spi_s3c64xx.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. /* linux/drivers/spi/spi_s3c64xx.c
  2. *
  3. * Copyright (C) 2009 Samsung Electronics Ltd.
  4. * Jaswinder Singh <jassi.brar@samsung.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/spi.h>
  28. #include <mach/dma.h>
  29. #include <plat/spi.h>
  30. /* Registers and bit-fields */
  31. #define S3C64XX_SPI_CH_CFG 0x00
  32. #define S3C64XX_SPI_CLK_CFG 0x04
  33. #define S3C64XX_SPI_MODE_CFG 0x08
  34. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  35. #define S3C64XX_SPI_INT_EN 0x10
  36. #define S3C64XX_SPI_STATUS 0x14
  37. #define S3C64XX_SPI_TX_DATA 0x18
  38. #define S3C64XX_SPI_RX_DATA 0x1C
  39. #define S3C64XX_SPI_PACKET_CNT 0x20
  40. #define S3C64XX_SPI_PENDING_CLR 0x24
  41. #define S3C64XX_SPI_SWAP_CFG 0x28
  42. #define S3C64XX_SPI_FB_CLK 0x2C
  43. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  44. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  45. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  46. #define S3C64XX_SPI_CPOL_L (1<<3)
  47. #define S3C64XX_SPI_CPHA_B (1<<2)
  48. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  49. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  50. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  51. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  52. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  53. #define S3C64XX_SPI_PSR_MASK 0xff
  54. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  55. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  58. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  62. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  63. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  64. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  65. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  66. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  67. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  68. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  69. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  70. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  71. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  72. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  73. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  74. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  75. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  76. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  77. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  78. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  79. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  80. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  81. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  82. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  83. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  84. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  85. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  86. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  87. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  88. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  89. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  90. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  91. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  92. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  93. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  94. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  95. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  96. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  97. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  98. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  99. (((i)->fifo_lvl_mask + 1))) \
  100. ? 1 : 0)
  101. #define S3C64XX_SPI_ST_TX_DONE(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  102. (((i)->fifo_lvl_mask + 1) << 1)) \
  103. ? 1 : 0)
  104. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  105. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  106. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  107. #define S3C64XX_SPI_TRAILCNT_OFF 19
  108. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  109. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  110. #define SUSPND (1<<0)
  111. #define SPIBUSY (1<<1)
  112. #define RXBUSY (1<<2)
  113. #define TXBUSY (1<<3)
  114. /**
  115. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  116. * @clk: Pointer to the spi clock.
  117. * @master: Pointer to the SPI Protocol master.
  118. * @workqueue: Work queue for the SPI xfer requests.
  119. * @cntrlr_info: Platform specific data for the controller this driver manages.
  120. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  121. * @work: Work
  122. * @queue: To log SPI xfer requests.
  123. * @lock: Controller specific lock.
  124. * @state: Set of FLAGS to indicate status.
  125. * @rx_dmach: Controller's DMA channel for Rx.
  126. * @tx_dmach: Controller's DMA channel for Tx.
  127. * @sfr_start: BUS address of SPI controller regs.
  128. * @regs: Pointer to ioremap'ed controller registers.
  129. * @xfer_completion: To indicate completion of xfer task.
  130. * @cur_mode: Stores the active configuration of the controller.
  131. * @cur_bpw: Stores the active bits per word settings.
  132. * @cur_speed: Stores the active xfer clock speed.
