ctatc.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. SND_PCI_QUIRK_VENDOR(PCI_VENDOR_ID_CREATIVE,
  46. "Unknown", CT20K1_UNKNOWN),
  47. { } /* terminator */
  48. };
  49. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  51. "SB0760", CTSB0760),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  57. "SB0880", CTSB0880),
  58. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  59. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  60. CTHENDRIX),
  61. { } /* terminator */
  62. };
  63. static const char *ct_subsys_name[NUM_CTCARDS] = {
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTSB0760] = "SB076x",
  67. [CTUAA] = "UAA",
  68. [CT20K1_UNKNOWN] = "Unknown",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. };
  72. static struct {
  73. int (*create)(struct ct_atc *atc,
  74. enum CTALSADEVS device, const char *device_name);
  75. int (*destroy)(void *alsa_dev);
  76. const char *public_name;
  77. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  78. [FRONT] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "Front/WaveIn"},
  81. [SURROUND] = { .create = ct_alsa_pcm_create,
  82. .destroy = NULL,
  83. .public_name = "Surround"},
  84. [CLFE] = { .create = ct_alsa_pcm_create,
  85. .destroy = NULL,
  86. .public_name = "Center/LFE"},
  87. [SIDE] = { .create = ct_alsa_pcm_create,
  88. .destroy = NULL,
  89. .public_name = "Side"},
  90. [IEC958] = { .create = ct_alsa_pcm_create,
  91. .destroy = NULL,
  92. .public_name = "IEC958 Non-audio"},
  93. [MIXER] = { .create = ct_alsa_mix_create,
  94. .destroy = NULL,
  95. .public_name = "Mixer"}
  96. };
  97. typedef int (*create_t)(void *, void **);
  98. typedef int (*destroy_t)(void *);
  99. static struct {
  100. int (*create)(void *hw, void **rmgr);
  101. int (*destroy)(void *mgr);
  102. } rsc_mgr_funcs[NUM_RSCTYP] = {
  103. [SRC] = { .create = (create_t)src_mgr_create,
  104. .destroy = (destroy_t)src_mgr_destroy },
  105. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  106. .destroy = (destroy_t)srcimp_mgr_destroy },
  107. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  108. .destroy = (destroy_t)amixer_mgr_destroy },
  109. [SUM] = { .create = (create_t)sum_mgr_create,
  110. .destroy = (destroy_t)sum_mgr_destroy },
  111. [DAIO] = { .create = (create_t)daio_mgr_create,
  112. .destroy = (destroy_t)daio_mgr_destroy }
  113. };
  114. static int
  115. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  116. /* *
  117. * Only mono and interleaved modes are supported now.
  118. * Always allocates a contiguous channel block.
  119. * */
  120. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  121. {
  122. struct snd_pcm_runtime *runtime;
  123. struct ct_vm *vm;
  124. if (NULL == apcm->substream)
  125. return 0;
  126. runtime = apcm->substream->runtime;
  127. vm = atc->vm;
  128. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  129. if (NULL == apcm->vm_block)
  130. return -ENOENT;
  131. return 0;
  132. }
  133. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  134. {
  135. struct ct_vm *vm;
  136. if (NULL == apcm->vm_block)
  137. return;
  138. vm = atc->vm;
  139. vm->unmap(vm, apcm->vm_block);
  140. apcm->vm_block = NULL;
  141. }
  142. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  143. {
  144. struct ct_vm *vm;
  145. void *kvirt_addr;
  146. unsigned long phys_addr;
  147. vm = atc->vm;
  148. kvirt_addr = vm->get_ptp_virt(vm, index);
  149. if (kvirt_addr == NULL)
  150. phys_addr = (~0UL);
  151. else
  152. phys_addr = virt_to_phys(kvirt_addr);
  153. return phys_addr;
  154. }
  155. static unsigned int convert_format(snd_pcm_format_t snd_format)
  156. {
  157. switch (snd_format) {
  158. case SNDRV_PCM_FORMAT_U8:
  159. return SRC_SF_U8;
  160. case SNDRV_PCM_FORMAT_S16_LE:
  161. return SRC_SF_S16;
  162. case SNDRV_PCM_FORMAT_S24_3LE:
  163. return SRC_SF_S24;
  164. case SNDRV_PCM_FORMAT_S32_LE:
  165. return SRC_SF_S32;
  166. case SNDRV_PCM_FORMAT_FLOAT_LE:
  167. return SRC_SF_F32;
  168. default:
  169. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  170. snd_format);
  171. return SRC_SF_S16;
  172. }
  173. }
  174. static unsigned int
  175. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  176. {
  177. unsigned int pitch;
  178. int b;
  179. /* get pitch and convert to fixed-point 8.24 format. */
  180. pitch = (input_rate / output_rate) << 24;
  181. input_rate %= output_rate;
  182. input_rate /= 100;
  183. output_rate /= 100;
  184. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  185. b--;
  186. if (b >= 0) {
  187. input_rate <<= (31 - b);
  188. input_rate /= output_rate;
  189. b = 24 - (31 - b);
  190. if (b >= 0)
  191. input_rate <<= b;
  192. else
  193. input_rate >>= -b;
  194. pitch |= input_rate;
  195. }
  196. return pitch;
  197. }
  198. static int select_rom(unsigned int pitch)
  199. {
  200. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  201. /* 0.26 <= pitch <= 1.72 */
  202. return 1;
  203. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  204. /* pitch == 1.8375 */
  205. return 2;
  206. } else if (0x02000000 == pitch) {
  207. /* pitch == 2 */
  208. return 3;
  209. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  210. /* 0 <= pitch <= 8 */
  211. return 0;
  212. } else {
  213. return -ENOENT;
  214. }
  215. }
  216. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  217. {
  218. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  219. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  220. struct src_desc desc = {0};
  221. struct amixer_desc mix_dsc = {0};
