rmap.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. /*
  123. * This VMA had no anon_vma yet. This anon_vma is
  124. * the root of any anon_vma tree that might form.
  125. */
  126. anon_vma->root = anon_vma;
  127. }
  128. anon_vma_lock(anon_vma);
  129. /* page_table_lock to protect against threads */
  130. spin_lock(&mm->page_table_lock);
  131. if (likely(!vma->anon_vma)) {
  132. vma->anon_vma = anon_vma;
  133. avc->anon_vma = anon_vma;
  134. avc->vma = vma;
  135. list_add(&avc->same_vma, &vma->anon_vma_chain);
  136. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  137. allocated = NULL;
  138. avc = NULL;
  139. }
  140. spin_unlock(&mm->page_table_lock);
  141. anon_vma_unlock(anon_vma);
  142. if (unlikely(allocated))
  143. anon_vma_free(allocated);
  144. if (unlikely(avc))
  145. anon_vma_chain_free(avc);
  146. }
  147. return 0;
  148. out_enomem_free_avc:
  149. anon_vma_chain_free(avc);
  150. out_enomem:
  151. return -ENOMEM;
  152. }
  153. static void anon_vma_chain_link(struct vm_area_struct *vma,
  154. struct anon_vma_chain *avc,
  155. struct anon_vma *anon_vma)
  156. {
  157. avc->vma = vma;
  158. avc->anon_vma = anon_vma;
  159. list_add(&avc->same_vma, &vma->anon_vma_chain);
  160. anon_vma_lock(anon_vma);
  161. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  162. anon_vma_unlock(anon_vma);
  163. }
  164. /*
  165. * Attach the anon_vmas from src to dst.
  166. * Returns 0 on success, -ENOMEM on failure.
  167. */
  168. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  169. {
  170. struct anon_vma_chain *avc, *pavc;
  171. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  172. avc = anon_vma_chain_alloc();
  173. if (!avc)
  174. goto enomem_failure;
  175. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  176. }
  177. return 0;
  178. enomem_failure:
  179. unlink_anon_vmas(dst);
  180. return -ENOMEM;
  181. }
  182. /*
  183. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  184. * the corresponding VMA in the parent process is attached to.
  185. * Returns 0 on success, non-zero on failure.
  186. */
  187. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  188. {
  189. struct anon_vma_chain *avc;
  190. struct anon_vma *anon_vma;
  191. /* Don't bother if the parent process has no anon_vma here. */
  192. if (!pvma->anon_vma)
  193. return 0;
  194. /*
  195. * First, attach the new VMA to the parent VMA's anon_vmas,
  196. * so rmap can find non-COWed pages in child processes.
  197. */
  198. if (anon_vma_clone(vma, pvma))
  199. return -ENOMEM;
  200. /* Then add our own anon_vma. */
  201. anon_vma = anon_vma_alloc();
  202. if (!anon_vma)
  203. goto out_error;
  204. avc = anon_vma_chain_alloc();
  205. if (!avc)
  206. goto out_error_free_anon_vma;
  207. /*
  208. * The root anon_vma's spinlock is the lock actually used when we
  209. * lock any of the anon_vmas in this anon_vma tree.
  210. */
  211. anon_vma->root = pvma->anon_vma->root;
  212. /*
  213. * With KSM refcounts, an anon_vma can stay around longer than the
  214. * process it belongs to. The root anon_vma needs to be pinned
  215. * until this anon_vma is freed, because the lock lives in the root.
  216. */
  217. get_anon_vma(anon_vma->root);
  218. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  219. vma->anon_vma = anon_vma;
  220. anon_vma_chain_link(vma, avc, anon_vma);
  221. return 0;
  222. out_error_free_anon_vma:
  223. anon_vma_free(anon_vma);
  224. out_error:
  225. unlink_anon_vmas(vma);
  226. return -ENOMEM;
  227. }
  228. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  229. {
  230. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  231. int empty;
  232. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  233. if (!anon_vma)
  234. return;
  235. anon_vma_lock(anon_vma);
  236. list_del(&anon_vma_chain->same_anon_vma);
  237. /* We must garbage collect the anon_vma if it's empty */
  238. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  239. anon_vma_unlock(anon_vma);
  240. if (empty) {
  241. /* We no longer need the root anon_vma */
  242. if (anon_vma->root != anon_vma)
  243. drop_anon_vma(anon_vma->root);
  244. anon_vma_free(anon_vma);
  245. }
  246. }
  247. void unlink_anon_vmas(struct vm_area_struct *vma)
  248. {
  249. struct anon_vma_chain *avc, *next;
  250. /*
  251. * Unlink each anon_vma chained to the VMA. This list is ordered
  252. * from newest to oldest, ensuring the root anon_vma gets freed last.
  253. */
  254. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  255. anon_vma_unlink(avc);
  256. list_del(&avc->same_vma);
  257. anon_vma_chain_free(avc);
  258. }
  259. }
  260. static void anon_vma_ctor(void *data)
  261. {
  262. struct anon_vma *anon_vma = data;
  263. spin_lock_init(&anon_vma->lock);
  264. anonvma_external_refcount_init(anon_vma);
  265. INIT_LIST_HEAD(&anon_vma->head);
  266. }
  267. void __init anon_vma_init(void)
  268. {
  269. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  270. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  271. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  272. }
  273. /*
  274. * Getting a lock on a stable anon_vma from a page off the LRU is
  275. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  276. */
  277. struct anon_vma *page_lock_anon_vma(struct page *page)
  278. {
  279. struct anon_vma *anon_vma;
  280. unsigned long anon_mapping;
  281. rcu_read_lock();
  282. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  283. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  284. goto out;
  285. if (!page_mapped(page))
  286. goto out;
  287. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  288. anon_vma_lock(anon_vma);
  289. return anon_vma;
  290. out:
  291. rcu_read_unlock();
  292. return NULL;
  293. }
  294. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  295. {
  296. anon_vma_unlock(anon_vma);
  297. rcu_read_unlock();
  298. }
  299. /*
  300. * At what user virtual address is page expected in @vma?