  133. */
  134. struct s3c64xx_spi_driver_data {
  135. void __iomem *regs;
  136. struct clk *clk;
  137. struct platform_device *pdev;
  138. struct spi_master *master;
  139. struct workqueue_struct *workqueue;
  140. struct s3c64xx_spi_info *cntrlr_info;
  141. struct spi_device *tgl_spi;
  142. struct work_struct work;
  143. struct list_head queue;
  144. spinlock_t lock;
  145. enum dma_ch rx_dmach;
  146. enum dma_ch tx_dmach;
  147. unsigned long sfr_start;
  148. struct completion xfer_completion;
  149. unsigned state;
  150. unsigned cur_mode, cur_bpw;
  151. unsigned cur_speed;
  152. };
  153. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  154. .name = "samsung-spi-dma",
  155. };
  156. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  157. {
  158. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  159. void __iomem *regs = sdd->regs;
  160. unsigned long loops;
  161. u32 val;
  162. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  163. val = readl(regs + S3C64XX_SPI_CH_CFG);
  164. val |= S3C64XX_SPI_CH_SW_RST;
  165. val &= ~S3C64XX_SPI_CH_HS_EN;
  166. writel(val, regs + S3C64XX_SPI_CH_CFG);
  167. /* Flush TxFIFO*/
  168. loops = msecs_to_loops(1);
  169. do {
  170. val = readl(regs + S3C64XX_SPI_STATUS);
  171. } while (TX_FIFO_LVL(val, sci) && loops--);
  172. /* Flush RxFIFO*/
  173. loops = msecs_to_loops(1);
  174. do {
  175. val = readl(regs + S3C64XX_SPI_STATUS);
  176. if (RX_FIFO_LVL(val, sci))
  177. readl(regs + S3C64XX_SPI_RX_DATA);
  178. else
  179. break;
  180. } while (loops--);
  181. val = readl(regs + S3C64XX_SPI_CH_CFG);
  182. val &= ~S3C64XX_SPI_CH_SW_RST;
  183. writel(val, regs + S3C64XX_SPI_CH_CFG);
  184. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  185. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  186. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  187. val = readl(regs + S3C64XX_SPI_CH_CFG);
  188. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  189. writel(val, regs + S3C64XX_SPI_CH_CFG);
  190. }
  191. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  192. struct spi_device *spi,
  193. struct spi_transfer *xfer, int dma_mode)
  194. {
  195. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  196. void __iomem *regs = sdd->regs;
  197. u32 modecfg, chcfg;
  198. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  199. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  200. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  201. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  202. if (dma_mode) {
  203. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  204. } else {
  205. /* Always shift in data in FIFO, even if xfer is Tx only,
  206. * this helps setting PCKT_CNT value for generating clocks
  207. * as exactly needed.
  208. */
  209. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  210. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  211. | S3C64XX_SPI_PACKET_CNT_EN,
  212. regs + S3C64XX_SPI_PACKET_CNT);
  213. }
  214. if (xfer->tx_buf != NULL) {
  215. sdd->state |= TXBUSY;
  216. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  217. if (dma_mode) {
  218. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  219. s3c2410_dma_config(sdd->tx_dmach, 1);
  220. s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
  221. xfer->tx_dma, xfer->len);
  222. s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
  223. } else {
  224. unsigned char *buf = (unsigned char *) xfer->tx_buf;
  225. int i = 0;
  226. while (i < xfer->len)
  227. writeb(buf[i++], regs + S3C64XX_SPI_TX_DATA);
  228. }
  229. }
  230. if (xfer->rx_buf != NULL) {
  231. sdd->state |= RXBUSY;
  232. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  233. && !(sdd->cur_mode & SPI_CPHA))
  234. chcfg |= S3C64XX_SPI_CH_HS_EN;
  235. if (dma_mode) {
  236. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  237. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  238. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  239. | S3C64XX_SPI_PACKET_CNT_EN,
  240. regs + S3C64XX_SPI_PACKET_CNT);
  241. s3c2410_dma_config(sdd->rx_dmach, 1);
  242. s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
  243. xfer->rx_dma, xfer->len);
  244. s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
  245. }
  246. }
  247. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  248. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  249. }
  250. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  251. struct spi_device *spi)
  252. {
  253. struct s3c64xx_spi_csinfo *cs;
  254. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  255. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  256. /* Deselect the last toggled device */
  257. cs = sdd->tgl_spi->controller_data;
  258. cs->set_level(spi->mode & SPI_CS_HIGH ? 0 : 1);
  259. }
  260. sdd->tgl_spi = NULL;
  261. }
  262. cs = spi->controller_data;
  263. cs->set_level(spi->mode & SPI_CS_HIGH ? 1 : 0);
  264. }
  265. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  266. struct spi_transfer *xfer, int dma_mode)
  267. {
  268. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  269. void __iomem *regs = sdd->regs;
  270. unsigned long val;
  271. int ms;
  272. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  273. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  274. ms += 5; /* some tolerance */
  275. if (dma_mode) {
  276. val = msecs_to_jiffies(ms) + 10;
  277. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  278. } else {
  279. val = msecs_to_loops(ms);
  280. do {
  281. val = readl(regs + S3C64XX_SPI_STATUS);
  282. } while (RX_FIFO_LVL(val, sci) < xfer->len && --val);
  283. }
  284. if (!val)
  285. return -EIO;
  286. if (dma_mode) {
  287. u32 status;
  288. /*
  289. * DmaTx returns after simply writing data in the FIFO,
  290. * w/o waiting for real transmission on the bus to finish.
