time.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/export.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_MAX 0x7fffffff
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static void decrementer_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *dev);
  99. static struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_mode = decrementer_set_mode,
  105. .features = CLOCK_EVT_FEAT_ONESHOT,
  106. };
  107. DEFINE_PER_CPU(u64, decrementers_next_tb);
  108. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  109. #ifdef CONFIG_PPC_ISERIES
  110. static unsigned long __initdata iSeries_recal_titan;
  111. static signed long __initdata iSeries_recal_tb;
  112. /* Forward declaration is only needed for iSereis compiles */
  113. static void __init clocksource_init(void);
  114. #endif
  115. #define XSEC_PER_SEC (1024*1024)
  116. #ifdef CONFIG_PPC64
  117. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  118. #else
  119. /* compute ((xsec << 12) * max) >> 32 */
  120. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  121. #endif
  122. unsigned long tb_ticks_per_jiffy;
  123. unsigned long tb_ticks_per_usec = 100; /* sane default */
  124. EXPORT_SYMBOL(tb_ticks_per_usec);
  125. unsigned long tb_ticks_per_sec;
  126. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  127. DEFINE_SPINLOCK(rtc_lock);
  128. EXPORT_SYMBOL_GPL(rtc_lock);
  129. static u64 tb_to_ns_scale __read_mostly;
  130. static unsigned tb_to_ns_shift __read_mostly;
  131. static u64 boot_tb __read_mostly;
  132. extern struct timezone sys_tz;
  133. static long timezone_offset;
  134. unsigned long ppc_proc_freq;
  135. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  136. unsigned long ppc_tb_freq;
  137. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  138. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  139. /*
  140. * Factors for converting from cputime_t (timebase ticks) to
  141. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  142. * These are all stored as 0.64 fixed-point binary fractions.
  143. */
  144. u64 __cputime_jiffies_factor;
  145. EXPORT_SYMBOL(__cputime_jiffies_factor);
  146. u64 __cputime_usec_factor;
  147. EXPORT_SYMBOL(__cputime_usec_factor);
  148. u64 __cputime_sec_factor;
  149. EXPORT_SYMBOL(__cputime_sec_factor);
  150. u64 __cputime_clockt_factor;
  151. EXPORT_SYMBOL(__cputime_clockt_factor);
  152. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  153. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  154. cputime_t cputime_one_jiffy;
  155. void (*dtl_consumer)(struct dtl_entry *, u64);
  156. static void calc_cputime_factors(void)
  157. {
  158. struct div_result res;
  159. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  160. __cputime_jiffies_factor = res.result_low;
  161. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  162. __cputime_usec_factor = res.result_low;
  163. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  164. __cputime_sec_factor = res.result_low;
  165. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  166. __cputime_clockt_factor = res.result_low;
  167. }
  168. /*
  169. * Read the SPURR on systems that have it, otherwise the PURR,
  170. * or if that doesn't exist return the timebase value passed in.
  171. */
  172. static u64 read_spurr(u64 tb)
  173. {
  174. if (cpu_has_feature(CPU_FTR_SPURR))
  175. return mfspr(SPRN_SPURR);
  176. if (cpu_has_feature(CPU_FTR_PURR))
  177. return mfspr(SPRN_PURR);
  178. return tb;
  179. }
  180. #ifdef CONFIG_PPC_SPLPAR
  181. /*
  182. * Scan the dispatch trace log and count up the stolen time.
  183. * Should be called with interrupts disabled.
  184. */
  185. static u64 scan_dispatch_log(u64 stop_tb)
  186. {
  187. u64 i = local_paca->dtl_ridx;
  188. struct dtl_entry *dtl = local_paca->dtl_curr;
  189. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  190. struct lppaca *vpa = local_paca->lppaca_ptr;
  191. u64 tb_delta;
  192. u64 stolen = 0;
  193. u64 dtb;
  194. if (!dtl)
  195. return 0;
  196. if (i == vpa->dtl_idx)
  197. return 0;
  198. while (i < vpa->dtl_idx) {
  199. if (dtl_consumer)
  200. dtl_consumer(dtl, i);
  201. dtb = dtl->timebase;
  202. tb_delta = dtl->enqueue_to_dispatch_time +
  203. dtl->ready_to_enqueue_time;
  204. barrier();
  205. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  206. /* buffer has overflowed */
  207. i = vpa->dtl_idx - N_DISPATCH_LOG;
  208. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  209. continue;
  210. }
  211. if (dtb > stop_tb)
  212. break;
  213. stolen += tb_delta;
  214. ++i;
  215. ++dtl;
  216. if (dtl == dtl_end)
  217. dtl = local_paca->dispatch_log;
  218. }
  219. local_paca->dtl_ridx = i;
  220. local_paca->dtl_curr = dtl;
  221. return stolen;
  222. }
  223. /*
  224. * Accumulate stolen time by scanning the dispatch trace log.