  301. * Returns virtual address or -EFAULT if page's index/offset is not
  302. * within the range mapped the @vma.
  303. */
  304. static inline unsigned long
  305. vma_address(struct page *page, struct vm_area_struct *vma)
  306. {
  307. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  308. unsigned long address;
  309. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  310. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  311. /* page should be within @vma mapping range */
  312. return -EFAULT;
  313. }
  314. return address;
  315. }
  316. /*
  317. * At what user virtual address is page expected in vma?
  318. * Caller should check the page is actually part of the vma.
  319. */
  320. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  321. {
  322. if (PageAnon(page)) {
  323. if (vma->anon_vma->root != page_anon_vma(page)->root)
  324. return -EFAULT;
  325. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  326. if (!vma->vm_file ||
  327. vma->vm_file->f_mapping != page->mapping)
  328. return -EFAULT;
  329. } else
  330. return -EFAULT;
  331. return vma_address(page, vma);
  332. }
  333. /*
  334. * Check that @page is mapped at @address into @mm.
  335. *
  336. * If @sync is false, page_check_address may perform a racy check to avoid
  337. * the page table lock when the pte is not present (helpful when reclaiming
  338. * highly shared pages).
  339. *
  340. * On success returns with pte mapped and locked.
  341. */
  342. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  343. unsigned long address, spinlock_t **ptlp, int sync)
  344. {
  345. pgd_t *pgd;
  346. pud_t *pud;
  347. pmd_t *pmd;
  348. pte_t *pte;
  349. spinlock_t *ptl;
  350. pgd = pgd_offset(mm, address);
  351. if (!pgd_present(*pgd))
  352. return NULL;
  353. pud = pud_offset(pgd, address);
  354. if (!pud_present(*pud))
  355. return NULL;
  356. pmd = pmd_offset(pud, address);
  357. if (!pmd_present(*pmd))
  358. return NULL;
  359. pte = pte_offset_map(pmd, address);
  360. /* Make a quick check before getting the lock */
  361. if (!sync && !pte_present(*pte)) {
  362. pte_unmap(pte);
  363. return NULL;
  364. }
  365. ptl = pte_lockptr(mm, pmd);
  366. spin_lock(ptl);
  367. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  368. *ptlp = ptl;
  369. return pte;
  370. }
  371. pte_unmap_unlock(pte, ptl);
  372. return NULL;
  373. }
  374. /**
  375. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  376. * @page: the page to test
  377. * @vma: the VMA to test
  378. *
  379. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  380. * if the page is not mapped into the page tables of this VMA. Only
  381. * valid for normal file or anonymous VMAs.
  382. */
  383. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  384. {
  385. unsigned long address;
  386. pte_t *pte;
  387. spinlock_t *ptl;
  388. address = vma_address(page, vma);
  389. if (address == -EFAULT) /* out of vma range */
  390. return 0;
  391. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  392. if (!pte) /* the page is not in this mm */
  393. return 0;
  394. pte_unmap_unlock(pte, ptl);
  395. return 1;
  396. }
  397. /*
  398. * Subfunctions of page_referenced: page_referenced_one called
  399. * repeatedly from either page_referenced_anon or page_referenced_file.
  400. */
  401. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  402. unsigned long address, unsigned int *mapcount,
  403. unsigned long *vm_flags)
  404. {
  405. struct mm_struct *mm = vma->vm_mm;
  406. pte_t *pte;
  407. spinlock_t *ptl;
  408. int referenced = 0;
  409. pte = page_check_address(page, mm, address, &ptl, 0);
  410. if (!pte)
  411. goto out;
  412. /*
  413. * Don't want to elevate referenced for mlocked page that gets this far,
  414. * in order that it progresses to try_to_unmap and is moved to the
  415. * unevictable list.
  416. */
  417. if (vma->vm_flags & VM_LOCKED) {
  418. *mapcount = 1; /* break early from loop */
  419. *vm_flags |= VM_LOCKED;
  420. goto out_unmap;
  421. }
  422. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  423. /*
  424. * Don't treat a reference through a sequentially read
  425. * mapping as such. If the page has been used in
  426. * another mapping, we will catch it; if this other
  427. * mapping is already gone, the unmap path will have
  428. * set PG_referenced or activated the page.
  429. */
  430. if (likely(!VM_SequentialReadHint(vma)))
  431. referenced++;
  432. }
  433. /* Pretend the page is referenced if the task has the
  434. swap token and is in the middle of a page fault. */
  435. if (mm != current->mm && has_swap_token(mm) &&
  436. rwsem_is_locked(&mm->mmap_sem))
  437. referenced++;
  438. out_unmap:
  439. (*mapcount)--;
  440. pte_unmap_unlock(pte, ptl);
  441. if (referenced)
  442. *vm_flags |= vma->vm_flags;
  443. out:
  444. return referenced;
  445. }
  446. static int page_referenced_anon(struct page *page,
  447. struct mem_cgroup *mem_cont,
  448. unsigned long *vm_flags)
  449. {
  450. unsigned int mapcount;
  451. struct anon_vma *anon_vma;
  452. struct anon_vma_chain *avc;
  453. int referenced = 0;
  454. anon_vma = page_lock_anon_vma(page);
  455. if (!anon_vma)
  456. return referenced;
  457. mapcount = page_mapcount(page);
  458. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  459. struct vm_area_struct *vma = avc->vma;
  460. unsigned long address = vma_address(page, vma);
  461. if (address == -EFAULT)
  462. continue;
  463. /*
  464. * If we are reclaiming on behalf of a cgroup, skip
  465. * counting on behalf of references from different
  466. * cgroups
  467. */
  468. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  469. continue;
  470. referenced += page_referenced_one(page, vma, address,
  471. &mapcount, vm_flags);
  472. if (!mapcount)
  473. break;
  474. }
  475. page_unlock_anon_vma(anon_vma);
  476. return referenced;
  477. }
  478. /**
  479. * page_referenced_file - referenced check for object-based rmap
  480. * @page: the page we're checking references on.