  291. * DmaRx returns only after Dma read data from FIFO which
  292. * needs bus transmission to finish, so we don't worry if
  293. * Xfer involved Rx(with or without Tx).
  294. */
  295. if (xfer->rx_buf == NULL) {
  296. val = msecs_to_loops(10);
  297. status = readl(regs + S3C64XX_SPI_STATUS);
  298. while ((TX_FIFO_LVL(status, sci)
  299. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  300. && --val) {
  301. cpu_relax();
  302. status = readl(regs + S3C64XX_SPI_STATUS);
  303. }
  304. if (!val)
  305. return -EIO;
  306. }
  307. } else {
  308. unsigned char *buf;
  309. int i;
  310. /* If it was only Tx */
  311. if (xfer->rx_buf == NULL) {
  312. sdd->state &= ~TXBUSY;
  313. return 0;
  314. }
  315. i = 0;
  316. buf = xfer->rx_buf;
  317. while (i < xfer->len)
  318. buf[i++] = readb(regs + S3C64XX_SPI_RX_DATA);
  319. sdd->state &= ~RXBUSY;
  320. }
  321. return 0;
  322. }
  323. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  324. struct spi_device *spi)
  325. {
  326. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  327. if (sdd->tgl_spi == spi)
  328. sdd->tgl_spi = NULL;
  329. cs->set_level(spi->mode & SPI_CS_HIGH ? 0 : 1);
  330. }
  331. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  332. {
  333. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  334. void __iomem *regs = sdd->regs;
  335. u32 val;
  336. /* Disable Clock */
  337. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  338. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  339. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  340. /* Set Polarity and Phase */
  341. val = readl(regs + S3C64XX_SPI_CH_CFG);
  342. val &= ~(S3C64XX_SPI_CH_SLAVE |
  343. S3C64XX_SPI_CPOL_L |
  344. S3C64XX_SPI_CPHA_B);
  345. if (sdd->cur_mode & SPI_CPOL)
  346. val |= S3C64XX_SPI_CPOL_L;
  347. if (sdd->cur_mode & SPI_CPHA)
  348. val |= S3C64XX_SPI_CPHA_B;
  349. writel(val, regs + S3C64XX_SPI_CH_CFG);
  350. /* Set Channel & DMA Mode */
  351. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  352. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  353. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  354. switch (sdd->cur_bpw) {
  355. case 32:
  356. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  357. break;
  358. case 16:
  359. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  360. break;
  361. default:
  362. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  363. break;
  364. }
  365. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; /* Always 8bits wide */
  366. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  367. /* Configure Clock */
  368. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  369. val &= ~S3C64XX_SPI_PSR_MASK;
  370. val |= ((clk_get_rate(sci->src_clk) / sdd->cur_speed / 2 - 1)
  371. & S3C64XX_SPI_PSR_MASK);
  372. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  373. /* Enable Clock */
  374. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  375. val |= S3C64XX_SPI_ENCLK_ENABLE;
  376. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  377. }
  378. void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
  379. int size, enum s3c2410_dma_buffresult res)
  380. {
  381. struct s3c64xx_spi_driver_data *sdd = buf_id;
  382. unsigned long flags;
  383. spin_lock_irqsave(&sdd->lock, flags);
  384. if (res == S3C2410_RES_OK)
  385. sdd->state &= ~RXBUSY;
  386. else
  387. dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);
  388. /* If the other done */
  389. if (!(sdd->state & TXBUSY))
  390. complete(&sdd->xfer_completion);
  391. spin_unlock_irqrestore(&sdd->lock, flags);
  392. }
  393. void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
  394. int size, enum s3c2410_dma_buffresult res)
  395. {
  396. struct s3c64xx_spi_driver_data *sdd = buf_id;
  397. unsigned long flags;
  398. spin_lock_irqsave(&sdd->lock, flags);
  399. if (res == S3C2410_RES_OK)
  400. sdd->state &= ~TXBUSY;
  401. else
  402. dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);
  403. /* If the other done */
  404. if (!(sdd->state & RXBUSY))
