perf_counter.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. /*
  77. * Generalized hw caching related event table, filled
  78. * in on a per model basis. A value of 0 means
  79. * 'not supported', -1 means 'event makes no sense on
  80. * this CPU', any other value means the raw event
  81. * ID.
  82. */
  83. #define C(x) PERF_COUNT_HW_CACHE_##x
  84. static u64 __read_mostly hw_cache_event_ids
  85. [PERF_COUNT_HW_CACHE_MAX]
  86. [PERF_COUNT_HW_CACHE_OP_MAX]
  87. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  88. static const u64 nehalem_hw_cache_event_ids
  89. [PERF_COUNT_HW_CACHE_MAX]
  90. [PERF_COUNT_HW_CACHE_OP_MAX]
  91. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  92. {
  93. [ C(L1D) ] = {
  94. [ C(OP_READ) ] = {
  95. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  96. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  97. },
  98. [ C(OP_WRITE) ] = {
  99. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  100. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  101. },
  102. [ C(OP_PREFETCH) ] = {
  103. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  104. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  105. },
  106. },
  107. [ C(L1I ) ] = {
  108. [ C(OP_READ) ] = {
  109. [ C(RESULT_ACCESS) ] = 0x0480, /* L1I.READS */
  110. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  111. },
  112. [ C(OP_WRITE) ] = {
  113. [ C(RESULT_ACCESS) ] = -1,
  114. [ C(RESULT_MISS) ] = -1,
  115. },
  116. [ C(OP_PREFETCH) ] = {
  117. [ C(RESULT_ACCESS) ] = 0x0,
  118. [ C(RESULT_MISS) ] = 0x0,
  119. },
  120. },
  121. [ C(L2 ) ] = {
  122. [ C(OP_READ) ] = {
  123. [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
  124. [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
  125. },
  126. [ C(OP_WRITE) ] = {
  127. [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
  128. [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
  129. },
  130. [ C(OP_PREFETCH) ] = {
  131. [ C(RESULT_ACCESS) ] = 0xc024, /* L2_RQSTS.PREFETCHES */
  132. [ C(RESULT_MISS) ] = 0x8024, /* L2_RQSTS.PREFETCH_MISS */
  133. },
  134. },
  135. [ C(DTLB) ] = {
  136. [ C(OP_READ) ] = {
  137. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  138. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  139. },
  140. [ C(OP_WRITE) ] = {
  141. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  142. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  143. },
  144. [ C(OP_PREFETCH) ] = {
  145. [ C(RESULT_ACCESS) ] = 0x0,
  146. [ C(RESULT_MISS) ] = 0x0,
  147. },
  148. },
  149. [ C(ITLB) ] = {
  150. [ C(OP_READ) ] = {
  151. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  152. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISS_RETIRED */
  153. },
  154. [ C(OP_WRITE) ] = {
  155. [ C(RESULT_ACCESS) ] = -1,
  156. [ C(RESULT_MISS) ] = -1,
  157. },
  158. [ C(OP_PREFETCH) ] = {
  159. [ C(RESULT_ACCESS) ] = -1,
  160. [ C(RESULT_MISS) ] = -1,
  161. },
  162. },
  163. [ C(BPU ) ] = {
  164. [ C(OP_READ) ] = {
  165. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  166. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  167. },
  168. [ C(OP_WRITE) ] = {
  169. [ C(RESULT_ACCESS) ] = -1,
  170. [ C(RESULT_MISS) ] = -1,
  171. },
  172. [ C(OP_PREFETCH) ] = {
  173. [ C(RESULT_ACCESS) ] = -1,
  174. [ C(RESULT_MISS) ] = -1,
  175. },
  176. },
  177. };
  178. static const u64 core2_hw_cache_event_ids
  179. [PERF_COUNT_HW_CACHE_MAX]
  180. [PERF_COUNT_HW_CACHE_OP_MAX]
  181. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  182. {
  183. [ C(L1D) ] = {
  184. [ C(OP_READ) ] = {
  185. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  186. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  187. },
  188. [ C(OP_WRITE) ] = {
  189. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  190. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  191. },
  192. [ C(OP_PREFETCH) ] = {
  193. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  194. [ C(RESULT_MISS) ] = 0,
  195. },
  196. },
  197. [ C(L1I ) ] = {
  198. [ C(OP_READ) ] = {
  199. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  200. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  201. },
  202. [ C(OP_WRITE) ] = {
  203. [ C(RESULT_ACCESS) ] = -1,
  204. [ C(RESULT_MISS) ] = -1,
  205. },
  206. [ C(OP_PREFETCH) ] = {
  207. [ C(RESULT_ACCESS) ] = 0,
  208. [ C(RESULT_MISS) ] = 0,
  209. },
  210. },
  211. [ C(L2 ) ] = {
  212. [ C(OP_READ) ] = {
  213. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  214. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  215. },
  216. [ C(OP_WRITE) ] = {
  217. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  218. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  219. },