  225. * Called on entry from user mode.
  226. */
  227. void accumulate_stolen_time(void)
  228. {
  229. u64 sst, ust;
  230. u8 save_soft_enabled = local_paca->soft_enabled;
  231. u8 save_hard_enabled = local_paca->hard_enabled;
  232. /* We are called early in the exception entry, before
  233. * soft/hard_enabled are sync'ed to the expected state
  234. * for the exception. We are hard disabled but the PACA
  235. * needs to reflect that so various debug stuff doesn't
  236. * complain
  237. */
  238. local_paca->soft_enabled = 0;
  239. local_paca->hard_enabled = 0;
  240. sst = scan_dispatch_log(local_paca->starttime_user);
  241. ust = scan_dispatch_log(local_paca->starttime);
  242. local_paca->system_time -= sst;
  243. local_paca->user_time -= ust;
  244. local_paca->stolen_time += ust + sst;
  245. local_paca->soft_enabled = save_soft_enabled;
  246. local_paca->hard_enabled = save_hard_enabled;
  247. }
  248. static inline u64 calculate_stolen_time(u64 stop_tb)
  249. {
  250. u64 stolen = 0;
  251. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  252. stolen = scan_dispatch_log(stop_tb);
  253. get_paca()->system_time -= stolen;
  254. }
  255. stolen += get_paca()->stolen_time;
  256. get_paca()->stolen_time = 0;
  257. return stolen;
  258. }
  259. #else /* CONFIG_PPC_SPLPAR */
  260. static inline u64 calculate_stolen_time(u64 stop_tb)
  261. {
  262. return 0;
  263. }
  264. #endif /* CONFIG_PPC_SPLPAR */
  265. /*
  266. * Account time for a transition between system, hard irq
  267. * or soft irq state.
  268. */
  269. void account_system_vtime(struct task_struct *tsk)
  270. {
  271. u64 now, nowscaled, delta, deltascaled;
  272. unsigned long flags;
  273. u64 stolen, udelta, sys_scaled, user_scaled;
  274. local_irq_save(flags);
  275. now = mftb();
  276. nowscaled = read_spurr(now);
  277. get_paca()->system_time += now - get_paca()->starttime;
  278. get_paca()->starttime = now;
  279. deltascaled = nowscaled - get_paca()->startspurr;
  280. get_paca()->startspurr = nowscaled;
  281. stolen = calculate_stolen_time(now);
  282. delta = get_paca()->system_time;
  283. get_paca()->system_time = 0;
  284. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  285. get_paca()->utime_sspurr = get_paca()->user_time;
  286. /*
  287. * Because we don't read the SPURR on every kernel entry/exit,
  288. * deltascaled includes both user and system SPURR ticks.
  289. * Apportion these ticks to system SPURR ticks and user
  290. * SPURR ticks in the same ratio as the system time (delta)
  291. * and user time (udelta) values obtained from the timebase
  292. * over the same interval. The system ticks get accounted here;
  293. * the user ticks get saved up in paca->user_time_scaled to be
  294. * used by account_process_tick.
  295. */
  296. sys_scaled = delta;
  297. user_scaled = udelta;
  298. if (deltascaled != delta + udelta) {
  299. if (udelta) {
  300. sys_scaled = deltascaled * delta / (delta + udelta);
  301. user_scaled = deltascaled - sys_scaled;
  302. } else {
  303. sys_scaled = deltascaled;
  304. }
  305. }
  306. get_paca()->user_time_scaled += user_scaled;
  307. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  308. account_system_time(tsk, 0, delta, sys_scaled);
  309. if (stolen)
  310. account_steal_time(stolen);
  311. } else {
  312. account_idle_time(delta + stolen);
  313. }
  314. local_irq_restore(flags);
  315. }
  316. EXPORT_SYMBOL_GPL(account_system_vtime);
  317. /*
  318. * Transfer the user and system times accumulated in the paca
  319. * by the exception entry and exit code to the generic process
  320. * user and system time records.