  405. complete(&sdd->xfer_completion);
  406. spin_unlock_irqrestore(&sdd->lock, flags);
  407. }
  408. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  409. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  410. struct spi_message *msg)
  411. {
  412. struct device *dev = &sdd->pdev->dev;
  413. struct spi_transfer *xfer;
  414. if (msg->is_dma_mapped)
  415. return 0;
  416. /* First mark all xfer unmapped */
  417. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  418. xfer->rx_dma = XFER_DMAADDR_INVALID;
  419. xfer->tx_dma = XFER_DMAADDR_INVALID;
  420. }
  421. /* Map until end or first fail */
  422. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  423. if (xfer->tx_buf != NULL) {
  424. xfer->tx_dma = dma_map_single(dev, xfer->tx_buf,
  425. xfer->len, DMA_TO_DEVICE);
  426. if (dma_mapping_error(dev, xfer->tx_dma)) {
  427. dev_err(dev, "dma_map_single Tx failed\n");
  428. xfer->tx_dma = XFER_DMAADDR_INVALID;
  429. return -ENOMEM;
  430. }
  431. }
  432. if (xfer->rx_buf != NULL) {
  433. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  434. xfer->len, DMA_FROM_DEVICE);
  435. if (dma_mapping_error(dev, xfer->rx_dma)) {
  436. dev_err(dev, "dma_map_single Rx failed\n");
  437. dma_unmap_single(dev, xfer->tx_dma,
  438. xfer->len, DMA_TO_DEVICE);
  439. xfer->tx_dma = XFER_DMAADDR_INVALID;
  440. xfer->rx_dma = XFER_DMAADDR_INVALID;
  441. return -ENOMEM;
  442. }
  443. }
  444. }
  445. return 0;
  446. }
  447. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  448. struct spi_message *msg)
  449. {
  450. struct device *dev = &sdd->pdev->dev;
  451. struct spi_transfer *xfer;
  452. if (msg->is_dma_mapped)
  453. return;
  454. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  455. if (xfer->rx_buf != NULL
  456. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  457. dma_unmap_single(dev, xfer->rx_dma,
  458. xfer->len, DMA_FROM_DEVICE);
  459. if (xfer->tx_buf != NULL
  460. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  461. dma_unmap_single(dev, xfer->tx_dma,
  462. xfer->len, DMA_TO_DEVICE);
  463. }
  464. }
  465. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  466. struct spi_message *msg)
  467. {
  468. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  469. struct spi_device *spi = msg->spi;
  470. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  471. struct spi_transfer *xfer;
  472. int status = 0, cs_toggle = 0;
  473. u32 speed;
  474. u8 bpw;
  475. /* If Master's(controller) state differs from that needed by Slave */
  476. if (sdd->cur_speed != spi->max_speed_hz
  477. || sdd->cur_mode != spi->mode
  478. || sdd->cur_bpw != spi->bits_per_word) {
  479. sdd->cur_bpw = spi->bits_per_word;
  480. sdd->cur_speed = spi->max_speed_hz;
  481. sdd->cur_mode = spi->mode;
  482. s3c64xx_spi_config(sdd);
  483. }
  484. /* Map all the transfers if needed */
  485. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  486. dev_err(&spi->dev,
  487. "Xfer: Unable to map message buffers!\n");
  488. status = -ENOMEM;
  489. goto out;
  490. }
  491. /* Configure feedback delay */
  492. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  493. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  494. unsigned long flags;
  495. int use_dma;
  496. INIT_COMPLETION(sdd->xfer_completion);
  497. /* Only BPW and Speed may change across transfers */
  498. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  499. speed = xfer->speed_hz ? : spi->max_speed_hz;
  500. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  501. sdd->cur_bpw = bpw;
  502. sdd->cur_speed = speed;
  503. s3c64xx_spi_config(sdd);
  504. }
  505. /* Polling method for xfers not bigger than FIFO capacity */
  506. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  507. use_dma = 0;
  508. else
  509. use_dma = 1;
  510. spin_lock_irqsave(&sdd->lock, flags);
  511. /* Pending only which is to be done */
  512. sdd->state &= ~RXBUSY;
  513. sdd->state &= ~TXBUSY;
  514. enable_datapath(sdd, spi, xfer, use_dma);
  515. /* Slave Select */
  516. enable_cs(sdd, spi);
