0;
  463. } else {
  464. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  465. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  466. prev_desc = NULL;
  467. while (desc) {
  468. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  469. if (desc->shadow_ptes[i] == spte) {
  470. rmap_desc_remove_entry(rmapp,
  471. desc, i,
  472. prev_desc);
  473. return;
  474. }
  475. prev_desc = desc;
  476. desc = desc->more;
  477. }
  478. BUG();
  479. }
  480. }
  481. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  482. {
  483. struct kvm_rmap_desc *desc;
  484. struct kvm_rmap_desc *prev_desc;
  485. u64 *prev_spte;
  486. int i;
  487. if (!*rmapp)
  488. return NULL;
  489. else if (!(*rmapp & 1)) {
  490. if (!spte)
  491. return (u64 *)*rmapp;
  492. return NULL;
  493. }
  494. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  495. prev_desc = NULL;
  496. prev_spte = NULL;
  497. while (desc) {
  498. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  499. if (prev_spte == spte)
  500. return desc->shadow_ptes[i];
  501. prev_spte = desc->shadow_ptes[i];
  502. }
  503. desc = desc->more;
  504. }
  505. return NULL;
  506. }
  507. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  508. {
  509. unsigned long *rmapp;
  510. u64 *spte;
  511. int write_protected = 0;
  512. gfn = unalias_gfn(kvm, gfn);
  513. rmapp = gfn_to_rmap(kvm, gfn, 0);
  514. spte = rmap_next(kvm, rmapp, NULL);
  515. while (spte) {
  516. BUG_ON(!spte);
  517. BUG_ON(!(*spte & PT_PRESENT_MASK));
  518. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  519. if (is_writeble_pte(*spte)) {
  520. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  521. write_protected = 1;
  522. }
  523. spte = rmap_next(kvm, rmapp, spte);
  524. }
  525. if (write_protected) {
  526. pfn_t pfn;
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. pfn = spte_to_pfn(*spte);
  529. kvm_set_pfn_dirty(pfn);
  530. }
  531. /* check for huge page mappings */
  532. rmapp = gfn_to_rmap(kvm, gfn, 1);
  533. spte = rmap_next(kvm, rmapp, NULL);
  534. while (spte) {
  535. BUG_ON(!spte);
  536. BUG_ON(!(*spte & PT_PRESENT_MASK));
  537. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  538. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  539. if (is_writeble_pte(*spte)) {
  540. rmap_remove(kvm, spte);
  541. --kvm->stat.lpages;
  542. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  543. spte = NULL;
  544. write_protected = 1;
  545. }
  546. spte = rmap_next(kvm, rmapp, spte);
  547. }
  548. if (write_protected)
  549. kvm_flush_remote_tlbs(kvm);
  550. account_shadowed(kvm, gfn);
  551. }
  552. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  553. {
  554. u64 *spte;
  555. int need_tlb_flush = 0;
  556. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  557. BUG_ON(!(*spte & PT_PRESENT_MASK));
  558. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  559. rmap_remove(kvm, spte);
  560. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  561. need_tlb_flush = 1;
  562. }
  563. return need_tlb_flush;
  564. }
  565. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  566. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  567. {
  568. int i;
  569. int retval = 0;
  570. /*
  571. * If mmap_sem isn't taken, we can look the memslots with only
  572. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  573. */
  574. for (i = 0; i < kvm->nmemslots; i++) {
  575. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  576. unsigned long start = memslot->userspace_addr;
  577. unsigned long end;
  578. /* mmu_lock protects userspace_addr */
  579. if (!start)
  580. continue;
  581. end = start + (memslot->npages << PAGE_SHIFT);
  582. if (hva >= start && hva < end) {
  583. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  584. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  585. retval |= handler(kvm,
  586. &memslot->lpage_info[
  587. gfn_offset /
  588. KVM_PAGES_PER_HPAGE].rmap_pde);
  589. }
  590. }
  591. return retval;
  592. }
  593. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  594. {
  595. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  596. }
  597. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  598. {
  599. u64 *spte;
  600. int young = 0;
  601. /* always return old for EPT */
  602. if (!shadow_accessed_mask)
  603. return 0;
  604. spte = rmap_next(kvm, rmapp, NULL);
  605. while (spte) {
  606. int _young;
  607. u64 _spte = *spte;
  608. BUG_ON(!(_spte & PT_PRESENT_MASK));
  609. _young = _spte & PT_ACCESSED_MASK;
  610. if (_young) {
  611. young = 1;
  612. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  613. }
  614. spte = rmap_next(kvm, rmapp, spte);
  615. }
  616. return young;
  617. }
  618. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  619. {
  620. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  621. }
  622. #ifdef MMU_DEBUG
  623. static int is_empty_shadow_page(u64 *spt)
  624. {
  625. u64 *pos;
  626. u64 *end;
  627. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  628. if (is_shadow_present_pte(*pos)) {
  629. printk(KERN_ERR "%s: %p %llx\n", __func__,
  630. pos, *pos);
  631. return 0;
  632. }
  633. return 1;
  634. }
  635. #endif
  636. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  637. {
  638. ASSERT(is_empty_shadow_page(sp->spt));
  639. list_del(&sp->link);
  640. __free_page(virt_to_page(sp->spt));
  641. __free_page(virt_to_page(sp->gfns));
  642. kfree(sp);
  643. ++kvm->arch.n_free_mmu_pages;
  644. }
  645. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  646. {
  647. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  648. }
  649. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  650. u64 *parent_pte)
  651. {
  652. struct kvm_mmu_page *sp;
  653. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  654. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  655. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  656. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  657. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  658. ASSERT(is_empty_shadow_page(sp->spt));
  659. sp->slot_bitmap = 0;
  660. sp->multimapped = 0;
  661. sp->parent_pte = parent_pte;
  662. --vcpu->kvm->arch.n_free_mmu_pages;
  663. return sp;
  664. }
  665. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  666. struct kvm_mmu_page *sp, u64 *parent_pte)
  667. {
  668. struct kvm_pte_chain *pte_chain;
  669. struct hlist_node *node;
  670. int i;
  671. if (!parent_pte)
  672. return;
  673. if (!sp->multimapped) {
  674. u64 *old = sp->parent_pte;
  675. if (!old) {
  676. sp->parent_pte = parent_pte;
  677. return;
  678. }
  679. sp->multimapped = 1;
  680. pte_chain = mmu_alloc_pte_chain(vcpu);
  681. INIT_HLIST_HEAD(&sp->parent_ptes);
  682. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  683. pte_chain->parent_ptes[0] = old;
  684. }
  685. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  686. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  687. continue;
  688. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  689. if (!pte_chain->parent_ptes[i]) {
  690. pte_chain->parent_ptes[i] = parent_pte;
  691. return;
  692. }
  693. }
  694. pte_chain = mmu_alloc_pte_chain(vcpu);
  695. BUG_ON(!pte_chain);
  696. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  697. pte_chain->parent_ptes[0] = parent_pte;
  698. }
  699. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  700. u64 *parent_pte)
  701. {
  702. struct kvm_pte_chain *pte_chain;
  703. struct hlist_node *node;
  704. int i;
  705. if (!sp->multimapped) {
  706. BUG_ON(sp->parent_pte != parent_pte);