  222. struct src *src;
  223. struct amixer *amixer;
  224. int err;
  225. int n_amixer = apcm->substream->runtime->channels, i = 0;
  226. int device = apcm->substream->pcm->device;
  227. unsigned int pitch;
  228. if (NULL != apcm->src) {
  229. /* Prepared pcm playback */
  230. return 0;
  231. }
  232. /* first release old resources */
  233. atc->pcm_release_resources(atc, apcm);
  234. /* Get SRC resource */
  235. desc.multi = apcm->substream->runtime->channels;
  236. desc.msr = atc->msr;
  237. desc.mode = MEMRD;
  238. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  239. if (err)
  240. goto error1;
  241. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  242. (atc->rsr * atc->msr));
  243. src = apcm->src;
  244. src->ops->set_pitch(src, pitch);
  245. src->ops->set_rom(src, select_rom(pitch));
  246. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  247. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  248. /* Get AMIXER resource */
  249. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  250. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  251. if (NULL == apcm->amixers) {
  252. err = -ENOMEM;
  253. goto error1;
  254. }
  255. mix_dsc.msr = atc->msr;
  256. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  257. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  258. (struct amixer **)&apcm->amixers[i]);
  259. if (err)
  260. goto error1;
  261. apcm->n_amixer++;
  262. }
  263. /* Set up device virtual mem map */
  264. err = ct_map_audio_buffer(atc, apcm);
  265. if (err < 0)
  266. goto error1;
  267. /* Connect resources */
  268. src = apcm->src;
  269. for (i = 0; i < n_amixer; i++) {
  270. amixer = apcm->amixers[i];
  271. mutex_lock(&atc->atc_mutex);
  272. amixer->ops->setup(amixer, &src->rsc,
  273. INIT_VOL, atc->pcm[i+device*2]);
  274. mutex_unlock(&atc->atc_mutex);
  275. src = src->ops->next_interleave(src);
  276. if (NULL == src)
  277. src = apcm->src;
  278. }
  279. ct_timer_prepare(apcm->timer);
  280. return 0;
  281. error1:
  282. atc_pcm_release_resources(atc, apcm);
  283. return err;
  284. }
  285. static int
  286. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  287. {
  288. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  289. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  290. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  291. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  292. struct srcimp *srcimp;
  293. int i;
  294. if (NULL != apcm->srcimps) {
  295. for (i = 0; i < apcm->n_srcimp; i++) {
  296. srcimp = apcm->srcimps[i];
  297. srcimp->ops->unmap(srcimp);
  298. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  299. apcm->srcimps[i] = NULL;
  300. }
  301. kfree(apcm->srcimps);
  302. apcm->srcimps = NULL;
  303. }
  304. if (NULL != apcm->srccs) {
  305. for (i = 0; i < apcm->n_srcc; i++) {
  306. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  307. apcm->srccs[i] = NULL;
  308. }
  309. kfree(apcm->srccs);
  310. apcm->srccs = NULL;
  311. }
  312. if (NULL != apcm->amixers) {
  313. for (i = 0; i < apcm->n_amixer; i++) {
  314. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  315. apcm->amixers[i] = NULL;
  316. }
  317. kfree(apcm->amixers);
  318. apcm->amixers = NULL;
  319. }
  320. if (NULL != apcm->mono) {
  321. sum_mgr->put_sum(sum_mgr, apcm->mono);
  322. apcm->mono = NULL;
  323. }
  324. if (NULL != apcm->src) {
  325. src_mgr->put_src(src_mgr, apcm->src);
  326. apcm->src = NULL;
  327. }
  328. if (NULL != apcm->vm_block) {
  329. /* Undo device virtual mem map */
  330. ct_unmap_audio_buffer(atc, apcm);
  331. apcm->vm_block = NULL;
  332. }
  333. return 0;
  334. }
  335. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  336. {
  337. unsigned int max_cisz;
  338. struct src *src = apcm->src;
  339. if (apcm->started)
  340. return 0;
  341. apcm->started = 1;
  342. max_cisz = src->multi * src->rsc.msr;
  343. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  344. src->ops->set_sa(src, apcm->vm_block->addr);
  345. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  346. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  347. src->ops->set_cisz(src, max_cisz);
  348. src->ops->set_bm(src, 1);
  349. src->ops->set_state(src, SRC_STATE_INIT);
  350. src->ops->commit_write(src);
  351. ct_timer_start(apcm->timer);
  352. return 0;
  353. }
  354. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  355. {
  356. struct src *src;
  357. int i;
  358. ct_timer_stop(apcm->timer);
  359. src = apcm->src;
  360. src->ops->set_bm(src, 0);
  361. src->ops->set_state(src, SRC_STATE_OFF);
  362. src->ops->commit_write(src);
  363. if (NULL != apcm->srccs) {
  364. for (i = 0; i < apcm->n_srcc; i++) {
  365. src = apcm->srccs[i];
  366. src->ops->set_bm(src, 0);
  367. src->ops->set_state(src, SRC_STATE_OFF);
  368. src->ops->commit_write(src);
  369. }
  370. }
  371. apcm->started = 0;
  372. return 0;
  373. }
  374. static int
  375. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  376. {
  377. struct src *src = apcm->src;
  378. u32 size, max_cisz;
  379. int position;
  380. if (!src)
  381. return 0;
  382. position = src->ops->get_ca(src);
  383. size = apcm->vm_block->size;
  384. max_cisz = src->multi * src->rsc.msr;
  385. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  386. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  387. }
  388. struct src_node_conf_t {
  389. unsigned int pitch;
  390. unsigned int msr:8;
  391. unsigned int mix_msr:8;
  392. unsigned int imp_msr:8;
  393. unsigned int vo:1;
  394. };