  517. /* Start the signals */
  518. S3C64XX_SPI_ACT(sdd);
  519. spin_unlock_irqrestore(&sdd->lock, flags);
  520. status = wait_for_xfer(sdd, xfer, use_dma);
  521. /* Quiese the signals */
  522. S3C64XX_SPI_DEACT(sdd);
  523. if (status) {
  524. dev_err(&spi->dev, "I/O Error: \
  525. rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  526. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  527. (sdd->state & RXBUSY) ? 'f' : 'p',
  528. (sdd->state & TXBUSY) ? 'f' : 'p',
  529. xfer->len);
  530. if (use_dma) {
  531. if (xfer->tx_buf != NULL
  532. && (sdd->state & TXBUSY))
  533. s3c2410_dma_ctrl(sdd->tx_dmach,
  534. S3C2410_DMAOP_FLUSH);
  535. if (xfer->rx_buf != NULL
  536. && (sdd->state & RXBUSY))
  537. s3c2410_dma_ctrl(sdd->rx_dmach,
  538. S3C2410_DMAOP_FLUSH);
  539. }
  540. goto out;
  541. }
  542. if (xfer->delay_usecs)
  543. udelay(xfer->delay_usecs);
  544. if (xfer->cs_change) {
  545. /* Hint that the next mssg is gonna be
  546. for the same device */
  547. if (list_is_last(&xfer->transfer_list,
  548. &msg->transfers))
  549. cs_toggle = 1;
  550. else
  551. disable_cs(sdd, spi);
  552. }
  553. msg->actual_length += xfer->len;
  554. flush_fifo(sdd);
  555. }
  556. out:
  557. if (!cs_toggle || status)
  558. disable_cs(sdd, spi);
  559. else
  560. sdd->tgl_spi = spi;
  561. s3c64xx_spi_unmap_mssg(sdd, msg);
  562. msg->status = status;
  563. if (msg->complete)
  564. msg->complete(msg->context);
  565. }
  566. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  567. {
  568. if (s3c2410_dma_request(sdd->rx_dmach,
  569. &s3c64xx_spi_dma_client, NULL) < 0) {
  570. dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
  571. return 0;
  572. }
  573. s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
  574. s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
  575. sdd->sfr_start + S3C64XX_SPI_RX_DATA);
  576. if (s3c2410_dma_request(sdd->tx_dmach,
  577. &s3c64xx_spi_dma_client, NULL) < 0) {
  578. dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
  579. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  580. return 0;
  581. }
  582. s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
  583. s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
  584. sdd->sfr_start + S3C64XX_SPI_TX_DATA);
  585. return 1;
  586. }
  587. static void s3c64xx_spi_work(struct work_struct *work)
  588. {
  589. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  590. struct s3c64xx_spi_driver_data, work);
  591. unsigned long flags;
  592. /* Acquire DMA channels */
  593. while (!acquire_dma(sdd))
  594. msleep(10);
  595. spin_lock_irqsave(&sdd->lock, flags);
  596. while (!list_empty(&sdd->queue)
  597. && !(sdd->state & SUSPND)) {
  598. struct spi_message *msg;
  599. msg = container_of(sdd->queue.next, struct spi_message, queue);
  600. list_del_init(&msg->queue);
  601. /* Set Xfer busy flag */
  602. sdd->state |= SPIBUSY;
  603. spin_unlock_irqrestore(&sdd->lock, flags);
  604. handle_msg(sdd, msg);
  605. spin_lock_irqsave(&sdd->lock, flags);
  606. sdd->state &= ~SPIBUSY;
  607. }
  608. spin_unlock_irqrestore(&sdd->lock, flags);
  609. /* Free DMA channels */
  610. s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
  611. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  612. }
  613. static int s3c64xx_spi_transfer(struct spi_device *spi,
  614. struct spi_message *msg)
  615. {
  616. struct s3c64xx_spi_driver_data *sdd;
  617. unsigned long flags;
  618. sdd = spi_master_get_devdata(spi->master);
  619. spin_lock_irqsave(&sdd->lock, flags);
  620. if (sdd->state & SUSPND) {
  621. spin_unlock_irqrestore(&sdd->lock, flags);
  622. return -ESHUTDOWN;
  623. }
  624. msg->status = -EINPROGRESS;
  625. msg->actual_length = 0;
  626. list_add_tail(&msg->queue, &sdd->queue);
  627. queue_work(sdd->workqueue, &sdd->work);
  628. spin_unlock_irqrestore(&sdd->lock, flags);
  629. return 0;
  630. }
  631. /*
  632. * Here we only check the validity of requested configuration
  633. * and save the configuration in a local data-structure.
