enlighten.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/physdev.h>
  30. #include <xen/interface/vcpu.h>
  31. #include <xen/interface/sched.h>
  32. #include <xen/features.h>
  33. #include <xen/page.h>
  34. #include <asm/paravirt.h>
  35. #include <asm/page.h>
  36. #include <asm/xen/hypercall.h>
  37. #include <asm/xen/hypervisor.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/processor.h>
  40. #include <asm/setup.h>
  41. #include <asm/desc.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/reboot.h>
  45. #include <asm/pgalloc.h>
  46. #include "xen-ops.h"
  47. #include "mmu.h"
  48. #include "multicalls.h"
  49. EXPORT_SYMBOL_GPL(hypercall_page);
  50. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  51. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  52. /*
  53. * Note about cr3 (pagetable base) values:
  54. *
  55. * xen_cr3 contains the current logical cr3 value; it contains the
  56. * last set cr3. This may not be the current effective cr3, because
  57. * its update may be being lazily deferred. However, a vcpu looking
  58. * at its own cr3 can use this value knowing that it everything will
  59. * be self-consistent.
  60. *
  61. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  62. * hypercall to set the vcpu cr3 is complete (so it may be a little
  63. * out of date, but it will never be set early). If one vcpu is
  64. * looking at another vcpu's cr3 value, it should use this variable.
  65. */
  66. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  67. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  68. struct start_info *xen_start_info;
  69. EXPORT_SYMBOL_GPL(xen_start_info);
  70. struct shared_info xen_dummy_shared_info;
  71. /*
  72. * Point at some empty memory to start with. We map the real shared_info
  73. * page as soon as fixmap is up and running.
  74. */
  75. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  76. /*
  77. * Flag to determine whether vcpu info placement is available on all
  78. * VCPUs. We assume it is to start with, and then set it to zero on
  79. * the first failure. This is because it can succeed on some VCPUs
  80. * and not others, since it can involve hypervisor memory allocation,
  81. * or because the guest failed to guarantee all the appropriate
  82. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  83. *
  84. * Note that any particular CPU may be using a placed vcpu structure,
  85. * but we can only optimise if the all are.
  86. *
  87. * 0: not available, 1: available
  88. */
  89. static int have_vcpu_info_placement = 1;
  90. static void xen_vcpu_setup(int cpu)
  91. {
  92. struct vcpu_register_vcpu_info info;
  93. int err;
  94. struct vcpu_info *vcpup;
  95. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  96. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  97. if (!have_vcpu_info_placement)
  98. return; /* already tested, not available */
  99. vcpup = &per_cpu(xen_vcpu_info, cpu);
  100. info.mfn = virt_to_mfn(vcpup);
  101. info.offset = offset_in_page(vcpup);
  102. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  103. cpu, vcpup, info.mfn, info.offset);
  104. /* Check to see if the hypervisor will put the vcpu_info
  105. structure where we want it, which allows direct access via
  106. a percpu-variable. */
  107. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  108. if (err) {
  109. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  110. have_vcpu_info_placement = 0;
  111. } else {
  112. /* This cpu is using the registered vcpu info, even if
  113. later ones fail to. */
  114. per_cpu(xen_vcpu, cpu) = vcpup;
  115. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  116. cpu, vcpup);
  117. }
  118. }
  119. /*
  120. * On restore, set the vcpu placement up again.
  121. * If it fails, then we're in a bad state, since
  122. * we can't back out from using it...
  123. */
  124. void xen_vcpu_restore(void)
  125. {
  126. if (have_vcpu_info_placement) {
  127. int cpu;
  128. for_each_online_cpu(cpu) {
  129. bool other_cpu = (cpu != smp_processor_id());
  130. if (other_cpu &&
  131. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  132. BUG();
  133. xen_vcpu_setup(cpu);
  134. if (other_cpu &&
  135. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  136. BUG();
  137. }
  138. BUG_ON(!have_vcpu_info_placement);
  139. }
  140. }
  141. static void __init xen_banner(void)
  142. {
  143. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  144. pv_info.name);
  145. printk(KERN_INFO "Hypervisor signature: %s%s\n",
  146. xen_start_info->magic,
  147. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  148. }
  149. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  150. unsigned int *cx, unsigned int *dx)
  151. {
  152. unsigned maskedx = ~0;
  153. /*
  154. * Mask out inconvenient features, to try and disable as many
  155. * unsupported kernel subsystems as possible.