  321. * Must be called with interrupts disabled.
  322. * Assumes that account_system_vtime() has been called recently
  323. * (i.e. since the last entry from usermode) so that
  324. * get_paca()->user_time_scaled is up to date.
  325. */
  326. void account_process_tick(struct task_struct *tsk, int user_tick)
  327. {
  328. cputime_t utime, utimescaled;
  329. utime = get_paca()->user_time;
  330. utimescaled = get_paca()->user_time_scaled;
  331. get_paca()->user_time = 0;
  332. get_paca()->user_time_scaled = 0;
  333. get_paca()->utime_sspurr = 0;
  334. account_user_time(tsk, utime, utimescaled);
  335. }
  336. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  337. #define calc_cputime_factors()
  338. #endif
  339. void __delay(unsigned long loops)
  340. {
  341. unsigned long start;
  342. int diff;
  343. if (__USE_RTC()) {
  344. start = get_rtcl();
  345. do {
  346. /* the RTCL register wraps at 1000000000 */
  347. diff = get_rtcl() - start;
  348. if (diff < 0)
  349. diff += 1000000000;
  350. } while (diff < loops);
  351. } else {
  352. start = get_tbl();
  353. while (get_tbl() - start < loops)
  354. HMT_low();
  355. HMT_medium();
  356. }
  357. }
  358. EXPORT_SYMBOL(__delay);
  359. void udelay(unsigned long usecs)
  360. {
  361. __delay(tb_ticks_per_usec * usecs);
  362. }
  363. EXPORT_SYMBOL(udelay);
  364. #ifdef CONFIG_SMP
  365. unsigned long profile_pc(struct pt_regs *regs)
  366. {
  367. unsigned long pc = instruction_pointer(regs);
  368. if (in_lock_functions(pc))
  369. return regs->link;
  370. return pc;
  371. }
  372. EXPORT_SYMBOL(profile_pc);
  373. #endif
  374. #ifdef CONFIG_PPC_ISERIES
  375. /*
  376. * This function recalibrates the timebase based on the 49-bit time-of-day
  377. * value in the Titan chip. The Titan is much more accurate than the value
  378. * returned by the service processor for the timebase frequency.
  379. */
  380. static int __init iSeries_tb_recal(void)
  381. {
  382. unsigned long titan, tb;
  383. /* Make sure we only run on iSeries */
  384. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  385. return -ENODEV;
  386. tb = get_tb();
  387. titan = HvCallXm_loadTod();
  388. if ( iSeries_recal_titan ) {
  389. unsigned long tb_ticks = tb - iSeries_recal_tb;
  390. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  391. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  392. unsigned long new_tb_ticks_per_jiffy =
  393. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  394. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  395. char sign = '+';
  396. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  397. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  398. if ( tick_diff < 0 ) {
  399. tick_diff = -tick_diff;
  400. sign = '-';
  401. }
  402. if ( tick_diff ) {
  403. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  404. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  405. new_tb_ticks_per_jiffy, sign, tick_diff );
  406. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  407. tb_ticks_per_sec = new_tb_ticks_per_sec;
  408. calc_cputime_factors();
  409. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  410. setup_cputime_one_jiffy();
  411. }
  412. else {
  413. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  414. " new tb_ticks_per_jiffy = %lu\n"
  415. " old tb_ticks_per_jiffy = %lu\n",
  416. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  417. }
  418. }
  419. }
  420. iSeries_recal_titan = titan;
  421. iSeries_recal_tb = tb;
  422. /* Called here as now we know accurate values for the timebase */
  423. clocksource_init();
  424. return 0;
  425. }
  426. late_initcall(iSeries_tb_recal);
  427. /* Called from platform early init */
  428. void __init iSeries_time_init_early(void)
  429. {
  430. iSeries_recal_tb = get_tb();
  431. iSeries_recal_titan = HvCallXm_loadTod();
  432. }
  433. #endif /* CONFIG_PPC_ISERIES */
  434. #ifdef CONFIG_IRQ_WORK
  435. /*
  436. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  437. */
  438. #ifdef CONFIG_PPC64
  439. static inline unsigned long test_irq_work_pending(void)
  440. {
  441. unsigned long x;
  442. asm volatile("lbz %0,%1(13)"
  443. : "=r" (x)
  444. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  445. return x;
