inode.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  155. {
  156. jbd_debug(2, "restarting handle %p\n", handle);
  157. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  158. }
  159. /*
  160. * Called at the last iput() if i_nlink is zero.
  161. */
  162. void ext3_delete_inode (struct inode * inode)
  163. {
  164. handle_t *handle;
  165. truncate_inode_pages(&inode->i_data, 0);
  166. if (is_bad_inode(inode))
  167. goto no_delete;
  168. handle = start_transaction(inode);
  169. if (IS_ERR(handle)) {
  170. /*
  171. * If we're going to skip the normal cleanup, we still need to
  172. * make sure that the in-core orphan linked list is properly
  173. * cleaned up.
  174. */
  175. ext3_orphan_del(NULL, inode);
  176. goto no_delete;
  177. }
  178. if (IS_SYNC(inode))
  179. handle->h_sync = 1;
  180. inode->i_size = 0;
  181. if (inode->i_blocks)
  182. ext3_truncate(inode);
  183. /*
  184. * Kill off the orphan record which ext3_truncate created.
  185. * AKPM: I think this can be inside the above `if'.
  186. * Note that ext3_orphan_del() has to be able to cope with the
  187. * deletion of a non-existent orphan - this is because we don't
  188. * know if ext3_truncate() actually created an orphan record.
  189. * (Well, we could do this if we need to, but heck - it works)
  190. */
  191. ext3_orphan_del(handle, inode);
  192. EXT3_I(inode)->i_dtime = get_seconds();
  193. /*
  194. * One subtle ordering requirement: if anything has gone wrong
  195. * (transaction abort, IO errors, whatever), then we can still
  196. * do these next steps (the fs will already have been marked as
  197. * having errors), but we can't free the inode if the mark_dirty
  198. * fails.
  199. */
  200. if (ext3_mark_inode_dirty(handle, inode))
  201. /* If that failed, just do the required in-core inode clear. */
  202. clear_inode(inode);
  203. else
  204. ext3_free_inode(handle, inode);
  205. ext3_journal_stop(handle);
  206. return;
  207. no_delete:
  208. clear_inode(inode); /* We must guarantee clearing of inode... */
  209. }
  210. typedef struct {
  211. __le32 *p;
  212. __le32 key;
  213. struct buffer_head *bh;
  214. } Indirect;
  215. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  216. {
  217. p->key = *(p->p = v);
  218. p->bh = bh;
  219. }
  220. static int verify_chain(Indirect *from, Indirect *to)
  221. {
  222. while (from <= to && from->key == *from->p)
  223. from++;
  224. return (from > to);
  225. }
  226. /**
  227. * ext3_block_to_path - parse the block number into array of offsets
  228. * @inode: inode in question (we are only interested in its superblock)
  229. * @i_block: block number to be parsed
  230. * @offsets: array to store the offsets in
  231. * @boundary: set this non-zero if the referred-to block is likely to be
  232. * followed (on disk) by an indirect block.
  233. *
  234. * To store the locations of file's data ext3 uses a data structure common
  235. * for UNIX filesystems - tree of pointers anchored in the inode, with
  236. * data blocks at leaves and indirect blocks in intermediate nodes.
  237. * This function translates the block number into path in that tree -
  238. * return value is the path length and @offsets[n] is the offset of
  239. * pointer to (n+1)th node in the nth one. If @block is out of range
  240. * (negative or too large) warning is printed and zero returned.
  241. *
  242. * Note: function doesn't find node addresses, so no IO is needed. All
  243. * we need to know is the capacity of indirect blocks (taken from the
  244. * inode->i_sb).
  245. */
  246. /*
  247. * Portability note: the last comparison (check that we fit into triple
  248. * indirect block) is spelled differently, because otherwise on an
  249. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  250. * if our filesystem had 8Kb blocks. We might use long long, but that would
  251. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  252. * i_block would have to be negative in the very beginning, so we would not
  253. * get there at all.
  254. */
  255. static int ext3_block_to_path(struct inode *inode,
  256. long i_block, int offsets[4], int *boundary)
  257. {
  258. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  259. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  260. const long direct_blocks = EXT3_NDIR_BLOCKS,
  261. indirect_blocks = ptrs,
  262. double_blocks = (1 << (ptrs_bits * 2));
  263. int n = 0;
  264. int final = 0;
  265. if (i_block < 0) {
  266. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  267. } else if (i_block < direct_blocks) {
  268. offsets[n++] = i_block;
  269. final = direct_blocks;
  270. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  271. offsets[n++] = EXT3_IND_BLOCK;
  272. offsets[n++] = i_block;
  273. final = ptrs;
  274. } else if ((i_block -= indirect_blocks) < double_blocks) {
  275. offsets[n++] = EXT3_DIND_BLOCK;
  276. offsets[n++] = i_block >> ptrs_bits;
  277. offsets[n++] = i_block & (ptrs - 1);
  278. final = ptrs;
  279. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  280. offsets[n++] = EXT3_TIND_BLOCK;
  281. offsets[n++] = i_block >> (ptrs_bits * 2);
  282. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  283. offsets[n++] = i_block & (ptrs - 1);
  284. final = ptrs;
  285. } else {
  286. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  287. }
  288. if (boundary)
  289. *boundary = final - 1 - (i_block & (ptrs - 1));
  290. return n;
  291. }
  292. /**
  293. * ext3_get_branch - read the chain of indirect blocks leading to data
  294. * @inode: inode in question
  295. * @depth: depth of the chain (1 - direct pointer, etc.)
  296. * @offsets: offsets of pointers in inode/indirect blocks
  297. * @chain: place to store the result
  298. * @err: here we store the error value
  299. *
  300. * Function fills the array of triples <key, p, bh> and returns %NULL
  301. * if everything went OK or the pointer to the last filled triple
  302. * (incomplete one) otherwise. Upon the return chain[i].key contains
  303. * the number of (i+1)-th block in the chain (as it is stored in memory,
  304. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  305. * number (it points into struct inode for i==0 and into the bh->b_data
  306. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  307. * block for i>0 and NULL for i==0. In other words, it holds the block
  308. * numbers of the chain, addresses they were taken from (and where we can
  309. * verify that chain did not change) and buffer_heads hosting these
  310. * numbers.
  311. *
  312. * Function stops when it stumbles upon zero pointer (absent block)
  313. * (pointer to last triple returned, *@err == 0)
  314. * or when it gets an IO error reading an indirect block
  315. * (ditto, *@err == -EIO)
  316. * or when it notices that chain had been changed while it was reading
  317. * (ditto, *@err == -EAGAIN)
  318. * or when it reads all @depth-1 indirect blocks successfully and finds
  319. * the whole chain, all way to the data (returns %NULL, *err == 0).
  320. */
  321. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  322. Indirect chain[4], int *err)
  323. {
  324. struct super_block *sb = inode->i_sb;
  325. Indirect *p = chain;
  326. struct buffer_head *bh;
  327. *err = 0;
  328. /* i_data is not going away, no lock needed */
  329. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  330. if (!p->key)
  331. goto no_block;
  332. while (--depth) {
  333. bh = sb_bread(sb, le32_to_cpu(p->key));
  334. if (!bh)
  335. goto failure;
  336. /* Reader: pointers */
  337. if (!verify_chain(chain, p))
  338. goto changed;
  339. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  340. /* Reader: end */
  341. if (!p->key)
  342. goto no_block;
  343. }
  344. return NULL;
  345. changed:
  346. brelse(bh);
  347. *err = -EAGAIN;
  348. goto no_block;
  349. failure:
  350. *err = -EIO;
  351. no_block:
  352. return p;
  353. }
  354. /**
  355. * ext3_find_near - find a place for allocation with sufficient locality
  356. * @inode: owner
  357. * @ind: descriptor of indirect block.
  358. *
  359. * This function returns the preferred place for block allocation.
  360. * It is used when heuristic for sequential allocation fails.
  361. * Rules are:
  362. * + if there is a block to the left of our position - allocate near it.
  363. * + if pointer will live in indirect block - allocate near that block.
  364. * + if pointer will live in inode - allocate in the same
  365. * cylinder group.
  366. *
  367. * In the latter case we colour the starting block by the callers PID to
  368. * prevent it from clashing with concurrent allocations for a different inode
  369. * in the same block group. The PID is used here so that functionally related
  370. * files will be close-by on-disk.
  371. *
  372. * Caller must make sure that @ind is valid and will stay that way.
  373. */
  374. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  375. {
  376. struct ext3_inode_info *ei = EXT3_I(inode);
  377. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  378. __le32 *p;
  379. ext3_fsblk_t bg_start;
  380. ext3_grpblk_t colour;
  381. /* Try to find previous block */
  382. for (p = ind->p - 1; p >= start; p--) {
  383. if (*p)
  384. return le32_to_cpu(*p);
  385. }
  386. /* No such thing, so let's try location of indirect block */
  387. if (ind->bh)
  388. return ind->bh->b_blocknr;
  389. /*
  390. * It is going to be referred to from the inode itself? OK, just put it
  391. * into the same cylinder group then.
  392. */
  393. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  394. colour = (current->pid % 16) *
  395. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  396. return bg_start + colour;
  397. }
  398. /**
  399. * ext3_find_goal - find a preferred place for allocation.
  400. * @inode: owner
  401. * @block: block we want
  402. * @partial: pointer to the last triple within a chain
  403. *
  404. * Normally this function find the preferred place for block allocation,
  405. * returns it.
  406. */
  407. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  408. Indirect *partial)
  409. {
  410. struct ext3_block_alloc_info *block_i;
  411. block_i = EXT3_I(inode)->i_block_alloc_info;
  412. /*
  413. * try the heuristic for sequential allocation,
  414. * failing that at least try to get decent locality.
  415. */
  416. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  417. && (block_i->last_alloc_physical_block != 0)) {
  418. return block_i->last_alloc_physical_block + 1;
  419. }
  420. return ext3_find_near(inode, partial);
  421. }
  422. /**
  423. * ext3_blks_to_allocate: Look up the block map and count the number
  424. * of direct blocks need to be allocated for the given branch.
  425. *
  426. * @branch: chain of indirect blocks
  427. * @k: number of blocks need for indirect blocks
  428. * @blks: number of data blocks to be mapped.
  429. * @blocks_to_boundary: the offset in the indirect block
  430. *
  431. * return the total number of blocks to be allocate, including the
  432. * direct and indirect blocks.
  433. */
  434. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  435. int blocks_to_boundary)
  436. {
  437. unsigned long count = 0;
  438. /*
  439. * Simple case, [t,d]Indirect block(s) has not allocated yet
  440. * then it's clear blocks on that path have not allocated
  441. */
  442. if (k > 0) {
  443. /* right now we don't handle cross boundary allocation */
  444. if (blks < blocks_to_boundary + 1)
  445. count += blks;
  446. else
  447. count += blocks_to_boundary + 1;
  448. return count;
  449. }
  450. count++;
  451. while (count < blks && count <= blocks_to_boundary &&
  452. le32_to_cpu(*(branch[0].p + count)) == 0) {
  453. count++;
  454. }
  455. return count;
  456. }
  457. /**
  458. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  459. * @indirect_blks: the number of blocks need to allocate for indirect
  460. * blocks
  461. *
  462. * @new_blocks: on return it will store the new block numbers for
  463. * the indirect blocks(if needed) and the first direct block,
  464. * @blks: on return it will store the total number of allocated
  465. * direct blocks
  466. */
  467. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  468. ext3_fsblk_t goal, int indirect_blks, int blks,
  469. ext3_fsblk_t new_blocks[4], int *err)
  470. {
  471. int target, i;
  472. unsigned long count = 0;
  473. int index = 0;
  474. ext3_fsblk_t current_block = 0;
  475. int ret = 0;
  476. /*
  477. * Here we try to allocate the requested multiple blocks at once,
  478. * on a best-effort basis.
  479. * To build a branch, we should allocate blocks for
  480. * the indirect blocks(if not allocated yet), and at least
  481. * the first direct block of this branch. That's the
  482. * minimum number of blocks need to allocate(required)
  483. */
  484. target = blks + indirect_blks;
  485. while (1) {
  486. count = target;
  487. /* allocating blocks for indirect blocks and direct blocks */
  488. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  489. if (*err)
  490. goto failed_out;
  491. target -= count;
  492. /* allocate blocks for indirect blocks */
  493. while (index < indirect_blks && count) {
  494. new_blocks[index++] = current_block++;
  495. count--;
  496. }
  497. if (count > 0)
  498. break;
  499. }
  500. /* save the new block number for the first direct block */
  501. new_blocks[index] = current_block;
  502. /* total number of blocks allocated for direct blocks */
  503. ret = count;
  504. *err = 0;
  505. return ret;
  506. failed_out:
  507. for (i = 0; i <index; i++)
  508. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  509. return ret;
  510. }
  511. /**
  512. * ext3_alloc_branch - allocate and set up a chain of blocks.
  513. * @inode: owner
  514. * @indirect_blks: number of allocated indirect blocks
  515. * @blks: number of allocated direct blocks
  516. * @offsets: offsets (in the blocks) to store the pointers to next.
  517. * @branch: place to store the chain in.
  518. *
  519. * This function allocates blocks, zeroes out all but the last one,
  520. * links them into chain and (if we are synchronous) writes them to disk.