  156. */
  157. if (*ax == 1)
  158. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  159. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  160. (1 << X86_FEATURE_MCE) | /* disable MCE */
  161. (1 << X86_FEATURE_MCA) | /* disable MCA */
  162. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  163. asm(XEN_EMULATE_PREFIX "cpuid"
  164. : "=a" (*ax),
  165. "=b" (*bx),
  166. "=c" (*cx),
  167. "=d" (*dx)
  168. : "0" (*ax), "2" (*cx));
  169. *dx &= maskedx;
  170. }
  171. static void xen_set_debugreg(int reg, unsigned long val)
  172. {
  173. HYPERVISOR_set_debugreg(reg, val);
  174. }
  175. static unsigned long xen_get_debugreg(int reg)
  176. {
  177. return HYPERVISOR_get_debugreg(reg);
  178. }
  179. static unsigned long xen_save_fl(void)
  180. {
  181. struct vcpu_info *vcpu;
  182. unsigned long flags;
  183. vcpu = x86_read_percpu(xen_vcpu);
  184. /* flag has opposite sense of mask */
  185. flags = !vcpu->evtchn_upcall_mask;
  186. /* convert to IF type flag
  187. -0 -> 0x00000000
  188. -1 -> 0xffffffff
  189. */
  190. return (-flags) & X86_EFLAGS_IF;
  191. }
  192. static void xen_restore_fl(unsigned long flags)
  193. {
  194. struct vcpu_info *vcpu;
  195. /* convert from IF type flag */
  196. flags = !(flags & X86_EFLAGS_IF);
  197. /* There's a one instruction preempt window here. We need to
  198. make sure we're don't switch CPUs between getting the vcpu
  199. pointer and updating the mask. */
  200. preempt_disable();
  201. vcpu = x86_read_percpu(xen_vcpu);
  202. vcpu->evtchn_upcall_mask = flags;
  203. preempt_enable_no_resched();
  204. /* Doesn't matter if we get preempted here, because any
  205. pending event will get dealt with anyway. */
  206. if (flags == 0) {
  207. preempt_check_resched();
  208. barrier(); /* unmask then check (avoid races) */
  209. if (unlikely(vcpu->evtchn_upcall_pending))
  210. force_evtchn_callback();
  211. }
  212. }
  213. static void xen_irq_disable(void)
  214. {
  215. /* There's a one instruction preempt window here. We need to
  216. make sure we're don't switch CPUs between getting the vcpu
  217. pointer and updating the mask. */
  218. preempt_disable();
  219. x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
  220. preempt_enable_no_resched();
  221. }
  222. static void xen_irq_enable(void)
  223. {
  224. struct vcpu_info *vcpu;
  225. /* We don't need to worry about being preempted here, since
  226. either a) interrupts are disabled, so no preemption, or b)
  227. the caller is confused and is trying to re-enable interrupts
  228. on an indeterminate processor. */
  229. vcpu = x86_read_percpu(xen_vcpu);
  230. vcpu->evtchn_upcall_mask = 0;
  231. /* Doesn't matter if we get preempted here, because any
  232. pending event will get dealt with anyway. */
  233. barrier(); /* unmask then check (avoid races) */
  234. if (unlikely(vcpu->evtchn_upcall_pending))
  235. force_evtchn_callback();
  236. }
  237. static void xen_safe_halt(void)
  238. {
  239. /* Blocking includes an implicit local_irq_enable(). */
  240. if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
  241. BUG();
  242. }
  243. static void xen_halt(void)
  244. {
  245. if (irqs_disabled())
  246. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  247. else
  248. xen_safe_halt();
  249. }
  250. static void xen_leave_lazy(void)
  251. {
  252. paravirt_leave_lazy(paravirt_get_lazy_mode());
  253. xen_mc_flush();
  254. }
  255. static unsigned long xen_store_tr(void)
  256. {
  257. return 0;
  258. }
  259. static void xen_set_ldt(const void *addr, unsigned entries)
  260. {
  261. struct mmuext_op *op;
  262. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  263. op = mcs.args;
  264. op->cmd = MMUEXT_SET_LDT;
  265. op->arg1.linear_addr = (unsigned long)addr;
  266. op->arg2.nr_ents = entries;
  267. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  268. xen_mc_issue(PARAVIRT_LAZY_CPU);
  269. }
  270. static void xen_load_gdt(const struct desc_ptr *dtr)
  271. {
  272. unsigned long *frames;
  273. unsigned long va = dtr->address;
  274. unsigned int size = dtr->size + 1;
  275. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  276. int f;
  277. struct multicall_space mcs;
  278. /* A GDT can be up to 64k in size, which corresponds to 8192
  279. 8-byte entries, or 16 4k pages.. */
  280. BUG_ON(size > 65536);
  281. BUG_ON(va & ~PAGE_MASK);
  282. mcs = xen_mc_entry(sizeof(*frames) * pages);
  283. frames = mcs.args;
  284. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  285. frames[f] = virt_to_mfn(va);
  286. make_lowmem_page_readonly((void *)va);
  287. }
  288. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  289. xen_mc_issue(PARAVIRT_LAZY_CPU);
  290. }
  291. static void load_TLS_descriptor(struct thread_struct *t,
  292. unsigned int cpu, unsigned int i)
  293. {
  294. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  295. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  296. struct multicall_space mc = __xen_mc_entry(0);
  297. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  298. }
  299. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  300. {
  301. xen_mc_batch();
  302. load_TLS_descriptor(t, cpu, 0);
  303. load_TLS_descriptor(t, cpu, 1);
  304. load_TLS_descriptor(t, cpu, 2);
  305. xen_mc_issue(PARAVIRT_LAZY_CPU);
  306. /*
  307. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  308. * it means we're in a context switch, and %gs has just been
  309. * saved. This means we can zero it out to prevent faults on
  310. * exit from the hypervisor if the next process has no %gs.