  220. [ C(OP_PREFETCH) ] = {
  221. [ C(RESULT_ACCESS) ] = 0,
  222. [ C(RESULT_MISS) ] = 0,
  223. },
  224. },
  225. [ C(DTLB) ] = {
  226. [ C(OP_READ) ] = {
  227. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  228. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  229. },
  230. [ C(OP_WRITE) ] = {
  231. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  232. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  233. },
  234. [ C(OP_PREFETCH) ] = {
  235. [ C(RESULT_ACCESS) ] = 0,
  236. [ C(RESULT_MISS) ] = 0,
  237. },
  238. },
  239. [ C(ITLB) ] = {
  240. [ C(OP_READ) ] = {
  241. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  242. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  243. },
  244. [ C(OP_WRITE) ] = {
  245. [ C(RESULT_ACCESS) ] = -1,
  246. [ C(RESULT_MISS) ] = -1,
  247. },
  248. [ C(OP_PREFETCH) ] = {
  249. [ C(RESULT_ACCESS) ] = -1,
  250. [ C(RESULT_MISS) ] = -1,
  251. },
  252. },
  253. [ C(BPU ) ] = {
  254. [ C(OP_READ) ] = {
  255. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  256. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  257. },
  258. [ C(OP_WRITE) ] = {
  259. [ C(RESULT_ACCESS) ] = -1,
  260. [ C(RESULT_MISS) ] = -1,
  261. },
  262. [ C(OP_PREFETCH) ] = {
  263. [ C(RESULT_ACCESS) ] = -1,
  264. [ C(RESULT_MISS) ] = -1,
  265. },
  266. },
  267. };
  268. static const u64 atom_hw_cache_event_ids
  269. [PERF_COUNT_HW_CACHE_MAX]
  270. [PERF_COUNT_HW_CACHE_OP_MAX]
  271. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  272. {
  273. [ C(L1D) ] = {
  274. [ C(OP_READ) ] = {
  275. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  276. [ C(RESULT_MISS) ] = 0,
  277. },
  278. [ C(OP_WRITE) ] = {
  279. [ C(RESULT_ACCESS) ] = 0x2241, /* L1D_CACHE.ST */
  280. [ C(RESULT_MISS) ] = 0,
  281. },
  282. [ C(OP_PREFETCH) ] = {
  283. [ C(RESULT_ACCESS) ] = 0x0,
  284. [ C(RESULT_MISS) ] = 0,
  285. },
  286. },
  287. [ C(L1I ) ] = {
  288. [ C(OP_READ) ] = {
  289. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  290. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  291. },
  292. [ C(OP_WRITE) ] = {
  293. [ C(RESULT_ACCESS) ] = -1,
  294. [ C(RESULT_MISS) ] = -1,
  295. },
  296. [ C(OP_PREFETCH) ] = {
  297. [ C(RESULT_ACCESS) ] = 0,
  298. [ C(RESULT_MISS) ] = 0,
  299. },
  300. },
  301. [ C(L2 ) ] = {
  302. [ C(OP_READ) ] = {
  303. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  304. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  305. },
  306. [ C(OP_WRITE) ] = {
  307. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  308. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  309. },
  310. [ C(OP_PREFETCH) ] = {
  311. [ C(RESULT_ACCESS) ] = 0,
  312. [ C(RESULT_MISS) ] = 0,
  313. },
  314. },
  315. [ C(DTLB) ] = {
  316. [ C(OP_READ) ] = {
  317. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  318. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  319. },
  320. [ C(OP_WRITE) ] = {
  321. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  322. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  323. },
  324. [ C(OP_PREFETCH) ] = {
  325. [ C(RESULT_ACCESS) ] = 0,
  326. [ C(RESULT_MISS) ] = 0,
  327. },
  328. },
  329. [ C(ITLB) ] = {
  330. [ C(OP_READ) ] = {
  331. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  332. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  333. },
  334. [ C(OP_WRITE) ] = {
  335. [ C(RESULT_ACCESS) ] = -1,
  336. [ C(RESULT_MISS) ] = -1,
  337. },
  338. [ C(OP_PREFETCH) ] = {
  339. [ C(RESULT_ACCESS) ] = -1,
  340. [ C(RESULT_MISS) ] = -1,
  341. },
  342. },
  343. [ C(BPU ) ] = {
  344. [ C(OP_READ) ] = {
  345. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  346. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  347. },
  348. [ C(OP_WRITE) ] = {
  349. [ C(RESULT_ACCESS) ] = -1,
  350. [ C(RESULT_MISS) ] = -1,
  351. },
  352. [ C(OP_PREFETCH) ] = {
  353. [ C(RESULT_ACCESS) ] = -1,
  354. [ C(RESULT_MISS) ] = -1,
  355. },
  356. },
  357. };
  358. static u64 intel_pmu_raw_event(u64 event)
  359. {
  360. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  361. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  362. #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
  363. #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
  364. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  365. #define CORE_EVNTSEL_MASK \
  366. (CORE_EVNTSEL_EVENT_MASK | \
  367. CORE_EVNTSEL_UNIT_MASK | \
  368. CORE_EVNTSEL_EDGE_MASK | \
  369. CORE_EVNTSEL_INV_MASK | \
  370. CORE_EVNTSEL_COUNTER_MASK)
  371. return event & CORE_EVNTSEL_MASK;
  372. }
  373. /*
  374. * AMD Performance Monitor K7 and later.