  521. * In other words, it prepares a branch that can be spliced onto the
  522. * inode. It stores the information about that chain in the branch[], in
  523. * the same format as ext3_get_branch() would do. We are calling it after
  524. * we had read the existing part of chain and partial points to the last
  525. * triple of that (one with zero ->key). Upon the exit we have the same
  526. * picture as after the successful ext3_get_block(), except that in one
  527. * place chain is disconnected - *branch->p is still zero (we did not
  528. * set the last link), but branch->key contains the number that should
  529. * be placed into *branch->p to fill that gap.
  530. *
  531. * If allocation fails we free all blocks we've allocated (and forget
  532. * their buffer_heads) and return the error value the from failed
  533. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  534. * as described above and return 0.
  535. */
  536. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  537. int indirect_blks, int *blks, ext3_fsblk_t goal,
  538. int *offsets, Indirect *branch)
  539. {
  540. int blocksize = inode->i_sb->s_blocksize;
  541. int i, n = 0;
  542. int err = 0;
  543. struct buffer_head *bh;
  544. int num;
  545. ext3_fsblk_t new_blocks[4];
  546. ext3_fsblk_t current_block;
  547. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  548. *blks, new_blocks, &err);
  549. if (err)
  550. return err;
  551. branch[0].key = cpu_to_le32(new_blocks[0]);
  552. /*
  553. * metadata blocks and data blocks are allocated.
  554. */
  555. for (n = 1; n <= indirect_blks; n++) {
  556. /*
  557. * Get buffer_head for parent block, zero it out
  558. * and set the pointer to new one, then send
  559. * parent to disk.
  560. */
  561. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  562. branch[n].bh = bh;
  563. lock_buffer(bh);
  564. BUFFER_TRACE(bh, "call get_create_access");
  565. err = ext3_journal_get_create_access(handle, bh);
  566. if (err) {
  567. unlock_buffer(bh);
  568. brelse(bh);
  569. goto failed;
  570. }
  571. memset(bh->b_data, 0, blocksize);
  572. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  573. branch[n].key = cpu_to_le32(new_blocks[n]);
  574. *branch[n].p = branch[n].key;
  575. if ( n == indirect_blks) {
  576. current_block = new_blocks[n];
  577. /*
  578. * End of chain, update the last new metablock of
  579. * the chain to point to the new allocated
  580. * data blocks numbers
  581. */
  582. for (i=1; i < num; i++)
  583. *(branch[n].p + i) = cpu_to_le32(++current_block);
  584. }
  585. BUFFER_TRACE(bh, "marking uptodate");
  586. set_buffer_uptodate(bh);
  587. unlock_buffer(bh);
  588. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  589. err = ext3_journal_dirty_metadata(handle, bh);
  590. if (err)
  591. goto failed;
  592. }
  593. *blks = num;
  594. return err;
  595. failed:
  596. /* Allocation failed, free what we already allocated */
  597. for (i = 1; i <= n ; i++) {
  598. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  599. ext3_journal_forget(handle, branch[i].bh);
  600. }
  601. for (i = 0; i <indirect_blks; i++)
  602. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  603. ext3_free_blocks(handle, inode, new_blocks[i], num);
  604. return err;
  605. }
  606. /**
  607. * ext3_splice_branch - splice the allocated branch onto inode.
  608. * @inode: owner
  609. * @block: (logical) number of block we are adding
  610. * @chain: chain of indirect blocks (with a missing link - see
  611. * ext3_alloc_branch)
  612. * @where: location of missing link
  613. * @num: number of indirect blocks we are adding
  614. * @blks: number of direct blocks we are adding
  615. *
  616. * This function fills the missing link and does all housekeeping needed in
  617. * inode (->i_blocks, etc.). In case of success we end up with the full
  618. * chain to new block and return 0.
  619. */
  620. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  621. long block, Indirect *where, int num, int blks)
  622. {
  623. int i;
  624. int err = 0;
  625. struct ext3_block_alloc_info *block_i;
  626. ext3_fsblk_t current_block;
  627. block_i = EXT3_I(inode)->i_block_alloc_info;
  628. /*
  629. * If we're splicing into a [td]indirect block (as opposed to the
  630. * inode) then we need to get write access to the [td]indirect block
  631. * before the splice.
  632. */
  633. if (where->bh) {
  634. BUFFER_TRACE(where->bh, "get_write_access");
  635. err = ext3_journal_get_write_access(handle, where->bh);
  636. if (err)
  637. goto err_out;
  638. }
  639. /* That's it */
  640. *where->p = where->key;
  641. /*
  642. * Update the host buffer_head or inode to point to more just allocated
  643. * direct blocks blocks
  644. */
  645. if (num == 0 && blks > 1) {
  646. current_block = le32_to_cpu(where->key) + 1;
  647. for (i = 1; i < blks; i++)
  648. *(where->p + i ) = cpu_to_le32(current_block++);
  649. }
  650. /*
  651. * update the most recently allocated logical & physical block
  652. * in i_block_alloc_info, to assist find the proper goal block for next
  653. * allocation
  654. */
  655. if (block_i) {
  656. block_i->last_alloc_logical_block = block + blks - 1;
  657. block_i->last_alloc_physical_block =
  658. le32_to_cpu(where[num].key) + blks - 1;
  659. }
  660. /* We are done with atomic stuff, now do the rest of housekeeping */
  661. inode->i_ctime = CURRENT_TIME_SEC;
  662. ext3_mark_inode_dirty(handle, inode);
  663. /* had we spliced it onto indirect block? */
  664. if (where->bh) {
  665. /*
  666. * If we spliced it onto an indirect block, we haven't
  667. * altered the inode. Note however that if it is being spliced
  668. * onto an indirect block at the very end of the file (the
  669. * file is growing) then we *will* alter the inode to reflect
  670. * the new i_size. But that is not done here - it is done in
  671. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  672. */
  673. jbd_debug(5, "splicing indirect only\n");
  674. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  675. err = ext3_journal_dirty_metadata(handle, where->bh);
  676. if (err)
  677. goto err_out;
  678. } else {
  679. /*
  680. * OK, we spliced it into the inode itself on a direct block.
  681. * Inode was dirtied above.
  682. */
  683. jbd_debug(5, "splicing direct\n");
  684. }
  685. return err;
  686. err_out:
  687. for (i = 1; i <= num; i++) {
  688. BUFFER_TRACE(where[i].bh, "call journal_forget");
  689. ext3_journal_forget(handle, where[i].bh);
  690. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  691. }
  692. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  693. return err;
  694. }
  695. /*
  696. * Allocation strategy is simple: if we have to allocate something, we will
  697. * have to go the whole way to leaf. So let's do it before attaching anything
  698. * to tree, set linkage between the newborn blocks, write them if sync is
  699. * required, recheck the path, free and repeat if check fails, otherwise
  700. * set the last missing link (that will protect us from any truncate-generated
  701. * removals - all blocks on the path are immune now) and possibly force the
  702. * write on the parent block.
  703. * That has a nice additional property: no special recovery from the failed
  704. * allocations is needed - we simply release blocks and do not touch anything
  705. * reachable from inode.
  706. *
  707. * `handle' can be NULL if create == 0.
  708. *
  709. * The BKL may not be held on entry here. Be sure to take it early.
  710. * return > 0, # of blocks mapped or allocated.
  711. * return = 0, if plain lookup failed.
  712. * return < 0, error case.
  713. */
  714. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. sector_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create, int extend_disksize)
  718. {
  719. int err = -EIO;
  720. int offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext3_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext3_inode_info *ei = EXT3_I(inode);
  728. int count = 0;
  729. ext3_fsblk_t first_block = 0;
  730. J_ASSERT(handle != NULL || create == 0);
  731. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  732. if (depth == 0)
  733. goto out;
  734. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  735. /* Simplest case - block found, no allocation needed */
  736. if (!partial) {
  737. first_block = le32_to_cpu(chain[depth - 1].key);
  738. clear_buffer_new(bh_result);
  739. count++;
  740. /*map more blocks*/
  741. while (count < maxblocks && count <= blocks_to_boundary) {
  742. ext3_fsblk_t blk;
  743. if (!verify_chain(chain, chain + depth - 1)) {
  744. /*
  745. * Indirect block might be removed by
  746. * truncate while we were reading it.
  747. * Handling of that case: forget what we've
  748. * got now. Flag the err as EAGAIN, so it
  749. * will reread.
  750. */
  751. err = -EAGAIN;
  752. count = 0;
  753. break;
  754. }
  755. blk = le32_to_cpu(*(chain[depth-1].p + count));
  756. if (blk == first_block + count)
  757. count++;
  758. else
  759. break;
  760. }
  761. if (err != -EAGAIN)
  762. goto got_it;
  763. }
  764. /* Next simple case - plain lookup or failed read of indirect block */
  765. if (!create || err == -EIO)
  766. goto cleanup;
  767. mutex_lock(&ei->truncate_mutex);
  768. /*
  769. * If the indirect block is missing while we are reading
  770. * the chain(ext3_get_branch() returns -EAGAIN err), or
  771. * if the chain has been changed after we grab the semaphore,
  772. * (either because another process truncated this branch, or
  773. * another get_block allocated this branch) re-grab the chain to see if
  774. * the request block has been allocated or not.
  775. *
  776. * Since we already block the truncate/other get_block
  777. * at this point, we will have the current copy of the chain when we
  778. * splice the branch into the tree.
  779. */
  780. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  781. while (partial > chain) {
  782. brelse(partial->bh);
  783. partial--;
  784. }
  785. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  786. if (!partial) {
  787. count++;
  788. mutex_unlock(&ei->truncate_mutex);
  789. if (err)
  790. goto cleanup;
  791. clear_buffer_new(bh_result);
  792. goto got_it;
  793. }
  794. }
  795. /*
  796. * Okay, we need to do block allocation. Lazily initialize the block
  797. * allocation info here if necessary
  798. */
  799. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  800. ext3_init_block_alloc_info(inode);
  801. goal = ext3_find_goal(inode, iblock, partial);
  802. /* the number of blocks need to allocate for [d,t]indirect blocks */
  803. indirect_blks = (chain + depth) - partial - 1;
  804. /*
  805. * Next look up the indirect map to count the totoal number of
  806. * direct blocks to allocate for this branch.
  807. */
  808. count = ext3_blks_to_allocate(partial, indirect_blks,
  809. maxblocks, blocks_to_boundary);
  810. /*
  811. * Block out ext3_truncate while we alter the tree
  812. */
  813. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  814. offsets + (partial - chain), partial);
  815. /*
  816. * The ext3_splice_branch call will free and forget any buffers
  817. * on the new chain if there is a failure, but that risks using
  818. * up transaction credits, especially for bitmaps where the
  819. * credits cannot be returned. Can we handle this somehow? We
  820. * may need to return -EAGAIN upwards in the worst case. --sct
  821. */
  822. if (!err)
  823. err = ext3_splice_branch(handle, inode, iblock,
  824. partial, indirect_blks, count);
  825. /*
  826. * i_disksize growing is protected by truncate_mutex. Don't forget to
  827. * protect it if you're about to implement concurrent
  828. * ext3_get_block() -bzzz
  829. */
  830. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  831. ei->i_disksize = inode->i_size;
  832. mutex_unlock(&ei->truncate_mutex);
  833. if (err)
  834. goto cleanup;
  835. set_buffer_new(bh_result);
  836. got_it:
  837. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  838. if (count > blocks_to_boundary)
  839. set_buffer_boundary(bh_result);
  840. err = count;
  841. /* Clean up and exit */
  842. partial = chain + depth - 1; /* the whole chain */
  843. cleanup:
  844. while (partial > chain) {
  845. BUFFER_TRACE(partial->bh, "call brelse");
  846. brelse(partial->bh);
  847. partial--;
  848. }
  849. BUFFER_TRACE(bh_result, "returned");
  850. out:
  851. return err;
  852. }
  853. /* Maximum number of blocks we map for direct IO at once. */
  854. #define DIO_MAX_BLOCKS 4096
  855. /*
  856. * Number of credits we need for writing DIO_MAX_BLOCKS:
  857. * We need sb + group descriptor + bitmap + inode -> 4
  858. * For B blocks with A block pointers per block we need:
  859. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  860. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  861. */
  862. #define DIO_CREDITS 25
  863. static int ext3_get_block(struct inode *inode, sector_t iblock,
  864. struct buffer_head *bh_result, int create)
  865. {
  866. handle_t *handle = ext3_journal_current_handle();
  867. int ret = 0, started = 0;
  868. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  869. if (create && !handle) { /* Direct IO write... */
  870. if (max_blocks > DIO_MAX_BLOCKS)
  871. max_blocks = DIO_MAX_BLOCKS;
  872. handle = ext3_journal_start(inode, DIO_CREDITS +
  873. 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
  874. if (IS_ERR(handle)) {
  875. ret = PTR_ERR(handle);
  876. goto out;
  877. }
  878. started = 1;
  879. }
  880. ret = ext3_get_blocks_handle(handle, inode, iblock,
  881. max_blocks, bh_result, create, 0);
  882. if (ret > 0) {
  883. bh_result->b_size = (ret << inode->i_blkbits);
  884. ret = 0;
  885. }
  886. if (started)
  887. ext3_journal_stop(handle);
  888. out:
  889. return ret;
  890. }
  891. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  892. u64 start, u64 len)
  893. {
  894. return generic_block_fiemap(inode, fieinfo, start, len,
  895. ext3_get_block);
  896. }
  897. /*
  898. * `handle' can be NULL if create is zero
  899. */
  900. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  901. long block, int create, int *errp)
  902. {
  903. struct buffer_head dummy;
  904. int fatal = 0, err;
  905. J_ASSERT(handle != NULL || create == 0);
  906. dummy.b_state = 0;
  907. dummy.b_blocknr = -1000;
  908. buffer_trace_init(&dummy.b_history);
  909. err = ext3_get_blocks_handle(handle, inode, block, 1,
  910. &dummy, create, 1);
  911. /*
  912. * ext3_get_blocks_handle() returns number of blocks
  913. * mapped. 0 in case of a HOLE.