  395. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  396. struct src_node_conf_t *conf, int *n_srcc)
  397. {
  398. unsigned int pitch;
  399. /* get pitch and convert to fixed-point 8.24 format. */
  400. pitch = atc_get_pitch((atc->rsr * atc->msr),
  401. apcm->substream->runtime->rate);
  402. *n_srcc = 0;
  403. if (1 == atc->msr) {
  404. *n_srcc = apcm->substream->runtime->channels;
  405. conf[0].pitch = pitch;
  406. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  407. conf[0].vo = 1;
  408. } else if (2 == atc->msr) {
  409. if (0x8000000 < pitch) {
  410. /* Need two-stage SRCs, SRCIMPs and
  411. * AMIXERs for converting format */
  412. conf[0].pitch = (atc->msr << 24);
  413. conf[0].msr = conf[0].mix_msr = 1;
  414. conf[0].imp_msr = atc->msr;
  415. conf[0].vo = 0;
  416. conf[1].pitch = atc_get_pitch(atc->rsr,
  417. apcm->substream->runtime->rate);
  418. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  419. conf[1].vo = 1;
  420. *n_srcc = apcm->substream->runtime->channels * 2;
  421. } else if (0x1000000 < pitch) {
  422. /* Need one-stage SRCs, SRCIMPs and
  423. * AMIXERs for converting format */
  424. conf[0].pitch = pitch;
  425. conf[0].msr = conf[0].mix_msr
  426. = conf[0].imp_msr = atc->msr;
  427. conf[0].vo = 1;
  428. *n_srcc = apcm->substream->runtime->channels;
  429. }
  430. }
  431. }
  432. static int
  433. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  434. {
  435. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  436. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  437. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  438. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  439. struct src_desc src_dsc = {0};
  440. struct src *src;
  441. struct srcimp_desc srcimp_dsc = {0};
  442. struct srcimp *srcimp;
  443. struct amixer_desc mix_dsc = {0};
  444. struct sum_desc sum_dsc = {0};
  445. unsigned int pitch;
  446. int multi, err, i;
  447. int n_srcimp, n_amixer, n_srcc, n_sum;
  448. struct src_node_conf_t src_node_conf[2] = {{0} };
  449. /* first release old resources */
  450. atc_pcm_release_resources(atc, apcm);
  451. /* The numbers of converting SRCs and SRCIMPs should be determined
  452. * by pitch value. */
  453. multi = apcm->substream->runtime->channels;
  454. /* get pitch and convert to fixed-point 8.24 format. */
  455. pitch = atc_get_pitch((atc->rsr * atc->msr),
  456. apcm->substream->runtime->rate);
  457. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  458. n_sum = (1 == multi) ? 1 : 0;
  459. n_amixer = n_sum * 2 + n_srcc;
  460. n_srcimp = n_srcc;
  461. if ((multi > 1) && (0x8000000 >= pitch)) {
  462. /* Need extra AMIXERs and SRCIMPs for special treatment
  463. * of interleaved recording of conjugate channels */
  464. n_amixer += multi * atc->msr;
  465. n_srcimp += multi * atc->msr;
  466. } else {
  467. n_srcimp += multi;
  468. }
  469. if (n_srcc) {
  470. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  471. if (NULL == apcm->srccs)
  472. return -ENOMEM;
  473. }
  474. if (n_amixer) {
  475. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  476. if (NULL == apcm->amixers) {
  477. err = -ENOMEM;
  478. goto error1;
  479. }
  480. }
  481. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  482. if (NULL == apcm->srcimps) {
  483. err = -ENOMEM;
  484. goto error1;
  485. }
  486. /* Allocate SRCs for sample rate conversion if needed */
  487. src_dsc.multi = 1;
  488. src_dsc.mode = ARCRW;
  489. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  490. src_dsc.msr = src_node_conf[i/multi].msr;
  491. err = src_mgr->get_src(src_mgr, &src_dsc,
  492. (struct src **)&apcm->srccs[i]);
  493. if (err)
  494. goto error1;
  495. src = apcm->srccs[i];
  496. pitch = src_node_conf[i/multi].pitch;
  497. src->ops->set_pitch(src, pitch);
  498. src->ops->set_rom(src, select_rom(pitch));
  499. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  500. apcm->n_srcc++;
  501. }
  502. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  503. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  504. if (i < (n_sum*2))
  505. mix_dsc.msr = atc->msr;
  506. else if (i < (n_sum*2+n_srcc))
  507. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  508. else
  509. mix_dsc.msr = 1;
  510. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  511. (struct amixer **)&apcm->amixers[i]);
  512. if (err)
  513. goto error1;
  514. apcm->n_amixer++;
  515. }
  516. /* Allocate a SUM resource to mix all input channels together */
  517. sum_dsc.msr = atc->msr;
  518. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  519. if (err)
  520. goto error1;
  521. pitch = atc_get_pitch((atc->rsr * atc->msr),
  522. apcm->substream->runtime->rate);
  523. /* Allocate SRCIMP resources */
  524. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  525. if (i < (n_srcc))
  526. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  527. else if (1 == multi)
  528. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  529. else
  530. srcimp_dsc.msr = 1;
  531. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  532. if (err)
  533. goto error1;
  534. apcm->srcimps[i] = srcimp;
  535. apcm->n_srcimp++;
  536. }
  537. /* Allocate a SRC for writing data to host memory */
  538. src_dsc.multi = apcm->substream->runtime->channels;
  539. src_dsc.msr = 1;
  540. src_dsc.mode = MEMWR;
  541. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  542. if (err)
  543. goto error1;
  544. src = apcm->src;
  545. src->ops->set_pitch(src, pitch);
  546. /* Set up device virtual mem map */