  707. sp->parent_pte = NULL;
  708. return;
  709. }
  710. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  711. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  712. if (!pte_chain->parent_ptes[i])
  713. break;
  714. if (pte_chain->parent_ptes[i] != parent_pte)
  715. continue;
  716. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  717. && pte_chain->parent_ptes[i + 1]) {
  718. pte_chain->parent_ptes[i]
  719. = pte_chain->parent_ptes[i + 1];
  720. ++i;
  721. }
  722. pte_chain->parent_ptes[i] = NULL;
  723. if (i == 0) {
  724. hlist_del(&pte_chain->link);
  725. mmu_free_pte_chain(pte_chain);
  726. if (hlist_empty(&sp->parent_ptes)) {
  727. sp->multimapped = 0;
  728. sp->parent_pte = NULL;
  729. }
  730. }
  731. return;
  732. }
  733. BUG();
  734. }
  735. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  736. mmu_parent_walk_fn fn)
  737. {
  738. struct kvm_pte_chain *pte_chain;
  739. struct hlist_node *node;
  740. struct kvm_mmu_page *parent_sp;
  741. int i;
  742. if (!sp->multimapped && sp->parent_pte) {
  743. parent_sp = page_header(__pa(sp->parent_pte));
  744. fn(vcpu, parent_sp);
  745. mmu_parent_walk(vcpu, parent_sp, fn);
  746. return;
  747. }
  748. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  749. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  750. if (!pte_chain->parent_ptes[i])
  751. break;
  752. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  753. fn(vcpu, parent_sp);
  754. mmu_parent_walk(vcpu, parent_sp, fn);
  755. }
  756. }
  757. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  758. struct kvm_mmu_page *sp)
  759. {
  760. int i;
  761. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  762. sp->spt[i] = shadow_trap_nonpresent_pte;
  763. }
  764. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  765. struct kvm_mmu_page *sp)
  766. {
  767. return 1;
  768. }
  769. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  770. {
  771. }
  772. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  773. {
  774. unsigned index;
  775. struct hlist_head *bucket;
  776. struct kvm_mmu_page *sp;
  777. struct hlist_node *node;
  778. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  779. index = kvm_page_table_hashfn(gfn);
  780. bucket = &kvm->arch.mmu_page_hash[index];
  781. hlist_for_each_entry(sp, node, bucket, hash_link)
  782. if (sp->gfn == gfn && !sp->role.metaphysical
  783. && !sp->role.invalid) {
  784. pgprintk("%s: found role %x\n",
  785. __func__, sp->role.word);
  786. return sp;
  787. }
  788. return NULL;
  789. }
  790. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  791. gfn_t gfn,
  792. gva_t gaddr,
  793. unsigned level,
  794. int metaphysical,
  795. unsigned access,
  796. u64 *parent_pte)
  797. {
  798. union kvm_mmu_page_role role;
  799. unsigned index;
  800. unsigned quadrant;
  801. struct hlist_head *bucket;
  802. struct kvm_mmu_page *sp;
  803. struct hlist_node *node;
  804. role.word = 0;
  805. role.glevels = vcpu->arch.mmu.root_level;
  806. role.level = level;
  807. role.metaphysical = metaphysical;
  808. role.access = access;
  809. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  810. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  811. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  812. role.quadrant = quadrant;
  813. }
  814. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  815. gfn, role.word);
  816. index = kvm_page_table_hashfn(gfn);
  817. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  818. hlist_for_each_entry(sp, node, bucket, hash_link)
  819. if (sp->gfn == gfn && sp->role.word == role.word) {
  820. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  821. pgprintk("%s: found\n", __func__);
  822. return sp;
  823. }
  824. ++vcpu->kvm->stat.mmu_cache_miss;
  825. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  826. if (!sp)
  827. return sp;
  828. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  829. sp->gfn = gfn;
  830. sp->role = role;
  831. hlist_add_head(&sp->hash_link, bucket);
  832. if (!metaphysical)
  833. rmap_write_protect(vcpu->kvm, gfn);
  834. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  835. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  836. else
  837. nonpaging_prefetch_page(vcpu, sp);
  838. return sp;
  839. }
  840. static int walk_shadow(struct kvm_shadow_walk *walker,
  841. struct kvm_vcpu *vcpu, u64 addr)
  842. {
  843. hpa_t shadow_addr;
  844. int level;
  845. int r;
  846. u64 *sptep;
  847. unsigned index;
  848. shadow_addr = vcpu->arch.mmu.root_hpa;
  849. level = vcpu->arch.mmu.shadow_root_level;
  850. if (level == PT32E_ROOT_LEVEL) {
  851. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  852. shadow_addr &= PT64_BASE_ADDR_MASK;
  853. --level;
  854. }
  855. while (level >= PT_PAGE_TABLE_LEVEL) {
  856. index = SHADOW_PT_INDEX(addr, level);
  857. sptep = ((u64 *)__va(shadow_addr)) + index;
  858. r = walker->entry(walker, vcpu, addr, sptep, level);
  859. if (r)
  860. return r;
  861. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  862. --level;
  863. }
  864. return 0;
  865. }
  866. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  867. struct kvm_mmu_page *sp)
  868. {
  869. unsigned i;
  870. u64 *pt;
  871. u64 ent;
  872. pt = sp->spt;
  873. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  874. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  875. if (is_shadow_present_pte(pt[i]))
  876. rmap_remove(kvm, &pt[i]);
  877. pt[i] = shadow_trap_nonpresent_pte;
  878. }
  879. return;
  880. }
  881. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  882. ent = pt[i];
  883. if (is_shadow_present_pte(ent)) {
  884. if (!is_large_pte(ent)) {
  885. ent &= PT64_BASE_ADDR_MASK;
  886. mmu_page_remove_parent_pte(page_header(ent),
  887. &pt[i]);
  888. } else {
  889. --kvm->stat.lpages;
  890. rmap_remove(kvm, &pt[i]);
  891. }
  892. }
  893. pt[i] = shadow_trap_nonpresent_pte;
  894. }
  895. }
  896. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  897. {
  898. mmu_page_remove_parent_pte(sp, parent_pte);
  899. }
  900. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  901. {
  902. int i;
  903. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  904. if (kvm->vcpus[i])
  905. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  906. }
  907. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  908. {
  909. u64 *parent_pte;
  910. while (sp->multimapped || sp->parent_pte) {
  911. if (!sp->multimapped)
  912. parent_pte = sp->parent_pte;
  913. else {
  914. struct kvm_pte_chain *chain;
  915. chain = container_of(sp->parent_ptes.first,
  916. struct kvm_pte_chain, link);
  917. parent_pte = chain->parent_ptes[0];
  918. }
  919. BUG_ON(!parent_pte);
  920. kvm_mmu_put_page(sp, parent_pte);
  921. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  922. }
  923. }
  924. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  925. {
  926. ++kvm->stat.mmu_shadow_zapped;
  927. kvm_mmu_page_unlink_children(kvm, sp);
  928. kvm_mmu_unlink_parents(kvm, sp);
  929. kvm_flush_remote_tlbs(kvm);
  930. if (!sp->role.invalid && !sp->role.metaphysical)
  931. unaccount_shadowed(kvm, sp->gfn);
  932. if (!sp->root_count) {
  933. hlist_del(&sp->hash_link);
  934. kvm_mmu_free_page(kvm, sp);
  935. } else {
  936. sp->role.invalid = 1;
  937. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  938. kvm_reload_remote_mmus(kvm);
  939. }
  940. kvm_mmu_reset_last_pte_updated(kvm);
  941. }
  942. /*
  943. * Changing the number of mmu pages allocated to the vm
  944. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  945. */