  481. * @mem_cont: target memory controller
  482. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  483. *
  484. * For an object-based mapped page, find all the places it is mapped and
  485. * check/clear the referenced flag. This is done by following the page->mapping
  486. * pointer, then walking the chain of vmas it holds. It returns the number
  487. * of references it found.
  488. *
  489. * This function is only called from page_referenced for object-based pages.
  490. */
  491. static int page_referenced_file(struct page *page,
  492. struct mem_cgroup *mem_cont,
  493. unsigned long *vm_flags)
  494. {
  495. unsigned int mapcount;
  496. struct address_space *mapping = page->mapping;
  497. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  498. struct vm_area_struct *vma;
  499. struct prio_tree_iter iter;
  500. int referenced = 0;
  501. /*
  502. * The caller's checks on page->mapping and !PageAnon have made
  503. * sure that this is a file page: the check for page->mapping
  504. * excludes the case just before it gets set on an anon page.
  505. */
  506. BUG_ON(PageAnon(page));
  507. /*
  508. * The page lock not only makes sure that page->mapping cannot
  509. * suddenly be NULLified by truncation, it makes sure that the
  510. * structure at mapping cannot be freed and reused yet,
  511. * so we can safely take mapping->i_mmap_lock.
  512. */
  513. BUG_ON(!PageLocked(page));
  514. spin_lock(&mapping->i_mmap_lock);
  515. /*
  516. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  517. * is more likely to be accurate if we note it after spinning.
  518. */
  519. mapcount = page_mapcount(page);
  520. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  521. unsigned long address = vma_address(page, vma);
  522. if (address == -EFAULT)
  523. continue;
  524. /*
  525. * If we are reclaiming on behalf of a cgroup, skip
  526. * counting on behalf of references from different
  527. * cgroups
  528. */
  529. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  530. continue;
  531. referenced += page_referenced_one(page, vma, address,
  532. &mapcount, vm_flags);
  533. if (!mapcount)
  534. break;
  535. }
  536. spin_unlock(&mapping->i_mmap_lock);
  537. return referenced;
  538. }
  539. /**
  540. * page_referenced - test if the page was referenced
  541. * @page: the page to test
  542. * @is_locked: caller holds lock on the page
  543. * @mem_cont: target memory controller
  544. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  545. *
  546. * Quick test_and_clear_referenced for all mappings to a page,
  547. * returns the number of ptes which referenced the page.
  548. */
  549. int page_referenced(struct page *page,
  550. int is_locked,
  551. struct mem_cgroup *mem_cont,
  552. unsigned long *vm_flags)
  553. {
  554. int referenced = 0;
  555. int we_locked = 0;
  556. *vm_flags = 0;
  557. if (page_mapped(page) && page_rmapping(page)) {
  558. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  559. we_locked = trylock_page(page);
  560. if (!we_locked) {
  561. referenced++;
  562. goto out;
  563. }
  564. }
  565. if (unlikely(PageKsm(page)))
  566. referenced += page_referenced_ksm(page, mem_cont,
  567. vm_flags);
  568. else if (PageAnon(page))
  569. referenced += page_referenced_anon(page, mem_cont,
  570. vm_flags);
  571. else if (page->mapping)
  572. referenced += page_referenced_file(page, mem_cont,
  573. vm_flags);
  574. if (we_locked)
  575. unlock_page(page);
  576. }
  577. out:
  578. if (page_test_and_clear_young(page))
  579. referenced++;
  580. return referenced;
  581. }
  582. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  583. unsigned long address)
  584. {
  585. struct mm_struct *mm = vma->vm_mm;
  586. pte_t *pte;
  587. spinlock_t *ptl;
  588. int ret = 0;
  589. pte = page_check_address(page, mm, address, &ptl, 1);
  590. if (!pte)
  591. goto out;
  592. if (pte_dirty(*pte) || pte_write(*pte)) {
  593. pte_t entry;
  594. flush_cache_page(vma, address, pte_pfn(*pte));
  595. entry = ptep_clear_flush_notify(vma, address, pte);
  596. entry = pte_wrprotect(entry);
  597. entry = pte_mkclean(entry);
  598. set_pte_at(mm, address, pte, entry);
  599. ret = 1;
  600. }
  601. pte_unmap_unlock(pte, ptl);
  602. out:
  603. return ret;
  604. }
  605. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  606. {
  607. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  608. struct vm_area_struct *vma;
  609. struct prio_tree_iter iter;
  610. int ret = 0;
  611. BUG_ON(PageAnon(page));
  612. spin_lock(&mapping->i_mmap_lock);
  613. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  614. if (vma->vm_flags & VM_SHARED) {
  615. unsigned long address = vma_address(page, vma);
  616. if (address == -EFAULT)
  617. continue;
  618. ret += page_mkclean_one(page, vma, address);
  619. }
  620. }
  621. spin_unlock(&mapping->i_mmap_lock);
  622. return ret;
  623. }
  624. int page_mkclean(struct page *page)
  625. {
  626. int ret = 0;
  627. BUG_ON(!PageLocked(page));
  628. if (page_mapped(page)) {
  629. struct address_space *mapping = page_mapping(page);
  630. if (mapping) {
  631. ret = page_mkclean_file(mapping, page);
  632. if (page_test_dirty(page)) {
  633. page_clear_dirty(page);
  634. ret = 1;
  635. }
  636. }
  637. }
  638. return ret;
  639. }
  640. EXPORT_SYMBOL_GPL(page_mkclean);
  641. /**
  642. * page_move_anon_rmap - move a page to our anon_vma
  643. * @page: the page to move to our anon_vma
  644. * @vma: the vma the page belongs to
  645. * @address: the user virtual address mapped
  646. *
  647. * When a page belongs exclusively to one process after a COW event,
  648. * that page can be moved into the anon_vma that belongs to just that
  649. * process, so the rmap code will not search the parent or sibling
  650. * processes.