  547. err = ct_map_audio_buffer(atc, apcm);
  548. if (err < 0)
  549. goto error1;
  550. return 0;
  551. error1:
  552. atc_pcm_release_resources(atc, apcm);
  553. return err;
  554. }
  555. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  556. {
  557. struct src *src;
  558. struct amixer *amixer;
  559. struct srcimp *srcimp;
  560. struct ct_mixer *mixer = atc->mixer;
  561. struct sum *mono;
  562. struct rsc *out_ports[8] = {NULL};
  563. int err, i, j, n_sum, multi;
  564. unsigned int pitch;
  565. int mix_base = 0, imp_base = 0;
  566. if (NULL != apcm->src) {
  567. /* Prepared pcm capture */
  568. return 0;
  569. }
  570. /* Get needed resources. */
  571. err = atc_pcm_capture_get_resources(atc, apcm);
  572. if (err)
  573. return err;
  574. /* Connect resources */
  575. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  576. &out_ports[0], &out_ports[1]);
  577. multi = apcm->substream->runtime->channels;
  578. if (1 == multi) {
  579. mono = apcm->mono;
  580. for (i = 0; i < 2; i++) {
  581. amixer = apcm->amixers[i];
  582. amixer->ops->setup(amixer, out_ports[i],
  583. MONO_SUM_SCALE, mono);
  584. }
  585. out_ports[0] = &mono->rsc;
  586. n_sum = 1;
  587. mix_base = n_sum * 2;
  588. }
  589. for (i = 0; i < apcm->n_srcc; i++) {
  590. src = apcm->srccs[i];
  591. srcimp = apcm->srcimps[imp_base+i];
  592. amixer = apcm->amixers[mix_base+i];
  593. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  594. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  595. out_ports[i%multi] = &amixer->rsc;
  596. }
  597. pitch = atc_get_pitch((atc->rsr * atc->msr),
  598. apcm->substream->runtime->rate);
  599. if ((multi > 1) && (pitch <= 0x8000000)) {
  600. /* Special connection for interleaved
  601. * recording with conjugate channels */
  602. for (i = 0; i < multi; i++) {
  603. out_ports[i]->ops->master(out_ports[i]);
  604. for (j = 0; j < atc->msr; j++) {
  605. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  606. amixer->ops->set_input(amixer, out_ports[i]);
  607. amixer->ops->set_scale(amixer, INIT_VOL);
  608. amixer->ops->set_sum(amixer, NULL);
  609. amixer->ops->commit_raw_write(amixer);
  610. out_ports[i]->ops->next_conj(out_ports[i]);
  611. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  612. srcimp->ops->map(srcimp, apcm->src,
  613. &amixer->rsc);
  614. }
  615. }
  616. } else {
  617. for (i = 0; i < multi; i++) {
  618. srcimp = apcm->srcimps[apcm->n_srcc+i];
  619. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  620. }
  621. }
  622. ct_timer_prepare(apcm->timer);
  623. return 0;
  624. }
  625. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  626. {
  627. struct src *src;
  628. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  629. int i, multi;
  630. if (apcm->started)
  631. return 0;
  632. apcm->started = 1;
  633. multi = apcm->substream->runtime->channels;
  634. /* Set up converting SRCs */
  635. for (i = 0; i < apcm->n_srcc; i++) {
  636. src = apcm->srccs[i];
  637. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  638. src_mgr->src_disable(src_mgr, src);
  639. }
  640. /* Set up recording SRC */
  641. src = apcm->src;
  642. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  643. src->ops->set_sa(src, apcm->vm_block->addr);
  644. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  645. src->ops->set_ca(src, apcm->vm_block->addr);
  646. src_mgr->src_disable(src_mgr, src);
  647. /* Disable relevant SRCs firstly */
  648. src_mgr->commit_write(src_mgr);
  649. /* Enable SRCs respectively */
  650. for (i = 0; i < apcm->n_srcc; i++) {
  651. src = apcm->srccs[i];
  652. src->ops->set_state(src, SRC_STATE_RUN);
  653. src->ops->commit_write(src);
  654. src_mgr->src_enable_s(src_mgr, src);
  655. }
  656. src = apcm->src;
  657. src->ops->set_bm(src, 1);
  658. src->ops->set_state(src, SRC_STATE_RUN);
  659. src->ops->commit_write(src);
  660. src_mgr->src_enable_s(src_mgr, src);
  661. /* Enable relevant SRCs synchronously */
  662. src_mgr->commit_write(src_mgr);
  663. ct_timer_start(apcm->timer);
  664. return 0;
  665. }
  666. static int
  667. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  668. {
  669. struct src *src = apcm->src;
  670. if (!src)
  671. return 0;
  672. return src->ops->get_ca(src) - apcm->vm_block->addr;
  673. }
  674. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  675. struct ct_atc_pcm *apcm)
  676. {
  677. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  678. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  679. struct src_desc desc = {0};
  680. struct amixer_desc mix_dsc = {0};
  681. struct src *src;
  682. int err;
  683. int n_amixer = apcm->substream->runtime->channels, i;
  684. unsigned int pitch, rsr = atc->pll_rate;
  685. /* first release old resources */
  686. atc_pcm_release_resources(atc, apcm);
  687. /* Get SRC resource */
  688. desc.multi = apcm->substream->runtime->channels;
  689. desc.msr = 1;
  690. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  691. desc.msr <<= 1;
  692. desc.mode = MEMRD;
  693. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  694. if (err)
  695. goto error1;
  696. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  697. src = apcm->src;
  698. src->ops->set_pitch(src, pitch);
  699. src->ops->set_rom(src, select_rom(pitch));
  700. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  701. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  702. src->ops->set_bp(src, 1);
  703. /* Get AMIXER resource */
  704. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  705. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  706. if (NULL == apcm->amixers) {