  375. */
  376. static const u64 amd_perfmon_event_map[] =
  377. {
  378. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  379. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  380. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  381. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  382. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  383. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  384. };
  385. static u64 amd_pmu_event_map(int event)
  386. {
  387. return amd_perfmon_event_map[event];
  388. }
  389. static u64 amd_pmu_raw_event(u64 event)
  390. {
  391. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  392. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  393. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  394. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  395. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  396. #define K7_EVNTSEL_MASK \
  397. (K7_EVNTSEL_EVENT_MASK | \
  398. K7_EVNTSEL_UNIT_MASK | \
  399. K7_EVNTSEL_EDGE_MASK | \
  400. K7_EVNTSEL_INV_MASK | \
  401. K7_EVNTSEL_COUNTER_MASK)
  402. return event & K7_EVNTSEL_MASK;
  403. }
  404. /*
  405. * Propagate counter elapsed time into the generic counter.
  406. * Can only be executed on the CPU where the counter is active.
  407. * Returns the delta events processed.
  408. */
  409. static u64
  410. x86_perf_counter_update(struct perf_counter *counter,
  411. struct hw_perf_counter *hwc, int idx)
  412. {
  413. int shift = 64 - x86_pmu.counter_bits;
  414. u64 prev_raw_count, new_raw_count;
  415. s64 delta;
  416. /*
  417. * Careful: an NMI might modify the previous counter value.
  418. *
  419. * Our tactic to handle this is to first atomically read and
  420. * exchange a new raw count - then add that new-prev delta
  421. * count to the generic counter atomically:
  422. */
  423. again:
  424. prev_raw_count = atomic64_read(&hwc->prev_count);
  425. rdmsrl(hwc->counter_base + idx, new_raw_count);
  426. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  427. new_raw_count) != prev_raw_count)
  428. goto again;
  429. /*
  430. * Now we have the new raw value and have updated the prev
  431. * timestamp already. We can now calculate the elapsed delta
  432. * (counter-)time and add that to the generic counter.
  433. *
  434. * Careful, not all hw sign-extends above the physical width
  435. * of the count.
  436. */
  437. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  438. delta >>= shift;
  439. atomic64_add(delta, &counter->count);
  440. atomic64_sub(delta, &hwc->period_left);
  441. return new_raw_count;
  442. }
  443. static atomic_t active_counters;
  444. static DEFINE_MUTEX(pmc_reserve_mutex);
  445. static bool reserve_pmc_hardware(void)
  446. {
  447. int i;
  448. if (nmi_watchdog == NMI_LOCAL_APIC)
  449. disable_lapic_nmi_watchdog();
  450. for (i = 0; i < x86_pmu.num_counters; i++) {
  451. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  452. goto perfctr_fail;
  453. }
  454. for (i = 0; i < x86_pmu.num_counters; i++) {
  455. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  456. goto eventsel_fail;
  457. }
  458. return true;
  459. eventsel_fail:
  460. for (i--; i >= 0; i--)
  461. release_evntsel_nmi(x86_pmu.eventsel + i);
  462. i = x86_pmu.num_counters;
  463. perfctr_fail:
  464. for (i--; i >= 0; i--)
  465. release_perfctr_nmi(x86_pmu.perfctr + i);
  466. if (nmi_watchdog == NMI_LOCAL_APIC)
  467. enable_lapic_nmi_watchdog();
  468. return false;
  469. }
  470. static void release_pmc_hardware(void)
  471. {
  472. int i;
  473. for (i = 0; i < x86_pmu.num_counters; i++) {
  474. release_perfctr_nmi(x86_pmu.perfctr + i);
  475. release_evntsel_nmi(x86_pmu.eventsel + i);
  476. }
  477. if (nmi_watchdog == NMI_LOCAL_APIC)
  478. enable_lapic_nmi_watchdog();
  479. }
  480. static void hw_perf_counter_destroy(struct perf_counter *counter)
  481. {
  482. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  483. release_pmc_hardware();
  484. mutex_unlock(&pmc_reserve_mutex);
  485. }
  486. }
  487. static inline int x86_pmu_initialized(void)
  488. {
  489. return x86_pmu.handle_irq != NULL;
  490. }
  491. static inline int
  492. set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
  493. {
  494. unsigned int cache_type, cache_op, cache_result;
  495. u64 config, val;
  496. config = attr->config;
  497. cache_type = (config >> 0) & 0xff;
  498. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  499. return -EINVAL;
  500. cache_op = (config >> 8) & 0xff;
  501. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  502. return -EINVAL;
  503. cache_result = (config >> 16) & 0xff;
  504. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  505. return -EINVAL;
  506. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  507. if (val == 0)
  508. return -ENOENT;
  509. if (val == -1)
  510. return -EINVAL;
  511. hwc->config |= val;
  512. return 0;
  513. }
  514. /*
  515. * Setup the hardware configuration for a given attr_type
  516. */
  517. static int __hw_perf_counter_init(struct perf_counter *counter)
  518. {
  519. struct perf_counter_attr *attr = &counter->attr;
  520. struct hw_perf_counter *hwc = &counter->hw;
  521. int err;
  522. if (!x86_pmu_initialized())
  523. return -ENODEV;
  524. err = 0;
  525. if (!atomic_inc_not_zero(&active_counters)) {
  526. mutex_lock(&pmc_reserve_mutex);
  527. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  528. err = -EBUSY;
  529. else
  530. atomic_inc(&active_counters);
  531. mutex_unlock(&pmc_reserve_mutex);
  532. }
  533. if (err)
  534. return err;
  535. /*
  536. * Generate PMC IRQs:
  537. * (keep 'enabled' bit clear for now)
  538. */
  539. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  540. /*
  541. * Count user and OS events unless requested not to.