  311. * Either way, it has been saved, and the new value will get
  312. * loaded properly. This will go away as soon as Xen has been
  313. * modified to not save/restore %gs for normal hypercalls.
  314. */
  315. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
  316. loadsegment(gs, 0);
  317. }
  318. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  319. const void *ptr)
  320. {
  321. unsigned long lp = (unsigned long)&dt[entrynum];
  322. xmaddr_t mach_lp = virt_to_machine(lp);
  323. u64 entry = *(u64 *)ptr;
  324. preempt_disable();
  325. xen_mc_flush();
  326. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  327. BUG();
  328. preempt_enable();
  329. }
  330. static int cvt_gate_to_trap(int vector, u32 low, u32 high,
  331. struct trap_info *info)
  332. {
  333. u8 type, dpl;
  334. type = (high >> 8) & 0x1f;
  335. dpl = (high >> 13) & 3;
  336. if (type != 0xf && type != 0xe)
  337. return 0;
  338. info->vector = vector;
  339. info->address = (high & 0xffff0000) | (low & 0x0000ffff);
  340. info->cs = low >> 16;
  341. info->flags = dpl;
  342. /* interrupt gates clear IF */
  343. if (type == 0xe)
  344. info->flags |= 4;
  345. return 1;
  346. }
  347. /* Locations of each CPU's IDT */
  348. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  349. /* Set an IDT entry. If the entry is part of the current IDT, then
  350. also update Xen. */
  351. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  352. {
  353. unsigned long p = (unsigned long)&dt[entrynum];
  354. unsigned long start, end;
  355. preempt_disable();
  356. start = __get_cpu_var(idt_desc).address;
  357. end = start + __get_cpu_var(idt_desc).size + 1;
  358. xen_mc_flush();
  359. native_write_idt_entry(dt, entrynum, g);
  360. if (p >= start && (p + 8) <= end) {
  361. struct trap_info info[2];
  362. u32 *desc = (u32 *)g;
  363. info[1].address = 0;
  364. if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
  365. if (HYPERVISOR_set_trap_table(info))
  366. BUG();
  367. }
  368. preempt_enable();
  369. }
  370. static void xen_convert_trap_info(const struct desc_ptr *desc,
  371. struct trap_info *traps)
  372. {
  373. unsigned in, out, count;
  374. count = (desc->size+1) / 8;
  375. BUG_ON(count > 256);
  376. for (in = out = 0; in < count; in++) {
  377. const u32 *entry = (u32 *)(desc->address + in * 8);
  378. if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
  379. out++;
  380. }
  381. traps[out].address = 0;
  382. }
  383. void xen_copy_trap_info(struct trap_info *traps)
  384. {
  385. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  386. xen_convert_trap_info(desc, traps);
  387. }
  388. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  389. hold a spinlock to protect the static traps[] array (static because
  390. it avoids allocation, and saves stack space). */
  391. static void xen_load_idt(const struct desc_ptr *desc)
  392. {
  393. static DEFINE_SPINLOCK(lock);
  394. static struct trap_info traps[257];
  395. spin_lock(&lock);
  396. __get_cpu_var(idt_desc) = *desc;
  397. xen_convert_trap_info(desc, traps);
  398. xen_mc_flush();
  399. if (HYPERVISOR_set_trap_table(traps))
  400. BUG();
  401. spin_unlock(&lock);
  402. }
  403. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  404. they're handled differently. */
  405. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  406. const void *desc, int type)
  407. {
  408. preempt_disable();
  409. switch (type) {
  410. case DESC_LDT:
  411. case DESC_TSS:
  412. /* ignore */
  413. break;
  414. default: {
  415. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  416. xen_mc_flush();
  417. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  418. BUG();
  419. }
  420. }
  421. preempt_enable();
  422. }
  423. static void xen_load_sp0(struct tss_struct *tss,
  424. struct thread_struct *thread)
  425. {
  426. struct multicall_space mcs = xen_mc_entry(0);
  427. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  428. xen_mc_issue(PARAVIRT_LAZY_CPU);
  429. }
  430. static void xen_set_iopl_mask(unsigned mask)
  431. {
  432. struct physdev_set_iopl set_iopl;
  433. /* Force the change at ring 0. */
  434. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  435. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  436. }
  437. static void xen_io_delay(void)
  438. {
  439. }
  440. #ifdef CONFIG_X86_LOCAL_APIC
  441. static u32 xen_apic_read(u32 reg)
  442. {
  443. return 0;
  444. }
  445. static void xen_apic_write(u32 reg, u32 val)
  446. {
  447. /* Warn to see if there's any stray references */
  448. WARN_ON(1);
  449. }
  450. #ifdef CONFIG_X86_64
  451. static u64 xen_apic_icr_read(void)
  452. {
  453. return 0;
  454. }
  455. static void xen_apic_icr_write(u32 low, u32 id)
  456. {
  457. /* Warn to see if there's any stray references */
  458. WARN_ON(1);
  459. }