  914. */
  915. if (err > 0) {
  916. if (err > 1)
  917. WARN_ON(1);
  918. err = 0;
  919. }
  920. *errp = err;
  921. if (!err && buffer_mapped(&dummy)) {
  922. struct buffer_head *bh;
  923. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  924. if (!bh) {
  925. *errp = -EIO;
  926. goto err;
  927. }
  928. if (buffer_new(&dummy)) {
  929. J_ASSERT(create != 0);
  930. J_ASSERT(handle != NULL);
  931. /*
  932. * Now that we do not always journal data, we should
  933. * keep in mind whether this should always journal the
  934. * new buffer as metadata. For now, regular file
  935. * writes use ext3_get_block instead, so it's not a
  936. * problem.
  937. */
  938. lock_buffer(bh);
  939. BUFFER_TRACE(bh, "call get_create_access");
  940. fatal = ext3_journal_get_create_access(handle, bh);
  941. if (!fatal && !buffer_uptodate(bh)) {
  942. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  943. set_buffer_uptodate(bh);
  944. }
  945. unlock_buffer(bh);
  946. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  947. err = ext3_journal_dirty_metadata(handle, bh);
  948. if (!fatal)
  949. fatal = err;
  950. } else {
  951. BUFFER_TRACE(bh, "not a new buffer");
  952. }
  953. if (fatal) {
  954. *errp = fatal;
  955. brelse(bh);
  956. bh = NULL;
  957. }
  958. return bh;
  959. }
  960. err:
  961. return NULL;
  962. }
  963. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  964. int block, int create, int *err)
  965. {
  966. struct buffer_head * bh;
  967. bh = ext3_getblk(handle, inode, block, create, err);
  968. if (!bh)
  969. return bh;
  970. if (buffer_uptodate(bh))
  971. return bh;
  972. ll_rw_block(READ_META, 1, &bh);
  973. wait_on_buffer(bh);
  974. if (buffer_uptodate(bh))
  975. return bh;
  976. put_bh(bh);
  977. *err = -EIO;
  978. return NULL;
  979. }
  980. static int walk_page_buffers( handle_t *handle,
  981. struct buffer_head *head,
  982. unsigned from,
  983. unsigned to,
  984. int *partial,
  985. int (*fn)( handle_t *handle,
  986. struct buffer_head *bh))
  987. {
  988. struct buffer_head *bh;
  989. unsigned block_start, block_end;
  990. unsigned blocksize = head->b_size;
  991. int err, ret = 0;
  992. struct buffer_head *next;
  993. for ( bh = head, block_start = 0;
  994. ret == 0 && (bh != head || !block_start);
  995. block_start = block_end, bh = next)
  996. {
  997. next = bh->b_this_page;
  998. block_end = block_start + blocksize;
  999. if (block_end <= from || block_start >= to) {
  1000. if (partial && !buffer_uptodate(bh))
  1001. *partial = 1;
  1002. continue;
  1003. }
  1004. err = (*fn)(handle, bh);
  1005. if (!ret)
  1006. ret = err;
  1007. }
  1008. return ret;
  1009. }
  1010. /*
  1011. * To preserve ordering, it is essential that the hole instantiation and
  1012. * the data write be encapsulated in a single transaction. We cannot
  1013. * close off a transaction and start a new one between the ext3_get_block()
  1014. * and the commit_write(). So doing the journal_start at the start of
  1015. * prepare_write() is the right place.
  1016. *
  1017. * Also, this function can nest inside ext3_writepage() ->
  1018. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1019. * has generated enough buffer credits to do the whole page. So we won't
  1020. * block on the journal in that case, which is good, because the caller may
  1021. * be PF_MEMALLOC.
  1022. *
  1023. * By accident, ext3 can be reentered when a transaction is open via
  1024. * quota file writes. If we were to commit the transaction while thus
  1025. * reentered, there can be a deadlock - we would be holding a quota
  1026. * lock, and the commit would never complete if another thread had a
  1027. * transaction open and was blocking on the quota lock - a ranking
  1028. * violation.
  1029. *
  1030. * So what we do is to rely on the fact that journal_stop/journal_start
  1031. * will _not_ run commit under these circumstances because handle->h_ref
  1032. * is elevated. We'll still have enough credits for the tiny quotafile
  1033. * write.
  1034. */
  1035. static int do_journal_get_write_access(handle_t *handle,
  1036. struct buffer_head *bh)
  1037. {
  1038. if (!buffer_mapped(bh) || buffer_freed(bh))
  1039. return 0;
  1040. return ext3_journal_get_write_access(handle, bh);
  1041. }
  1042. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1043. loff_t pos, unsigned len, unsigned flags,
  1044. struct page **pagep, void **fsdata)
  1045. {
  1046. struct inode *inode = mapping->host;
  1047. int ret;
  1048. handle_t *handle;
  1049. int retries = 0;
  1050. struct page *page;
  1051. pgoff_t index;
  1052. unsigned from, to;
  1053. /* Reserve one block more for addition to orphan list in case
  1054. * we allocate blocks but write fails for some reason */
  1055. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1056. index = pos >> PAGE_CACHE_SHIFT;
  1057. from = pos & (PAGE_CACHE_SIZE - 1);
  1058. to = from + len;
  1059. retry:
  1060. page = grab_cache_page_write_begin(mapping, index, flags);
  1061. if (!page)
  1062. return -ENOMEM;
  1063. *pagep = page;
  1064. handle = ext3_journal_start(inode, needed_blocks);
  1065. if (IS_ERR(handle)) {
  1066. unlock_page(page);
  1067. page_cache_release(page);
  1068. ret = PTR_ERR(handle);
  1069. goto out;
  1070. }
  1071. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1072. ext3_get_block);
  1073. if (ret)
  1074. goto write_begin_failed;
  1075. if (ext3_should_journal_data(inode)) {
  1076. ret = walk_page_buffers(handle, page_buffers(page),
  1077. from, to, NULL, do_journal_get_write_access);
  1078. }
  1079. write_begin_failed:
  1080. if (ret) {
  1081. /*
  1082. * block_write_begin may have instantiated a few blocks
  1083. * outside i_size. Trim these off again. Don't need
  1084. * i_size_read because we hold i_mutex.
  1085. *
  1086. * Add inode to orphan list in case we crash before truncate
  1087. * finishes.
  1088. */
  1089. if (pos + len > inode->i_size)
  1090. ext3_orphan_add(handle, inode);
  1091. ext3_journal_stop(handle);
  1092. unlock_page(page);
  1093. page_cache_release(page);
  1094. if (pos + len > inode->i_size)
  1095. vmtruncate(inode, inode->i_size);
  1096. }
  1097. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1098. goto retry;
  1099. out:
  1100. return ret;
  1101. }
  1102. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1103. {
  1104. int err = journal_dirty_data(handle, bh);
  1105. if (err)
  1106. ext3_journal_abort_handle(__func__, __func__,
  1107. bh, handle, err);
  1108. return err;
  1109. }
  1110. /* For ordered writepage and write_end functions */
  1111. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1112. {
  1113. /*
  1114. * Write could have mapped the buffer but it didn't copy the data in
  1115. * yet. So avoid filing such buffer into a transaction.
  1116. */
  1117. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1118. return ext3_journal_dirty_data(handle, bh);
  1119. return 0;
  1120. }
  1121. /* For write_end() in data=journal mode */
  1122. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1123. {
  1124. if (!buffer_mapped(bh) || buffer_freed(bh))
  1125. return 0;
  1126. set_buffer_uptodate(bh);
  1127. return ext3_journal_dirty_metadata(handle, bh);
  1128. }
  1129. /*
  1130. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1131. * for the whole page but later we failed to copy the data in. Update inode
  1132. * size according to what we managed to copy. The rest is going to be
  1133. * truncated in write_end function.
  1134. */
  1135. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1136. {
  1137. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1138. if (pos + copied > inode->i_size)
  1139. i_size_write(inode, pos + copied);
  1140. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1141. EXT3_I(inode)->i_disksize = pos + copied;
  1142. mark_inode_dirty(inode);
  1143. }
  1144. }
  1145. /*
  1146. * We need to pick up the new inode size which generic_commit_write gave us
  1147. * `file' can be NULL - eg, when called from page_symlink().
  1148. *
  1149. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1150. * buffers are managed internally.
  1151. */
  1152. static int ext3_ordered_write_end(struct file *file,
  1153. struct address_space *mapping,
  1154. loff_t pos, unsigned len, unsigned copied,
  1155. struct page *page, void *fsdata)
  1156. {
  1157. handle_t *handle = ext3_journal_current_handle();
  1158. struct inode *inode = file->f_mapping->host;
  1159. unsigned from, to;
  1160. int ret = 0, ret2;
  1161. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1162. from = pos & (PAGE_CACHE_SIZE - 1);
  1163. to = from + copied;
  1164. ret = walk_page_buffers(handle, page_buffers(page),
  1165. from, to, NULL, journal_dirty_data_fn);
  1166. if (ret == 0)
  1167. update_file_sizes(inode, pos, copied);
  1168. /*
  1169. * There may be allocated blocks outside of i_size because
  1170. * we failed to copy some data. Prepare for truncate.
  1171. */
  1172. if (pos + len > inode->i_size)
  1173. ext3_orphan_add(handle, inode);
  1174. ret2 = ext3_journal_stop(handle);
  1175. if (!ret)
  1176. ret = ret2;
  1177. unlock_page(page);
  1178. page_cache_release(page);
  1179. if (pos + len > inode->i_size)
  1180. vmtruncate(inode, inode->i_size);
  1181. return ret ? ret : copied;
  1182. }
  1183. static int ext3_writeback_write_end(struct file *file,
  1184. struct address_space *mapping,
  1185. loff_t pos, unsigned len, unsigned copied,
  1186. struct page *page, void *fsdata)
  1187. {
  1188. handle_t *handle = ext3_journal_current_handle();
  1189. struct inode *inode = file->f_mapping->host;
  1190. int ret;
  1191. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1192. update_file_sizes(inode, pos, copied);
  1193. /*
  1194. * There may be allocated blocks outside of i_size because
  1195. * we failed to copy some data. Prepare for truncate.
  1196. */
  1197. if (pos + len > inode->i_size)
  1198. ext3_orphan_add(handle, inode);
  1199. ret = ext3_journal_stop(handle);
  1200. unlock_page(page);
  1201. page_cache_release(page);
  1202. if (pos + len > inode->i_size)
  1203. vmtruncate(inode, inode->i_size);
  1204. return ret ? ret : copied;
  1205. }
  1206. static int ext3_journalled_write_end(struct file *file,
  1207. struct address_space *mapping,
  1208. loff_t pos, unsigned len, unsigned copied,
  1209. struct page *page, void *fsdata)
  1210. {
  1211. handle_t *handle = ext3_journal_current_handle();
  1212. struct inode *inode = mapping->host;
  1213. int ret = 0, ret2;
  1214. int partial = 0;
  1215. unsigned from, to;
  1216. from = pos & (PAGE_CACHE_SIZE - 1);
  1217. to = from + len;
  1218. if (copied < len) {
  1219. if (!PageUptodate(page))
  1220. copied = 0;
  1221. page_zero_new_buffers(page, from + copied, to);
  1222. to = from + copied;
  1223. }
  1224. ret = walk_page_buffers(handle, page_buffers(page), from,
  1225. to, &partial, write_end_fn);
  1226. if (!partial)
  1227. SetPageUptodate(page);
  1228. if (pos + copied > inode->i_size)
  1229. i_size_write(inode, pos + copied);
  1230. /*
  1231. * There may be allocated blocks outside of i_size because
  1232. * we failed to copy some data. Prepare for truncate.
  1233. */
  1234. if (pos + len > inode->i_size)
  1235. ext3_orphan_add(handle, inode);
  1236. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1237. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1238. EXT3_I(inode)->i_disksize = inode->i_size;
  1239. ret2 = ext3_mark_inode_dirty(handle, inode);
  1240. if (!ret)
  1241. ret = ret2;
  1242. }
  1243. ret2 = ext3_journal_stop(handle);
  1244. if (!ret)
  1245. ret = ret2;
  1246. unlock_page(page);
  1247. page_cache_release(page);
  1248. if (pos + len > inode->i_size)
  1249. vmtruncate(inode, inode->i_size);
  1250. return ret ? ret : copied;
  1251. }
  1252. /*
  1253. * bmap() is special. It gets used by applications such as lilo and by
  1254. * the swapper to find the on-disk block of a specific piece of data.
  1255. *
  1256. * Naturally, this is dangerous if the block concerned is still in the
  1257. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1258. * filesystem and enables swap, then they may get a nasty shock when the
  1259. * data getting swapped to that swapfile suddenly gets overwritten by
  1260. * the original zero's written out previously to the journal and
  1261. * awaiting writeback in the kernel's buffer cache.