  946. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  947. {
  948. /*
  949. * If we set the number of mmu pages to be smaller be than the
  950. * number of actived pages , we must to free some mmu pages before we
  951. * change the value
  952. */
  953. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  954. kvm_nr_mmu_pages) {
  955. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  956. - kvm->arch.n_free_mmu_pages;
  957. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  958. struct kvm_mmu_page *page;
  959. page = container_of(kvm->arch.active_mmu_pages.prev,
  960. struct kvm_mmu_page, link);
  961. kvm_mmu_zap_page(kvm, page);
  962. n_used_mmu_pages--;
  963. }
  964. kvm->arch.n_free_mmu_pages = 0;
  965. }
  966. else
  967. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  968. - kvm->arch.n_alloc_mmu_pages;
  969. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  970. }
  971. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  972. {
  973. unsigned index;
  974. struct hlist_head *bucket;
  975. struct kvm_mmu_page *sp;
  976. struct hlist_node *node, *n;
  977. int r;
  978. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  979. r = 0;
  980. index = kvm_page_table_hashfn(gfn);
  981. bucket = &kvm->arch.mmu_page_hash[index];
  982. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  983. if (sp->gfn == gfn && !sp->role.metaphysical) {
  984. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  985. sp->role.word);
  986. kvm_mmu_zap_page(kvm, sp);
  987. r = 1;
  988. }
  989. return r;
  990. }
  991. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  992. {
  993. struct kvm_mmu_page *sp;
  994. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  995. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  996. kvm_mmu_zap_page(kvm, sp);
  997. }
  998. }
  999. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1000. {
  1001. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1002. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1003. __set_bit(slot, &sp->slot_bitmap);
  1004. }
  1005. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1006. {
  1007. struct page *page;
  1008. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1009. if (gpa == UNMAPPED_GVA)
  1010. return NULL;
  1011. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1012. return page;
  1013. }
  1014. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1015. unsigned pte_access, int user_fault,
  1016. int write_fault, int dirty, int largepage,
  1017. gfn_t gfn, pfn_t pfn, bool speculative)
  1018. {
  1019. u64 spte;
  1020. int ret = 0;
  1021. /*
  1022. * We don't set the accessed bit, since we sometimes want to see
  1023. * whether the guest actually used the pte (in order to detect
  1024. * demand paging).
  1025. */
  1026. spte = shadow_base_present_pte | shadow_dirty_mask;
  1027. if (!speculative)
  1028. spte |= shadow_accessed_mask;
  1029. if (!dirty)
  1030. pte_access &= ~ACC_WRITE_MASK;
  1031. if (pte_access & ACC_EXEC_MASK)
  1032. spte |= shadow_x_mask;
  1033. else
  1034. spte |= shadow_nx_mask;
  1035. if (pte_access & ACC_USER_MASK)
  1036. spte |= shadow_user_mask;
  1037. if (largepage)
  1038. spte |= PT_PAGE_SIZE_MASK;
  1039. spte |= (u64)pfn << PAGE_SHIFT;
  1040. if ((pte_access & ACC_WRITE_MASK)
  1041. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1042. struct kvm_mmu_page *shadow;
  1043. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1044. ret = 1;
  1045. spte = shadow_trap_nonpresent_pte;
  1046. goto set_pte;
  1047. }
  1048. spte |= PT_WRITABLE_MASK;
  1049. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1050. if (shadow) {
  1051. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1052. __func__, gfn);
  1053. ret = 1;
  1054. pte_access &= ~ACC_WRITE_MASK;
  1055. if (is_writeble_pte(spte))
  1056. spte &= ~PT_WRITABLE_MASK;
  1057. }
  1058. }
  1059. if (pte_access & ACC_WRITE_MASK)
  1060. mark_page_dirty(vcpu->kvm, gfn);
  1061. set_pte:
  1062. set_shadow_pte(shadow_pte, spte);
  1063. return ret;
  1064. }
  1065. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1066. unsigned pt_access, unsigned pte_access,
  1067. int user_fault, int write_fault, int dirty,
  1068. int *ptwrite, int largepage, gfn_t gfn,
  1069. pfn_t pfn, bool speculative)
  1070. {
  1071. int was_rmapped = 0;
  1072. int was_writeble = is_writeble_pte(*shadow_pte);
  1073. pgprintk("%s: spte %llx access %x write_fault %d"
  1074. " user_fault %d gfn %lx\n",
  1075. __func__, *shadow_pte, pt_access,
  1076. write_fault, user_fault, gfn);
  1077. if (is_rmap_pte(*shadow_pte)) {
  1078. /*
  1079. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1080. * the parent of the now unreachable PTE.
  1081. */
  1082. if (largepage && !is_large_pte(*shadow_pte)) {
  1083. struct kvm_mmu_page *child;
  1084. u64 pte = *shadow_pte;
  1085. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1086. mmu_page_remove_parent_pte(child, shadow_pte);
  1087. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1088. pgprintk("hfn old %lx new %lx\n",
  1089. spte_to_pfn(*shadow_pte), pfn);
  1090. rmap_remove(vcpu->kvm, shadow_pte);
  1091. } else {
  1092. if (largepage)
  1093. was_rmapped = is_large_pte(*shadow_pte);
  1094. else
  1095. was_rmapped = 1;
  1096. }
  1097. }
  1098. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1099. dirty, largepage, gfn, pfn, speculative)) {
  1100. if (write_fault)
  1101. *ptwrite = 1;
  1102. kvm_x86_ops->tlb_flush(vcpu);
  1103. }
  1104. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1105. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1106. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1107. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1108. *shadow_pte, shadow_pte);
  1109. if (!was_rmapped && is_large_pte(*shadow_pte))
  1110. ++vcpu->kvm->stat.lpages;
  1111. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1112. if (!was_rmapped) {
  1113. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1114. if (!is_rmap_pte(*shadow_pte))
  1115. kvm_release_pfn_clean(pfn);
  1116. } else {
  1117. if (was_writeble)
  1118. kvm_release_pfn_dirty(pfn);
  1119. else
  1120. kvm_release_pfn_clean(pfn);
  1121. }
  1122. if (speculative) {
  1123. vcpu->arch.last_pte_updated = shadow_pte;
  1124. vcpu->arch.last_pte_gfn = gfn;
  1125. }
  1126. }
  1127. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1128. {
  1129. }
  1130. struct direct_shadow_walk {
  1131. struct kvm_shadow_walk walker;
  1132. pfn_t pfn;
  1133. int write;
  1134. int largepage;
  1135. int pt_write;
  1136. };
  1137. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1138. struct kvm_vcpu *vcpu,
  1139. u64 addr, u64 *sptep, int level)
  1140. {
  1141. struct direct_shadow_walk *walk =
  1142. container_of(_walk, struct direct_shadow_walk, walker);
  1143. struct kvm_mmu_page *sp;
  1144. gfn_t pseudo_gfn;
  1145. gfn_t gfn = addr >> PAGE_SHIFT;
  1146. if (level == PT_PAGE_TABLE_LEVEL
  1147. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1148. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1149. 0, walk->write, 1, &walk->pt_write,
  1150. walk->largepage, gfn, walk->pfn, false);
  1151. ++vcpu->stat.pf_fixed;
  1152. return 1;
  1153. }
  1154. if (*sptep == shadow_trap_nonpresent_pte) {
  1155. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1156. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1157. 1, ACC_ALL, sptep);
  1158. if (!sp) {
  1159. pgprintk("nonpaging_map: ENOMEM\n");
  1160. kvm_release_pfn_clean(walk->pfn);
  1161. return -ENOMEM;
  1162. }