  634. * The controller is actually configured only just before we
  635. * get a message to transfer.
  636. */
  637. static int s3c64xx_spi_setup(struct spi_device *spi)
  638. {
  639. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  640. struct s3c64xx_spi_driver_data *sdd;
  641. struct s3c64xx_spi_info *sci;
  642. struct spi_message *msg;
  643. u32 psr, speed;
  644. unsigned long flags;
  645. int err = 0;
  646. if (cs == NULL || cs->set_level == NULL) {
  647. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  648. return -ENODEV;
  649. }
  650. sdd = spi_master_get_devdata(spi->master);
  651. sci = sdd->cntrlr_info;
  652. spin_lock_irqsave(&sdd->lock, flags);
  653. list_for_each_entry(msg, &sdd->queue, queue) {
  654. /* Is some mssg is already queued for this device */
  655. if (msg->spi == spi) {
  656. dev_err(&spi->dev,
  657. "setup: attempt while mssg in queue!\n");
  658. spin_unlock_irqrestore(&sdd->lock, flags);
  659. return -EBUSY;
  660. }
  661. }
  662. if (sdd->state & SUSPND) {
  663. spin_unlock_irqrestore(&sdd->lock, flags);
  664. dev_err(&spi->dev,
  665. "setup: SPI-%d not active!\n", spi->master->bus_num);
  666. return -ESHUTDOWN;
  667. }
  668. spin_unlock_irqrestore(&sdd->lock, flags);
  669. if (spi->bits_per_word != 8
  670. && spi->bits_per_word != 16
  671. && spi->bits_per_word != 32) {
  672. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  673. spi->bits_per_word);
  674. err = -EINVAL;
  675. goto setup_exit;
  676. }
  677. /* Check if we can provide the requested rate */
  678. speed = clk_get_rate(sci->src_clk) / 2 / (0 + 1); /* Max possible */
  679. if (spi->max_speed_hz > speed)
  680. spi->max_speed_hz = speed;
  681. psr = clk_get_rate(sci->src_clk) / 2 / spi->max_speed_hz - 1;
  682. psr &= S3C64XX_SPI_PSR_MASK;
  683. if (psr == S3C64XX_SPI_PSR_MASK)
  684. psr--;
  685. speed = clk_get_rate(sci->src_clk) / 2 / (psr + 1);
  686. if (spi->max_speed_hz < speed) {
  687. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  688. psr++;
  689. } else {
  690. err = -EINVAL;
  691. goto setup_exit;
  692. }
  693. }
  694. speed = clk_get_rate(sci->src_clk) / 2 / (psr + 1);
  695. if (spi->max_speed_hz >= speed)
  696. spi->max_speed_hz = speed;
  697. else
  698. err = -EINVAL;
  699. setup_exit:
  700. /* setup() returns with device de-selected */
  701. disable_cs(sdd, spi);
  702. return err;
  703. }
  704. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  705. {
  706. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  707. void __iomem *regs = sdd->regs;
  708. unsigned int val;
  709. sdd->cur_speed = 0;
  710. S3C64XX_SPI_DEACT(sdd);
  711. /* Disable Interrupts - we use Polling if not DMA mode */
  712. writel(0, regs + S3C64XX_SPI_INT_EN);
  713. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  714. regs + S3C64XX_SPI_CLK_CFG);
  715. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  716. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  717. /* Clear any irq pending bits */
  718. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  719. regs + S3C64XX_SPI_PENDING_CLR);
  720. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  721. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  722. val &= ~S3C64XX_SPI_MODE_4BURST;
  723. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  724. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  725. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  726. flush_fifo(sdd);
  727. }
  728. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  729. {
  730. struct resource *mem_res, *dmatx_res, *dmarx_res;
  731. struct s3c64xx_spi_driver_data *sdd;
  732. struct s3c64xx_spi_info *sci;
  733. struct spi_master *master;
  734. int ret;
  735. if (pdev->id < 0) {
  736. dev_err(&pdev->dev,
  737. "Invalid platform device id-%d\n", pdev->id);
  738. return -ENODEV;
  739. }
  740. if (pdev->dev.platform_data == NULL) {