  1262. *
  1263. * So, if we see any bmap calls here on a modified, data-journaled file,
  1264. * take extra steps to flush any blocks which might be in the cache.
  1265. */
  1266. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1267. {
  1268. struct inode *inode = mapping->host;
  1269. journal_t *journal;
  1270. int err;
  1271. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1272. /*
  1273. * This is a REALLY heavyweight approach, but the use of
  1274. * bmap on dirty files is expected to be extremely rare:
  1275. * only if we run lilo or swapon on a freshly made file
  1276. * do we expect this to happen.
  1277. *
  1278. * (bmap requires CAP_SYS_RAWIO so this does not
  1279. * represent an unprivileged user DOS attack --- we'd be
  1280. * in trouble if mortal users could trigger this path at
  1281. * will.)
  1282. *
  1283. * NB. EXT3_STATE_JDATA is not set on files other than
  1284. * regular files. If somebody wants to bmap a directory
  1285. * or symlink and gets confused because the buffer
  1286. * hasn't yet been flushed to disk, they deserve
  1287. * everything they get.
  1288. */
  1289. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1290. journal = EXT3_JOURNAL(inode);
  1291. journal_lock_updates(journal);
  1292. err = journal_flush(journal);
  1293. journal_unlock_updates(journal);
  1294. if (err)
  1295. return 0;
  1296. }
  1297. return generic_block_bmap(mapping,block,ext3_get_block);
  1298. }
  1299. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1300. {
  1301. get_bh(bh);
  1302. return 0;
  1303. }
  1304. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1305. {
  1306. put_bh(bh);
  1307. return 0;
  1308. }
  1309. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1310. {
  1311. return !buffer_mapped(bh);
  1312. }
  1313. /*
  1314. * Note that we always start a transaction even if we're not journalling
  1315. * data. This is to preserve ordering: any hole instantiation within
  1316. * __block_write_full_page -> ext3_get_block() should be journalled
  1317. * along with the data so we don't crash and then get metadata which
  1318. * refers to old data.
  1319. *
  1320. * In all journalling modes block_write_full_page() will start the I/O.
  1321. *
  1322. * Problem:
  1323. *
  1324. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1325. * ext3_writepage()
  1326. *
  1327. * Similar for:
  1328. *
  1329. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1330. *
  1331. * Same applies to ext3_get_block(). We will deadlock on various things like
  1332. * lock_journal and i_truncate_mutex.
  1333. *
  1334. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1335. * allocations fail.
  1336. *
  1337. * 16May01: If we're reentered then journal_current_handle() will be
  1338. * non-zero. We simply *return*.
  1339. *
  1340. * 1 July 2001: @@@ FIXME:
  1341. * In journalled data mode, a data buffer may be metadata against the
  1342. * current transaction. But the same file is part of a shared mapping
  1343. * and someone does a writepage() on it.
  1344. *
  1345. * We will move the buffer onto the async_data list, but *after* it has
  1346. * been dirtied. So there's a small window where we have dirty data on
  1347. * BJ_Metadata.
  1348. *
  1349. * Note that this only applies to the last partial page in the file. The
  1350. * bit which block_write_full_page() uses prepare/commit for. (That's
  1351. * broken code anyway: it's wrong for msync()).
  1352. *
  1353. * It's a rare case: affects the final partial page, for journalled data
  1354. * where the file is subject to bith write() and writepage() in the same
  1355. * transction. To fix it we'll need a custom block_write_full_page().
  1356. * We'll probably need that anyway for journalling writepage() output.
  1357. *
  1358. * We don't honour synchronous mounts for writepage(). That would be
  1359. * disastrous. Any write() or metadata operation will sync the fs for
  1360. * us.
  1361. *
  1362. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1363. * we don't need to open a transaction here.
  1364. */
  1365. static int ext3_ordered_writepage(struct page *page,
  1366. struct writeback_control *wbc)
  1367. {
  1368. struct inode *inode = page->mapping->host;
  1369. struct buffer_head *page_bufs;
  1370. handle_t *handle = NULL;
  1371. int ret = 0;
  1372. int err;
  1373. J_ASSERT(PageLocked(page));
  1374. /*
  1375. * We give up here if we're reentered, because it might be for a
  1376. * different filesystem.
  1377. */
  1378. if (ext3_journal_current_handle())
  1379. goto out_fail;
  1380. if (!page_has_buffers(page)) {
  1381. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1382. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1383. page_bufs = page_buffers(page);
  1384. } else {
  1385. page_bufs = page_buffers(page);
  1386. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1387. NULL, buffer_unmapped)) {
  1388. /* Provide NULL get_block() to catch bugs if buffers
  1389. * weren't really mapped */
  1390. return block_write_full_page(page, NULL, wbc);
  1391. }
  1392. }
  1393. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1394. if (IS_ERR(handle)) {
  1395. ret = PTR_ERR(handle);
  1396. goto out_fail;
  1397. }
  1398. walk_page_buffers(handle, page_bufs, 0,
  1399. PAGE_CACHE_SIZE, NULL, bget_one);
  1400. ret = block_write_full_page(page, ext3_get_block, wbc);
  1401. /*
  1402. * The page can become unlocked at any point now, and
  1403. * truncate can then come in and change things. So we
  1404. * can't touch *page from now on. But *page_bufs is
  1405. * safe due to elevated refcount.
  1406. */
  1407. /*
  1408. * And attach them to the current transaction. But only if
  1409. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1410. * and generally junk.
  1411. */
  1412. if (ret == 0) {
  1413. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1414. NULL, journal_dirty_data_fn);
  1415. if (!ret)
  1416. ret = err;
  1417. }
  1418. walk_page_buffers(handle, page_bufs, 0,
  1419. PAGE_CACHE_SIZE, NULL, bput_one);
  1420. err = ext3_journal_stop(handle);
  1421. if (!ret)
  1422. ret = err;
  1423. return ret;
  1424. out_fail:
  1425. redirty_page_for_writepage(wbc, page);
  1426. unlock_page(page);
  1427. return ret;
  1428. }
  1429. static int ext3_writeback_writepage(struct page *page,
  1430. struct writeback_control *wbc)
  1431. {
  1432. struct inode *inode = page->mapping->host;
  1433. handle_t *handle = NULL;
  1434. int ret = 0;
  1435. int err;
  1436. if (ext3_journal_current_handle())
  1437. goto out_fail;
  1438. if (page_has_buffers(page)) {
  1439. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1440. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1441. /* Provide NULL get_block() to catch bugs if buffers
  1442. * weren't really mapped */
  1443. return block_write_full_page(page, NULL, wbc);
  1444. }
  1445. }
  1446. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1447. if (IS_ERR(handle)) {
  1448. ret = PTR_ERR(handle);
  1449. goto out_fail;
  1450. }
  1451. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1452. ret = nobh_writepage(page, ext3_get_block, wbc);
  1453. else
  1454. ret = block_write_full_page(page, ext3_get_block, wbc);
  1455. err = ext3_journal_stop(handle);
  1456. if (!ret)
  1457. ret = err;
  1458. return ret;
  1459. out_fail:
  1460. redirty_page_for_writepage(wbc, page);
  1461. unlock_page(page);
  1462. return ret;
  1463. }
  1464. static int ext3_journalled_writepage(struct page *page,
  1465. struct writeback_control *wbc)
  1466. {
  1467. struct inode *inode = page->mapping->host;
  1468. handle_t *handle = NULL;
  1469. int ret = 0;
  1470. int err;
  1471. if (ext3_journal_current_handle())
  1472. goto no_write;
  1473. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1474. if (IS_ERR(handle)) {
  1475. ret = PTR_ERR(handle);
  1476. goto no_write;
  1477. }
  1478. if (!page_has_buffers(page) || PageChecked(page)) {
  1479. /*
  1480. * It's mmapped pagecache. Add buffers and journal it. There
  1481. * doesn't seem much point in redirtying the page here.
  1482. */
  1483. ClearPageChecked(page);
  1484. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1485. ext3_get_block);
  1486. if (ret != 0) {
  1487. ext3_journal_stop(handle);
  1488. goto out_unlock;
  1489. }
  1490. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1491. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1492. err = walk_page_buffers(handle, page_buffers(page), 0,
  1493. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1494. if (ret == 0)
  1495. ret = err;
  1496. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1497. unlock_page(page);
  1498. } else {
  1499. /*
  1500. * It may be a page full of checkpoint-mode buffers. We don't
  1501. * really know unless we go poke around in the buffer_heads.
  1502. * But block_write_full_page will do the right thing.
  1503. */
  1504. ret = block_write_full_page(page, ext3_get_block, wbc);
  1505. }
  1506. err = ext3_journal_stop(handle);
  1507. if (!ret)
  1508. ret = err;
  1509. out:
  1510. return ret;
  1511. no_write:
  1512. redirty_page_for_writepage(wbc, page);
  1513. out_unlock:
  1514. unlock_page(page);
  1515. goto out;
  1516. }
  1517. static int ext3_readpage(struct file *file, struct page *page)
  1518. {
  1519. return mpage_readpage(page, ext3_get_block);
  1520. }
  1521. static int
  1522. ext3_readpages(struct file *file, struct address_space *mapping,
  1523. struct list_head *pages, unsigned nr_pages)
  1524. {
  1525. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1526. }
  1527. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1528. {
  1529. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1530. /*
  1531. * If it's a full truncate we just forget about the pending dirtying
  1532. */
  1533. if (offset == 0)
  1534. ClearPageChecked(page);
  1535. journal_invalidatepage(journal, page, offset);
  1536. }
  1537. static int ext3_releasepage(struct page *page, gfp_t wait)
  1538. {
  1539. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1540. WARN_ON(PageChecked(page));
  1541. if (!page_has_buffers(page))
  1542. return 0;
  1543. return journal_try_to_free_buffers(journal, page, wait);
  1544. }
  1545. /*
  1546. * If the O_DIRECT write will extend the file then add this inode to the
  1547. * orphan list. So recovery will truncate it back to the original size
  1548. * if the machine crashes during the write.
  1549. *
  1550. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1551. * crashes then stale disk data _may_ be exposed inside the file. But current
  1552. * VFS code falls back into buffered path in that case so we are safe.
  1553. */
  1554. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1555. const struct iovec *iov, loff_t offset,
  1556. unsigned long nr_segs)
  1557. {
  1558. struct file *file = iocb->ki_filp;
  1559. struct inode *inode = file->f_mapping->host;
  1560. struct ext3_inode_info *ei = EXT3_I(inode);
  1561. handle_t *handle;
  1562. ssize_t ret;
  1563. int orphan = 0;
  1564. size_t count = iov_length(iov, nr_segs);
  1565. if (rw == WRITE) {
  1566. loff_t final_size = offset + count;
  1567. if (final_size > inode->i_size) {
  1568. /* Credits for sb + inode write */
  1569. handle = ext3_journal_start(inode, 2);
  1570. if (IS_ERR(handle)) {
  1571. ret = PTR_ERR(handle);
  1572. goto out;
  1573. }
  1574. ret = ext3_orphan_add(handle, inode);
  1575. if (ret) {
  1576. ext3_journal_stop(handle);
  1577. goto out;
  1578. }
  1579. orphan = 1;
  1580. ei->i_disksize = inode->i_size;
  1581. ext3_journal_stop(handle);
  1582. }
  1583. }
  1584. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1585. offset, nr_segs,
  1586. ext3_get_block, NULL);
  1587. if (orphan) {
  1588. int err;
  1589. /* Credits for sb + inode write */
  1590. handle = ext3_journal_start(inode, 2);
  1591. if (IS_ERR(handle)) {
  1592. /* This is really bad luck. We've written the data
  1593. * but cannot extend i_size. Bail out and pretend
  1594. * the write failed... */
  1595. ret = PTR_ERR(handle);
  1596. goto out;
  1597. }
  1598. if (inode->i_nlink)
  1599. ext3_orphan_del(handle, inode);
  1600. if (ret > 0) {
  1601. loff_t end = offset + ret;
  1602. if (end > inode->i_size) {
  1603. ei->i_disksize = end;
  1604. i_size_write(inode, end);
  1605. /*
  1606. * We're going to return a positive `ret'
  1607. * here due to non-zero-length I/O, so there's
  1608. * no way of reporting error returns from
  1609. * ext3_mark_inode_dirty() to userspace. So
  1610. * ignore it.
  1611. */
  1612. ext3_mark_inode_dirty(handle, inode);
  1613. }
  1614. }
  1615. err = ext3_journal_stop(handle);
  1616. if (ret == 0)
  1617. ret = err;
  1618. }
  1619. out:
  1620. return ret;
  1621. }
  1622. /*
  1623. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1624. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1625. * much here because ->set_page_dirty is called under VFS locks. The page is
  1626. * not necessarily locked.
  1627. *
  1628. * We cannot just dirty the page and leave attached buffers clean, because the
  1629. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1630. * or jbddirty because all the journalling code will explode.
  1631. *
  1632. * So what we do is to mark the page "pending dirty" and next time writepage
  1633. * is called, propagate that into the buffers appropriately.