  707. err = -ENOMEM;
  708. goto error1;
  709. }
  710. mix_dsc.msr = desc.msr;
  711. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  712. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  713. (struct amixer **)&apcm->amixers[i]);
  714. if (err)
  715. goto error1;
  716. apcm->n_amixer++;
  717. }
  718. /* Set up device virtual mem map */
  719. err = ct_map_audio_buffer(atc, apcm);
  720. if (err < 0)
  721. goto error1;
  722. return 0;
  723. error1:
  724. atc_pcm_release_resources(atc, apcm);
  725. return err;
  726. }
  727. static int atc_pll_init(struct ct_atc *atc, int rate)
  728. {
  729. struct hw *hw = atc->hw;
  730. int err;
  731. err = hw->pll_init(hw, rate);
  732. atc->pll_rate = err ? 0 : rate;
  733. return err;
  734. }
  735. static int
  736. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  737. {
  738. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  739. unsigned int rate = apcm->substream->runtime->rate;
  740. unsigned int status;
  741. int err;
  742. unsigned char iec958_con_fs;
  743. switch (rate) {
  744. case 48000:
  745. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  746. break;
  747. case 44100:
  748. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  749. break;
  750. case 32000:
  751. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  752. break;
  753. default:
  754. return -ENOENT;
  755. }
  756. mutex_lock(&atc->atc_mutex);
  757. dao->ops->get_spos(dao, &status);
  758. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  759. status &= ((~IEC958_AES3_CON_FS) << 24);
  760. status |= (iec958_con_fs << 24);
  761. dao->ops->set_spos(dao, status);
  762. dao->ops->commit_write(dao);
  763. }
  764. if ((rate != atc->pll_rate) && (32000 != rate))
  765. err = atc_pll_init(atc, rate);
  766. mutex_unlock(&atc->atc_mutex);
  767. return err;
  768. }
  769. static int
  770. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  771. {
  772. struct src *src;
  773. struct amixer *amixer;
  774. struct dao *dao;
  775. int err;
  776. int i;
  777. if (NULL != apcm->src)
  778. return 0;
  779. /* Configure SPDIFOO and PLL to passthrough mode;
  780. * determine pll_rate. */
  781. err = spdif_passthru_playback_setup(atc, apcm);
  782. if (err)
  783. return err;
  784. /* Get needed resources. */
  785. err = spdif_passthru_playback_get_resources(atc, apcm);
  786. if (err)
  787. return err;
  788. /* Connect resources */
  789. src = apcm->src;
  790. for (i = 0; i < apcm->n_amixer; i++) {
  791. amixer = apcm->amixers[i];
  792. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  793. src = src->ops->next_interleave(src);
  794. if (NULL == src)
  795. src = apcm->src;
  796. }
  797. /* Connect to SPDIFOO */
  798. mutex_lock(&atc->atc_mutex);
  799. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  800. amixer = apcm->amixers[0];
  801. dao->ops->set_left_input(dao, &amixer->rsc);
  802. amixer = apcm->amixers[1];
  803. dao->ops->set_right_input(dao, &amixer->rsc);
  804. mutex_unlock(&atc->atc_mutex);
  805. ct_timer_prepare(apcm->timer);
  806. return 0;
  807. }
  808. static int atc_select_line_in(struct ct_atc *atc)
  809. {
  810. struct hw *hw = atc->hw;
  811. struct ct_mixer *mixer = atc->mixer;
  812. struct src *src;
  813. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  814. return 0;
  815. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  816. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  817. hw->select_adc_source(hw, ADC_LINEIN);
  818. src = atc->srcs[2];
  819. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  820. src = atc->srcs[3];
  821. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  822. return 0;
  823. }
  824. static int atc_select_mic_in(struct ct_atc *atc)
  825. {
  826. struct hw *hw = atc->hw;
  827. struct ct_mixer *mixer = atc->mixer;
  828. struct src *src;
  829. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  830. return 0;
  831. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  832. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  833. hw->select_adc_source(hw, ADC_MICIN);
  834. src = atc->srcs[2];
  835. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  836. src = atc->srcs[3];
  837. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  838. return 0;
  839. }
  840. static int atc_have_digit_io_switch(struct ct_atc *atc)
  841. {
  842. struct hw *hw = atc->hw;
  843. return hw->have_digit_io_switch(hw);
  844. }
  845. static int atc_select_digit_io(struct ct_atc *atc)
  846. {
  847. struct hw *hw = atc->hw;
  848. if (hw->is_adc_source_selected(hw, ADC_NONE))
  849. return 0;
  850. hw->select_adc_source(hw, ADC_NONE);
  851. return 0;
  852. }
  853. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  854. {
  855. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  856. if (state)
  857. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  858. else
  859. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  860. daio_mgr->commit_write(daio_mgr);
  861. return 0;
  862. }
  863. static int
  864. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  865. {
  866. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  867. return dao->ops->get_spos(dao, status);
  868. }
  869. static int
  870. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  871. {
  872. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  873. dao->ops->set_spos(dao, status);
  874. dao->ops->commit_write(dao);
  875. return 0;
  876. }