  542. */
  543. if (!attr->exclude_user)
  544. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  545. if (!attr->exclude_kernel)
  546. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  547. if (!hwc->sample_period)
  548. hwc->sample_period = x86_pmu.max_period;
  549. atomic64_set(&hwc->period_left, hwc->sample_period);
  550. counter->destroy = hw_perf_counter_destroy;
  551. /*
  552. * Raw event type provide the config in the event structure
  553. */
  554. if (attr->type == PERF_TYPE_RAW) {
  555. hwc->config |= x86_pmu.raw_event(attr->config);
  556. return 0;
  557. }
  558. if (attr->type == PERF_TYPE_HW_CACHE)
  559. return set_ext_hw_attr(hwc, attr);
  560. if (attr->config >= x86_pmu.max_events)
  561. return -EINVAL;
  562. /*
  563. * The generic map:
  564. */
  565. hwc->config |= x86_pmu.event_map(attr->config);
  566. return 0;
  567. }
  568. static void intel_pmu_disable_all(void)
  569. {
  570. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  571. }
  572. static void amd_pmu_disable_all(void)
  573. {
  574. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  575. int idx;
  576. if (!cpuc->enabled)
  577. return;
  578. cpuc->enabled = 0;
  579. /*
  580. * ensure we write the disable before we start disabling the
  581. * counters proper, so that amd_pmu_enable_counter() does the
  582. * right thing.
  583. */
  584. barrier();
  585. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  586. u64 val;
  587. if (!test_bit(idx, cpuc->active_mask))
  588. continue;
  589. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  590. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  591. continue;
  592. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  593. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  594. }
  595. }
  596. void hw_perf_disable(void)
  597. {
  598. if (!x86_pmu_initialized())
  599. return;
  600. return x86_pmu.disable_all();
  601. }
  602. static void intel_pmu_enable_all(void)
  603. {
  604. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  605. }
  606. static void amd_pmu_enable_all(void)
  607. {
  608. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  609. int idx;
  610. if (cpuc->enabled)
  611. return;
  612. cpuc->enabled = 1;
  613. barrier();
  614. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  615. u64 val;
  616. if (!test_bit(idx, cpuc->active_mask))
  617. continue;
  618. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  619. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  620. continue;
  621. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  622. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  623. }
  624. }
  625. void hw_perf_enable(void)
  626. {
  627. if (!x86_pmu_initialized())
  628. return;
  629. x86_pmu.enable_all();
  630. }
  631. static inline u64 intel_pmu_get_status(void)
  632. {
  633. u64 status;
  634. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  635. return status;
  636. }
  637. static inline void intel_pmu_ack_status(u64 ack)
  638. {
  639. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  640. }
  641. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  642. {
  643. int err;
  644. err = checking_wrmsrl(hwc->config_base + idx,
  645. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  646. }
  647. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  648. {
  649. int err;
  650. err = checking_wrmsrl(hwc->config_base + idx,
  651. hwc->config);
  652. }
  653. static inline void
  654. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  655. {
  656. int idx = __idx - X86_PMC_IDX_FIXED;
  657. u64 ctrl_val, mask;
  658. int err;
  659. mask = 0xfULL << (idx * 4);
  660. rdmsrl(hwc->config_base, ctrl_val);
  661. ctrl_val &= ~mask;
  662. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  663. }
  664. static inline void
  665. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  666. {
  667. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  668. intel_pmu_disable_fixed(hwc, idx);
  669. return;
  670. }
  671. x86_pmu_disable_counter(hwc, idx);
  672. }
  673. static inline void
  674. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  675. {
  676. x86_pmu_disable_counter(hwc, idx);
  677. }
  678. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  679. /*
  680. * Set the next IRQ period, based on the hwc->period_left value.