  1634. */
  1635. static int ext3_journalled_set_page_dirty(struct page *page)
  1636. {
  1637. SetPageChecked(page);
  1638. return __set_page_dirty_nobuffers(page);
  1639. }
  1640. static const struct address_space_operations ext3_ordered_aops = {
  1641. .readpage = ext3_readpage,
  1642. .readpages = ext3_readpages,
  1643. .writepage = ext3_ordered_writepage,
  1644. .sync_page = block_sync_page,
  1645. .write_begin = ext3_write_begin,
  1646. .write_end = ext3_ordered_write_end,
  1647. .bmap = ext3_bmap,
  1648. .invalidatepage = ext3_invalidatepage,
  1649. .releasepage = ext3_releasepage,
  1650. .direct_IO = ext3_direct_IO,
  1651. .migratepage = buffer_migrate_page,
  1652. .is_partially_uptodate = block_is_partially_uptodate,
  1653. };
  1654. static const struct address_space_operations ext3_writeback_aops = {
  1655. .readpage = ext3_readpage,
  1656. .readpages = ext3_readpages,
  1657. .writepage = ext3_writeback_writepage,
  1658. .sync_page = block_sync_page,
  1659. .write_begin = ext3_write_begin,
  1660. .write_end = ext3_writeback_write_end,
  1661. .bmap = ext3_bmap,
  1662. .invalidatepage = ext3_invalidatepage,
  1663. .releasepage = ext3_releasepage,
  1664. .direct_IO = ext3_direct_IO,
  1665. .migratepage = buffer_migrate_page,
  1666. .is_partially_uptodate = block_is_partially_uptodate,
  1667. };
  1668. static const struct address_space_operations ext3_journalled_aops = {
  1669. .readpage = ext3_readpage,
  1670. .readpages = ext3_readpages,
  1671. .writepage = ext3_journalled_writepage,
  1672. .sync_page = block_sync_page,
  1673. .write_begin = ext3_write_begin,
  1674. .write_end = ext3_journalled_write_end,
  1675. .set_page_dirty = ext3_journalled_set_page_dirty,
  1676. .bmap = ext3_bmap,
  1677. .invalidatepage = ext3_invalidatepage,
  1678. .releasepage = ext3_releasepage,
  1679. .is_partially_uptodate = block_is_partially_uptodate,
  1680. };
  1681. void ext3_set_aops(struct inode *inode)
  1682. {
  1683. if (ext3_should_order_data(inode))
  1684. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1685. else if (ext3_should_writeback_data(inode))
  1686. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1687. else
  1688. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1689. }
  1690. /*
  1691. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1692. * up to the end of the block which corresponds to `from'.
  1693. * This required during truncate. We need to physically zero the tail end
  1694. * of that block so it doesn't yield old data if the file is later grown.
  1695. */
  1696. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1697. struct address_space *mapping, loff_t from)
  1698. {
  1699. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1700. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1701. unsigned blocksize, iblock, length, pos;
  1702. struct inode *inode = mapping->host;
  1703. struct buffer_head *bh;
  1704. int err = 0;
  1705. blocksize = inode->i_sb->s_blocksize;
  1706. length = blocksize - (offset & (blocksize - 1));
  1707. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1708. /*
  1709. * For "nobh" option, we can only work if we don't need to
  1710. * read-in the page - otherwise we create buffers to do the IO.
  1711. */
  1712. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1713. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1714. zero_user(page, offset, length);
  1715. set_page_dirty(page);
  1716. goto unlock;
  1717. }
  1718. if (!page_has_buffers(page))
  1719. create_empty_buffers(page, blocksize, 0);
  1720. /* Find the buffer that contains "offset" */
  1721. bh = page_buffers(page);
  1722. pos = blocksize;
  1723. while (offset >= pos) {
  1724. bh = bh->b_this_page;
  1725. iblock++;
  1726. pos += blocksize;
  1727. }
  1728. err = 0;
  1729. if (buffer_freed(bh)) {
  1730. BUFFER_TRACE(bh, "freed: skip");
  1731. goto unlock;
  1732. }
  1733. if (!buffer_mapped(bh)) {
  1734. BUFFER_TRACE(bh, "unmapped");
  1735. ext3_get_block(inode, iblock, bh, 0);
  1736. /* unmapped? It's a hole - nothing to do */
  1737. if (!buffer_mapped(bh)) {
  1738. BUFFER_TRACE(bh, "still unmapped");
  1739. goto unlock;
  1740. }
  1741. }
  1742. /* Ok, it's mapped. Make sure it's up-to-date */
  1743. if (PageUptodate(page))
  1744. set_buffer_uptodate(bh);
  1745. if (!buffer_uptodate(bh)) {
  1746. err = -EIO;
  1747. ll_rw_block(READ, 1, &bh);
  1748. wait_on_buffer(bh);
  1749. /* Uhhuh. Read error. Complain and punt. */
  1750. if (!buffer_uptodate(bh))
  1751. goto unlock;
  1752. }
  1753. if (ext3_should_journal_data(inode)) {
  1754. BUFFER_TRACE(bh, "get write access");
  1755. err = ext3_journal_get_write_access(handle, bh);
  1756. if (err)
  1757. goto unlock;
  1758. }
  1759. zero_user(page, offset, length);
  1760. BUFFER_TRACE(bh, "zeroed end of block");
  1761. err = 0;
  1762. if (ext3_should_journal_data(inode)) {
  1763. err = ext3_journal_dirty_metadata(handle, bh);
  1764. } else {
  1765. if (ext3_should_order_data(inode))
  1766. err = ext3_journal_dirty_data(handle, bh);
  1767. mark_buffer_dirty(bh);
  1768. }
  1769. unlock:
  1770. unlock_page(page);
  1771. page_cache_release(page);
  1772. return err;
  1773. }
  1774. /*
  1775. * Probably it should be a library function... search for first non-zero word
  1776. * or memcmp with zero_page, whatever is better for particular architecture.
  1777. * Linus?
  1778. */
  1779. static inline int all_zeroes(__le32 *p, __le32 *q)
  1780. {
  1781. while (p < q)
  1782. if (*p++)
  1783. return 0;
  1784. return 1;
  1785. }
  1786. /**
  1787. * ext3_find_shared - find the indirect blocks for partial truncation.
  1788. * @inode: inode in question
  1789. * @depth: depth of the affected branch
  1790. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1791. * @chain: place to store the pointers to partial indirect blocks
  1792. * @top: place to the (detached) top of branch
  1793. *
  1794. * This is a helper function used by ext3_truncate().
  1795. *
  1796. * When we do truncate() we may have to clean the ends of several
  1797. * indirect blocks but leave the blocks themselves alive. Block is
  1798. * partially truncated if some data below the new i_size is refered
  1799. * from it (and it is on the path to the first completely truncated
  1800. * data block, indeed). We have to free the top of that path along
  1801. * with everything to the right of the path. Since no allocation
  1802. * past the truncation point is possible until ext3_truncate()
  1803. * finishes, we may safely do the latter, but top of branch may
  1804. * require special attention - pageout below the truncation point
  1805. * might try to populate it.
  1806. *
  1807. * We atomically detach the top of branch from the tree, store the
  1808. * block number of its root in *@top, pointers to buffer_heads of
  1809. * partially truncated blocks - in @chain[].bh and pointers to
  1810. * their last elements that should not be removed - in
  1811. * @chain[].p. Return value is the pointer to last filled element
  1812. * of @chain.
  1813. *
  1814. * The work left to caller to do the actual freeing of subtrees:
  1815. * a) free the subtree starting from *@top
  1816. * b) free the subtrees whose roots are stored in
  1817. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1818. * c) free the subtrees growing from the inode past the @chain[0].
  1819. * (no partially truncated stuff there). */
  1820. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1821. int offsets[4], Indirect chain[4], __le32 *top)
  1822. {
  1823. Indirect *partial, *p;
  1824. int k, err;
  1825. *top = 0;
  1826. /* Make k index the deepest non-null offest + 1 */
  1827. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1828. ;
  1829. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1830. /* Writer: pointers */
  1831. if (!partial)
  1832. partial = chain + k-1;
  1833. /*
  1834. * If the branch acquired continuation since we've looked at it -
  1835. * fine, it should all survive and (new) top doesn't belong to us.
  1836. */
  1837. if (!partial->key && *partial->p)
  1838. /* Writer: end */
  1839. goto no_top;
  1840. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1841. ;
  1842. /*
  1843. * OK, we've found the last block that must survive. The rest of our
  1844. * branch should be detached before unlocking. However, if that rest
  1845. * of branch is all ours and does not grow immediately from the inode
  1846. * it's easier to cheat and just decrement partial->p.
  1847. */
  1848. if (p == chain + k - 1 && p > chain) {
  1849. p->p--;
  1850. } else {
  1851. *top = *p->p;
  1852. /* Nope, don't do this in ext3. Must leave the tree intact */
  1853. #if 0
  1854. *p->p = 0;
  1855. #endif
  1856. }
  1857. /* Writer: end */
  1858. while(partial > p) {
  1859. brelse(partial->bh);
  1860. partial--;
  1861. }
  1862. no_top:
  1863. return partial;
  1864. }
  1865. /*
  1866. * Zero a number of block pointers in either an inode or an indirect block.
  1867. * If we restart the transaction we must again get write access to the
  1868. * indirect block for further modification.
  1869. *
  1870. * We release `count' blocks on disk, but (last - first) may be greater
  1871. * than `count' because there can be holes in there.
  1872. */
  1873. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1874. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1875. unsigned long count, __le32 *first, __le32 *last)
  1876. {
  1877. __le32 *p;
  1878. if (try_to_extend_transaction(handle, inode)) {
  1879. if (bh) {
  1880. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1881. ext3_journal_dirty_metadata(handle, bh);
  1882. }
  1883. ext3_mark_inode_dirty(handle, inode);
  1884. ext3_journal_test_restart(handle, inode);
  1885. if (bh) {
  1886. BUFFER_TRACE(bh, "retaking write access");
  1887. ext3_journal_get_write_access(handle, bh);
  1888. }
  1889. }
  1890. /*
  1891. * Any buffers which are on the journal will be in memory. We find
  1892. * them on the hash table so journal_revoke() will run journal_forget()
  1893. * on them. We've already detached each block from the file, so
  1894. * bforget() in journal_forget() should be safe.
  1895. *
  1896. * AKPM: turn on bforget in journal_forget()!!!
  1897. */
  1898. for (p = first; p < last; p++) {
  1899. u32 nr = le32_to_cpu(*p);
  1900. if (nr) {
  1901. struct buffer_head *bh;
  1902. *p = 0;
  1903. bh = sb_find_get_block(inode->i_sb, nr);
  1904. ext3_forget(handle, 0, inode, bh, nr);
  1905. }
  1906. }
  1907. ext3_free_blocks(handle, inode, block_to_free, count);
  1908. }
  1909. /**
  1910. * ext3_free_data - free a list of data blocks
  1911. * @handle: handle for this transaction
  1912. * @inode: inode we are dealing with
  1913. * @this_bh: indirect buffer_head which contains *@first and *@last
  1914. * @first: array of block numbers
  1915. * @last: points immediately past the end of array
  1916. *
  1917. * We are freeing all blocks refered from that array (numbers are stored as
  1918. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1919. *
  1920. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1921. * blocks are contiguous then releasing them at one time will only affect one
  1922. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1923. * actually use a lot of journal space.
  1924. *
  1925. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1926. * block pointers.
  1927. */
  1928. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1929. struct buffer_head *this_bh,
  1930. __le32 *first, __le32 *last)
  1931. {
  1932. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1933. unsigned long count = 0; /* Number of blocks in the run */
  1934. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1935. corresponding to
  1936. block_to_free */
  1937. ext3_fsblk_t nr; /* Current block # */
  1938. __le32 *p; /* Pointer into inode/ind
  1939. for current block */
  1940. int err;
  1941. if (this_bh) { /* For indirect block */
  1942. BUFFER_TRACE(this_bh, "get_write_access");
  1943. err = ext3_journal_get_write_access(handle, this_bh);
  1944. /* Important: if we can't update the indirect pointers
  1945. * to the blocks, we can't free them. */
  1946. if (err)
  1947. return;
  1948. }
  1949. for (p = first; p < last; p++) {
  1950. nr = le32_to_cpu(*p);
  1951. if (nr) {
  1952. /* accumulate blocks to free if they're contiguous */
  1953. if (count == 0) {
  1954. block_to_free = nr;
  1955. block_to_free_p = p;
  1956. count = 1;
  1957. } else if (nr == block_to_free + count) {
  1958. count++;
  1959. } else {
  1960. ext3_clear_blocks(handle, inode, this_bh,
  1961. block_to_free,
  1962. count, block_to_free_p, p);
  1963. block_to_free = nr;
  1964. block_to_free_p = p;
  1965. count = 1;
  1966. }
  1967. }
  1968. }
  1969. if (count > 0)
  1970. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1971. count, block_to_free_p, p);
  1972. if (this_bh) {
  1973. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1974. /*
  1975. * The buffer head should have an attached journal head at this
  1976. * point. However, if the data is corrupted and an indirect
  1977. * block pointed to itself, it would have been detached when
  1978. * the block was cleared. Check for this instead of OOPSing.