  877. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  878. {
  879. return atc_daio_unmute(atc, state, LINEO1);
  880. }
  881. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  882. {
  883. return atc_daio_unmute(atc, state, LINEO4);
  884. }
  885. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  886. {
  887. return atc_daio_unmute(atc, state, LINEO3);
  888. }
  889. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  890. {
  891. return atc_daio_unmute(atc, state, LINEO2);
  892. }
  893. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  894. {
  895. return atc_daio_unmute(atc, state, LINEIM);
  896. }
  897. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  898. {
  899. return atc_daio_unmute(atc, state, SPDIFOO);
  900. }
  901. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  902. {
  903. return atc_daio_unmute(atc, state, SPDIFIO);
  904. }
  905. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  906. {
  907. return atc_dao_get_status(atc, status, SPDIFOO);
  908. }
  909. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  910. {
  911. return atc_dao_set_status(atc, status, SPDIFOO);
  912. }
  913. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  914. {
  915. struct dao_desc da_dsc = {0};
  916. struct dao *dao;
  917. int err;
  918. struct ct_mixer *mixer = atc->mixer;
  919. struct rsc *rscs[2] = {NULL};
  920. unsigned int spos = 0;
  921. mutex_lock(&atc->atc_mutex);
  922. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  923. da_dsc.msr = state ? 1 : atc->msr;
  924. da_dsc.passthru = state ? 1 : 0;
  925. err = dao->ops->reinit(dao, &da_dsc);
  926. if (state) {
  927. spos = IEC958_DEFAULT_CON;
  928. } else {
  929. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  930. &rscs[0], &rscs[1]);
  931. dao->ops->set_left_input(dao, rscs[0]);
  932. dao->ops->set_right_input(dao, rscs[1]);
  933. /* Restore PLL to atc->rsr if needed. */
  934. if (atc->pll_rate != atc->rsr)
  935. err = atc_pll_init(atc, atc->rsr);
  936. }
  937. dao->ops->set_spos(dao, spos);
  938. dao->ops->commit_write(dao);
  939. mutex_unlock(&atc->atc_mutex);
  940. return err;
  941. }
  942. static int ct_atc_destroy(struct ct_atc *atc)
  943. {
  944. struct daio_mgr *daio_mgr;
  945. struct dao *dao;
  946. struct dai *dai;
  947. struct daio *daio;
  948. struct sum_mgr *sum_mgr;
  949. struct src_mgr *src_mgr;
  950. struct srcimp_mgr *srcimp_mgr;
  951. struct srcimp *srcimp;
  952. struct ct_mixer *mixer;
  953. int i = 0;
  954. if (NULL == atc)
  955. return 0;
  956. if (atc->timer) {
  957. ct_timer_free(atc->timer);
  958. atc->timer = NULL;
  959. }
  960. /* Stop hardware and disable all interrupts */
  961. if (NULL != atc->hw)
  962. ((struct hw *)atc->hw)->card_stop(atc->hw);
  963. /* Destroy internal mixer objects */
  964. if (NULL != atc->mixer) {
  965. mixer = atc->mixer;
  966. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  967. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  968. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  969. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  970. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  971. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  972. ct_mixer_destroy(atc->mixer);
  973. }
  974. if (NULL != atc->daios) {
  975. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  976. for (i = 0; i < atc->n_daio; i++) {
  977. daio = atc->daios[i];
  978. if (daio->type < LINEIM) {
  979. dao = container_of(daio, struct dao, daio);
  980. dao->ops->clear_left_input(dao);
  981. dao->ops->clear_right_input(dao);
  982. } else {
  983. dai = container_of(daio, struct dai, daio);
  984. /* some thing to do for dai ... */
  985. }
  986. daio_mgr->put_daio(daio_mgr, daio);
  987. }
  988. kfree(atc->daios);
  989. }
  990. if (NULL != atc->pcm) {
  991. sum_mgr = atc->rsc_mgrs[SUM];
  992. for (i = 0; i < atc->n_pcm; i++)
  993. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  994. kfree(atc->pcm);
  995. }
  996. if (NULL != atc->srcs) {
  997. src_mgr = atc->rsc_mgrs[SRC];
  998. for (i = 0; i < atc->n_src; i++)
  999. src_mgr->put_src(src_mgr, atc->srcs[i]);
  1000. kfree(atc->srcs);
  1001. }
  1002. if (NULL != atc->srcimps) {
  1003. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1004. for (i = 0; i < atc->n_srcimp; i++) {
  1005. srcimp = atc->srcimps[i];
  1006. srcimp->ops->unmap(srcimp);
  1007. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1008. }
  1009. kfree(atc->srcimps);
  1010. }
  1011. for (i = 0; i < NUM_RSCTYP; i++) {
  1012. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  1013. (NULL != atc->rsc_mgrs[i]))
  1014. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1015. }
  1016. if (NULL != atc->hw)
  1017. destroy_hw_obj((struct hw *)atc->hw);
  1018. /* Destroy device virtual memory manager object */
  1019. if (NULL != atc->vm) {
  1020. ct_vm_destroy(atc->vm);
  1021. atc->vm = NULL;
  1022. }
  1023. kfree(atc);
  1024. return 0;
  1025. }
  1026. static int atc_dev_free(struct snd_device *dev)
  1027. {
  1028. struct ct_atc *atc = dev->device_data;
  1029. return ct_atc_destroy(atc);
  1030. }
  1031. static int __devinit atc_identify_card(struct ct_atc *atc)
  1032. {
  1033. const struct snd_pci_quirk *p;
  1034. const struct snd_pci_quirk *list;
  1035. switch (atc->chip_type) {
  1036. case ATC20K1:
  1037. atc->chip_name = "20K1";
  1038. list = subsys_20k1_list;
  1039. break;
  1040. case ATC20K2:
  1041. atc->chip_name = "20K2";
  1042. list = subsys_20k2_list;
  1043. break;
  1044. default:
  1045. return -ENOENT;
  1046. }