  1163. set_shadow_pte(sptep,
  1164. __pa(sp->spt)
  1165. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1166. | shadow_user_mask | shadow_x_mask);
  1167. }
  1168. return 0;
  1169. }
  1170. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1171. int largepage, gfn_t gfn, pfn_t pfn)
  1172. {
  1173. int r;
  1174. struct direct_shadow_walk walker = {
  1175. .walker = { .entry = direct_map_entry, },
  1176. .pfn = pfn,
  1177. .largepage = largepage,
  1178. .write = write,
  1179. .pt_write = 0,
  1180. };
  1181. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1182. if (r < 0)
  1183. return r;
  1184. return walker.pt_write;
  1185. }
  1186. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1187. {
  1188. int r;
  1189. int largepage = 0;
  1190. pfn_t pfn;
  1191. unsigned long mmu_seq;
  1192. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1193. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1194. largepage = 1;
  1195. }
  1196. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1197. smp_rmb();
  1198. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1199. /* mmio */
  1200. if (is_error_pfn(pfn)) {
  1201. kvm_release_pfn_clean(pfn);
  1202. return 1;
  1203. }
  1204. spin_lock(&vcpu->kvm->mmu_lock);
  1205. if (mmu_notifier_retry(vcpu, mmu_seq))
  1206. goto out_unlock;
  1207. kvm_mmu_free_some_pages(vcpu);
  1208. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1209. spin_unlock(&vcpu->kvm->mmu_lock);
  1210. return r;
  1211. out_unlock:
  1212. spin_unlock(&vcpu->kvm->mmu_lock);
  1213. kvm_release_pfn_clean(pfn);
  1214. return 0;
  1215. }
  1216. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1217. {
  1218. int i;
  1219. struct kvm_mmu_page *sp;
  1220. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1221. return;
  1222. spin_lock(&vcpu->kvm->mmu_lock);
  1223. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1224. hpa_t root = vcpu->arch.mmu.root_hpa;
  1225. sp = page_header(root);
  1226. --sp->root_count;
  1227. if (!sp->root_count && sp->role.invalid)
  1228. kvm_mmu_zap_page(vcpu->kvm, sp);
  1229. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1230. spin_unlock(&vcpu->kvm->mmu_lock);
  1231. return;
  1232. }
  1233. for (i = 0; i < 4; ++i) {
  1234. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1235. if (root) {
  1236. root &= PT64_BASE_ADDR_MASK;
  1237. sp = page_header(root);
  1238. --sp->root_count;
  1239. if (!sp->root_count && sp->role.invalid)
  1240. kvm_mmu_zap_page(vcpu->kvm, sp);
  1241. }
  1242. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1243. }
  1244. spin_unlock(&vcpu->kvm->mmu_lock);
  1245. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1246. }
  1247. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1248. {
  1249. int i;
  1250. gfn_t root_gfn;
  1251. struct kvm_mmu_page *sp;
  1252. int metaphysical = 0;
  1253. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1254. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1255. hpa_t root = vcpu->arch.mmu.root_hpa;
  1256. ASSERT(!VALID_PAGE(root));
  1257. if (tdp_enabled)
  1258. metaphysical = 1;
  1259. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1260. PT64_ROOT_LEVEL, metaphysical,
  1261. ACC_ALL, NULL);
  1262. root = __pa(sp->spt);
  1263. ++sp->root_count;
  1264. vcpu->arch.mmu.root_hpa = root;
  1265. return;
  1266. }
  1267. metaphysical = !is_paging(vcpu);
  1268. if (tdp_enabled)
  1269. metaphysical = 1;
  1270. for (i = 0; i < 4; ++i) {
  1271. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1272. ASSERT(!VALID_PAGE(root));
  1273. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1274. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1275. vcpu->arch.mmu.pae_root[i] = 0;
  1276. continue;
  1277. }
  1278. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1279. } else if (vcpu->arch.mmu.root_level == 0)
  1280. root_gfn = 0;
  1281. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1282. PT32_ROOT_LEVEL, metaphysical,
  1283. ACC_ALL, NULL);
  1284. root = __pa(sp->spt);
  1285. ++sp->root_count;
  1286. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1287. }
  1288. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1289. }
  1290. static void mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1291. {
  1292. }
  1293. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1294. {
  1295. int i;
  1296. struct kvm_mmu_page *sp;
  1297. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1298. return;
  1299. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1300. hpa_t root = vcpu->arch.mmu.root_hpa;
  1301. sp = page_header(root);
  1302. mmu_sync_children(vcpu, sp);
  1303. return;
  1304. }
  1305. for (i = 0; i < 4; ++i) {
  1306. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1307. if (root) {
  1308. root &= PT64_BASE_ADDR_MASK;
  1309. sp = page_header(root);
  1310. mmu_sync_children(vcpu, sp);
  1311. }
  1312. }
  1313. }
  1314. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1315. {
  1316. spin_lock(&vcpu->kvm->mmu_lock);
  1317. mmu_sync_roots(vcpu);
  1318. spin_unlock(&vcpu->kvm->mmu_lock);
  1319. }
  1320. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1321. {
  1322. return vaddr;
  1323. }
  1324. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1325. u32 error_code)
  1326. {
  1327. gfn_t gfn;
  1328. int r;
  1329. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1330. r = mmu_topup_memory_caches(vcpu);
  1331. if (r)
  1332. return r;
  1333. ASSERT(vcpu);
  1334. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1335. gfn = gva >> PAGE_SHIFT;
  1336. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1337. error_code & PFERR_WRITE_MASK, gfn);
  1338. }
  1339. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1340. u32 error_code)
  1341. {
  1342. pfn_t pfn;
  1343. int r;
  1344. int largepage = 0;
  1345. gfn_t gfn = gpa >> PAGE_SHIFT;
  1346. unsigned long mmu_seq;
  1347. ASSERT(vcpu);
  1348. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1349. r = mmu_topup_memory_caches(vcpu);
  1350. if (r)
  1351. return r;
  1352. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1353. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1354. largepage = 1;
  1355. }
  1356. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1357. smp_rmb();
  1358. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1359. if (is_error_pfn(pfn)) {
  1360. kvm_release_pfn_clean(pfn);
  1361. return 1;
  1362. }
  1363. spin_lock(&vcpu->kvm->mmu_lock);
  1364. if (mmu_notifier_retry(vcpu, mmu_seq))
  1365. goto out_unlock;
  1366. kvm_mmu_free_some_pages(vcpu);
  1367. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1368. largepage, gfn, pfn);
  1369. spin_unlock(&vcpu->kvm->mmu_lock);
  1370. return r;
  1371. out_unlock:
  1372. spin_unlock(&vcpu->kvm->mmu_lock);
  1373. kvm_release_pfn_clean(pfn);
  1374. return 0;
  1375. }
  1376. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1377. {
  1378. mmu_free_roots(vcpu);
  1379. }
  1380. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1381. {
  1382. struct kvm_mmu *context = &vcpu->arch.mmu;
  1383. context->new_cr3 = nonpaging_new_cr3;
  1384. context->page_fault = nonpaging_page_fault;
  1385. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1386. context->free = nonpaging_free;
  1387. context->prefetch_page = nonpaging_prefetch_page;
  1388. context->sync_page = nonpaging_sync_page;
  1389. context->invlpg = nonpaging_invlpg;
  1390. context->root_level = 0;
  1391. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1392. context->root_hpa = INVALID_PAGE;
  1393. return 0;
  1394. }