  1979. */
  1980. if (bh2jh(this_bh))
  1981. ext3_journal_dirty_metadata(handle, this_bh);
  1982. else
  1983. ext3_error(inode->i_sb, "ext3_free_data",
  1984. "circular indirect block detected, "
  1985. "inode=%lu, block=%llu",
  1986. inode->i_ino,
  1987. (unsigned long long)this_bh->b_blocknr);
  1988. }
  1989. }
  1990. /**
  1991. * ext3_free_branches - free an array of branches
  1992. * @handle: JBD handle for this transaction
  1993. * @inode: inode we are dealing with
  1994. * @parent_bh: the buffer_head which contains *@first and *@last
  1995. * @first: array of block numbers
  1996. * @last: pointer immediately past the end of array
  1997. * @depth: depth of the branches to free
  1998. *
  1999. * We are freeing all blocks refered from these branches (numbers are
  2000. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2001. * appropriately.
  2002. */
  2003. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2004. struct buffer_head *parent_bh,
  2005. __le32 *first, __le32 *last, int depth)
  2006. {
  2007. ext3_fsblk_t nr;
  2008. __le32 *p;
  2009. if (is_handle_aborted(handle))
  2010. return;
  2011. if (depth--) {
  2012. struct buffer_head *bh;
  2013. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2014. p = last;
  2015. while (--p >= first) {
  2016. nr = le32_to_cpu(*p);
  2017. if (!nr)
  2018. continue; /* A hole */
  2019. /* Go read the buffer for the next level down */
  2020. bh = sb_bread(inode->i_sb, nr);
  2021. /*
  2022. * A read failure? Report error and clear slot
  2023. * (should be rare).
  2024. */
  2025. if (!bh) {
  2026. ext3_error(inode->i_sb, "ext3_free_branches",
  2027. "Read failure, inode=%lu, block="E3FSBLK,
  2028. inode->i_ino, nr);
  2029. continue;
  2030. }
  2031. /* This zaps the entire block. Bottom up. */
  2032. BUFFER_TRACE(bh, "free child branches");
  2033. ext3_free_branches(handle, inode, bh,
  2034. (__le32*)bh->b_data,
  2035. (__le32*)bh->b_data + addr_per_block,
  2036. depth);
  2037. /*
  2038. * We've probably journalled the indirect block several
  2039. * times during the truncate. But it's no longer
  2040. * needed and we now drop it from the transaction via
  2041. * journal_revoke().
  2042. *
  2043. * That's easy if it's exclusively part of this
  2044. * transaction. But if it's part of the committing
  2045. * transaction then journal_forget() will simply
  2046. * brelse() it. That means that if the underlying
  2047. * block is reallocated in ext3_get_block(),
  2048. * unmap_underlying_metadata() will find this block
  2049. * and will try to get rid of it. damn, damn.
  2050. *
  2051. * If this block has already been committed to the
  2052. * journal, a revoke record will be written. And
  2053. * revoke records must be emitted *before* clearing
  2054. * this block's bit in the bitmaps.
  2055. */
  2056. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2057. /*
  2058. * Everything below this this pointer has been
  2059. * released. Now let this top-of-subtree go.
  2060. *
  2061. * We want the freeing of this indirect block to be
  2062. * atomic in the journal with the updating of the
  2063. * bitmap block which owns it. So make some room in
  2064. * the journal.
  2065. *
  2066. * We zero the parent pointer *after* freeing its
  2067. * pointee in the bitmaps, so if extend_transaction()
  2068. * for some reason fails to put the bitmap changes and
  2069. * the release into the same transaction, recovery
  2070. * will merely complain about releasing a free block,
  2071. * rather than leaking blocks.
  2072. */
  2073. if (is_handle_aborted(handle))
  2074. return;
  2075. if (try_to_extend_transaction(handle, inode)) {
  2076. ext3_mark_inode_dirty(handle, inode);
  2077. ext3_journal_test_restart(handle, inode);
  2078. }
  2079. ext3_free_blocks(handle, inode, nr, 1);
  2080. if (parent_bh) {
  2081. /*
  2082. * The block which we have just freed is
  2083. * pointed to by an indirect block: journal it
  2084. */
  2085. BUFFER_TRACE(parent_bh, "get_write_access");
  2086. if (!ext3_journal_get_write_access(handle,
  2087. parent_bh)){
  2088. *p = 0;
  2089. BUFFER_TRACE(parent_bh,
  2090. "call ext3_journal_dirty_metadata");
  2091. ext3_journal_dirty_metadata(handle,
  2092. parent_bh);
  2093. }
  2094. }
  2095. }
  2096. } else {
  2097. /* We have reached the bottom of the tree. */
  2098. BUFFER_TRACE(parent_bh, "free data blocks");
  2099. ext3_free_data(handle, inode, parent_bh, first, last);
  2100. }
  2101. }
  2102. int ext3_can_truncate(struct inode *inode)
  2103. {
  2104. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2105. return 0;
  2106. if (S_ISREG(inode->i_mode))
  2107. return 1;
  2108. if (S_ISDIR(inode->i_mode))
  2109. return 1;
  2110. if (S_ISLNK(inode->i_mode))
  2111. return !ext3_inode_is_fast_symlink(inode);
  2112. return 0;
  2113. }
  2114. /*
  2115. * ext3_truncate()
  2116. *
  2117. * We block out ext3_get_block() block instantiations across the entire
  2118. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2119. * simultaneously on behalf of the same inode.
  2120. *
  2121. * As we work through the truncate and commmit bits of it to the journal there
  2122. * is one core, guiding principle: the file's tree must always be consistent on
  2123. * disk. We must be able to restart the truncate after a crash.
  2124. *
  2125. * The file's tree may be transiently inconsistent in memory (although it
  2126. * probably isn't), but whenever we close off and commit a journal transaction,
  2127. * the contents of (the filesystem + the journal) must be consistent and
  2128. * restartable. It's pretty simple, really: bottom up, right to left (although
  2129. * left-to-right works OK too).
  2130. *
  2131. * Note that at recovery time, journal replay occurs *before* the restart of
  2132. * truncate against the orphan inode list.
  2133. *
  2134. * The committed inode has the new, desired i_size (which is the same as
  2135. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2136. * that this inode's truncate did not complete and it will again call
  2137. * ext3_truncate() to have another go. So there will be instantiated blocks
  2138. * to the right of the truncation point in a crashed ext3 filesystem. But
  2139. * that's fine - as long as they are linked from the inode, the post-crash
  2140. * ext3_truncate() run will find them and release them.
  2141. */
  2142. void ext3_truncate(struct inode *inode)
  2143. {
  2144. handle_t *handle;
  2145. struct ext3_inode_info *ei = EXT3_I(inode);
  2146. __le32 *i_data = ei->i_data;
  2147. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2148. struct address_space *mapping = inode->i_mapping;
  2149. int offsets[4];
  2150. Indirect chain[4];
  2151. Indirect *partial;
  2152. __le32 nr = 0;
  2153. int n;
  2154. long last_block;
  2155. unsigned blocksize = inode->i_sb->s_blocksize;
  2156. struct page *page;
  2157. if (!ext3_can_truncate(inode))
  2158. goto out_notrans;
  2159. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2160. ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
  2161. /*
  2162. * We have to lock the EOF page here, because lock_page() nests
  2163. * outside journal_start().
  2164. */
  2165. if ((inode->i_size & (blocksize - 1)) == 0) {
  2166. /* Block boundary? Nothing to do */
  2167. page = NULL;
  2168. } else {
  2169. page = grab_cache_page(mapping,
  2170. inode->i_size >> PAGE_CACHE_SHIFT);
  2171. if (!page)
  2172. goto out_notrans;
  2173. }
  2174. handle = start_transaction(inode);
  2175. if (IS_ERR(handle)) {
  2176. if (page) {
  2177. clear_highpage(page);
  2178. flush_dcache_page(page);
  2179. unlock_page(page);
  2180. page_cache_release(page);
  2181. }
  2182. goto out_notrans;
  2183. }
  2184. last_block = (inode->i_size + blocksize-1)
  2185. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2186. if (page)
  2187. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2188. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2189. if (n == 0)
  2190. goto out_stop; /* error */
  2191. /*
  2192. * OK. This truncate is going to happen. We add the inode to the
  2193. * orphan list, so that if this truncate spans multiple transactions,
  2194. * and we crash, we will resume the truncate when the filesystem
  2195. * recovers. It also marks the inode dirty, to catch the new size.
  2196. *
  2197. * Implication: the file must always be in a sane, consistent
  2198. * truncatable state while each transaction commits.
  2199. */
  2200. if (ext3_orphan_add(handle, inode))
  2201. goto out_stop;
  2202. /*
  2203. * The orphan list entry will now protect us from any crash which
  2204. * occurs before the truncate completes, so it is now safe to propagate
  2205. * the new, shorter inode size (held for now in i_size) into the
  2206. * on-disk inode. We do this via i_disksize, which is the value which
  2207. * ext3 *really* writes onto the disk inode.
  2208. */
  2209. ei->i_disksize = inode->i_size;
  2210. /*
  2211. * From here we block out all ext3_get_block() callers who want to
  2212. * modify the block allocation tree.
  2213. */
  2214. mutex_lock(&ei->truncate_mutex);
  2215. if (n == 1) { /* direct blocks */
  2216. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2217. i_data + EXT3_NDIR_BLOCKS);
  2218. goto do_indirects;
  2219. }
  2220. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2221. /* Kill the top of shared branch (not detached) */
  2222. if (nr) {
  2223. if (partial == chain) {
  2224. /* Shared branch grows from the inode */
  2225. ext3_free_branches(handle, inode, NULL,
  2226. &nr, &nr+1, (chain+n-1) - partial);
  2227. *partial->p = 0;
  2228. /*
  2229. * We mark the inode dirty prior to restart,
  2230. * and prior to stop. No need for it here.
  2231. */
  2232. } else {
  2233. /* Shared branch grows from an indirect block */
  2234. BUFFER_TRACE(partial->bh, "get_write_access");
  2235. ext3_free_branches(handle, inode, partial->bh,
  2236. partial->p,
  2237. partial->p+1, (chain+n-1) - partial);
  2238. }
  2239. }
  2240. /* Clear the ends of indirect blocks on the shared branch */
  2241. while (partial > chain) {
  2242. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2243. (__le32*)partial->bh->b_data+addr_per_block,
  2244. (chain+n-1) - partial);
  2245. BUFFER_TRACE(partial->bh, "call brelse");
  2246. brelse (partial->bh);
  2247. partial--;
  2248. }
  2249. do_indirects:
  2250. /* Kill the remaining (whole) subtrees */
  2251. switch (offsets[0]) {
  2252. default:
  2253. nr = i_data[EXT3_IND_BLOCK];
  2254. if (nr) {
  2255. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2256. i_data[EXT3_IND_BLOCK] = 0;
  2257. }
  2258. case EXT3_IND_BLOCK:
  2259. nr = i_data[EXT3_DIND_BLOCK];
  2260. if (nr) {
  2261. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2262. i_data[EXT3_DIND_BLOCK] = 0;
  2263. }
  2264. case EXT3_DIND_BLOCK:
  2265. nr = i_data[EXT3_TIND_BLOCK];
  2266. if (nr) {
  2267. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2268. i_data[EXT3_TIND_BLOCK] = 0;
  2269. }
  2270. case EXT3_TIND_BLOCK:
  2271. ;
  2272. }
  2273. ext3_discard_reservation(inode);
  2274. mutex_unlock(&ei->truncate_mutex);
  2275. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2276. ext3_mark_inode_dirty(handle, inode);
  2277. /*
  2278. * In a multi-transaction truncate, we only make the final transaction
  2279. * synchronous
  2280. */
  2281. if (IS_SYNC(inode))
  2282. handle->h_sync = 1;
  2283. out_stop:
  2284. /*
  2285. * If this was a simple ftruncate(), and the file will remain alive
  2286. * then we need to clear up the orphan record which we created above.
  2287. * However, if this was a real unlink then we were called by
  2288. * ext3_delete_inode(), and we allow that function to clean up the
  2289. * orphan info for us.
  2290. */
  2291. if (inode->i_nlink)
  2292. ext3_orphan_del(handle, inode);
  2293. ext3_journal_stop(handle);
  2294. return;
  2295. out_notrans:
  2296. /*
  2297. * Delete the inode from orphan list so that it doesn't stay there
  2298. * forever and trigger assertion on umount.
  2299. */
  2300. if (inode->i_nlink)
  2301. ext3_orphan_del(NULL, inode);
  2302. }
  2303. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2304. unsigned long ino, struct ext3_iloc *iloc)
  2305. {
  2306. unsigned long block_group;
  2307. unsigned long offset;
  2308. ext3_fsblk_t block;
  2309. struct ext3_group_desc *gdp;
  2310. if (!ext3_valid_inum(sb, ino)) {
  2311. /*
  2312. * This error is already checked for in namei.c unless we are
  2313. * looking at an NFS filehandle, in which case no error
  2314. * report is needed
  2315. */
  2316. return 0;
  2317. }
  2318. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2319. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2320. if (!gdp)
  2321. return 0;
  2322. /*
  2323. * Figure out the offset within the block group inode table
  2324. */
  2325. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2326. EXT3_INODE_SIZE(sb);
  2327. block = le32_to_cpu(gdp->bg_inode_table) +
  2328. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2329. iloc->block_group = block_group;
  2330. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2331. return block;
  2332. }
  2333. /*
  2334. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2335. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2336. * data in memory that is needed to recreate the on-disk version of this
  2337. * inode.