  651. */
  652. void page_move_anon_rmap(struct page *page,
  653. struct vm_area_struct *vma, unsigned long address)
  654. {
  655. struct anon_vma *anon_vma = vma->anon_vma;
  656. VM_BUG_ON(!PageLocked(page));
  657. VM_BUG_ON(!anon_vma);
  658. VM_BUG_ON(page->index != linear_page_index(vma, address));
  659. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  660. page->mapping = (struct address_space *) anon_vma;
  661. }
  662. /**
  663. * __page_set_anon_rmap - setup new anonymous rmap
  664. * @page: the page to add the mapping to
  665. * @vma: the vm area in which the mapping is added
  666. * @address: the user virtual address mapped
  667. * @exclusive: the page is exclusively owned by the current process
  668. */
  669. static void __page_set_anon_rmap(struct page *page,
  670. struct vm_area_struct *vma, unsigned long address, int exclusive)
  671. {
  672. struct anon_vma *anon_vma = vma->anon_vma;
  673. BUG_ON(!anon_vma);
  674. /*
  675. * If the page isn't exclusively mapped into this vma,
  676. * we must use the _oldest_ possible anon_vma for the
  677. * page mapping!
  678. */
  679. if (!exclusive) {
  680. if (PageAnon(page))
  681. return;
  682. anon_vma = anon_vma->root;
  683. } else {
  684. /*
  685. * In this case, swapped-out-but-not-discarded swap-cache
  686. * is remapped. So, no need to update page->mapping here.
  687. * We convice anon_vma poitned by page->mapping is not obsolete
  688. * because vma->anon_vma is necessary to be a family of it.
  689. */
  690. if (PageAnon(page))
  691. return;
  692. }
  693. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  694. page->mapping = (struct address_space *) anon_vma;
  695. page->index = linear_page_index(vma, address);
  696. }
  697. /**
  698. * __page_check_anon_rmap - sanity check anonymous rmap addition
  699. * @page: the page to add the mapping to
  700. * @vma: the vm area in which the mapping is added
  701. * @address: the user virtual address mapped
  702. */
  703. static void __page_check_anon_rmap(struct page *page,
  704. struct vm_area_struct *vma, unsigned long address)
  705. {
  706. #ifdef CONFIG_DEBUG_VM
  707. /*
  708. * The page's anon-rmap details (mapping and index) are guaranteed to
  709. * be set up correctly at this point.
  710. *
  711. * We have exclusion against page_add_anon_rmap because the caller
  712. * always holds the page locked, except if called from page_dup_rmap,
  713. * in which case the page is already known to be setup.
  714. *
  715. * We have exclusion against page_add_new_anon_rmap because those pages
  716. * are initially only visible via the pagetables, and the pte is locked
  717. * over the call to page_add_new_anon_rmap.
  718. */
  719. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  720. BUG_ON(page->index != linear_page_index(vma, address));
  721. #endif
  722. }
  723. /**
  724. * page_add_anon_rmap - add pte mapping to an anonymous page
  725. * @page: the page to add the mapping to
  726. * @vma: the vm area in which the mapping is added
  727. * @address: the user virtual address mapped
  728. *
  729. * The caller needs to hold the pte lock, and the page must be locked in
  730. * the anon_vma case: to serialize mapping,index checking after setting,
  731. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  732. * (but PageKsm is never downgraded to PageAnon).
  733. */
  734. void page_add_anon_rmap(struct page *page,
  735. struct vm_area_struct *vma, unsigned long address)
  736. {
  737. do_page_add_anon_rmap(page, vma, address, 0);
  738. }
  739. /*
  740. * Special version of the above for do_swap_page, which often runs
  741. * into pages that are exclusively owned by the current process.
  742. * Everybody else should continue to use page_add_anon_rmap above.
  743. */
  744. void do_page_add_anon_rmap(struct page *page,
  745. struct vm_area_struct *vma, unsigned long address, int exclusive)
  746. {
  747. int first = atomic_inc_and_test(&page->_mapcount);
  748. if (first)
  749. __inc_zone_page_state(page, NR_ANON_PAGES);
  750. if (unlikely(PageKsm(page)))
  751. return;
  752. VM_BUG_ON(!PageLocked(page));
  753. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  754. if (first)
  755. __page_set_anon_rmap(page, vma, address, exclusive);
  756. else
  757. __page_check_anon_rmap(page, vma, address);
  758. }
  759. /**
  760. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  761. * @page: the page to add the mapping to
  762. * @vma: the vm area in which the mapping is added
  763. * @address: the user virtual address mapped
  764. *
  765. * Same as page_add_anon_rmap but must only be called on *new* pages.