  741. dev_err(&pdev->dev, "platform_data missing!\n");
  742. return -ENODEV;
  743. }
  744. /* Check for availability of necessary resource */
  745. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  746. if (dmatx_res == NULL) {
  747. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  748. return -ENXIO;
  749. }
  750. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  751. if (dmarx_res == NULL) {
  752. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  753. return -ENXIO;
  754. }
  755. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  756. if (mem_res == NULL) {
  757. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  758. return -ENXIO;
  759. }
  760. master = spi_alloc_master(&pdev->dev,
  761. sizeof(struct s3c64xx_spi_driver_data));
  762. if (master == NULL) {
  763. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  764. return -ENOMEM;
  765. }
  766. sci = pdev->dev.platform_data;
  767. platform_set_drvdata(pdev, master);
  768. sdd = spi_master_get_devdata(master);
  769. sdd->master = master;
  770. sdd->cntrlr_info = sci;
  771. sdd->pdev = pdev;
  772. sdd->sfr_start = mem_res->start;
  773. sdd->tx_dmach = dmatx_res->start;
  774. sdd->rx_dmach = dmarx_res->start;
  775. sdd->cur_bpw = 8;
  776. master->bus_num = pdev->id;
  777. master->setup = s3c64xx_spi_setup;
  778. master->transfer = s3c64xx_spi_transfer;
  779. master->num_chipselect = sci->num_cs;
  780. master->dma_alignment = 8;
  781. /* the spi->mode bits understood by this driver: */
  782. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  783. if (request_mem_region(mem_res->start,
  784. resource_size(mem_res), pdev->name) == NULL) {
  785. dev_err(&pdev->dev, "Req mem region failed\n");
  786. ret = -ENXIO;
  787. goto err0;
  788. }
  789. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  790. if (sdd->regs == NULL) {
  791. dev_err(&pdev->dev, "Unable to remap IO\n");
  792. ret = -ENXIO;
  793. goto err1;
  794. }
  795. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  796. dev_err(&pdev->dev, "Unable to config gpio\n");
  797. ret = -EBUSY;
  798. goto err2;
  799. }
  800. /* Setup clocks */
  801. sdd->clk = clk_get(&pdev->dev, "spi");
  802. if (IS_ERR(sdd->clk)) {
  803. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  804. ret = PTR_ERR(sdd->clk);
  805. goto err3;
  806. }
  807. if (clk_enable(sdd->clk)) {
  808. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  809. ret = -EBUSY;
  810. goto err4;
  811. }
  812. if (sci->src_clk_nr == S3C64XX_SPI_SRCCLK_PCLK)
  813. sci->src_clk = sdd->clk;
  814. else
  815. sci->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
  816. if (IS_ERR(sci->src_clk)) {
  817. dev_err(&pdev->dev,
  818. "Unable to acquire clock '%s'\n", sci->src_clk_name);
  819. ret = PTR_ERR(sci->src_clk);
  820. goto err5;
  821. }
  822. if (sci->src_clk != sdd->clk && clk_enable(sci->src_clk)) {
  823. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
  824. sci->src_clk_name);
  825. ret = -EBUSY;
  826. goto err6;
  827. }
  828. sdd->workqueue = create_singlethread_workqueue(
  829. dev_name(master->dev.parent));
  830. if (sdd->workqueue == NULL) {
  831. dev_err(&pdev->dev, "Unable to create workqueue\n");
  832. ret = -ENOMEM;
  833. goto err7;
  834. }
  835. /* Setup Deufult Mode */
  836. s3c64xx_spi_hwinit(sdd, pdev->id);
  837. spin_lock_init(&sdd->lock);
  838. init_completion(&sdd->xfer_completion);
  839. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  840. INIT_LIST_HEAD(&sdd->queue);
  841. if (spi_register_master(master)) {
  842. dev_err(&pdev->dev, "cannot register SPI master\n");
  843. ret = -EBUSY;
  844. goto err8;
  845. }
  846. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d \
  847. with %d Slaves attached\n",
  848. pdev->id, master->num_chipselect);
  849. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\
  850. \tDMA=[Rx-%d, Tx-%d]\n",