  446. }
  447. static inline void set_irq_work_pending_flag(void)
  448. {
  449. asm volatile("stb %0,%1(13)" : :
  450. "r" (1),
  451. "i" (offsetof(struct paca_struct, irq_work_pending)));
  452. }
  453. static inline void clear_irq_work_pending(void)
  454. {
  455. asm volatile("stb %0,%1(13)" : :
  456. "r" (0),
  457. "i" (offsetof(struct paca_struct, irq_work_pending)));
  458. }
  459. #else /* 32-bit */
  460. DEFINE_PER_CPU(u8, irq_work_pending);
  461. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  462. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  463. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  464. #endif /* 32 vs 64 bit */
  465. void arch_irq_work_raise(void)
  466. {
  467. preempt_disable();
  468. set_irq_work_pending_flag();
  469. set_dec(1);
  470. preempt_enable();
  471. }
  472. #else /* CONFIG_IRQ_WORK */
  473. #define test_irq_work_pending() 0
  474. #define clear_irq_work_pending()
  475. #endif /* CONFIG_IRQ_WORK */
  476. /*
  477. * For iSeries shared processors, we have to let the hypervisor
  478. * set the hardware decrementer. We set a virtual decrementer
  479. * in the lppaca and call the hypervisor if the virtual
  480. * decrementer is less than the current value in the hardware
  481. * decrementer. (almost always the new decrementer value will
  482. * be greater than the current hardware decementer so the hypervisor
  483. * call will not be needed)
  484. */
  485. /*
  486. * timer_interrupt - gets called when the decrementer overflows,
  487. * with interrupts disabled.
  488. */
  489. void timer_interrupt(struct pt_regs * regs)
  490. {
  491. struct pt_regs *old_regs;
  492. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  493. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  494. /* Ensure a positive value is written to the decrementer, or else
  495. * some CPUs will continue to take decrementer exceptions.
  496. */
  497. set_dec(DECREMENTER_MAX);
  498. /* Some implementations of hotplug will get timer interrupts while
  499. * offline, just ignore these
  500. */
  501. if (!cpu_online(smp_processor_id()))
  502. return;
  503. trace_timer_interrupt_entry(regs);
  504. __get_cpu_var(irq_stat).timer_irqs++;
  505. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  506. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  507. do_IRQ(regs);
  508. #endif
  509. old_regs = set_irq_regs(regs);
  510. irq_enter();
  511. if (test_irq_work_pending()) {
  512. clear_irq_work_pending();
  513. irq_work_run();
  514. }
  515. #ifdef CONFIG_PPC_ISERIES
  516. if (firmware_has_feature(FW_FEATURE_ISERIES))
  517. get_lppaca()->int_dword.fields.decr_int = 0;
  518. #endif
  519. *next_tb = ~(u64)0;
  520. if (evt->event_handler)
  521. evt->event_handler(evt);
  522. #ifdef CONFIG_PPC_ISERIES
  523. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  524. process_hvlpevents();
  525. #endif
  526. #ifdef CONFIG_PPC64
  527. /* collect purr register values often, for accurate calculations */
  528. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  529. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  530. cu->current_tb = mfspr(SPRN_PURR);
  531. }
  532. #endif
  533. irq_exit();
  534. set_irq_regs(old_regs);
  535. trace_timer_interrupt_exit(regs);
  536. }
  537. #ifdef CONFIG_SUSPEND
  538. static void generic_suspend_disable_irqs(void)
  539. {
  540. /* Disable the decrementer, so that it doesn't interfere
  541. * with suspending.
  542. */
  543. set_dec(DECREMENTER_MAX);
  544. local_irq_disable();
  545. set_dec(DECREMENTER_MAX);
  546. }
  547. static void generic_suspend_enable_irqs(void)
  548. {
  549. local_irq_enable();
  550. }
  551. /* Overrides the weak version in kernel/power/main.c */
  552. void arch_suspend_disable_irqs(void)
  553. {
  554. if (ppc_md.suspend_disable_irqs)
  555. ppc_md.suspend_disable_irqs();
  556. generic_suspend_disable_irqs();
  557. }
  558. /* Overrides the weak version in kernel/power/main.c */
  559. void arch_suspend_enable_irqs(void)
  560. {
  561. generic_suspend_enable_irqs();
  562. if (ppc_md.suspend_enable_irqs)
  563. ppc_md.suspend_enable_irqs();
  564. }
  565. #endif
  566. /*
  567. * Scheduler clock - returns current time in nanosec units.