  681. * To be called with the counter disabled in hw:
  682. */
  683. static int
  684. x86_perf_counter_set_period(struct perf_counter *counter,
  685. struct hw_perf_counter *hwc, int idx)
  686. {
  687. s64 left = atomic64_read(&hwc->period_left);
  688. s64 period = hwc->sample_period;
  689. int err, ret = 0;
  690. /*
  691. * If we are way outside a reasoable range then just skip forward:
  692. */
  693. if (unlikely(left <= -period)) {
  694. left = period;
  695. atomic64_set(&hwc->period_left, left);
  696. ret = 1;
  697. }
  698. if (unlikely(left <= 0)) {
  699. left += period;
  700. atomic64_set(&hwc->period_left, left);
  701. ret = 1;
  702. }
  703. /*
  704. * Quirk: certain CPUs dont like it if just 1 event is left:
  705. */
  706. if (unlikely(left < 2))
  707. left = 2;
  708. if (left > x86_pmu.max_period)
  709. left = x86_pmu.max_period;
  710. per_cpu(prev_left[idx], smp_processor_id()) = left;
  711. /*
  712. * The hw counter starts counting from this counter offset,
  713. * mark it to be able to extra future deltas:
  714. */
  715. atomic64_set(&hwc->prev_count, (u64)-left);
  716. err = checking_wrmsrl(hwc->counter_base + idx,
  717. (u64)(-left) & x86_pmu.counter_mask);
  718. return ret;
  719. }
  720. static inline void
  721. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  722. {
  723. int idx = __idx - X86_PMC_IDX_FIXED;
  724. u64 ctrl_val, bits, mask;
  725. int err;
  726. /*
  727. * Enable IRQ generation (0x8),
  728. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  729. * if requested:
  730. */
  731. bits = 0x8ULL;
  732. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  733. bits |= 0x2;
  734. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  735. bits |= 0x1;
  736. bits <<= (idx * 4);
  737. mask = 0xfULL << (idx * 4);
  738. rdmsrl(hwc->config_base, ctrl_val);
  739. ctrl_val &= ~mask;
  740. ctrl_val |= bits;
  741. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  742. }
  743. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  744. {
  745. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  746. intel_pmu_enable_fixed(hwc, idx);
  747. return;
  748. }
  749. x86_pmu_enable_counter(hwc, idx);
  750. }
  751. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  752. {
  753. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  754. if (cpuc->enabled)
  755. x86_pmu_enable_counter(hwc, idx);
  756. else
  757. x86_pmu_disable_counter(hwc, idx);
  758. }
  759. static int
  760. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  761. {
  762. unsigned int event;
  763. if (!x86_pmu.num_counters_fixed)
  764. return -1;
  765. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  766. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  767. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  768. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  769. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  770. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  771. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  772. return -1;
  773. }
  774. /*
  775. * Find a PMC slot for the freshly enabled / scheduled in counter:
  776. */
  777. static int x86_pmu_enable(struct perf_counter *counter)
  778. {
  779. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  780. struct hw_perf_counter *hwc = &counter->hw;
  781. int idx;
  782. idx = fixed_mode_idx(counter, hwc);
  783. if (idx >= 0) {
  784. /*
  785. * Try to get the fixed counter, if that is already taken
  786. * then try to get a generic counter:
  787. */
  788. if (test_and_set_bit(idx, cpuc->used_mask))
  789. goto try_generic;
  790. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  791. /*
  792. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  793. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  794. */
  795. hwc->counter_base =
  796. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  797. hwc->idx = idx;
  798. } else {
  799. idx = hwc->idx;
  800. /* Try to get the previous generic counter again */
  801. if (test_and_set_bit(idx, cpuc->used_mask)) {
  802. try_generic:
  803. idx = find_first_zero_bit(cpuc->used_mask,
  804. x86_pmu.num_counters);
  805. if (idx == x86_pmu.num_counters)
  806. return -EAGAIN;
  807. set_bit(idx, cpuc->used_mask);
  808. hwc->idx = idx;
  809. }
  810. hwc->config_base = x86_pmu.eventsel;
  811. hwc->counter_base = x86_pmu.perfctr;
  812. }
  813. perf_counters_lapic_init();
  814. x86_pmu.disable(hwc, idx);
  815. cpuc->counters[idx] = counter;
  816. set_bit(idx, cpuc->active_mask);
  817. x86_perf_counter_set_period(counter, hwc, idx);
  818. x86_pmu.enable(hwc, idx);
  819. return 0;
  820. }
  821. static void x86_pmu_unthrottle(struct perf_counter *counter)
  822. {
  823. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  824. struct hw_perf_counter *hwc = &counter->hw;
  825. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  826. cpuc->counters[hwc->idx] != counter))
  827. return;
  828. x86_pmu.enable(hwc, hwc->idx);
  829. }
  830. void perf_counter_print_debug(void)
  831. {
  832. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  833. struct cpu_hw_counters *cpuc;
  834. unsigned long flags;
  835. int cpu, idx;
  836. if (!x86_pmu.num_counters)
  837. return;
  838. local_irq_save(flags);
  839. cpu = smp_processor_id();
  840. cpuc = &per_cpu(cpu_hw_counters, cpu);
  841. if (x86_pmu.version >= 2) {
  842. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  843. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  844. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  845. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  846. pr_info("\n");
  847. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  848. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  849. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  850. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  851. }
  852. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  853. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  854. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  855. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  856. prev_left = per_cpu(prev_left[idx], cpu);