  460. static void xen_apic_wait_icr_idle(void)
  461. {
  462. return;
  463. }
  464. static struct apic_ops xen_basic_apic_ops = {
  465. .read = xen_apic_read,
  466. .write = xen_apic_write,
  467. .write_atomic = xen_apic_write,
  468. .icr_read = xen_apic_icr_read,
  469. .icr_write = xen_apic_icr_write,
  470. .wait_icr_idle = xen_apic_wait_icr_idle,
  471. .safe_wait_icr_idle = xen_apic_wait_icr_idle,
  472. };
  473. #endif
  474. #endif
  475. static void xen_flush_tlb(void)
  476. {
  477. struct mmuext_op *op;
  478. struct multicall_space mcs;
  479. preempt_disable();
  480. mcs = xen_mc_entry(sizeof(*op));
  481. op = mcs.args;
  482. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  483. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  484. xen_mc_issue(PARAVIRT_LAZY_MMU);
  485. preempt_enable();
  486. }
  487. static void xen_flush_tlb_single(unsigned long addr)
  488. {
  489. struct mmuext_op *op;
  490. struct multicall_space mcs;
  491. preempt_disable();
  492. mcs = xen_mc_entry(sizeof(*op));
  493. op = mcs.args;
  494. op->cmd = MMUEXT_INVLPG_LOCAL;
  495. op->arg1.linear_addr = addr & PAGE_MASK;
  496. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  497. xen_mc_issue(PARAVIRT_LAZY_MMU);
  498. preempt_enable();
  499. }
  500. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  501. unsigned long va)
  502. {
  503. struct {
  504. struct mmuext_op op;
  505. cpumask_t mask;
  506. } *args;
  507. cpumask_t cpumask = *cpus;
  508. struct multicall_space mcs;
  509. /*
  510. * A couple of (to be removed) sanity checks:
  511. *
  512. * - current CPU must not be in mask
  513. * - mask must exist :)
  514. */
  515. BUG_ON(cpus_empty(cpumask));
  516. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  517. BUG_ON(!mm);
  518. /* If a CPU which we ran on has gone down, OK. */
  519. cpus_and(cpumask, cpumask, cpu_online_map);
  520. if (cpus_empty(cpumask))
  521. return;
  522. mcs = xen_mc_entry(sizeof(*args));
  523. args = mcs.args;
  524. args->mask = cpumask;
  525. args->op.arg2.vcpumask = &args->mask;
  526. if (va == TLB_FLUSH_ALL) {
  527. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  528. } else {
  529. args->op.cmd = MMUEXT_INVLPG_MULTI;
  530. args->op.arg1.linear_addr = va;
  531. }
  532. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  533. xen_mc_issue(PARAVIRT_LAZY_MMU);
  534. }
  535. static void xen_clts(void)
  536. {
  537. struct multicall_space mcs;
  538. mcs = xen_mc_entry(0);
  539. MULTI_fpu_taskswitch(mcs.mc, 0);
  540. xen_mc_issue(PARAVIRT_LAZY_CPU);
  541. }
  542. static void xen_write_cr0(unsigned long cr0)
  543. {
  544. struct multicall_space mcs;
  545. /* Only pay attention to cr0.TS; everything else is
  546. ignored. */
  547. mcs = xen_mc_entry(0);
  548. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  549. xen_mc_issue(PARAVIRT_LAZY_CPU);
  550. }
  551. static void xen_write_cr2(unsigned long cr2)
  552. {
  553. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  554. }
  555. static unsigned long xen_read_cr2(void)
  556. {
  557. return x86_read_percpu(xen_vcpu)->arch.cr2;
  558. }
  559. static unsigned long xen_read_cr2_direct(void)
  560. {
  561. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  562. }
  563. static void xen_write_cr4(unsigned long cr4)
  564. {
  565. cr4 &= ~X86_CR4_PGE;
  566. cr4 &= ~X86_CR4_PSE;
  567. native_write_cr4(cr4);
  568. }
  569. static unsigned long xen_read_cr3(void)
  570. {
  571. return x86_read_percpu(xen_cr3);
  572. }
  573. static void set_current_cr3(void *v)
  574. {
  575. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  576. }
  577. static void xen_write_cr3(unsigned long cr3)
  578. {
  579. struct mmuext_op *op;
  580. struct multicall_space mcs;
  581. unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
  582. BUG_ON(preemptible());
  583. mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
  584. /* Update while interrupts are disabled, so its atomic with
  585. respect to ipis */
  586. x86_write_percpu(xen_cr3, cr3);
  587. op = mcs.args;
  588. op->cmd = MMUEXT_NEW_BASEPTR;
  589. op->arg1.mfn = mfn;
  590. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  591. /* Update xen_update_cr3 once the batch has actually
  592. been submitted. */
  593. xen_mc_callback(set_current_cr3, (void *)cr3);
  594. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  595. }
  596. /* Early in boot, while setting up the initial pagetable, assume
  597. everything is pinned. */
  598. static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
  599. {
  600. #ifdef CONFIG_FLATMEM
  601. BUG_ON(mem_map); /* should only be used early */
  602. #endif
  603. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  604. }
  605. /* Early release_pte assumes that all pts are pinned, since there's
  606. only init_mm and anything attached to that is pinned. */