  766. * This means the inc-and-test can be bypassed.
  767. * Page does not have to be locked.
  768. */
  769. void page_add_new_anon_rmap(struct page *page,
  770. struct vm_area_struct *vma, unsigned long address)
  771. {
  772. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  773. SetPageSwapBacked(page);
  774. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  775. __inc_zone_page_state(page, NR_ANON_PAGES);
  776. __page_set_anon_rmap(page, vma, address, 1);
  777. if (page_evictable(page, vma))
  778. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  779. else
  780. add_page_to_unevictable_list(page);
  781. }
  782. /**
  783. * page_add_file_rmap - add pte mapping to a file page
  784. * @page: the page to add the mapping to
  785. *
  786. * The caller needs to hold the pte lock.
  787. */
  788. void page_add_file_rmap(struct page *page)
  789. {
  790. if (atomic_inc_and_test(&page->_mapcount)) {
  791. __inc_zone_page_state(page, NR_FILE_MAPPED);
  792. mem_cgroup_update_file_mapped(page, 1);
  793. }
  794. }
  795. /**
  796. * page_remove_rmap - take down pte mapping from a page
  797. * @page: page to remove mapping from
  798. *
  799. * The caller needs to hold the pte lock.
  800. */
  801. void page_remove_rmap(struct page *page)
  802. {
  803. /* page still mapped by someone else? */
  804. if (!atomic_add_negative(-1, &page->_mapcount))
  805. return;
  806. /*
  807. * Now that the last pte has gone, s390 must transfer dirty
  808. * flag from storage key to struct page. We can usually skip
  809. * this if the page is anon, so about to be freed; but perhaps
  810. * not if it's in swapcache - there might be another pte slot
  811. * containing the swap entry, but page not yet written to swap.
  812. */
  813. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  814. page_clear_dirty(page);
  815. set_page_dirty(page);
  816. }
  817. if (PageAnon(page)) {
  818. mem_cgroup_uncharge_page(page);
  819. __dec_zone_page_state(page, NR_ANON_PAGES);
  820. } else {
  821. __dec_zone_page_state(page, NR_FILE_MAPPED);
  822. mem_cgroup_update_file_mapped(page, -1);
  823. }
  824. /*
  825. * It would be tidy to reset the PageAnon mapping here,
  826. * but that might overwrite a racing page_add_anon_rmap
  827. * which increments mapcount after us but sets mapping
  828. * before us: so leave the reset to free_hot_cold_page,
  829. * and remember that it's only reliable while mapped.
  830. * Leaving it set also helps swapoff to reinstate ptes
  831. * faster for those pages still in swapcache.
  832. */
  833. }
  834. /*
  835. * Subfunctions of try_to_unmap: try_to_unmap_one called
  836. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  837. */
  838. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  839. unsigned long address, enum ttu_flags flags)
  840. {
  841. struct mm_struct *mm = vma->vm_mm;
  842. pte_t *pte;
  843. pte_t pteval;
  844. spinlock_t *ptl;
  845. int ret = SWAP_AGAIN;
  846. pte = page_check_address(page, mm, address, &ptl, 0);
  847. if (!pte)
  848. goto out;
  849. /*
  850. * If the page is mlock()d, we cannot swap it out.
  851. * If it's recently referenced (perhaps page_referenced
  852. * skipped over this mm) then we should reactivate it.
  853. */
  854. if (!(flags & TTU_IGNORE_MLOCK)) {
  855. if (vma->vm_flags & VM_LOCKED)
  856. goto out_mlock;
  857. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  858. goto out_unmap;
  859. }
  860. if (!(flags & TTU_IGNORE_ACCESS)) {
  861. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  862. ret = SWAP_FAIL;
  863. goto out_unmap;
  864. }
  865. }
  866. /* Nuke the page table entry. */
  867. flush_cache_page(vma, address, page_to_pfn(page));
  868. pteval = ptep_clear_flush_notify(vma, address, pte);
  869. /* Move the dirty bit to the physical page now the pte is gone. */
  870. if (pte_dirty(pteval))
  871. set_page_dirty(page);
  872. /* Update high watermark before we lower rss */
  873. update_hiwater_rss(mm);
  874. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  875. if (PageAnon(page))
  876. dec_mm_counter(mm, MM_ANONPAGES);
  877. else
  878. dec_mm_counter(mm, MM_FILEPAGES);
  879. set_pte_at(mm, address, pte,
  880. swp_entry_to_pte(make_hwpoison_entry(page)));
  881. } else if (PageAnon(page)) {
  882. swp_entry_t entry = { .val = page_private(page) };
  883. if (PageSwapCache(page)) {
  884. /*
  885. * Store the swap location in the pte.
  886. * See handle_pte_fault() ...
  887. */
  888. if (swap_duplicate(entry) < 0) {
  889. set_pte_at(mm, address, pte, pteval);
  890. ret = SWAP_FAIL;
  891. goto out_unmap;
  892. }
  893. if (list_empty(&mm->mmlist)) {
  894. spin_lock(&mmlist_lock);
  895. if (list_empty(&mm->mmlist))
  896. list_add(&mm->mmlist, &init_mm.mmlist);
  897. spin_unlock(&mmlist_lock);
  898. }
  899. dec_mm_counter(mm, MM_ANONPAGES);
  900. inc_mm_counter(mm, MM_SWAPENTS);
  901. } else if (PAGE_MIGRATION) {
  902. /*
  903. * Store the pfn of the page in a special migration
  904. * pte. do_swap_page() will wait until the migration
  905. * pte is removed and then restart fault handling.