  568. *
  569. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  570. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  571. * are 64-bit unsigned numbers.
  572. */
  573. unsigned long long sched_clock(void)
  574. {
  575. if (__USE_RTC())
  576. return get_rtc();
  577. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  578. }
  579. static int __init get_freq(char *name, int cells, unsigned long *val)
  580. {
  581. struct device_node *cpu;
  582. const unsigned int *fp;
  583. int found = 0;
  584. /* The cpu node should have timebase and clock frequency properties */
  585. cpu = of_find_node_by_type(NULL, "cpu");
  586. if (cpu) {
  587. fp = of_get_property(cpu, name, NULL);
  588. if (fp) {
  589. found = 1;
  590. *val = of_read_ulong(fp, cells);
  591. }
  592. of_node_put(cpu);
  593. }
  594. return found;
  595. }
  596. /* should become __cpuinit when secondary_cpu_time_init also is */
  597. void start_cpu_decrementer(void)
  598. {
  599. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  600. /* Clear any pending timer interrupts */
  601. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  602. /* Enable decrementer interrupt */
  603. mtspr(SPRN_TCR, TCR_DIE);
  604. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  605. }
  606. void __init generic_calibrate_decr(void)
  607. {
  608. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  609. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  610. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  611. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  612. "(not found)\n");
  613. }
  614. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  615. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  616. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  617. printk(KERN_ERR "WARNING: Estimating processor frequency "
  618. "(not found)\n");
  619. }
  620. }
  621. int update_persistent_clock(struct timespec now)
  622. {
  623. struct rtc_time tm;
  624. if (!ppc_md.set_rtc_time)
  625. return 0;
  626. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  627. tm.tm_year -= 1900;
  628. tm.tm_mon -= 1;
  629. return ppc_md.set_rtc_time(&tm);
  630. }
  631. static void __read_persistent_clock(struct timespec *ts)
  632. {
  633. struct rtc_time tm;
  634. static int first = 1;
  635. ts->tv_nsec = 0;
  636. /* XXX this is a litle fragile but will work okay in the short term */
  637. if (first) {
  638. first = 0;
  639. if (ppc_md.time_init)
  640. timezone_offset = ppc_md.time_init();
  641. /* get_boot_time() isn't guaranteed to be safe to call late */
  642. if (ppc_md.get_boot_time) {
  643. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  644. return;
  645. }
  646. }
  647. if (!ppc_md.get_rtc_time) {
  648. ts->tv_sec = 0;
  649. return;
  650. }
  651. ppc_md.get_rtc_time(&tm);
  652. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  653. tm.tm_hour, tm.tm_min, tm.tm_sec);
  654. }
  655. void read_persistent_clock(struct timespec *ts)
  656. {
  657. __read_persistent_clock(ts);
  658. /* Sanitize it in case real time clock is set below EPOCH */
  659. if (ts->tv_sec < 0) {
  660. ts->tv_sec = 0;
  661. ts->tv_nsec = 0;
  662. }
  663. }
  664. /* clocksource code */
  665. static cycle_t rtc_read(struct clocksource *cs)
  666. {
  667. return (cycle_t)get_rtc();
  668. }
  669. static cycle_t timebase_read(struct clocksource *cs)
  670. {
  671. return (cycle_t)get_tb();
  672. }
  673. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  674. struct clocksource *clock, u32 mult)
  675. {
  676. u64 new_tb_to_xs, new_stamp_xsec;
  677. u32 frac_sec;
  678. if (clock != &clocksource_timebase)
  679. return;
  680. /* Make userspace gettimeofday spin until we're done. */
  681. ++vdso_data->tb_update_count;
  682. smp_mb();
  683. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  684. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  685. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  686. do_div(new_stamp_xsec, 1000000000);
  687. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  688. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  689. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  690. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  691. /*
  692. * tb_update_count is used to allow the userspace gettimeofday code
  693. * to assure itself that it sees a consistent view of the tb_to_xs and
  694. * stamp_xsec variables. It reads the tb_update_count, then reads
  695. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  696. * the two values of tb_update_count match and are even then the
  697. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  698. * loops back and reads them again until this criteria is met.