  2338. */
  2339. static int __ext3_get_inode_loc(struct inode *inode,
  2340. struct ext3_iloc *iloc, int in_mem)
  2341. {
  2342. ext3_fsblk_t block;
  2343. struct buffer_head *bh;
  2344. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2345. if (!block)
  2346. return -EIO;
  2347. bh = sb_getblk(inode->i_sb, block);
  2348. if (!bh) {
  2349. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2350. "unable to read inode block - "
  2351. "inode=%lu, block="E3FSBLK,
  2352. inode->i_ino, block);
  2353. return -EIO;
  2354. }
  2355. if (!buffer_uptodate(bh)) {
  2356. lock_buffer(bh);
  2357. /*
  2358. * If the buffer has the write error flag, we have failed
  2359. * to write out another inode in the same block. In this
  2360. * case, we don't have to read the block because we may
  2361. * read the old inode data successfully.
  2362. */
  2363. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2364. set_buffer_uptodate(bh);
  2365. if (buffer_uptodate(bh)) {
  2366. /* someone brought it uptodate while we waited */
  2367. unlock_buffer(bh);
  2368. goto has_buffer;
  2369. }
  2370. /*
  2371. * If we have all information of the inode in memory and this
  2372. * is the only valid inode in the block, we need not read the
  2373. * block.
  2374. */
  2375. if (in_mem) {
  2376. struct buffer_head *bitmap_bh;
  2377. struct ext3_group_desc *desc;
  2378. int inodes_per_buffer;
  2379. int inode_offset, i;
  2380. int block_group;
  2381. int start;
  2382. block_group = (inode->i_ino - 1) /
  2383. EXT3_INODES_PER_GROUP(inode->i_sb);
  2384. inodes_per_buffer = bh->b_size /
  2385. EXT3_INODE_SIZE(inode->i_sb);
  2386. inode_offset = ((inode->i_ino - 1) %
  2387. EXT3_INODES_PER_GROUP(inode->i_sb));
  2388. start = inode_offset & ~(inodes_per_buffer - 1);
  2389. /* Is the inode bitmap in cache? */
  2390. desc = ext3_get_group_desc(inode->i_sb,
  2391. block_group, NULL);
  2392. if (!desc)
  2393. goto make_io;
  2394. bitmap_bh = sb_getblk(inode->i_sb,
  2395. le32_to_cpu(desc->bg_inode_bitmap));
  2396. if (!bitmap_bh)
  2397. goto make_io;
  2398. /*
  2399. * If the inode bitmap isn't in cache then the
  2400. * optimisation may end up performing two reads instead
  2401. * of one, so skip it.
  2402. */
  2403. if (!buffer_uptodate(bitmap_bh)) {
  2404. brelse(bitmap_bh);
  2405. goto make_io;
  2406. }
  2407. for (i = start; i < start + inodes_per_buffer; i++) {
  2408. if (i == inode_offset)
  2409. continue;
  2410. if (ext3_test_bit(i, bitmap_bh->b_data))
  2411. break;
  2412. }
  2413. brelse(bitmap_bh);
  2414. if (i == start + inodes_per_buffer) {
  2415. /* all other inodes are free, so skip I/O */
  2416. memset(bh->b_data, 0, bh->b_size);
  2417. set_buffer_uptodate(bh);
  2418. unlock_buffer(bh);
  2419. goto has_buffer;
  2420. }
  2421. }
  2422. make_io:
  2423. /*
  2424. * There are other valid inodes in the buffer, this inode
  2425. * has in-inode xattrs, or we don't have this inode in memory.
  2426. * Read the block from disk.
  2427. */
  2428. get_bh(bh);
  2429. bh->b_end_io = end_buffer_read_sync;
  2430. submit_bh(READ_META, bh);
  2431. wait_on_buffer(bh);
  2432. if (!buffer_uptodate(bh)) {
  2433. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2434. "unable to read inode block - "
  2435. "inode=%lu, block="E3FSBLK,
  2436. inode->i_ino, block);
  2437. brelse(bh);
  2438. return -EIO;
  2439. }
  2440. }
  2441. has_buffer:
  2442. iloc->bh = bh;
  2443. return 0;
  2444. }
  2445. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2446. {
  2447. /* We have all inode data except xattrs in memory here. */
  2448. return __ext3_get_inode_loc(inode, iloc,
  2449. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2450. }
  2451. void ext3_set_inode_flags(struct inode *inode)
  2452. {
  2453. unsigned int flags = EXT3_I(inode)->i_flags;
  2454. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2455. if (flags & EXT3_SYNC_FL)
  2456. inode->i_flags |= S_SYNC;
  2457. if (flags & EXT3_APPEND_FL)
  2458. inode->i_flags |= S_APPEND;
  2459. if (flags & EXT3_IMMUTABLE_FL)
  2460. inode->i_flags |= S_IMMUTABLE;
  2461. if (flags & EXT3_NOATIME_FL)
  2462. inode->i_flags |= S_NOATIME;
  2463. if (flags & EXT3_DIRSYNC_FL)
  2464. inode->i_flags |= S_DIRSYNC;
  2465. }
  2466. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2467. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2468. {
  2469. unsigned int flags = ei->vfs_inode.i_flags;
  2470. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2471. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2472. if (flags & S_SYNC)
  2473. ei->i_flags |= EXT3_SYNC_FL;
  2474. if (flags & S_APPEND)
  2475. ei->i_flags |= EXT3_APPEND_FL;
  2476. if (flags & S_IMMUTABLE)
  2477. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2478. if (flags & S_NOATIME)
  2479. ei->i_flags |= EXT3_NOATIME_FL;
  2480. if (flags & S_DIRSYNC)
  2481. ei->i_flags |= EXT3_DIRSYNC_FL;
  2482. }
  2483. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2484. {
  2485. struct ext3_iloc iloc;
  2486. struct ext3_inode *raw_inode;
  2487. struct ext3_inode_info *ei;
  2488. struct buffer_head *bh;
  2489. struct inode *inode;
  2490. long ret;
  2491. int block;
  2492. inode = iget_locked(sb, ino);
  2493. if (!inode)
  2494. return ERR_PTR(-ENOMEM);
  2495. if (!(inode->i_state & I_NEW))
  2496. return inode;
  2497. ei = EXT3_I(inode);
  2498. #ifdef CONFIG_EXT3_FS_POSIX_ACL
  2499. ei->i_acl = EXT3_ACL_NOT_CACHED;
  2500. ei->i_default_acl = EXT3_ACL_NOT_CACHED;
  2501. #endif
  2502. ei->i_block_alloc_info = NULL;
  2503. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2504. if (ret < 0)
  2505. goto bad_inode;
  2506. bh = iloc.bh;
  2507. raw_inode = ext3_raw_inode(&iloc);
  2508. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2509. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2510. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2511. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2512. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2513. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2514. }
  2515. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2516. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2517. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2518. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2519. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2520. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2521. ei->i_state = 0;
  2522. ei->i_dir_start_lookup = 0;
  2523. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2524. /* We now have enough fields to check if the inode was active or not.
  2525. * This is needed because nfsd might try to access dead inodes
  2526. * the test is that same one that e2fsck uses
  2527. * NeilBrown 1999oct15
  2528. */
  2529. if (inode->i_nlink == 0) {
  2530. if (inode->i_mode == 0 ||
  2531. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2532. /* this inode is deleted */
  2533. brelse (bh);
  2534. ret = -ESTALE;
  2535. goto bad_inode;
  2536. }
  2537. /* The only unlinked inodes we let through here have
  2538. * valid i_mode and are being read by the orphan
  2539. * recovery code: that's fine, we're about to complete
  2540. * the process of deleting those. */
  2541. }
  2542. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2543. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2544. #ifdef EXT3_FRAGMENTS
  2545. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2546. ei->i_frag_no = raw_inode->i_frag;
  2547. ei->i_frag_size = raw_inode->i_fsize;
  2548. #endif
  2549. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2550. if (!S_ISREG(inode->i_mode)) {
  2551. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2552. } else {
  2553. inode->i_size |=
  2554. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2555. }
  2556. ei->i_disksize = inode->i_size;
  2557. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2558. ei->i_block_group = iloc.block_group;
  2559. /*
  2560. * NOTE! The in-memory inode i_data array is in little-endian order
  2561. * even on big-endian machines: we do NOT byteswap the block numbers!
  2562. */
  2563. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2564. ei->i_data[block] = raw_inode->i_block[block];
  2565. INIT_LIST_HEAD(&ei->i_orphan);
  2566. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2567. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2568. /*
  2569. * When mke2fs creates big inodes it does not zero out
  2570. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2571. * so ignore those first few inodes.
  2572. */
  2573. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2574. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2575. EXT3_INODE_SIZE(inode->i_sb)) {
  2576. brelse (bh);
  2577. ret = -EIO;
  2578. goto bad_inode;
  2579. }
  2580. if (ei->i_extra_isize == 0) {
  2581. /* The extra space is currently unused. Use it. */
  2582. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2583. EXT3_GOOD_OLD_INODE_SIZE;
  2584. } else {
  2585. __le32 *magic = (void *)raw_inode +
  2586. EXT3_GOOD_OLD_INODE_SIZE +
  2587. ei->i_extra_isize;
  2588. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2589. ei->i_state |= EXT3_STATE_XATTR;
  2590. }
  2591. } else
  2592. ei->i_extra_isize = 0;
  2593. if (S_ISREG(inode->i_mode)) {
  2594. inode->i_op = &ext3_file_inode_operations;
  2595. inode->i_fop = &ext3_file_operations;
  2596. ext3_set_aops(inode);
  2597. } else if (S_ISDIR(inode->i_mode)) {
  2598. inode->i_op = &ext3_dir_inode_operations;
  2599. inode->i_fop = &ext3_dir_operations;
  2600. } else if (S_ISLNK(inode->i_mode)) {
  2601. if (ext3_inode_is_fast_symlink(inode)) {
  2602. inode->i_op = &ext3_fast_symlink_inode_operations;
  2603. nd_terminate_link(ei->i_data, inode->i_size,
  2604. sizeof(ei->i_data) - 1);
  2605. } else {
  2606. inode->i_op = &ext3_symlink_inode_operations;
  2607. ext3_set_aops(inode);
  2608. }
  2609. } else {
  2610. inode->i_op = &ext3_special_inode_operations;
  2611. if (raw_inode->i_block[0])
  2612. init_special_inode(inode, inode->i_mode,
  2613. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2614. else
  2615. init_special_inode(inode, inode->i_mode,
  2616. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2617. }
  2618. brelse (iloc.bh);
  2619. ext3_set_inode_flags(inode);
  2620. unlock_new_inode(inode);
  2621. return inode;
  2622. bad_inode:
  2623. iget_failed(inode);
  2624. return ERR_PTR(ret);
  2625. }
  2626. /*
  2627. * Post the struct inode info into an on-disk inode location in the
  2628. * buffer-cache. This gobbles the caller's reference to the
  2629. * buffer_head in the inode location struct.
  2630. *
  2631. * The caller must have write access to iloc->bh.
  2632. */
  2633. static int ext3_do_update_inode(handle_t *handle,
  2634. struct inode *inode,
  2635. struct ext3_iloc *iloc)
  2636. {
  2637. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2638. struct ext3_inode_info *ei = EXT3_I(inode);
  2639. struct buffer_head *bh = iloc->bh;
  2640. int err = 0, rc, block;
  2641. /* For fields not not tracking in the in-memory inode,
  2642. * initialise them to zero for new inodes. */
  2643. if (ei->i_state & EXT3_STATE_NEW)
  2644. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2645. ext3_get_inode_flags(ei);
  2646. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2647. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2648. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2649. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2650. /*
  2651. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2652. * re-used with the upper 16 bits of the uid/gid intact
  2653. */
  2654. if(!ei->i_dtime) {
  2655. raw_inode->i_uid_high =
  2656. cpu_to_le16(high_16_bits(inode->i_uid));
  2657. raw_inode->i_gid_high =
  2658. cpu_to_le16(high_16_bits(inode->i_gid));
  2659. } else {
  2660. raw_inode->i_uid_high = 0;
  2661. raw_inode->i_gid_high = 0;
  2662. }
  2663. } else {
  2664. raw_inode->i_uid_low =
  2665. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2666. raw_inode->i_gid_low =
  2667. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2668. raw_inode->i_uid_high = 0;
  2669. raw_inode->i_gid_high = 0;
  2670. }
  2671. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2672. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2673. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2674. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2675. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2676. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2677. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2678. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2679. #ifdef EXT3_FRAGMENTS
  2680. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2681. raw_inode->i_frag = ei->i_frag_no;
  2682. raw_inode->i_fsize = ei->i_frag_size;
  2683. #endif
  2684. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2685. if (!S_ISREG(inode->i_mode)) {
  2686. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2687. } else {
  2688. raw_inode->i_size_high =
  2689. cpu_to_le32(ei->i_disksize >> 32);
  2690. if (ei->i_disksize > 0x7fffffffULL) {
  2691. struct super_block *sb = inode->i_sb;
  2692. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2693. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2694. EXT3_SB(sb)->s_es->s_rev_level ==
  2695. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2696. /* If this is the first large file
  2697. * created, add a flag to the superblock.