  1395. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1396. {
  1397. ++vcpu->stat.tlb_flush;
  1398. kvm_x86_ops->tlb_flush(vcpu);
  1399. }
  1400. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1401. {
  1402. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1403. mmu_free_roots(vcpu);
  1404. }
  1405. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1406. u64 addr,
  1407. u32 err_code)
  1408. {
  1409. kvm_inject_page_fault(vcpu, addr, err_code);
  1410. }
  1411. static void paging_free(struct kvm_vcpu *vcpu)
  1412. {
  1413. nonpaging_free(vcpu);
  1414. }
  1415. #define PTTYPE 64
  1416. #include "paging_tmpl.h"
  1417. #undef PTTYPE
  1418. #define PTTYPE 32
  1419. #include "paging_tmpl.h"
  1420. #undef PTTYPE
  1421. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1422. {
  1423. struct kvm_mmu *context = &vcpu->arch.mmu;
  1424. ASSERT(is_pae(vcpu));
  1425. context->new_cr3 = paging_new_cr3;
  1426. context->page_fault = paging64_page_fault;
  1427. context->gva_to_gpa = paging64_gva_to_gpa;
  1428. context->prefetch_page = paging64_prefetch_page;
  1429. context->sync_page = paging64_sync_page;
  1430. context->invlpg = paging64_invlpg;
  1431. context->free = paging_free;
  1432. context->root_level = level;
  1433. context->shadow_root_level = level;
  1434. context->root_hpa = INVALID_PAGE;
  1435. return 0;
  1436. }
  1437. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1438. {
  1439. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1440. }
  1441. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1442. {
  1443. struct kvm_mmu *context = &vcpu->arch.mmu;
  1444. context->new_cr3 = paging_new_cr3;
  1445. context->page_fault = paging32_page_fault;
  1446. context->gva_to_gpa = paging32_gva_to_gpa;
  1447. context->free = paging_free;
  1448. context->prefetch_page = paging32_prefetch_page;
  1449. context->sync_page = paging32_sync_page;
  1450. context->invlpg = paging32_invlpg;
  1451. context->root_level = PT32_ROOT_LEVEL;
  1452. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1453. context->root_hpa = INVALID_PAGE;
  1454. return 0;
  1455. }
  1456. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1457. {
  1458. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1459. }
  1460. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1461. {
  1462. struct kvm_mmu *context = &vcpu->arch.mmu;
  1463. context->new_cr3 = nonpaging_new_cr3;
  1464. context->page_fault = tdp_page_fault;
  1465. context->free = nonpaging_free;
  1466. context->prefetch_page = nonpaging_prefetch_page;
  1467. context->sync_page = nonpaging_sync_page;
  1468. context->invlpg = nonpaging_invlpg;
  1469. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1470. context->root_hpa = INVALID_PAGE;
  1471. if (!is_paging(vcpu)) {
  1472. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1473. context->root_level = 0;
  1474. } else if (is_long_mode(vcpu)) {
  1475. context->gva_to_gpa = paging64_gva_to_gpa;
  1476. context->root_level = PT64_ROOT_LEVEL;
  1477. } else if (is_pae(vcpu)) {
  1478. context->gva_to_gpa = paging64_gva_to_gpa;
  1479. context->root_level = PT32E_ROOT_LEVEL;
  1480. } else {
  1481. context->gva_to_gpa = paging32_gva_to_gpa;
  1482. context->root_level = PT32_ROOT_LEVEL;
  1483. }
  1484. return 0;
  1485. }
  1486. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1487. {
  1488. ASSERT(vcpu);
  1489. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1490. if (!is_paging(vcpu))
  1491. return nonpaging_init_context(vcpu);
  1492. else if (is_long_mode(vcpu))
  1493. return paging64_init_context(vcpu);
  1494. else if (is_pae(vcpu))
  1495. return paging32E_init_context(vcpu);
  1496. else
  1497. return paging32_init_context(vcpu);
  1498. }
  1499. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1500. {
  1501. vcpu->arch.update_pte.pfn = bad_pfn;
  1502. if (tdp_enabled)
  1503. return init_kvm_tdp_mmu(vcpu);
  1504. else
  1505. return init_kvm_softmmu(vcpu);
  1506. }
  1507. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1508. {
  1509. ASSERT(vcpu);
  1510. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1511. vcpu->arch.mmu.free(vcpu);
  1512. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1513. }
  1514. }
  1515. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1516. {
  1517. destroy_kvm_mmu(vcpu);
  1518. return init_kvm_mmu(vcpu);
  1519. }
  1520. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1521. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1522. {
  1523. int r;
  1524. r = mmu_topup_memory_caches(vcpu);
  1525. if (r)
  1526. goto out;
  1527. spin_lock(&vcpu->kvm->mmu_lock);
  1528. kvm_mmu_free_some_pages(vcpu);
  1529. mmu_alloc_roots(vcpu);
  1530. mmu_sync_roots(vcpu);
  1531. spin_unlock(&vcpu->kvm->mmu_lock);
  1532. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1533. kvm_mmu_flush_tlb(vcpu);
  1534. out:
  1535. return r;
  1536. }
  1537. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1538. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1539. {
  1540. mmu_free_roots(vcpu);
  1541. }
  1542. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1543. struct kvm_mmu_page *sp,
  1544. u64 *spte)
  1545. {
  1546. u64 pte;
  1547. struct kvm_mmu_page *child;
  1548. pte = *spte;
  1549. if (is_shadow_present_pte(pte)) {
  1550. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1551. is_large_pte(pte))
  1552. rmap_remove(vcpu->kvm, spte);
  1553. else {
  1554. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1555. mmu_page_remove_parent_pte(child, spte);
  1556. }
  1557. }
  1558. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1559. if (is_large_pte(pte))
  1560. --vcpu->kvm->stat.lpages;
  1561. }
  1562. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1563. struct kvm_mmu_page *sp,
  1564. u64 *spte,
  1565. const void *new)
  1566. {
  1567. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1568. if (!vcpu->arch.update_pte.largepage ||
  1569. sp->role.glevels == PT32_ROOT_LEVEL) {
  1570. ++vcpu->kvm->stat.mmu_pde_zapped;
  1571. return;
  1572. }
  1573. }
  1574. ++vcpu->kvm->stat.mmu_pte_updated;
  1575. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1576. paging32_update_pte(vcpu, sp, spte, new);
  1577. else
  1578. paging64_update_pte(vcpu, sp, spte, new);
  1579. }
  1580. static bool need_remote_flush(u64 old, u64 new)
  1581. {
  1582. if (!is_shadow_present_pte(old))
  1583. return false;
  1584. if (!is_shadow_present_pte(new))
  1585. return true;
  1586. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1587. return true;
  1588. old ^= PT64_NX_MASK;
  1589. new ^= PT64_NX_MASK;
  1590. return (old & ~new & PT64_PERM_MASK) != 0;
  1591. }
  1592. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1593. {
  1594. if (need_remote_flush(old, new))
  1595. kvm_flush_remote_tlbs(vcpu->kvm);
  1596. else
  1597. kvm_mmu_flush_tlb(vcpu);
  1598. }
  1599. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1600. {
  1601. u64 *spte = vcpu->arch.last_pte_updated;
  1602. return !!(spte && (*spte & shadow_accessed_mask));
  1603. }
  1604. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1605. const u8 *new, int bytes)
  1606. {
  1607. gfn_t gfn;
  1608. int r;
  1609. u64 gpte = 0;
  1610. pfn_t pfn;
  1611. vcpu->arch.update_pte.largepage = 0;
  1612. if (bytes != 4 && bytes != 8)
  1613. return;
  1614. /*
  1615. * Assume that the pte write on a page table of the same type
  1616. * as the current vcpu paging mode. This is nearly always true
  1617. * (might be false while changing modes). Note it is verified later
  1618. * by update_pte().