  607. static void xen_release_pte_init(u32 pfn)
  608. {
  609. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  610. }
  611. static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  612. {
  613. struct mmuext_op op;
  614. op.cmd = cmd;
  615. op.arg1.mfn = pfn_to_mfn(pfn);
  616. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  617. BUG();
  618. }
  619. /* This needs to make sure the new pte page is pinned iff its being
  620. attached to a pinned pagetable. */
  621. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  622. {
  623. struct page *page = pfn_to_page(pfn);
  624. if (PagePinned(virt_to_page(mm->pgd))) {
  625. SetPagePinned(page);
  626. if (!PageHighMem(page)) {
  627. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  628. if (level == PT_PTE)
  629. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  630. } else
  631. /* make sure there are no stray mappings of
  632. this page */
  633. kmap_flush_unused();
  634. }
  635. }
  636. static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
  637. {
  638. xen_alloc_ptpage(mm, pfn, PT_PTE);
  639. }
  640. static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
  641. {
  642. xen_alloc_ptpage(mm, pfn, PT_PMD);
  643. }
  644. /* This should never happen until we're OK to use struct page */
  645. static void xen_release_ptpage(u32 pfn, unsigned level)
  646. {
  647. struct page *page = pfn_to_page(pfn);
  648. if (PagePinned(page)) {
  649. if (!PageHighMem(page)) {
  650. if (level == PT_PTE)
  651. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  652. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  653. }
  654. ClearPagePinned(page);
  655. }
  656. }
  657. static void xen_release_pte(u32 pfn)
  658. {
  659. xen_release_ptpage(pfn, PT_PTE);
  660. }
  661. static void xen_release_pmd(u32 pfn)
  662. {
  663. xen_release_ptpage(pfn, PT_PMD);
  664. }
  665. #ifdef CONFIG_HIGHPTE
  666. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  667. {
  668. pgprot_t prot = PAGE_KERNEL;
  669. if (PagePinned(page))
  670. prot = PAGE_KERNEL_RO;
  671. if (0 && PageHighMem(page))
  672. printk("mapping highpte %lx type %d prot %s\n",
  673. page_to_pfn(page), type,
  674. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  675. return kmap_atomic_prot(page, type, prot);
  676. }
  677. #endif
  678. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  679. {
  680. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  681. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  682. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  683. pte_val_ma(pte));
  684. return pte;
  685. }
  686. /* Init-time set_pte while constructing initial pagetables, which
  687. doesn't allow RO pagetable pages to be remapped RW */
  688. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  689. {
  690. pte = mask_rw_pte(ptep, pte);
  691. xen_set_pte(ptep, pte);
  692. }
  693. static __init void xen_pagetable_setup_start(pgd_t *base)
  694. {
  695. pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
  696. int i;
  697. /* special set_pte for pagetable initialization */
  698. pv_mmu_ops.set_pte = xen_set_pte_init;
  699. init_mm.pgd = base;
  700. /*
  701. * copy top-level of Xen-supplied pagetable into place. This
  702. * is a stand-in while we copy the pmd pages.
  703. */
  704. memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
  705. /*
  706. * For PAE, need to allocate new pmds, rather than
  707. * share Xen's, since Xen doesn't like pmd's being
  708. * shared between address spaces.
  709. */
  710. for (i = 0; i < PTRS_PER_PGD; i++) {
  711. if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
  712. pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
  713. memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
  714. PAGE_SIZE);
  715. make_lowmem_page_readonly(pmd);
  716. set_pgd(&base[i], __pgd(1 + __pa(pmd)));
  717. } else
  718. pgd_clear(&base[i]);
  719. }
  720. /* make sure zero_page is mapped RO so we can use it in pagetables */
  721. make_lowmem_page_readonly(empty_zero_page);
  722. make_lowmem_page_readonly(base);
  723. /*
  724. * Switch to new pagetable. This is done before
  725. * pagetable_init has done anything so that the new pages
  726. * added to the table can be prepared properly for Xen.
  727. */
  728. xen_write_cr3(__pa(base));
  729. /* Unpin initial Xen pagetable */
  730. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
  731. PFN_DOWN(__pa(xen_start_info->pt_base)));
  732. }
  733. void xen_setup_shared_info(void)
  734. {
  735. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  736. unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  737. /*
  738. * Create a mapping for the shared info page.
  739. * Should be set_fixmap(), but shared_info is a machine
  740. * address with no corresponding pseudo-phys address.