  2698. */
  2699. err = ext3_journal_get_write_access(handle,
  2700. EXT3_SB(sb)->s_sbh);
  2701. if (err)
  2702. goto out_brelse;
  2703. ext3_update_dynamic_rev(sb);
  2704. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2705. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2706. handle->h_sync = 1;
  2707. err = ext3_journal_dirty_metadata(handle,
  2708. EXT3_SB(sb)->s_sbh);
  2709. }
  2710. }
  2711. }
  2712. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2713. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2714. if (old_valid_dev(inode->i_rdev)) {
  2715. raw_inode->i_block[0] =
  2716. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2717. raw_inode->i_block[1] = 0;
  2718. } else {
  2719. raw_inode->i_block[0] = 0;
  2720. raw_inode->i_block[1] =
  2721. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2722. raw_inode->i_block[2] = 0;
  2723. }
  2724. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2725. raw_inode->i_block[block] = ei->i_data[block];
  2726. if (ei->i_extra_isize)
  2727. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2728. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2729. rc = ext3_journal_dirty_metadata(handle, bh);
  2730. if (!err)
  2731. err = rc;
  2732. ei->i_state &= ~EXT3_STATE_NEW;
  2733. out_brelse:
  2734. brelse (bh);
  2735. ext3_std_error(inode->i_sb, err);
  2736. return err;
  2737. }
  2738. /*
  2739. * ext3_write_inode()
  2740. *
  2741. * We are called from a few places:
  2742. *
  2743. * - Within generic_file_write() for O_SYNC files.
  2744. * Here, there will be no transaction running. We wait for any running
  2745. * trasnaction to commit.
  2746. *
  2747. * - Within sys_sync(), kupdate and such.
  2748. * We wait on commit, if tol to.
  2749. *
  2750. * - Within prune_icache() (PF_MEMALLOC == true)
  2751. * Here we simply return. We can't afford to block kswapd on the
  2752. * journal commit.
  2753. *
  2754. * In all cases it is actually safe for us to return without doing anything,
  2755. * because the inode has been copied into a raw inode buffer in
  2756. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2757. * knfsd.
  2758. *
  2759. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2760. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2761. * which we are interested.
  2762. *
  2763. * It would be a bug for them to not do this. The code:
  2764. *
  2765. * mark_inode_dirty(inode)
  2766. * stuff();
  2767. * inode->i_size = expr;
  2768. *
  2769. * is in error because a kswapd-driven write_inode() could occur while
  2770. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2771. * will no longer be on the superblock's dirty inode list.
  2772. */
  2773. int ext3_write_inode(struct inode *inode, int wait)
  2774. {
  2775. if (current->flags & PF_MEMALLOC)
  2776. return 0;
  2777. if (ext3_journal_current_handle()) {
  2778. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2779. dump_stack();
  2780. return -EIO;
  2781. }
  2782. if (!wait)
  2783. return 0;
  2784. return ext3_force_commit(inode->i_sb);
  2785. }
  2786. /*
  2787. * ext3_setattr()
  2788. *
  2789. * Called from notify_change.
  2790. *
  2791. * We want to trap VFS attempts to truncate the file as soon as
  2792. * possible. In particular, we want to make sure that when the VFS
  2793. * shrinks i_size, we put the inode on the orphan list and modify
  2794. * i_disksize immediately, so that during the subsequent flushing of
  2795. * dirty pages and freeing of disk blocks, we can guarantee that any
  2796. * commit will leave the blocks being flushed in an unused state on
  2797. * disk. (On recovery, the inode will get truncated and the blocks will
  2798. * be freed, so we have a strong guarantee that no future commit will
  2799. * leave these blocks visible to the user.)
  2800. *
  2801. * Called with inode->sem down.
  2802. */
  2803. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2804. {
  2805. struct inode *inode = dentry->d_inode;
  2806. int error, rc = 0;
  2807. const unsigned int ia_valid = attr->ia_valid;
  2808. error = inode_change_ok(inode, attr);
  2809. if (error)
  2810. return error;
  2811. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2812. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2813. handle_t *handle;
  2814. /* (user+group)*(old+new) structure, inode write (sb,
  2815. * inode block, ? - but truncate inode update has it) */
  2816. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2817. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2818. if (IS_ERR(handle)) {
  2819. error = PTR_ERR(handle);
  2820. goto err_out;
  2821. }
  2822. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  2823. if (error) {
  2824. ext3_journal_stop(handle);
  2825. return error;
  2826. }
  2827. /* Update corresponding info in inode so that everything is in
  2828. * one transaction */
  2829. if (attr->ia_valid & ATTR_UID)
  2830. inode->i_uid = attr->ia_uid;
  2831. if (attr->ia_valid & ATTR_GID)
  2832. inode->i_gid = attr->ia_gid;
  2833. error = ext3_mark_inode_dirty(handle, inode);
  2834. ext3_journal_stop(handle);
  2835. }
  2836. if (S_ISREG(inode->i_mode) &&
  2837. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2838. handle_t *handle;
  2839. handle = ext3_journal_start(inode, 3);
  2840. if (IS_ERR(handle)) {
  2841. error = PTR_ERR(handle);
  2842. goto err_out;
  2843. }
  2844. error = ext3_orphan_add(handle, inode);
  2845. EXT3_I(inode)->i_disksize = attr->ia_size;
  2846. rc = ext3_mark_inode_dirty(handle, inode);
  2847. if (!error)
  2848. error = rc;
  2849. ext3_journal_stop(handle);
  2850. }
  2851. rc = inode_setattr(inode, attr);
  2852. if (!rc && (ia_valid & ATTR_MODE))
  2853. rc = ext3_acl_chmod(inode);
  2854. err_out:
  2855. ext3_std_error(inode->i_sb, error);
  2856. if (!error)
  2857. error = rc;
  2858. return error;
  2859. }
  2860. /*
  2861. * How many blocks doth make a writepage()?
  2862. *
  2863. * With N blocks per page, it may be:
  2864. * N data blocks
  2865. * 2 indirect block
  2866. * 2 dindirect
  2867. * 1 tindirect
  2868. * N+5 bitmap blocks (from the above)
  2869. * N+5 group descriptor summary blocks
  2870. * 1 inode block
  2871. * 1 superblock.
  2872. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2873. *
  2874. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2875. *
  2876. * With ordered or writeback data it's the same, less the N data blocks.
  2877. *
  2878. * If the inode's direct blocks can hold an integral number of pages then a
  2879. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2880. * and dindirect block, and the "5" above becomes "3".
  2881. *
  2882. * This still overestimates under most circumstances. If we were to pass the
  2883. * start and end offsets in here as well we could do block_to_path() on each
  2884. * block and work out the exact number of indirects which are touched. Pah.
  2885. */
  2886. static int ext3_writepage_trans_blocks(struct inode *inode)
  2887. {
  2888. int bpp = ext3_journal_blocks_per_page(inode);
  2889. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2890. int ret;
  2891. if (ext3_should_journal_data(inode))
  2892. ret = 3 * (bpp + indirects) + 2;
  2893. else
  2894. ret = 2 * (bpp + indirects) + 2;
  2895. #ifdef CONFIG_QUOTA
  2896. /* We know that structure was already allocated during vfs_dq_init so
  2897. * we will be updating only the data blocks + inodes */
  2898. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2899. #endif
  2900. return ret;
  2901. }
  2902. /*
  2903. * The caller must have previously called ext3_reserve_inode_write().
  2904. * Give this, we know that the caller already has write access to iloc->bh.
  2905. */
  2906. int ext3_mark_iloc_dirty(handle_t *handle,
  2907. struct inode *inode, struct ext3_iloc *iloc)
  2908. {
  2909. int err = 0;
  2910. /* the do_update_inode consumes one bh->b_count */
  2911. get_bh(iloc->bh);
  2912. /* ext3_do_update_inode() does journal_dirty_metadata */
  2913. err = ext3_do_update_inode(handle, inode, iloc);
  2914. put_bh(iloc->bh);
  2915. return err;
  2916. }
  2917. /*
  2918. * On success, We end up with an outstanding reference count against
  2919. * iloc->bh. This _must_ be cleaned up later.
  2920. */
  2921. int
  2922. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2923. struct ext3_iloc *iloc)
  2924. {
  2925. int err = 0;
  2926. if (handle) {
  2927. err = ext3_get_inode_loc(inode, iloc);
  2928. if (!err) {
  2929. BUFFER_TRACE(iloc->bh, "get_write_access");
  2930. err = ext3_journal_get_write_access(handle, iloc->bh);
  2931. if (err) {
  2932. brelse(iloc->bh);
  2933. iloc->bh = NULL;
  2934. }
  2935. }
  2936. }
  2937. ext3_std_error(inode->i_sb, err);
  2938. return err;
  2939. }
  2940. /*
  2941. * What we do here is to mark the in-core inode as clean with respect to inode
  2942. * dirtiness (it may still be data-dirty).
  2943. * This means that the in-core inode may be reaped by prune_icache
  2944. * without having to perform any I/O. This is a very good thing,
  2945. * because *any* task may call prune_icache - even ones which
  2946. * have a transaction open against a different journal.
  2947. *
  2948. * Is this cheating? Not really. Sure, we haven't written the
  2949. * inode out, but prune_icache isn't a user-visible syncing function.
  2950. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2951. * we start and wait on commits.
  2952. *
  2953. * Is this efficient/effective? Well, we're being nice to the system
  2954. * by cleaning up our inodes proactively so they can be reaped
  2955. * without I/O. But we are potentially leaving up to five seconds'
  2956. * worth of inodes floating about which prune_icache wants us to
  2957. * write out. One way to fix that would be to get prune_icache()
  2958. * to do a write_super() to free up some memory. It has the desired
  2959. * effect.
  2960. */
  2961. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2962. {
  2963. struct ext3_iloc iloc;
  2964. int err;
  2965. might_sleep();
  2966. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2967. if (!err)
  2968. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2969. return err;
  2970. }
  2971. /*
  2972. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2973. *
  2974. * We're really interested in the case where a file is being extended.
  2975. * i_size has been changed by generic_commit_write() and we thus need
  2976. * to include the updated inode in the current transaction.
  2977. *
  2978. * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
  2979. * are allocated to the file.
  2980. *
  2981. * If the inode is marked synchronous, we don't honour that here - doing
  2982. * so would cause a commit on atime updates, which we don't bother doing.
  2983. * We handle synchronous inodes at the highest possible level.
  2984. */
  2985. void ext3_dirty_inode(struct inode *inode)
  2986. {
  2987. handle_t *current_handle = ext3_journal_current_handle();
  2988. handle_t *handle;
  2989. handle = ext3_journal_start(inode, 2);
  2990. if (IS_ERR(handle))
  2991. goto out;
  2992. if (current_handle &&
  2993. current_handle->h_transaction != handle->h_transaction) {
  2994. /* This task has a transaction open against a different fs */
  2995. printk(KERN_EMERG "%s: transactions do not match!\n",
  2996. __func__);
  2997. } else {
  2998. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2999. current_handle);
  3000. ext3_mark_inode_dirty(handle, inode);
  3001. }
  3002. ext3_journal_stop(handle);
  3003. out:
  3004. return;
  3005. }
  3006. #if 0
  3007. /*
  3008. * Bind an inode's backing buffer_head into this transaction, to prevent
  3009. * it from being flushed to disk early. Unlike
  3010. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3011. * returns no iloc structure, so the caller needs to repeat the iloc
  3012. * lookup to mark the inode dirty later.
  3013. */
  3014. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3015. {
  3016. struct ext3_iloc iloc;
  3017. int err = 0;
  3018. if (handle) {
  3019. err = ext3_get_inode_loc(inode, &iloc);
  3020. if (!err) {
  3021. BUFFER_TRACE(iloc.bh, "get_write_access");
  3022. err = journal_get_write_access(handle, iloc.bh);
  3023. if (!err)
  3024. err = ext3_journal_dirty_metadata(handle,
  3025. iloc.bh);
  3026. brelse(iloc.bh);
  3027. }
  3028. }
  3029. ext3_std_error(inode->i_sb, err);
  3030. return err;
  3031. }
  3032. #endif
  3033. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3034. {
  3035. journal_t *journal;
  3036. handle_t *handle;
  3037. int err;
  3038. /*
  3039. * We have to be very careful here: changing a data block's
  3040. * journaling status dynamically is dangerous. If we write a
  3041. * data block to the journal, change the status and then delete
  3042. * that block, we risk forgetting to revoke the old log record
  3043. * from the journal and so a subsequent replay can corrupt data.
  3044. * So, first we make sure that the journal is empty and that
  3045. * nobody is changing anything.
  3046. */
  3047. journal = EXT3_JOURNAL(inode);
  3048. if (is_journal_aborted(journal))
  3049. return -EROFS;
  3050. journal_lock_updates(journal);
  3051. journal_flush(journal);
  3052. /*
  3053. * OK, there are no updates running now, and all cached data is
  3054. * synced to disk. We are now in a completely consistent state
  3055. * which doesn't have anything in the journal, and we know that
  3056. * no filesystem updates are running, so it is safe to modify
  3057. * the inode's in-core data-journaling state flag now.
  3058. */
  3059. if (val)
  3060. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3061. else
  3062. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3063. ext3_set_aops(inode);
  3064. journal_unlock_updates(journal);
  3065. /* Finally we can mark the inode as dirty. */
  3066. handle = ext3_journal_start(inode, 1);
  3067. if (IS_ERR(handle))
  3068. return PTR_ERR(handle);
  3069. err = ext3_mark_inode_dirty(handle, inode);
  3070. handle->h_sync = 1;
  3071. ext3_journal_stop(handle);
  3072. ext3_std_error(inode->i_sb, err);
  3073. return err;
  3074. }