  906. */
  907. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  908. entry = make_migration_entry(page, pte_write(pteval));
  909. }
  910. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  911. BUG_ON(pte_file(*pte));
  912. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  913. /* Establish migration entry for a file page */
  914. swp_entry_t entry;
  915. entry = make_migration_entry(page, pte_write(pteval));
  916. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  917. } else
  918. dec_mm_counter(mm, MM_FILEPAGES);
  919. page_remove_rmap(page);
  920. page_cache_release(page);
  921. out_unmap:
  922. pte_unmap_unlock(pte, ptl);
  923. out:
  924. return ret;
  925. out_mlock:
  926. pte_unmap_unlock(pte, ptl);
  927. /*
  928. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  929. * unstable result and race. Plus, We can't wait here because
  930. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  931. * if trylock failed, the page remain in evictable lru and later
  932. * vmscan could retry to move the page to unevictable lru if the
  933. * page is actually mlocked.
  934. */
  935. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  936. if (vma->vm_flags & VM_LOCKED) {
  937. mlock_vma_page(page);
  938. ret = SWAP_MLOCK;
  939. }
  940. up_read(&vma->vm_mm->mmap_sem);
  941. }
  942. return ret;
  943. }
  944. /*
  945. * objrmap doesn't work for nonlinear VMAs because the assumption that
  946. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  947. * Consequently, given a particular page and its ->index, we cannot locate the
  948. * ptes which are mapping that page without an exhaustive linear search.
  949. *
  950. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  951. * maps the file to which the target page belongs. The ->vm_private_data field
  952. * holds the current cursor into that scan. Successive searches will circulate
  953. * around the vma's virtual address space.
  954. *
  955. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  956. * more scanning pressure is placed against them as well. Eventually pages
  957. * will become fully unmapped and are eligible for eviction.
  958. *
  959. * For very sparsely populated VMAs this is a little inefficient - chances are
  960. * there there won't be many ptes located within the scan cluster. In this case
  961. * maybe we could scan further - to the end of the pte page, perhaps.
  962. *
  963. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  964. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  965. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  966. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  967. */
  968. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  969. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  970. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  971. struct vm_area_struct *vma, struct page *check_page)
  972. {
  973. struct mm_struct *mm = vma->vm_mm;
  974. pgd_t *pgd;
  975. pud_t *pud;
  976. pmd_t *pmd;
  977. pte_t *pte;
  978. pte_t pteval;
  979. spinlock_t *ptl;
  980. struct page *page;
  981. unsigned long address;
  982. unsigned long end;
  983. int ret = SWAP_AGAIN;
  984. int locked_vma = 0;
  985. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  986. end = address + CLUSTER_SIZE;
  987. if (address < vma->vm_start)
  988. address = vma->vm_start;
  989. if (end > vma->vm_end)
  990. end = vma->vm_end;
  991. pgd = pgd_offset(mm, address);
  992. if (!pgd_present(*pgd))
  993. return ret;
  994. pud = pud_offset(pgd, address);
  995. if (!pud_present(*pud))
  996. return ret;
  997. pmd = pmd_offset(pud, address);
  998. if (!pmd_present(*pmd))
  999. return ret;
  1000. /*
  1001. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1002. * keep the sem while scanning the cluster for mlocking pages.
  1003. */
  1004. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1005. locked_vma = (vma->vm_flags & VM_LOCKED);
  1006. if (!locked_vma)
  1007. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1008. }
  1009. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1010. /* Update high watermark before we lower rss */
  1011. update_hiwater_rss(mm);
  1012. for (; address < end; pte++, address += PAGE_SIZE) {
  1013. if (!pte_present(*pte))
  1014. continue;
  1015. page = vm_normal_page(vma, address, *pte);
  1016. BUG_ON(!page || PageAnon(page));
  1017. if (locked_vma) {
  1018. mlock_vma_page(page); /* no-op if already mlocked */
  1019. if (page == check_page)
  1020. ret = SWAP_MLOCK;
  1021. continue; /* don't unmap */
  1022. }
  1023. if (ptep_clear_flush_young_notify(vma, address, pte))
  1024. continue;
  1025. /* Nuke the page table entry. */
  1026. flush_cache_page(vma, address, pte_pfn(*pte));
  1027. pteval = ptep_clear_flush_notify(vma, address, pte);
  1028. /* If nonlinear, store the file page offset in the pte. */
  1029. if (page->index != linear_page_index(vma, address))
  1030. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1031. /* Move the dirty bit to the physical page now the pte is gone. */
  1032. if (pte_dirty(pteval))
  1033. set_page_dirty(page);
  1034. page_remove_rmap(page);
  1035. page_cache_release(page);
  1036. dec_mm_counter(mm, MM_FILEPAGES);
  1037. (*mapcount)--;
  1038. }
  1039. pte_unmap_unlock(pte - 1, ptl);
  1040. if (locked_vma)
  1041. up_read(&vma->vm_mm->mmap_sem);
  1042. return ret;
  1043. }
  1044. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1045. {
  1046. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1047. if (!maybe_stack)
  1048. return false;
  1049. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1050. VM_STACK_INCOMPLETE_SETUP)
  1051. return true;
  1052. return false;
  1053. }
  1054. /**
  1055. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1056. * rmap method
  1057. * @page: the page to unmap/unlock
  1058. * @flags: action and flags
  1059. *
  1060. * Find all the mappings of a page using the mapping pointer and the vma chains
  1061. * contained in the anon_vma struct it points to.
  1062. *
  1063. * This function is only called from try_to_unmap/try_to_munlock for
  1064. * anonymous pages.
  1065. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1066. * where the page was found will be held for write. So, we won't recheck
  1067. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1068. * 'LOCKED.