  741. */
  742. set_pte_mfn(addr,
  743. PFN_DOWN(xen_start_info->shared_info),
  744. PAGE_KERNEL);
  745. HYPERVISOR_shared_info = (struct shared_info *)addr;
  746. } else
  747. HYPERVISOR_shared_info =
  748. (struct shared_info *)__va(xen_start_info->shared_info);
  749. #ifndef CONFIG_SMP
  750. /* In UP this is as good a place as any to set up shared info */
  751. xen_setup_vcpu_info_placement();
  752. #endif
  753. xen_setup_mfn_list_list();
  754. }
  755. static __init void xen_pagetable_setup_done(pgd_t *base)
  756. {
  757. /* This will work as long as patching hasn't happened yet
  758. (which it hasn't) */
  759. pv_mmu_ops.alloc_pte = xen_alloc_pte;
  760. pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
  761. pv_mmu_ops.release_pte = xen_release_pte;
  762. pv_mmu_ops.release_pmd = xen_release_pmd;
  763. pv_mmu_ops.set_pte = xen_set_pte;
  764. xen_setup_shared_info();
  765. /* Actually pin the pagetable down, but we can't set PG_pinned
  766. yet because the page structures don't exist yet. */
  767. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
  768. }
  769. static __init void xen_post_allocator_init(void)
  770. {
  771. pv_mmu_ops.set_pmd = xen_set_pmd;
  772. pv_mmu_ops.set_pud = xen_set_pud;
  773. xen_mark_init_mm_pinned();
  774. }
  775. /* This is called once we have the cpu_possible_map */
  776. void xen_setup_vcpu_info_placement(void)
  777. {
  778. int cpu;
  779. for_each_possible_cpu(cpu)
  780. xen_vcpu_setup(cpu);
  781. /* xen_vcpu_setup managed to place the vcpu_info within the
  782. percpu area for all cpus, so make use of it */
  783. if (have_vcpu_info_placement) {
  784. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  785. pv_irq_ops.save_fl = xen_save_fl_direct;
  786. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  787. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  788. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  789. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  790. }
  791. }
  792. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  793. unsigned long addr, unsigned len)
  794. {
  795. char *start, *end, *reloc;
  796. unsigned ret;
  797. start = end = reloc = NULL;
  798. #define SITE(op, x) \
  799. case PARAVIRT_PATCH(op.x): \
  800. if (have_vcpu_info_placement) { \
  801. start = (char *)xen_##x##_direct; \
  802. end = xen_##x##_direct_end; \
  803. reloc = xen_##x##_direct_reloc; \
  804. } \
  805. goto patch_site
  806. switch (type) {
  807. SITE(pv_irq_ops, irq_enable);
  808. SITE(pv_irq_ops, irq_disable);
  809. SITE(pv_irq_ops, save_fl);
  810. SITE(pv_irq_ops, restore_fl);
  811. #undef SITE
  812. patch_site:
  813. if (start == NULL || (end-start) > len)
  814. goto default_patch;
  815. ret = paravirt_patch_insns(insnbuf, len, start, end);
  816. /* Note: because reloc is assigned from something that
  817. appears to be an array, gcc assumes it's non-null,
  818. but doesn't know its relationship with start and
  819. end. */
  820. if (reloc > start && reloc < end) {
  821. int reloc_off = reloc - start;
  822. long *relocp = (long *)(insnbuf + reloc_off);
  823. long delta = start - (char *)addr;
  824. *relocp += delta;
  825. }
  826. break;
  827. default_patch:
  828. default:
  829. ret = paravirt_patch_default(type, clobbers, insnbuf,
  830. addr, len);
  831. break;
  832. }
  833. return ret;
  834. }
  835. static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
  836. {
  837. pte_t pte;
  838. phys >>= PAGE_SHIFT;
  839. switch (idx) {
  840. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  841. #ifdef CONFIG_X86_F00F_BUG
  842. case FIX_F00F_IDT:
  843. #endif
  844. case FIX_WP_TEST:
  845. case FIX_VDSO:
  846. #ifdef CONFIG_X86_LOCAL_APIC
  847. case FIX_APIC_BASE: /* maps dummy local APIC */
  848. #endif
  849. pte = pfn_pte(phys, prot);
  850. break;
  851. default:
  852. pte = mfn_pte(phys, prot);
  853. break;
  854. }
  855. __native_set_fixmap(idx, pte);
  856. }
  857. static const struct pv_info xen_info __initdata = {
  858. .paravirt_enabled = 1,
  859. .shared_kernel_pmd = 0,
  860. .name = "Xen",
  861. };
  862. static const struct pv_init_ops xen_init_ops __initdata = {
  863. .patch = xen_patch,
  864. .banner = xen_banner,
  865. .memory_setup = xen_memory_setup,
  866. .arch_setup = xen_arch_setup,
  867. .post_allocator_init = xen_post_allocator_init,
  868. };