  699. * We expect the caller to have done the first increment of
  700. * vdso_data->tb_update_count already.
  701. */
  702. vdso_data->tb_orig_stamp = clock->cycle_last;
  703. vdso_data->stamp_xsec = new_stamp_xsec;
  704. vdso_data->tb_to_xs = new_tb_to_xs;
  705. vdso_data->wtom_clock_sec = wtm->tv_sec;
  706. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  707. vdso_data->stamp_xtime = *wall_time;
  708. vdso_data->stamp_sec_fraction = frac_sec;
  709. smp_wmb();
  710. ++(vdso_data->tb_update_count);
  711. }
  712. void update_vsyscall_tz(void)
  713. {
  714. /* Make userspace gettimeofday spin until we're done. */
  715. ++vdso_data->tb_update_count;
  716. smp_mb();
  717. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  718. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  719. smp_mb();
  720. ++vdso_data->tb_update_count;
  721. }
  722. static void __init clocksource_init(void)
  723. {
  724. struct clocksource *clock;
  725. if (__USE_RTC())
  726. clock = &clocksource_rtc;
  727. else
  728. clock = &clocksource_timebase;
  729. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  730. printk(KERN_ERR "clocksource: %s is already registered\n",
  731. clock->name);
  732. return;
  733. }
  734. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  735. clock->name, clock->mult, clock->shift);
  736. }
  737. static int decrementer_set_next_event(unsigned long evt,
  738. struct clock_event_device *dev)
  739. {
  740. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  741. set_dec(evt);
  742. return 0;
  743. }
  744. static void decrementer_set_mode(enum clock_event_mode mode,
  745. struct clock_event_device *dev)
  746. {
  747. if (mode != CLOCK_EVT_MODE_ONESHOT)
  748. decrementer_set_next_event(DECREMENTER_MAX, dev);
  749. }
  750. static void register_decrementer_clockevent(int cpu)
  751. {
  752. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  753. *dec = decrementer_clockevent;
  754. dec->cpumask = cpumask_of(cpu);
  755. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  756. dec->name, dec->mult, dec->shift, cpu);
  757. clockevents_register_device(dec);
  758. }
  759. static void __init init_decrementer_clockevent(void)
  760. {
  761. int cpu = smp_processor_id();
  762. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  763. decrementer_clockevent.max_delta_ns =
  764. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  765. decrementer_clockevent.min_delta_ns =
  766. clockevent_delta2ns(2, &decrementer_clockevent);
  767. register_decrementer_clockevent(cpu);
  768. }
  769. void secondary_cpu_time_init(void)
  770. {
  771. /* Start the decrementer on CPUs that have manual control
  772. * such as BookE
  773. */
  774. start_cpu_decrementer();
  775. /* FIME: Should make unrelatred change to move snapshot_timebase
  776. * call here ! */
  777. register_decrementer_clockevent(smp_processor_id());
  778. }
  779. /* This function is only called on the boot processor */
  780. void __init time_init(void)
  781. {
  782. struct div_result res;
  783. u64 scale;
  784. unsigned shift;
  785. if (__USE_RTC()) {
  786. /* 601 processor: dec counts down by 128 every 128ns */
  787. ppc_tb_freq = 1000000000;
  788. } else {
  789. /* Normal PowerPC with timebase register */
  790. ppc_md.calibrate_decr();
  791. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  792. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  793. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  794. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  795. }
  796. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  797. tb_ticks_per_sec = ppc_tb_freq;
  798. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  799. calc_cputime_factors();
  800. setup_cputime_one_jiffy();
  801. /*
  802. * Compute scale factor for sched_clock.
  803. * The calibrate_decr() function has set tb_ticks_per_sec,
  804. * which is the timebase frequency.
  805. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  806. * the 128-bit result as a 64.64 fixed-point number.
  807. * We then shift that number right until it is less than 1.0,
  808. * giving us the scale factor and shift count to use in
  809. * sched_clock().