  857. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  858. cpu, idx, pmc_ctrl);
  859. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  860. cpu, idx, pmc_count);
  861. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  862. cpu, idx, prev_left);
  863. }
  864. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  865. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  866. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  867. cpu, idx, pmc_count);
  868. }
  869. local_irq_restore(flags);
  870. }
  871. static void x86_pmu_disable(struct perf_counter *counter)
  872. {
  873. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  874. struct hw_perf_counter *hwc = &counter->hw;
  875. int idx = hwc->idx;
  876. /*
  877. * Must be done before we disable, otherwise the nmi handler
  878. * could reenable again:
  879. */
  880. clear_bit(idx, cpuc->active_mask);
  881. x86_pmu.disable(hwc, idx);
  882. /*
  883. * Make sure the cleared pointer becomes visible before we
  884. * (potentially) free the counter:
  885. */
  886. barrier();
  887. /*
  888. * Drain the remaining delta count out of a counter
  889. * that we are disabling:
  890. */
  891. x86_perf_counter_update(counter, hwc, idx);
  892. cpuc->counters[idx] = NULL;
  893. clear_bit(idx, cpuc->used_mask);
  894. }
  895. /*
  896. * Save and restart an expired counter. Called by NMI contexts,
  897. * so it has to be careful about preempting normal counter ops:
  898. */
  899. static int intel_pmu_save_and_restart(struct perf_counter *counter)
  900. {
  901. struct hw_perf_counter *hwc = &counter->hw;
  902. int idx = hwc->idx;
  903. int ret;
  904. x86_perf_counter_update(counter, hwc, idx);
  905. ret = x86_perf_counter_set_period(counter, hwc, idx);
  906. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  907. intel_pmu_enable_counter(hwc, idx);
  908. return ret;
  909. }
  910. static void intel_pmu_reset(void)
  911. {
  912. unsigned long flags;
  913. int idx;
  914. if (!x86_pmu.num_counters)
  915. return;
  916. local_irq_save(flags);
  917. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  918. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  919. checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
  920. checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
  921. }
  922. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  923. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  924. }
  925. local_irq_restore(flags);
  926. }
  927. /*
  928. * This handler is triggered by the local APIC, so the APIC IRQ handling
  929. * rules apply:
  930. */
  931. static int intel_pmu_handle_irq(struct pt_regs *regs)
  932. {
  933. struct cpu_hw_counters *cpuc;
  934. struct cpu_hw_counters;
  935. int bit, cpu, loops;
  936. u64 ack, status;
  937. cpu = smp_processor_id();
  938. cpuc = &per_cpu(cpu_hw_counters, cpu);
  939. perf_disable();
  940. status = intel_pmu_get_status();
  941. if (!status) {
  942. perf_enable();
  943. return 0;
  944. }
  945. loops = 0;
  946. again:
  947. if (++loops > 100) {
  948. WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
  949. perf_counter_print_debug();
  950. intel_pmu_reset();
  951. perf_enable();
  952. return 1;
  953. }
  954. inc_irq_stat(apic_perf_irqs);
  955. ack = status;
  956. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  957. struct perf_counter *counter = cpuc->counters[bit];
  958. clear_bit(bit, (unsigned long *) &status);
  959. if (!test_bit(bit, cpuc->active_mask))
  960. continue;
  961. if (!intel_pmu_save_and_restart(counter))
  962. continue;
  963. if (perf_counter_overflow(counter, 1, regs, 0))
  964. intel_pmu_disable_counter(&counter->hw, bit);
  965. }
  966. intel_pmu_ack_status(ack);
  967. /*
  968. * Repeat if there is more work to be done:
  969. */
  970. status = intel_pmu_get_status();
  971. if (status)
  972. goto again;
  973. perf_enable();
  974. return 1;
  975. }
  976. static int amd_pmu_handle_irq(struct pt_regs *regs)
  977. {
  978. int cpu, idx, handled = 0;
  979. struct cpu_hw_counters *cpuc;
  980. struct perf_counter *counter;
  981. struct hw_perf_counter *hwc;
  982. u64 val;
  983. cpu = smp_processor_id();
  984. cpuc = &per_cpu(cpu_hw_counters, cpu);
  985. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  986. if (!test_bit(idx, cpuc->active_mask))
  987. continue;
  988. counter = cpuc->counters[idx];
  989. hwc = &counter->hw;
  990. val = x86_perf_counter_update(counter, hwc, idx);
  991. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  992. continue;
  993. /* counter overflow */
  994. handled = 1;
  995. inc_irq_stat(apic_perf_irqs);
  996. if (!x86_perf_counter_set_period(counter, hwc, idx))
  997. continue;
  998. if (perf_counter_overflow(counter, 1, regs, 0))
  999. amd_pmu_disable_counter(hwc, idx);
  1000. }
  1001. return handled;
  1002. }
  1003. void smp_perf_pending_interrupt(struct pt_regs *regs)
  1004. {
  1005. irq_enter();
  1006. ack_APIC_irq();
  1007. inc_irq_stat(apic_pending_irqs);
  1008. perf_counter_do_pending();
  1009. irq_exit();
  1010. }
  1011. void set_perf_counter_pending(void)
  1012. {
  1013. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  1014. }
  1015. void perf_counters_lapic_init(void)
  1016. {
  1017. if (!x86_pmu_initialized())
  1018. return;
  1019. /*
  1020. * Always use NMI for PMU
  1021. */
  1022. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1023. }
  1024. static int __kprobes
  1025. perf_counter_nmi_handler(struct notifier_block *self,
  1026. unsigned long cmd, void *__args)
  1027. {
  1028. struct die_args *args = __args;
  1029. struct pt_regs *regs;
  1030. if (!atomic_read(&active_counters))
  1031. return NOTIFY_DONE;
  1032. switch (cmd) {
  1033. case DIE_NMI:
  1034. case DIE_NMI_IPI:
  1035. break;
  1036. default:
  1037. return NOTIFY_DONE;
  1038. }
  1039. regs = args->regs;
  1040. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1041. /*
  1042. * Can't rely on the handled return value to say it was our NMI, two
  1043. * counters could trigger 'simultaneously' raising two back-to-back NMIs.