  1069. */
  1070. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1071. {
  1072. struct anon_vma *anon_vma;
  1073. struct anon_vma_chain *avc;
  1074. int ret = SWAP_AGAIN;
  1075. anon_vma = page_lock_anon_vma(page);
  1076. if (!anon_vma)
  1077. return ret;
  1078. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1079. struct vm_area_struct *vma = avc->vma;
  1080. unsigned long address;
  1081. /*
  1082. * During exec, a temporary VMA is setup and later moved.
  1083. * The VMA is moved under the anon_vma lock but not the
  1084. * page tables leading to a race where migration cannot
  1085. * find the migration ptes. Rather than increasing the
  1086. * locking requirements of exec(), migration skips
  1087. * temporary VMAs until after exec() completes.
  1088. */
  1089. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1090. is_vma_temporary_stack(vma))
  1091. continue;
  1092. address = vma_address(page, vma);
  1093. if (address == -EFAULT)
  1094. continue;
  1095. ret = try_to_unmap_one(page, vma, address, flags);
  1096. if (ret != SWAP_AGAIN || !page_mapped(page))
  1097. break;
  1098. }
  1099. page_unlock_anon_vma(anon_vma);
  1100. return ret;
  1101. }
  1102. /**
  1103. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1104. * @page: the page to unmap/unlock
  1105. * @flags: action and flags
  1106. *
  1107. * Find all the mappings of a page using the mapping pointer and the vma chains
  1108. * contained in the address_space struct it points to.
  1109. *
  1110. * This function is only called from try_to_unmap/try_to_munlock for
  1111. * object-based pages.
  1112. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1113. * where the page was found will be held for write. So, we won't recheck
  1114. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1115. * 'LOCKED.
  1116. */
  1117. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1118. {
  1119. struct address_space *mapping = page->mapping;
  1120. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1121. struct vm_area_struct *vma;
  1122. struct prio_tree_iter iter;
  1123. int ret = SWAP_AGAIN;
  1124. unsigned long cursor;
  1125. unsigned long max_nl_cursor = 0;
  1126. unsigned long max_nl_size = 0;
  1127. unsigned int mapcount;
  1128. spin_lock(&mapping->i_mmap_lock);
  1129. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1130. unsigned long address = vma_address(page, vma);
  1131. if (address == -EFAULT)
  1132. continue;
  1133. ret = try_to_unmap_one(page, vma, address, flags);
  1134. if (ret != SWAP_AGAIN || !page_mapped(page))
  1135. goto out;
  1136. }
  1137. if (list_empty(&mapping->i_mmap_nonlinear))
  1138. goto out;
  1139. /*
  1140. * We don't bother to try to find the munlocked page in nonlinears.
  1141. * It's costly. Instead, later, page reclaim logic may call
  1142. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1143. */
  1144. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1145. goto out;
  1146. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1147. shared.vm_set.list) {
  1148. cursor = (unsigned long) vma->vm_private_data;
  1149. if (cursor > max_nl_cursor)
  1150. max_nl_cursor = cursor;
  1151. cursor = vma->vm_end - vma->vm_start;
  1152. if (cursor > max_nl_size)
  1153. max_nl_size = cursor;
  1154. }
  1155. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1156. ret = SWAP_FAIL;
  1157. goto out;
  1158. }
  1159. /*
  1160. * We don't try to search for this page in the nonlinear vmas,
  1161. * and page_referenced wouldn't have found it anyway. Instead
  1162. * just walk the nonlinear vmas trying to age and unmap some.
  1163. * The mapcount of the page we came in with is irrelevant,
  1164. * but even so use it as a guide to how hard we should try?
  1165. */
  1166. mapcount = page_mapcount(page);
  1167. if (!mapcount)
  1168. goto out;
  1169. cond_resched_lock(&mapping->i_mmap_lock);
  1170. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1171. if (max_nl_cursor == 0)
  1172. max_nl_cursor = CLUSTER_SIZE;
  1173. do {
  1174. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1175. shared.vm_set.list) {
  1176. cursor = (unsigned long) vma->vm_private_data;
  1177. while ( cursor < max_nl_cursor &&
  1178. cursor < vma->vm_end - vma->vm_start) {
  1179. if (try_to_unmap_cluster(cursor, &mapcount,
  1180. vma, page) == SWAP_MLOCK)
  1181. ret = SWAP_MLOCK;
  1182. cursor += CLUSTER_SIZE;
  1183. vma->vm_private_data = (void *) cursor;
  1184. if ((int)mapcount <= 0)
  1185. goto out;
  1186. }
  1187. vma->vm_private_data = (void *) max_nl_cursor;
  1188. }
  1189. cond_resched_lock(&mapping->i_mmap_lock);
  1190. max_nl_cursor += CLUSTER_SIZE;
  1191. } while (max_nl_cursor <= max_nl_size);
  1192. /*
  1193. * Don't loop forever (perhaps all the remaining pages are
  1194. * in locked vmas). Reset cursor on all unreserved nonlinear
  1195. * vmas, now forgetting on which ones it had fallen behind.
  1196. */
  1197. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1198. vma->vm_private_data = NULL;
  1199. out:
  1200. spin_unlock(&mapping->i_mmap_lock);
  1201. return ret;
  1202. }
  1203. /**
  1204. * try_to_unmap - try to remove all page table mappings to a page
  1205. * @page: the page to get unmapped
  1206. * @flags: action and flags
  1207. *
  1208. * Tries to remove all the page table entries which are mapping this
  1209. * page, used in the pageout path. Caller must hold the page lock.