  1047. p = snd_pci_quirk_lookup(atc->pci, list);
  1048. if (!p)
  1049. return -ENOENT;
  1050. atc->model = p->value;
  1051. atc->model_name = ct_subsys_name[atc->model];
  1052. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1053. atc->chip_name, atc->model_name,
  1054. atc->pci->subsystem_vendor,
  1055. atc->pci->subsystem_device);
  1056. return 0;
  1057. }
  1058. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1059. {
  1060. enum CTALSADEVS i;
  1061. int err;
  1062. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1063. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1064. if (NULL == alsa_dev_funcs[i].create)
  1065. continue;
  1066. err = alsa_dev_funcs[i].create(atc, i,
  1067. alsa_dev_funcs[i].public_name);
  1068. if (err) {
  1069. printk(KERN_ERR "ctxfi: "
  1070. "Creating alsa device %d failed!\n", i);
  1071. return err;
  1072. }
  1073. }
  1074. return 0;
  1075. }
  1076. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1077. {
  1078. struct hw *hw;
  1079. struct card_conf info = {0};
  1080. int i, err;
  1081. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1082. if (err) {
  1083. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1084. return err;
  1085. }
  1086. atc->hw = hw;
  1087. /* Initialize card hardware. */
  1088. info.rsr = atc->rsr;
  1089. info.msr = atc->msr;
  1090. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1091. err = hw->card_init(hw, &info);
  1092. if (err < 0)
  1093. return err;
  1094. for (i = 0; i < NUM_RSCTYP; i++) {
  1095. if (NULL == rsc_mgr_funcs[i].create)
  1096. continue;
  1097. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1098. if (err) {
  1099. printk(KERN_ERR "ctxfi: "
  1100. "Failed to create rsc_mgr %d!!!\n", i);
  1101. return err;
  1102. }
  1103. }
  1104. return 0;
  1105. }
  1106. static int __devinit atc_get_resources(struct ct_atc *atc)
  1107. {
  1108. struct daio_desc da_desc = {0};
  1109. struct daio_mgr *daio_mgr;
  1110. struct src_desc src_dsc = {0};
  1111. struct src_mgr *src_mgr;
  1112. struct srcimp_desc srcimp_dsc = {0};
  1113. struct srcimp_mgr *srcimp_mgr;
  1114. struct sum_desc sum_dsc = {0};
  1115. struct sum_mgr *sum_mgr;
  1116. int err, i;
  1117. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1118. if (NULL == atc->daios)
  1119. return -ENOMEM;
  1120. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1121. if (NULL == atc->srcs)
  1122. return -ENOMEM;
  1123. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1124. if (NULL == atc->srcimps)
  1125. return -ENOMEM;
  1126. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1127. if (NULL == atc->pcm)
  1128. return -ENOMEM;
  1129. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1130. da_desc.msr = atc->msr;
  1131. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1132. da_desc.type = i;
  1133. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1134. (struct daio **)&atc->daios[i]);
  1135. if (err) {
  1136. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1137. "resource %d!!!\n", i);
  1138. return err;
  1139. }
  1140. atc->n_daio++;
  1141. }
  1142. if (atc->model == CTSB073X)
  1143. da_desc.type = SPDIFI1;
  1144. else
  1145. da_desc.type = SPDIFIO;
  1146. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1147. (struct daio **)&atc->daios[i]);
  1148. if (err) {
  1149. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1150. return err;
  1151. }
  1152. atc->n_daio++;
  1153. src_mgr = atc->rsc_mgrs[SRC];
  1154. src_dsc.multi = 1;
  1155. src_dsc.msr = atc->msr;
  1156. src_dsc.mode = ARCRW;
  1157. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1158. err = src_mgr->get_src(src_mgr, &src_dsc,
  1159. (struct src **)&atc->srcs[i]);
  1160. if (err)
  1161. return err;
  1162. atc->n_src++;
  1163. }
  1164. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1165. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1166. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1167. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1168. (struct srcimp **)&atc->srcimps[i]);
  1169. if (err)
  1170. return err;
  1171. atc->n_srcimp++;
  1172. }
  1173. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1174. for (i = 0; i < (2*1); i++) {
  1175. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1176. (struct srcimp **)&atc->srcimps[2*1+i]);
  1177. if (err)
  1178. return err;
  1179. atc->n_srcimp++;
  1180. }
  1181. sum_mgr = atc->rsc_mgrs[SUM];
  1182. sum_dsc.msr = atc->msr;
  1183. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1184. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1185. (struct sum **)&atc->pcm[i]);
  1186. if (err)
  1187. return err;
  1188. atc->n_pcm++;
  1189. }
  1190. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1191. if (err) {
  1192. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1193. return err;
  1194. }
  1195. return 0;
  1196. }
  1197. static void __devinit
  1198. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1199. struct src **srcs, struct srcimp **srcimps)
  1200. {
  1201. struct rsc *rscs[2] = {NULL};
  1202. struct src *src;
  1203. struct srcimp *srcimp;
  1204. int i = 0;
  1205. rscs[0] = &dai->daio.rscl;
  1206. rscs[1] = &dai->daio.rscr;
  1207. for (i = 0; i < 2; i++) {
  1208. src = srcs[i];
  1209. srcimp = srcimps[i];
  1210. srcimp->ops->map(srcimp, src, rscs[i]);
  1211. src_mgr->src_disable(src_mgr, src);
  1212. }
  1213. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1214. src = srcs[0];
  1215. src->ops->set_pm(src, 1);
  1216. for (i = 0; i < 2; i++) {
  1217. src = srcs[i];