  869. static const struct pv_time_ops xen_time_ops __initdata = {
  870. .time_init = xen_time_init,
  871. .set_wallclock = xen_set_wallclock,
  872. .get_wallclock = xen_get_wallclock,
  873. .get_tsc_khz = xen_tsc_khz,
  874. .sched_clock = xen_sched_clock,
  875. };
  876. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  877. .cpuid = xen_cpuid,
  878. .set_debugreg = xen_set_debugreg,
  879. .get_debugreg = xen_get_debugreg,
  880. .clts = xen_clts,
  881. .read_cr0 = native_read_cr0,
  882. .write_cr0 = xen_write_cr0,
  883. .read_cr4 = native_read_cr4,
  884. .read_cr4_safe = native_read_cr4_safe,
  885. .write_cr4 = xen_write_cr4,
  886. .wbinvd = native_wbinvd,
  887. .read_msr = native_read_msr_safe,
  888. .write_msr = native_write_msr_safe,
  889. .read_tsc = native_read_tsc,
  890. .read_pmc = native_read_pmc,
  891. .iret = xen_iret,
  892. .irq_enable_sysexit = xen_sysexit,
  893. .load_tr_desc = paravirt_nop,
  894. .set_ldt = xen_set_ldt,
  895. .load_gdt = xen_load_gdt,
  896. .load_idt = xen_load_idt,
  897. .load_tls = xen_load_tls,
  898. .store_gdt = native_store_gdt,
  899. .store_idt = native_store_idt,
  900. .store_tr = xen_store_tr,
  901. .write_ldt_entry = xen_write_ldt_entry,
  902. .write_gdt_entry = xen_write_gdt_entry,
  903. .write_idt_entry = xen_write_idt_entry,
  904. .load_sp0 = xen_load_sp0,
  905. .set_iopl_mask = xen_set_iopl_mask,
  906. .io_delay = xen_io_delay,
  907. .lazy_mode = {
  908. .enter = paravirt_enter_lazy_cpu,
  909. .leave = xen_leave_lazy,
  910. },
  911. };
  912. static const struct pv_irq_ops xen_irq_ops __initdata = {
  913. .init_IRQ = xen_init_IRQ,
  914. .save_fl = xen_save_fl,
  915. .restore_fl = xen_restore_fl,
  916. .irq_disable = xen_irq_disable,
  917. .irq_enable = xen_irq_enable,
  918. .safe_halt = xen_safe_halt,
  919. .halt = xen_halt,
  920. #ifdef CONFIG_X86_64
  921. .adjust_exception_frame = paravirt_nop,
  922. #endif
  923. };
  924. static const struct pv_apic_ops xen_apic_ops __initdata = {
  925. #ifdef CONFIG_X86_LOCAL_APIC
  926. #ifndef CONFIG_X86_64
  927. .apic_write = xen_apic_write,
  928. .apic_write_atomic = xen_apic_write,
  929. .apic_read = xen_apic_read,
  930. #endif
  931. .setup_boot_clock = paravirt_nop,
  932. .setup_secondary_clock = paravirt_nop,
  933. .startup_ipi_hook = paravirt_nop,
  934. #endif
  935. };
  936. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  937. .pagetable_setup_start = xen_pagetable_setup_start,
  938. .pagetable_setup_done = xen_pagetable_setup_done,
  939. .read_cr2 = xen_read_cr2,
  940. .write_cr2 = xen_write_cr2,
  941. .read_cr3 = xen_read_cr3,
  942. .write_cr3 = xen_write_cr3,
  943. .flush_tlb_user = xen_flush_tlb,
  944. .flush_tlb_kernel = xen_flush_tlb,
  945. .flush_tlb_single = xen_flush_tlb_single,
  946. .flush_tlb_others = xen_flush_tlb_others,
  947. .pte_update = paravirt_nop,
  948. .pte_update_defer = paravirt_nop,
  949. .pgd_alloc = __paravirt_pgd_alloc,
  950. .pgd_free = paravirt_nop,
  951. .alloc_pte = xen_alloc_pte_init,
  952. .release_pte = xen_release_pte_init,
  953. .alloc_pmd = xen_alloc_pte_init,
  954. .alloc_pmd_clone = paravirt_nop,
  955. .release_pmd = xen_release_pte_init,
  956. #ifdef CONFIG_HIGHPTE
  957. .kmap_atomic_pte = xen_kmap_atomic_pte,
  958. #endif
  959. .set_pte = NULL, /* see xen_pagetable_setup_* */
  960. .set_pte_at = xen_set_pte_at,
  961. .set_pmd = xen_set_pmd_hyper,
  962. .ptep_modify_prot_start = __ptep_modify_prot_start,
  963. .ptep_modify_prot_commit = __ptep_modify_prot_commit,
  964. .pte_val = xen_pte_val,
  965. .pte_flags = native_pte_val,
  966. .pgd_val = xen_pgd_val,
  967. .make_pte = xen_make_pte,
  968. .make_pgd = xen_make_pgd,
  969. .set_pte_atomic = xen_set_pte_atomic,
  970. .set_pte_present = xen_set_pte_at,
  971. .set_pud = xen_set_pud_hyper,
  972. .pte_clear = xen_pte_clear,
  973. .pmd_clear = xen_pmd_clear,
  974. .make_pmd = xen_make_pmd,
  975. .pmd_val = xen_pmd_val,
  976. .activate_mm = xen_activate_mm,
  977. .dup_mmap = xen_dup_mmap,
  978. .exit_mmap = xen_exit_mmap,
  979. .lazy_mode = {
  980. .enter = paravirt_enter_lazy_mmu,
  981. .leave = xen_leave_lazy,
  982. },
  983. .set_fixmap = xen_set_fixmap,
  984. };
  985. #ifdef CONFIG_SMP
  986. static const struct smp_ops xen_smp_ops __initdata = {
  987. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  988. .smp_prepare_cpus = xen_smp_prepare_cpus,
  989. .cpu_up = xen_cpu_up,