  1619. */
  1620. if (is_pae(vcpu)) {
  1621. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1622. if ((bytes == 4) && (gpa % 4 == 0)) {
  1623. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1624. if (r)
  1625. return;
  1626. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1627. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1628. memcpy((void *)&gpte, new, 8);
  1629. }
  1630. } else {
  1631. if ((bytes == 4) && (gpa % 4 == 0))
  1632. memcpy((void *)&gpte, new, 4);
  1633. }
  1634. if (!is_present_pte(gpte))
  1635. return;
  1636. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1637. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1638. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1639. vcpu->arch.update_pte.largepage = 1;
  1640. }
  1641. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1642. smp_rmb();
  1643. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1644. if (is_error_pfn(pfn)) {
  1645. kvm_release_pfn_clean(pfn);
  1646. return;
  1647. }
  1648. vcpu->arch.update_pte.gfn = gfn;
  1649. vcpu->arch.update_pte.pfn = pfn;
  1650. }
  1651. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1652. {
  1653. u64 *spte = vcpu->arch.last_pte_updated;
  1654. if (spte
  1655. && vcpu->arch.last_pte_gfn == gfn
  1656. && shadow_accessed_mask
  1657. && !(*spte & shadow_accessed_mask)
  1658. && is_shadow_present_pte(*spte))
  1659. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1660. }
  1661. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1662. const u8 *new, int bytes)
  1663. {
  1664. gfn_t gfn = gpa >> PAGE_SHIFT;
  1665. struct kvm_mmu_page *sp;
  1666. struct hlist_node *node, *n;
  1667. struct hlist_head *bucket;
  1668. unsigned index;
  1669. u64 entry, gentry;
  1670. u64 *spte;
  1671. unsigned offset = offset_in_page(gpa);
  1672. unsigned pte_size;
  1673. unsigned page_offset;
  1674. unsigned misaligned;
  1675. unsigned quadrant;
  1676. int level;
  1677. int flooded = 0;
  1678. int npte;
  1679. int r;
  1680. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1681. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1682. spin_lock(&vcpu->kvm->mmu_lock);
  1683. kvm_mmu_access_page(vcpu, gfn);
  1684. kvm_mmu_free_some_pages(vcpu);
  1685. ++vcpu->kvm->stat.mmu_pte_write;
  1686. kvm_mmu_audit(vcpu, "pre pte write");
  1687. if (gfn == vcpu->arch.last_pt_write_gfn
  1688. && !last_updated_pte_accessed(vcpu)) {
  1689. ++vcpu->arch.last_pt_write_count;
  1690. if (vcpu->arch.last_pt_write_count >= 3)
  1691. flooded = 1;
  1692. } else {
  1693. vcpu->arch.last_pt_write_gfn = gfn;
  1694. vcpu->arch.last_pt_write_count = 1;
  1695. vcpu->arch.last_pte_updated = NULL;
  1696. }
  1697. index = kvm_page_table_hashfn(gfn);
  1698. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1699. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1700. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  1701. continue;
  1702. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1703. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1704. misaligned |= bytes < 4;
  1705. if (misaligned || flooded) {
  1706. /*
  1707. * Misaligned accesses are too much trouble to fix
  1708. * up; also, they usually indicate a page is not used
  1709. * as a page table.
  1710. *
  1711. * If we're seeing too many writes to a page,
  1712. * it may no longer be a page table, or we may be
  1713. * forking, in which case it is better to unmap the
  1714. * page.
  1715. */
  1716. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1717. gpa, bytes, sp->role.word);
  1718. kvm_mmu_zap_page(vcpu->kvm, sp);
  1719. ++vcpu->kvm->stat.mmu_flooded;
  1720. continue;
  1721. }
  1722. page_offset = offset;
  1723. level = sp->role.level;
  1724. npte = 1;
  1725. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1726. page_offset <<= 1; /* 32->64 */
  1727. /*
  1728. * A 32-bit pde maps 4MB while the shadow pdes map
  1729. * only 2MB. So we need to double the offset again
  1730. * and zap two pdes instead of one.