  1210. * Return values are:
  1211. *
  1212. * SWAP_SUCCESS - we succeeded in removing all mappings
  1213. * SWAP_AGAIN - we missed a mapping, try again later
  1214. * SWAP_FAIL - the page is unswappable
  1215. * SWAP_MLOCK - page is mlocked.
  1216. */
  1217. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1218. {
  1219. int ret;
  1220. BUG_ON(!PageLocked(page));
  1221. if (unlikely(PageKsm(page)))
  1222. ret = try_to_unmap_ksm(page, flags);
  1223. else if (PageAnon(page))
  1224. ret = try_to_unmap_anon(page, flags);
  1225. else
  1226. ret = try_to_unmap_file(page, flags);
  1227. if (ret != SWAP_MLOCK && !page_mapped(page))
  1228. ret = SWAP_SUCCESS;
  1229. return ret;
  1230. }
  1231. /**
  1232. * try_to_munlock - try to munlock a page
  1233. * @page: the page to be munlocked
  1234. *
  1235. * Called from munlock code. Checks all of the VMAs mapping the page
  1236. * to make sure nobody else has this page mlocked. The page will be
  1237. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1238. *
  1239. * Return values are:
  1240. *
  1241. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1242. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1243. * SWAP_FAIL - page cannot be located at present
  1244. * SWAP_MLOCK - page is now mlocked.
  1245. */
  1246. int try_to_munlock(struct page *page)
  1247. {
  1248. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1249. if (unlikely(PageKsm(page)))
  1250. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1251. else if (PageAnon(page))
  1252. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1253. else
  1254. return try_to_unmap_file(page, TTU_MUNLOCK);
  1255. }
  1256. #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
  1257. /*
  1258. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1259. * if necessary. Be careful to do all the tests under the lock. Once
  1260. * we know we are the last user, nobody else can get a reference and we
  1261. * can do the freeing without the lock.
  1262. */
  1263. void drop_anon_vma(struct anon_vma *anon_vma)
  1264. {
  1265. BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
  1266. if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
  1267. struct anon_vma *root = anon_vma->root;
  1268. int empty = list_empty(&anon_vma->head);
  1269. int last_root_user = 0;
  1270. int root_empty = 0;
  1271. /*
  1272. * The refcount on a non-root anon_vma got dropped. Drop
  1273. * the refcount on the root and check if we need to free it.
  1274. */
  1275. if (empty && anon_vma != root) {
  1276. BUG_ON(atomic_read(&root->external_refcount) <= 0);
  1277. last_root_user = atomic_dec_and_test(&root->external_refcount);
  1278. root_empty = list_empty(&root->head);
  1279. }
  1280. anon_vma_unlock(anon_vma);
  1281. if (empty) {
  1282. anon_vma_free(anon_vma);
  1283. if (root_empty && last_root_user)
  1284. anon_vma_free(root);
  1285. }
  1286. }
  1287. }
  1288. #endif
  1289. #ifdef CONFIG_MIGRATION
  1290. /*
  1291. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1292. * Called by migrate.c to remove migration ptes, but might be used more later.
  1293. */
  1294. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1295. struct vm_area_struct *, unsigned long, void *), void *arg)
  1296. {
  1297. struct anon_vma *anon_vma;
  1298. struct anon_vma_chain *avc;
  1299. int ret = SWAP_AGAIN;
  1300. /*
  1301. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1302. * because that depends on page_mapped(); but not all its usages
  1303. * are holding mmap_sem. Users without mmap_sem are required to
  1304. * take a reference count to prevent the anon_vma disappearing
  1305. */
  1306. anon_vma = page_anon_vma(page);
  1307. if (!anon_vma)
  1308. return ret;
  1309. anon_vma_lock(anon_vma);
  1310. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1311. struct vm_area_struct *vma = avc->vma;
  1312. unsigned long address = vma_address(page, vma);
  1313. if (address == -EFAULT)
  1314. continue;
  1315. ret = rmap_one(page, vma, address, arg);
  1316. if (ret != SWAP_AGAIN)
  1317. break;
  1318. }
  1319. anon_vma_unlock(anon_vma);
  1320. return ret;
  1321. }
  1322. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1323. struct vm_area_struct *, unsigned long, void *), void *arg)
  1324. {
  1325. struct address_space *mapping = page->mapping;
  1326. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1327. struct vm_area_struct *vma;
  1328. struct prio_tree_iter iter;
  1329. int ret = SWAP_AGAIN;
  1330. if (!mapping)
  1331. return ret;
  1332. spin_lock(&mapping->i_mmap_lock);
  1333. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1334. unsigned long address = vma_address(page, vma);
  1335. if (address == -EFAULT)
  1336. continue;
  1337. ret = rmap_one(page, vma, address, arg);
  1338. if (ret != SWAP_AGAIN)
  1339. break;
  1340. }
  1341. /*
  1342. * No nonlinear handling: being always shared, nonlinear vmas
  1343. * never contain migration ptes. Decide what to do about this
  1344. * limitation to linear when we need rmap_walk() on nonlinear.
  1345. */
  1346. spin_unlock(&mapping->i_mmap_lock);
  1347. return ret;
  1348. }
  1349. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1350. struct vm_area_struct *, unsigned long, void *), void *arg)
  1351. {
  1352. VM_BUG_ON(!PageLocked(page));
  1353. if (unlikely(PageKsm(page)))
  1354. return rmap_walk_ksm(page, rmap_one, arg);
  1355. else if (PageAnon(page))
  1356. return rmap_walk_anon(page, rmap_one, arg);
  1357. else
  1358. return rmap_walk_file(page, rmap_one, arg);
  1359. }
  1360. #endif /* CONFIG_MIGRATION */