  1044. *
  1045. * If the first NMI handles both, the latter will be empty and daze
  1046. * the CPU.
  1047. */
  1048. x86_pmu.handle_irq(regs);
  1049. return NOTIFY_STOP;
  1050. }
  1051. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  1052. .notifier_call = perf_counter_nmi_handler,
  1053. .next = NULL,
  1054. .priority = 1
  1055. };
  1056. static struct x86_pmu intel_pmu = {
  1057. .name = "Intel",
  1058. .handle_irq = intel_pmu_handle_irq,
  1059. .disable_all = intel_pmu_disable_all,
  1060. .enable_all = intel_pmu_enable_all,
  1061. .enable = intel_pmu_enable_counter,
  1062. .disable = intel_pmu_disable_counter,
  1063. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  1064. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  1065. .event_map = intel_pmu_event_map,
  1066. .raw_event = intel_pmu_raw_event,
  1067. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  1068. /*
  1069. * Intel PMCs cannot be accessed sanely above 32 bit width,
  1070. * so we install an artificial 1<<31 period regardless of
  1071. * the generic counter period:
  1072. */
  1073. .max_period = (1ULL << 31) - 1,
  1074. };
  1075. static struct x86_pmu amd_pmu = {
  1076. .name = "AMD",
  1077. .handle_irq = amd_pmu_handle_irq,
  1078. .disable_all = amd_pmu_disable_all,
  1079. .enable_all = amd_pmu_enable_all,
  1080. .enable = amd_pmu_enable_counter,
  1081. .disable = amd_pmu_disable_counter,
  1082. .eventsel = MSR_K7_EVNTSEL0,
  1083. .perfctr = MSR_K7_PERFCTR0,
  1084. .event_map = amd_pmu_event_map,
  1085. .raw_event = amd_pmu_raw_event,
  1086. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  1087. .num_counters = 4,
  1088. .counter_bits = 48,
  1089. .counter_mask = (1ULL << 48) - 1,
  1090. /* use highest bit to detect overflow */
  1091. .max_period = (1ULL << 47) - 1,
  1092. };
  1093. static int intel_pmu_init(void)
  1094. {
  1095. union cpuid10_edx edx;
  1096. union cpuid10_eax eax;
  1097. unsigned int unused;
  1098. unsigned int ebx;
  1099. int version;
  1100. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  1101. return -ENODEV;
  1102. /*
  1103. * Check whether the Architectural PerfMon supports
  1104. * Branch Misses Retired Event or not.
  1105. */
  1106. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  1107. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  1108. return -ENODEV;
  1109. version = eax.split.version_id;
  1110. if (version < 2)
  1111. return -ENODEV;
  1112. x86_pmu = intel_pmu;
  1113. x86_pmu.version = version;
  1114. x86_pmu.num_counters = eax.split.num_counters;
  1115. /*
  1116. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  1117. * assume at least 3 counters:
  1118. */
  1119. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  1120. x86_pmu.counter_bits = eax.split.bit_width;
  1121. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  1122. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  1123. /*
  1124. * Nehalem:
  1125. */
  1126. switch (boot_cpu_data.x86_model) {
  1127. case 17:
  1128. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  1129. sizeof(u64)*PERF_COUNT_HW_CACHE_MAX*
  1130. PERF_COUNT_HW_CACHE_OP_MAX*PERF_COUNT_HW_CACHE_RESULT_MAX);
  1131. pr_info("... installed Core2 event tables\n");
  1132. break;
  1133. default:
  1134. case 26:
  1135. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  1136. sizeof(u64)*PERF_COUNT_HW_CACHE_MAX*
  1137. PERF_COUNT_HW_CACHE_OP_MAX*PERF_COUNT_HW_CACHE_RESULT_MAX);
  1138. pr_info("... installed Nehalem/Corei7 event tables\n");
  1139. break;
  1140. case 28:
  1141. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  1142. sizeof(u64)*PERF_COUNT_HW_CACHE_MAX*
  1143. PERF_COUNT_HW_CACHE_OP_MAX*PERF_COUNT_HW_CACHE_RESULT_MAX);
  1144. pr_info("... installed Atom event tables\n");
  1145. break;
  1146. }
  1147. return 0;
  1148. }
  1149. static int amd_pmu_init(void)
  1150. {
  1151. x86_pmu = amd_pmu;
  1152. return 0;
  1153. }
  1154. void __init init_hw_perf_counters(void)
  1155. {
  1156. int err;
  1157. switch (boot_cpu_data.x86_vendor) {
  1158. case X86_VENDOR_INTEL:
  1159. err = intel_pmu_init();
  1160. break;
  1161. case X86_VENDOR_AMD:
  1162. err = amd_pmu_init();
  1163. break;
  1164. default:
  1165. return;
  1166. }
  1167. if (err != 0)
  1168. return;
  1169. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  1170. pr_info("... version: %d\n", x86_pmu.version);
  1171. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  1172. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  1173. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  1174. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  1175. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  1176. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  1177. }
  1178. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  1179. perf_max_counters = x86_pmu.num_counters;