  1731. */
  1732. if (level == PT32_ROOT_LEVEL) {
  1733. page_offset &= ~7; /* kill rounding error */
  1734. page_offset <<= 1;
  1735. npte = 2;
  1736. }
  1737. quadrant = page_offset >> PAGE_SHIFT;
  1738. page_offset &= ~PAGE_MASK;
  1739. if (quadrant != sp->role.quadrant)
  1740. continue;
  1741. }
  1742. spte = &sp->spt[page_offset / sizeof(*spte)];
  1743. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1744. gentry = 0;
  1745. r = kvm_read_guest_atomic(vcpu->kvm,
  1746. gpa & ~(u64)(pte_size - 1),
  1747. &gentry, pte_size);
  1748. new = (const void *)&gentry;
  1749. if (r < 0)
  1750. new = NULL;
  1751. }
  1752. while (npte--) {
  1753. entry = *spte;
  1754. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1755. if (new)
  1756. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1757. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1758. ++spte;
  1759. }
  1760. }
  1761. kvm_mmu_audit(vcpu, "post pte write");
  1762. spin_unlock(&vcpu->kvm->mmu_lock);
  1763. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1764. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1765. vcpu->arch.update_pte.pfn = bad_pfn;
  1766. }
  1767. }
  1768. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1769. {
  1770. gpa_t gpa;
  1771. int r;
  1772. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1773. spin_lock(&vcpu->kvm->mmu_lock);
  1774. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1775. spin_unlock(&vcpu->kvm->mmu_lock);
  1776. return r;
  1777. }
  1778. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1779. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1780. {
  1781. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1782. struct kvm_mmu_page *sp;
  1783. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1784. struct kvm_mmu_page, link);
  1785. kvm_mmu_zap_page(vcpu->kvm, sp);
  1786. ++vcpu->kvm->stat.mmu_recycled;
  1787. }
  1788. }
  1789. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1790. {
  1791. int r;
  1792. enum emulation_result er;
  1793. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1794. if (r < 0)
  1795. goto out;
  1796. if (!r) {
  1797. r = 1;
  1798. goto out;
  1799. }
  1800. r = mmu_topup_memory_caches(vcpu);
  1801. if (r)
  1802. goto out;
  1803. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1804. switch (er) {
  1805. case EMULATE_DONE:
  1806. return 1;
  1807. case EMULATE_DO_MMIO:
  1808. ++vcpu->stat.mmio_exits;
  1809. return 0;
  1810. case EMULATE_FAIL:
  1811. kvm_report_emulation_failure(vcpu, "pagetable");
  1812. return 1;
  1813. default:
  1814. BUG();
  1815. }
  1816. out:
  1817. return r;
  1818. }
  1819. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1820. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1821. {
  1822. spin_lock(&vcpu->kvm->mmu_lock);
  1823. vcpu->arch.mmu.invlpg(vcpu, gva);
  1824. spin_unlock(&vcpu->kvm->mmu_lock);
  1825. kvm_mmu_flush_tlb(vcpu);
  1826. ++vcpu->stat.invlpg;
  1827. }
  1828. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  1829. void kvm_enable_tdp(void)
  1830. {
  1831. tdp_enabled = true;
  1832. }
  1833. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1834. void kvm_disable_tdp(void)
  1835. {
  1836. tdp_enabled = false;
  1837. }
  1838. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1839. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1840. {
  1841. struct kvm_mmu_page *sp;
  1842. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1843. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1844. struct kvm_mmu_page, link);
  1845. kvm_mmu_zap_page(vcpu->kvm, sp);
  1846. cond_resched();
  1847. }
  1848. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1849. }
  1850. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1851. {
  1852. struct page *page;
  1853. int i;
  1854. ASSERT(vcpu);
  1855. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1856. vcpu->kvm->arch.n_free_mmu_pages =
  1857. vcpu->kvm->arch.n_requested_mmu_pages;
  1858. else
  1859. vcpu->kvm->arch.n_free_mmu_pages =
  1860. vcpu->kvm->arch.n_alloc_mmu_pages;
  1861. /*
  1862. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1863. * Therefore we need to allocate shadow page tables in the first
  1864. * 4GB of memory, which happens to fit the DMA32 zone.
  1865. */
  1866. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1867. if (!page)
  1868. goto error_1;
  1869. vcpu->arch.mmu.pae_root = page_address(page);
  1870. for (i = 0; i < 4; ++i)
  1871. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1872. return 0;
  1873. error_1:
  1874. free_mmu_pages(vcpu);
  1875. return -ENOMEM;
  1876. }
  1877. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1878. {
  1879. ASSERT(vcpu);
  1880. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1881. return alloc_mmu_pages(vcpu);
  1882. }
  1883. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1884. {
  1885. ASSERT(vcpu);
  1886. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1887. return init_kvm_mmu(vcpu);
  1888. }
  1889. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1890. {
  1891. ASSERT(vcpu);
  1892. destroy_kvm_mmu(vcpu);
  1893. free_mmu_pages(vcpu);
  1894. mmu_free_memory_caches(vcpu);
  1895. }
  1896. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1897. {
  1898. struct kvm_mmu_page *sp;
  1899. spin_lock(&kvm->mmu_lock);
  1900. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1901. int i;
  1902. u64 *pt;
  1903. if (!test_bit(slot, &sp->slot_bitmap))
  1904. continue;
  1905. pt = sp->spt;
  1906. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1907. /* avoid RMW */
  1908. if (pt[i] & PT_WRITABLE_MASK)
  1909. pt[i] &= ~PT_WRITABLE_MASK;
  1910. }
  1911. kvm_flush_remote_tlbs(kvm);
  1912. spin_unlock(&kvm->mmu_lock);
  1913. }
  1914. void kvm_mmu_zap_all(struct kvm *kvm)
  1915. {
  1916. struct kvm_mmu_page *sp, *node;
  1917. spin_lock(&kvm->mmu_lock);
  1918. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1919. kvm_mmu_zap_page(kvm, sp);
  1920. spin_unlock(&kvm->mmu_lock);
  1921. kvm_flush_remote_tlbs(kvm);
  1922. }
  1923. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1924. {
  1925. struct kvm_mmu_page *page;
  1926. page = container_of(kvm->arch.active_mmu_pages.prev,
  1927. struct kvm_mmu_page, link);
  1928. kvm_mmu_zap_page(kvm, page);
  1929. }
  1930. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1931. {
  1932. struct kvm *kvm;
  1933. struct kvm *kvm_freed = NULL;
  1934. int cache_count = 0;
  1935. spin_lock(&kvm_lock);
  1936. list_for_each_entry(kvm, &vm_list, vm_list) {
  1937. int npages;
  1938. if (!down_read_trylock(&kvm->slots_lock))
  1939. continue;
  1940. spin_lock(&kvm->mmu_lock);
  1941. npages = kvm->arch.n_alloc_mmu_pages -
  1942. kvm->arch.n_free_mmu_pages;
  1943. cache_count += npages;
  1944. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1945. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1946. cache_count--;
  1947. kvm_freed = kvm;
  1948. }
  1949. nr_to_scan--;
  1950. spin_unlock(&kvm->mmu_lock);
  1951. up_read(&kvm->slots_lock);
  1952. }
  1953. if (kvm_freed)
  1954. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1955. spin_unlock(&kvm_lock);
  1956. return cache_count;
  1957. }
  1958. static struct shrinker mmu_shrinker = {
  1959. .shrink = mmu_shrink,
  1960. .seeks = DEFAULT_SEEKS * 10,
  1961. };
  1962. static void mmu_destroy_caches(void)
  1963. {
  1964. if (pte_chain_cache)
  1965. kmem_cache_destroy(pte_chain_cache);
  1966. if (rmap_desc_cache)
  1967. kmem_cache_destroy(rmap_desc_cache);
  1968. if (mmu_page_header_cache)
  1969. kmem_cache_destroy(mmu_page_header_cache);
  1970. }
  1971. void kvm_mmu_module_exit(void)
  1972. {
  1973. mmu_destroy_caches();
  1974. unregister_shrinker(&mmu_shrinker);
  1975. }
  1976. int kvm_mmu_module_init(void)
  1977. {
  1978. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1979. sizeof(struct kvm_pte_chain),
  1980. 0, 0, NULL);
  1981. if (!pte_chain_cache)
  1982. goto nomem;
  1983. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1984. sizeof(struct kvm_rmap_desc),
  1985. 0, 0, NULL);
  1986. if (!rmap_desc_cache)
  1987. goto nomem;
  1988. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1989. sizeof(struct kvm_mmu_page),
  1990. 0, 0, NULL);
  1991. if (!mmu_page_header_cache)
  1992. goto nomem;
  1993. register_shrinker(&mmu_shrinker);
  1994. return 0;
  1995. nomem:
  1996. mmu_destroy_caches();
  1997. return -ENOMEM;
  1998. }
  1999. /*
  2000. * Caculate mmu pages needed for kvm.