  990. .smp_cpus_done = xen_smp_cpus_done,
  991. .smp_send_stop = xen_smp_send_stop,
  992. .smp_send_reschedule = xen_smp_send_reschedule,
  993. .smp_call_function_mask = xen_smp_call_function_mask,
  994. };
  995. #endif /* CONFIG_SMP */
  996. static void xen_reboot(int reason)
  997. {
  998. struct sched_shutdown r = { .reason = reason };
  999. #ifdef CONFIG_SMP
  1000. smp_send_stop();
  1001. #endif
  1002. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  1003. BUG();
  1004. }
  1005. static void xen_restart(char *msg)
  1006. {
  1007. xen_reboot(SHUTDOWN_reboot);
  1008. }
  1009. static void xen_emergency_restart(void)
  1010. {
  1011. xen_reboot(SHUTDOWN_reboot);
  1012. }
  1013. static void xen_machine_halt(void)
  1014. {
  1015. xen_reboot(SHUTDOWN_poweroff);
  1016. }
  1017. static void xen_crash_shutdown(struct pt_regs *regs)
  1018. {
  1019. xen_reboot(SHUTDOWN_crash);
  1020. }
  1021. static const struct machine_ops __initdata xen_machine_ops = {
  1022. .restart = xen_restart,
  1023. .halt = xen_machine_halt,
  1024. .power_off = xen_machine_halt,
  1025. .shutdown = xen_machine_halt,
  1026. .crash_shutdown = xen_crash_shutdown,
  1027. .emergency_restart = xen_emergency_restart,
  1028. };
  1029. static void __init xen_reserve_top(void)
  1030. {
  1031. unsigned long top = HYPERVISOR_VIRT_START;
  1032. struct xen_platform_parameters pp;
  1033. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  1034. top = pp.virt_start;
  1035. reserve_top_address(-top + 2 * PAGE_SIZE);
  1036. }
  1037. /* First C function to be called on Xen boot */
  1038. asmlinkage void __init xen_start_kernel(void)
  1039. {
  1040. pgd_t *pgd;
  1041. if (!xen_start_info)
  1042. return;
  1043. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  1044. xen_setup_features();
  1045. /* Install Xen paravirt ops */
  1046. pv_info = xen_info;
  1047. pv_init_ops = xen_init_ops;
  1048. pv_time_ops = xen_time_ops;
  1049. pv_cpu_ops = xen_cpu_ops;
  1050. pv_irq_ops = xen_irq_ops;
  1051. pv_apic_ops = xen_apic_ops;
  1052. pv_mmu_ops = xen_mmu_ops;
  1053. #ifdef CONFIG_X86_64
  1054. /*
  1055. * for 64bit, set up the basic apic ops aswell.
  1056. */
  1057. apic_ops = &xen_basic_apic_ops;
  1058. #endif
  1059. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1060. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1061. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1062. }
  1063. machine_ops = xen_machine_ops;
  1064. #ifdef CONFIG_SMP
  1065. smp_ops = xen_smp_ops;
  1066. #endif
  1067. /* Get mfn list */
  1068. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1069. xen_build_dynamic_phys_to_machine();
  1070. pgd = (pgd_t *)xen_start_info->pt_base;
  1071. init_pg_tables_start = __pa(pgd);
  1072. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  1073. max_pfn_mapped = (init_pg_tables_end + 512*1024) >> PAGE_SHIFT;
  1074. init_mm.pgd = pgd; /* use the Xen pagetables to start */
  1075. /* keep using Xen gdt for now; no urgent need to change it */
  1076. x86_write_percpu(xen_cr3, __pa(pgd));
  1077. x86_write_percpu(xen_current_cr3, __pa(pgd));
  1078. /* Don't do the full vcpu_info placement stuff until we have a
  1079. possible map and a non-dummy shared_info. */
  1080. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1081. pv_info.kernel_rpl = 1;
  1082. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1083. pv_info.kernel_rpl = 0;
  1084. /* Prevent unwanted bits from being set in PTEs. */
  1085. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1086. if (!is_initial_xendomain())
  1087. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1088. /* set the limit of our address space */
  1089. xen_reserve_top();
  1090. /* set up basic CPUID stuff */
  1091. cpu_detect(&new_cpu_data);
  1092. new_cpu_data.hard_math = 1;
  1093. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1094. /* Poke various useful things into boot_params */
  1095. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1096. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1097. ? __pa(xen_start_info->mod_start) : 0;
  1098. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1099. if (!is_initial_xendomain()) {
  1100. add_preferred_console("xenboot", 0, NULL);
  1101. add_preferred_console("tty", 0, NULL);
  1102. add_preferred_console("hvc", 0, NULL);
  1103. }
  1104. /* Start the world */
  1105. i386_start_kernel();
  1106. }