  851. mem_res->end, mem_res->start,
  852. sdd->rx_dmach, sdd->tx_dmach);
  853. return 0;
  854. err8:
  855. destroy_workqueue(sdd->workqueue);
  856. err7:
  857. if (sci->src_clk != sdd->clk)
  858. clk_disable(sci->src_clk);
  859. err6:
  860. if (sci->src_clk != sdd->clk)
  861. clk_put(sci->src_clk);
  862. err5:
  863. clk_disable(sdd->clk);
  864. err4:
  865. clk_put(sdd->clk);
  866. err3:
  867. err2:
  868. iounmap((void *) sdd->regs);
  869. err1:
  870. release_mem_region(mem_res->start, resource_size(mem_res));
  871. err0:
  872. platform_set_drvdata(pdev, NULL);
  873. spi_master_put(master);
  874. return ret;
  875. }
  876. static int s3c64xx_spi_remove(struct platform_device *pdev)
  877. {
  878. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  879. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  880. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  881. struct resource *mem_res;
  882. unsigned long flags;
  883. spin_lock_irqsave(&sdd->lock, flags);
  884. sdd->state |= SUSPND;
  885. spin_unlock_irqrestore(&sdd->lock, flags);
  886. while (sdd->state & SPIBUSY)
  887. msleep(10);
  888. spi_unregister_master(master);
  889. destroy_workqueue(sdd->workqueue);
  890. if (sci->src_clk != sdd->clk)
  891. clk_disable(sci->src_clk);
  892. if (sci->src_clk != sdd->clk)
  893. clk_put(sci->src_clk);
  894. clk_disable(sdd->clk);
  895. clk_put(sdd->clk);
  896. iounmap((void *) sdd->regs);
  897. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  898. release_mem_region(mem_res->start, resource_size(mem_res));
  899. platform_set_drvdata(pdev, NULL);
  900. spi_master_put(master);
  901. return 0;
  902. }
  903. #ifdef CONFIG_PM
  904. static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  905. {
  906. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  907. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  908. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  909. struct s3c64xx_spi_csinfo *cs;
  910. unsigned long flags;
  911. spin_lock_irqsave(&sdd->lock, flags);
  912. sdd->state |= SUSPND;
  913. spin_unlock_irqrestore(&sdd->lock, flags);
  914. while (sdd->state & SPIBUSY)
  915. msleep(10);
  916. /* Disable the clock */
  917. if (sci->src_clk != sdd->clk)
  918. clk_disable(sci->src_clk);
  919. clk_disable(sdd->clk);
  920. sdd->cur_speed = 0; /* Output Clock is stopped */
  921. return 0;
  922. }
  923. static int s3c64xx_spi_resume(struct platform_device *pdev)
  924. {
  925. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  926. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  927. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  928. unsigned long flags;
  929. sci->cfg_gpio(pdev);
  930. /* Enable the clock */
  931. if (sci->src_clk != sdd->clk)
  932. clk_enable(sci->src_clk);
  933. clk_enable(sdd->clk);
  934. s3c64xx_spi_hwinit(sdd, pdev->id);
  935. spin_lock_irqsave(&sdd->lock, flags);
  936. sdd->state &= ~SUSPND;
  937. spin_unlock_irqrestore(&sdd->lock, flags);
  938. return 0;
  939. }
  940. #else
  941. #define s3c64xx_spi_suspend NULL
  942. #define s3c64xx_spi_resume NULL
  943. #endif /* CONFIG_PM */
  944. static struct platform_driver s3c64xx_spi_driver = {
  945. .driver = {
  946. .name = "s3c64xx-spi",
  947. .owner = THIS_MODULE,
  948. },
  949. .remove = s3c64xx_spi_remove,
  950. .suspend = s3c64xx_spi_suspend,
  951. .resume = s3c64xx_spi_resume,
  952. };
  953. MODULE_ALIAS("platform:s3c64xx-spi");
  954. static int __init s3c64xx_spi_init(void)
  955. {
  956. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  957. }
  958. module_init(s3c64xx_spi_init);
  959. static void __exit s3c64xx_spi_exit(void)
  960. {
  961. platform_driver_unregister(&s3c64xx_spi_driver);
  962. }
  963. module_exit(s3c64xx_spi_exit);
  964. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  965. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  966. MODULE_LICENSE("GPL");