  810. */
  811. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  812. scale = res.result_low;
  813. for (shift = 0; res.result_high != 0; ++shift) {
  814. scale = (scale >> 1) | (res.result_high << 63);
  815. res.result_high >>= 1;
  816. }
  817. tb_to_ns_scale = scale;
  818. tb_to_ns_shift = shift;
  819. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  820. boot_tb = get_tb_or_rtc();
  821. /* If platform provided a timezone (pmac), we correct the time */
  822. if (timezone_offset) {
  823. sys_tz.tz_minuteswest = -timezone_offset / 60;
  824. sys_tz.tz_dsttime = 0;
  825. }
  826. vdso_data->tb_update_count = 0;
  827. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  828. /* Start the decrementer on CPUs that have manual control
  829. * such as BookE
  830. */
  831. start_cpu_decrementer();
  832. /* Register the clocksource, if we're not running on iSeries */
  833. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  834. clocksource_init();
  835. init_decrementer_clockevent();
  836. }
  837. #define FEBRUARY 2
  838. #define STARTOFTIME 1970
  839. #define SECDAY 86400L
  840. #define SECYR (SECDAY * 365)
  841. #define leapyear(year) ((year) % 4 == 0 && \
  842. ((year) % 100 != 0 || (year) % 400 == 0))
  843. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  844. #define days_in_month(a) (month_days[(a) - 1])
  845. static int month_days[12] = {
  846. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  847. };
  848. /*
  849. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  850. */
  851. void GregorianDay(struct rtc_time * tm)
  852. {
  853. int leapsToDate;
  854. int lastYear;
  855. int day;
  856. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  857. lastYear = tm->tm_year - 1;
  858. /*
  859. * Number of leap corrections to apply up to end of last year
  860. */
  861. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  862. /*
  863. * This year is a leap year if it is divisible by 4 except when it is
  864. * divisible by 100 unless it is divisible by 400
  865. *
  866. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  867. */
  868. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  869. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  870. tm->tm_mday;
  871. tm->tm_wday = day % 7;
  872. }
  873. void to_tm(int tim, struct rtc_time * tm)
  874. {
  875. register int i;
  876. register long hms, day;
  877. day = tim / SECDAY;
  878. hms = tim % SECDAY;
  879. /* Hours, minutes, seconds are easy */
  880. tm->tm_hour = hms / 3600;
  881. tm->tm_min = (hms % 3600) / 60;
  882. tm->tm_sec = (hms % 3600) % 60;
  883. /* Number of years in days */
  884. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  885. day -= days_in_year(i);
  886. tm->tm_year = i;
  887. /* Number of months in days left */
  888. if (leapyear(tm->tm_year))
  889. days_in_month(FEBRUARY) = 29;
  890. for (i = 1; day >= days_in_month(i); i++)
  891. day -= days_in_month(i);
  892. days_in_month(FEBRUARY) = 28;
  893. tm->tm_mon = i;
  894. /* Days are what is left over (+1) from all that. */
  895. tm->tm_mday = day + 1;
  896. /*
  897. * Determine the day of week
  898. */
  899. GregorianDay(tm);
  900. }
  901. /*
  902. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  903. * result.
  904. */
  905. void div128_by_32(u64 dividend_high, u64 dividend_low,
  906. unsigned divisor, struct div_result *dr)
  907. {
  908. unsigned long a, b, c, d;
  909. unsigned long w, x, y, z;
  910. u64 ra, rb, rc;
  911. a = dividend_high >> 32;
  912. b = dividend_high & 0xffffffff;
  913. c = dividend_low >> 32;
  914. d = dividend_low & 0xffffffff;
  915. w = a / divisor;
  916. ra = ((u64)(a - (w * divisor)) << 32) + b;
  917. rb = ((u64) do_div(ra, divisor) << 32) + c;
  918. x = ra;
  919. rc = ((u64) do_div(rb, divisor) << 32) + d;
  920. y = rb;
  921. do_div(rc, divisor);
  922. z = rc;
  923. dr->result_high = ((u64)w << 32) + x;
  924. dr->result_low = ((u64)y << 32) + z;
  925. }
  926. /* We don't need to calibrate delay, we use the CPU timebase for that */
  927. void calibrate_delay(void)
  928. {
  929. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  930. * as the number of __delay(1) in a jiffy, so make it so
  931. */
  932. loops_per_jiffy = tb_ticks_per_jiffy;
  933. }
  934. static int __init rtc_init(void)
  935. {
  936. struct platform_device *pdev;
  937. if (!ppc_md.get_rtc_time)
  938. return -ENODEV;
  939. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  940. if (IS_ERR(pdev))
  941. return PTR_ERR(pdev);
  942. return 0;
  943. }
  944. module_init(rtc_init);