  1218. src->ops->set_state(src, SRC_STATE_RUN);
  1219. src->ops->commit_write(src);
  1220. src_mgr->src_enable_s(src_mgr, src);
  1221. }
  1222. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1223. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1224. dai->ops->set_enb_src(dai, 1);
  1225. dai->ops->set_enb_srt(dai, 1);
  1226. dai->ops->commit_write(dai);
  1227. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1228. }
  1229. static void __devinit atc_connect_resources(struct ct_atc *atc)
  1230. {
  1231. struct dai *dai;
  1232. struct dao *dao;
  1233. struct src *src;
  1234. struct sum *sum;
  1235. struct ct_mixer *mixer;
  1236. struct rsc *rscs[2] = {NULL};
  1237. int i, j;
  1238. mixer = atc->mixer;
  1239. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1240. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1241. dao = container_of(atc->daios[j], struct dao, daio);
  1242. dao->ops->set_left_input(dao, rscs[0]);
  1243. dao->ops->set_right_input(dao, rscs[1]);
  1244. }
  1245. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1246. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1247. (struct src **)&atc->srcs[2],
  1248. (struct srcimp **)&atc->srcimps[2]);
  1249. src = atc->srcs[2];
  1250. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1251. src = atc->srcs[3];
  1252. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1253. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1254. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1255. (struct src **)&atc->srcs[0],
  1256. (struct srcimp **)&atc->srcimps[0]);
  1257. src = atc->srcs[0];
  1258. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1259. src = atc->srcs[1];
  1260. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1261. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1262. sum = atc->pcm[j];
  1263. mixer->set_input_left(mixer, i, &sum->rsc);
  1264. sum = atc->pcm[j+1];
  1265. mixer->set_input_right(mixer, i, &sum->rsc);
  1266. }
  1267. }
  1268. static struct ct_atc atc_preset __devinitdata = {
  1269. .map_audio_buffer = ct_map_audio_buffer,
  1270. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1271. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1272. .pcm_release_resources = atc_pcm_release_resources,
  1273. .pcm_playback_start = atc_pcm_playback_start,
  1274. .pcm_playback_stop = atc_pcm_stop,
  1275. .pcm_playback_position = atc_pcm_playback_position,
  1276. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1277. .pcm_capture_start = atc_pcm_capture_start,
  1278. .pcm_capture_stop = atc_pcm_stop,
  1279. .pcm_capture_position = atc_pcm_capture_position,
  1280. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1281. .get_ptp_phys = atc_get_ptp_phys,
  1282. .select_line_in = atc_select_line_in,
  1283. .select_mic_in = atc_select_mic_in,
  1284. .select_digit_io = atc_select_digit_io,
  1285. .line_front_unmute = atc_line_front_unmute,
  1286. .line_surround_unmute = atc_line_surround_unmute,
  1287. .line_clfe_unmute = atc_line_clfe_unmute,
  1288. .line_rear_unmute = atc_line_rear_unmute,
  1289. .line_in_unmute = atc_line_in_unmute,
  1290. .spdif_out_unmute = atc_spdif_out_unmute,
  1291. .spdif_in_unmute = atc_spdif_in_unmute,
  1292. .spdif_out_get_status = atc_spdif_out_get_status,
  1293. .spdif_out_set_status = atc_spdif_out_set_status,
  1294. .spdif_out_passthru = atc_spdif_out_passthru,
  1295. .have_digit_io_switch = atc_have_digit_io_switch,
  1296. };
  1297. /**
  1298. * ct_atc_create - create and initialize a hardware manager
  1299. * @card: corresponding alsa card object
  1300. * @pci: corresponding kernel pci device object
  1301. * @ratc: return created object address in it
  1302. *
  1303. * Creates and initializes a hardware manager.
  1304. *
  1305. * Creates kmallocated ct_atc structure. Initializes hardware.
  1306. * Returns 0 if suceeds, or negative error code if fails.
  1307. */
  1308. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1309. unsigned int rsr, unsigned int msr,
  1310. int chip_type, struct ct_atc **ratc)
  1311. {
  1312. struct ct_atc *atc;
  1313. static struct snd_device_ops ops = {
  1314. .dev_free = atc_dev_free,
  1315. };
  1316. int err;
  1317. *ratc = NULL;
  1318. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1319. if (NULL == atc)
  1320. return -ENOMEM;
  1321. /* Set operations */
  1322. *atc = atc_preset;
  1323. atc->card = card;
  1324. atc->pci = pci;
  1325. atc->rsr = rsr;
  1326. atc->msr = msr;
  1327. atc->chip_type = chip_type;
  1328. mutex_init(&atc->atc_mutex);
  1329. /* Find card model */
  1330. err = atc_identify_card(atc);
  1331. if (err < 0) {
  1332. printk(KERN_ERR "ctatc: Card not recognised\n");
  1333. goto error1;
  1334. }
  1335. /* Set up device virtual memory management object */
  1336. err = ct_vm_create(&atc->vm);
  1337. if (err < 0)
  1338. goto error1;
  1339. /* Create all atc hw devices */
  1340. err = atc_create_hw_devs(atc);
  1341. if (err < 0)
  1342. goto error1;
  1343. /* Get resources */
  1344. err = atc_get_resources(atc);
  1345. if (err < 0)
  1346. goto error1;
  1347. /* Build topology */
  1348. atc_connect_resources(atc);
  1349. atc->timer = ct_timer_new(atc);
  1350. if (!atc->timer)
  1351. goto error1;
  1352. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1353. if (err < 0)
  1354. goto error1;
  1355. snd_card_set_dev(card, &pci->dev);
  1356. *ratc = atc;
  1357. return 0;
  1358. error1:
  1359. ct_atc_destroy(atc);
  1360. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1361. return err;
  1362. }