  2001. */
  2002. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2003. {
  2004. int i;
  2005. unsigned int nr_mmu_pages;
  2006. unsigned int nr_pages = 0;
  2007. for (i = 0; i < kvm->nmemslots; i++)
  2008. nr_pages += kvm->memslots[i].npages;
  2009. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2010. nr_mmu_pages = max(nr_mmu_pages,
  2011. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2012. return nr_mmu_pages;
  2013. }
  2014. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2015. unsigned len)
  2016. {
  2017. if (len > buffer->len)
  2018. return NULL;
  2019. return buffer->ptr;
  2020. }
  2021. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2022. unsigned len)
  2023. {
  2024. void *ret;
  2025. ret = pv_mmu_peek_buffer(buffer, len);
  2026. if (!ret)
  2027. return ret;
  2028. buffer->ptr += len;
  2029. buffer->len -= len;
  2030. buffer->processed += len;
  2031. return ret;
  2032. }
  2033. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2034. gpa_t addr, gpa_t value)
  2035. {
  2036. int bytes = 8;
  2037. int r;
  2038. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2039. bytes = 4;
  2040. r = mmu_topup_memory_caches(vcpu);
  2041. if (r)
  2042. return r;
  2043. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2044. return -EFAULT;
  2045. return 1;
  2046. }
  2047. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2048. {
  2049. kvm_x86_ops->tlb_flush(vcpu);
  2050. return 1;
  2051. }
  2052. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2053. {
  2054. spin_lock(&vcpu->kvm->mmu_lock);
  2055. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2056. spin_unlock(&vcpu->kvm->mmu_lock);
  2057. return 1;
  2058. }
  2059. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2060. struct kvm_pv_mmu_op_buffer *buffer)
  2061. {
  2062. struct kvm_mmu_op_header *header;
  2063. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2064. if (!header)
  2065. return 0;
  2066. switch (header->op) {
  2067. case KVM_MMU_OP_WRITE_PTE: {
  2068. struct kvm_mmu_op_write_pte *wpte;
  2069. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2070. if (!wpte)
  2071. return 0;
  2072. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2073. wpte->pte_val);
  2074. }
  2075. case KVM_MMU_OP_FLUSH_TLB: {
  2076. struct kvm_mmu_op_flush_tlb *ftlb;
  2077. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2078. if (!ftlb)
  2079. return 0;
  2080. return kvm_pv_mmu_flush_tlb(vcpu);
  2081. }
  2082. case KVM_MMU_OP_RELEASE_PT: {
  2083. struct kvm_mmu_op_release_pt *rpt;
  2084. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2085. if (!rpt)
  2086. return 0;
  2087. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2088. }
  2089. default: return 0;
  2090. }
  2091. }
  2092. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2093. gpa_t addr, unsigned long *ret)
  2094. {
  2095. int r;
  2096. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2097. buffer->ptr = buffer->buf;
  2098. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2099. buffer->processed = 0;
  2100. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2101. if (r)
  2102. goto out;
  2103. while (buffer->len) {
  2104. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2105. if (r < 0)
  2106. goto out;
  2107. if (r == 0)
  2108. break;
  2109. }
  2110. r = 1;
  2111. out:
  2112. *ret = buffer->processed;
  2113. return r;
  2114. }
  2115. #ifdef AUDIT
  2116. static const char *audit_msg;
  2117. static gva_t canonicalize(gva_t gva)
  2118. {
  2119. #ifdef CONFIG_X86_64
  2120. gva = (long long)(gva << 16) >> 16;
  2121. #endif
  2122. return gva;
  2123. }
  2124. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2125. gva_t va, int level)
  2126. {
  2127. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2128. int i;
  2129. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2130. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2131. u64 ent = pt[i];
  2132. if (ent == shadow_trap_nonpresent_pte)
  2133. continue;
  2134. va = canonicalize(va);
  2135. if (level > 1) {
  2136. if (ent == shadow_notrap_nonpresent_pte)
  2137. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2138. " in nonleaf level: levels %d gva %lx"
  2139. " level %d pte %llx\n", audit_msg,
  2140. vcpu->arch.mmu.root_level, va, level, ent);
  2141. audit_mappings_page(vcpu, ent, va, level - 1);
  2142. } else {
  2143. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2144. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2145. if (is_shadow_present_pte(ent)
  2146. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2147. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2148. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2149. audit_msg, vcpu->arch.mmu.root_level,
  2150. va, gpa, hpa, ent,
  2151. is_shadow_present_pte(ent));
  2152. else if (ent == shadow_notrap_nonpresent_pte
  2153. && !is_error_hpa(hpa))
  2154. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2155. " valid guest gva %lx\n", audit_msg, va);
  2156. kvm_release_pfn_clean(pfn);
  2157. }
  2158. }
  2159. }
  2160. static void audit_mappings(struct kvm_vcpu *vcpu)
  2161. {
  2162. unsigned i;
  2163. if (vcpu->arch.mmu.root_level == 4)
  2164. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2165. else
  2166. for (i = 0; i < 4; ++i)
  2167. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2168. audit_mappings_page(vcpu,
  2169. vcpu->arch.mmu.pae_root[i],
  2170. i << 30,
  2171. 2);
  2172. }
  2173. static int count_rmaps(struct kvm_vcpu *vcpu)
  2174. {
  2175. int nmaps = 0;
  2176. int i, j, k;
  2177. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2178. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2179. struct kvm_rmap_desc *d;
  2180. for (j = 0; j < m->npages; ++j) {
  2181. unsigned long *rmapp = &m->rmap[j];
  2182. if (!*rmapp)
  2183. continue;
  2184. if (!(*rmapp & 1)) {
  2185. ++nmaps;
  2186. continue;
  2187. }
  2188. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2189. while (d) {
  2190. for (k = 0; k < RMAP_EXT; ++k)
  2191. if (d->shadow_ptes[k])
  2192. ++nmaps;
  2193. else
  2194. break;
  2195. d = d->more;
  2196. }
  2197. }
  2198. }
  2199. return nmaps;
  2200. }
  2201. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2202. {
  2203. int nmaps = 0;
  2204. struct kvm_mmu_page *sp;
  2205. int i;
  2206. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2207. u64 *pt = sp->spt;
  2208. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2209. continue;
  2210. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2211. u64 ent = pt[i];
  2212. if (!(ent & PT_PRESENT_MASK))
  2213. continue;
  2214. if (!(ent & PT_WRITABLE_MASK))
  2215. continue;
  2216. ++nmaps;
  2217. }
  2218. }
  2219. return nmaps;
  2220. }
  2221. static void audit_rmap(struct kvm_vcpu *vcpu)
  2222. {
  2223. int n_rmap = count_rmaps(vcpu);
  2224. int n_actual = count_writable_mappings(vcpu);
  2225. if (n_rmap != n_actual)
  2226. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2227. __func__, audit_msg, n_rmap, n_actual);
  2228. }
  2229. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2230. {
  2231. struct kvm_mmu_page *sp;
  2232. struct kvm_memory_slot *slot;
  2233. unsigned long *rmapp;
  2234. gfn_t gfn;
  2235. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2236. if (sp->role.metaphysical)
  2237. continue;
  2238. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2239. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2240. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2241. if (*rmapp)
  2242. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2243. " mappings: gfn %lx role %x\n",
  2244. __func__, audit_msg, sp->gfn,
  2245. sp->role.word);
  2246. }
  2247. }
  2248. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2249. {
  2250. int olddbg = dbg;
  2251. dbg = 0;
  2252. audit_msg = msg;
  2253. audit_rmap(vcpu);
  2254. audit_write_protection(vcpu);
  2255. audit_mappings(vcpu);
  2256. dbg = olddbg;
  2257. }
  2258. #endif