  1180. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  1181. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1182. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  1183. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  1184. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  1185. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  1186. }
  1187. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  1188. perf_counter_mask |=
  1189. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  1190. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  1191. perf_counters_lapic_init();
  1192. register_die_notifier(&perf_counter_nmi_notifier);
  1193. }
  1194. static inline void x86_pmu_read(struct perf_counter *counter)
  1195. {
  1196. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  1197. }
  1198. static const struct pmu pmu = {
  1199. .enable = x86_pmu_enable,
  1200. .disable = x86_pmu_disable,
  1201. .read = x86_pmu_read,
  1202. .unthrottle = x86_pmu_unthrottle,
  1203. };
  1204. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  1205. {
  1206. int err;
  1207. err = __hw_perf_counter_init(counter);
  1208. if (err)
  1209. return ERR_PTR(err);
  1210. return &pmu;
  1211. }
  1212. /*
  1213. * callchain support
  1214. */
  1215. static inline
  1216. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  1217. {
  1218. if (entry->nr < MAX_STACK_DEPTH)
  1219. entry->ip[entry->nr++] = ip;
  1220. }
  1221. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  1222. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  1223. static void
  1224. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1225. {
  1226. /* Ignore warnings */
  1227. }
  1228. static void backtrace_warning(void *data, char *msg)
  1229. {
  1230. /* Ignore warnings */
  1231. }
  1232. static int backtrace_stack(void *data, char *name)
  1233. {
  1234. /* Don't bother with IRQ stacks for now */
  1235. return -1;
  1236. }
  1237. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1238. {
  1239. struct perf_callchain_entry *entry = data;
  1240. if (reliable)
  1241. callchain_store(entry, addr);
  1242. }
  1243. static const struct stacktrace_ops backtrace_ops = {
  1244. .warning = backtrace_warning,
  1245. .warning_symbol = backtrace_warning_symbol,
  1246. .stack = backtrace_stack,
  1247. .address = backtrace_address,
  1248. };
  1249. static void
  1250. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1251. {
  1252. unsigned long bp;
  1253. char *stack;
  1254. int nr = entry->nr;
  1255. callchain_store(entry, instruction_pointer(regs));
  1256. stack = ((char *)regs + sizeof(struct pt_regs));
  1257. #ifdef CONFIG_FRAME_POINTER
  1258. bp = frame_pointer(regs);
  1259. #else
  1260. bp = 0;
  1261. #endif
  1262. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  1263. entry->kernel = entry->nr - nr;
  1264. }
  1265. struct stack_frame {
  1266. const void __user *next_fp;
  1267. unsigned long return_address;
  1268. };
  1269. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1270. {
  1271. int ret;
  1272. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  1273. return 0;
  1274. ret = 1;
  1275. pagefault_disable();
  1276. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  1277. ret = 0;
  1278. pagefault_enable();
  1279. return ret;
  1280. }
  1281. static void
  1282. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1283. {
  1284. struct stack_frame frame;
  1285. const void __user *fp;
  1286. int nr = entry->nr;
  1287. regs = (struct pt_regs *)current->thread.sp0 - 1;
  1288. fp = (void __user *)regs->bp;
  1289. callchain_store(entry, regs->ip);
  1290. while (entry->nr < MAX_STACK_DEPTH) {
  1291. frame.next_fp = NULL;
  1292. frame.return_address = 0;
  1293. if (!copy_stack_frame(fp, &frame))
  1294. break;
  1295. if ((unsigned long)fp < user_stack_pointer(regs))
  1296. break;
  1297. callchain_store(entry, frame.return_address);
  1298. fp = frame.next_fp;
  1299. }
  1300. entry->user = entry->nr - nr;
  1301. }
  1302. static void
  1303. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1304. {
  1305. int is_user;
  1306. if (!regs)
  1307. return;
  1308. is_user = user_mode(regs);
  1309. if (!current || current->pid == 0)
  1310. return;
  1311. if (is_user && current->state != TASK_RUNNING)
  1312. return;
  1313. if (!is_user)
  1314. perf_callchain_kernel(regs, entry);
  1315. if (current->mm)
  1316. perf_callchain_user(regs, entry);
  1317. }
  1318. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1319. {
  1320. struct perf_callchain_entry *entry;
  1321. if (in_nmi())
  1322. entry = &__get_cpu_var(nmi_entry);
  1323. else
  1324. entry = &__get_cpu_var(irq_entry);
  1325. entry->nr = 0;
  1326. entry->hv = 0;
  1327. entry->kernel = 0;
  1328. entry->user = 0;
  1329. perf_do_callchain(regs, entry);
  1330. return entry;
  1331. }