p2m.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. * Xen leaves the responsibility for maintaining p2m mappings to the
  3. * guests themselves, but it must also access and update the p2m array
  4. * during suspend/resume when all the pages are reallocated.
  5. *
  6. * The p2m table is logically a flat array, but we implement it as a
  7. * three-level tree to allow the address space to be sparse.
  8. *
  9. * Xen
  10. * |
  11. * p2m_top p2m_top_mfn
  12. * / \ / \
  13. * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
  14. * / \ / \ / /
  15. * p2m p2m p2m p2m p2m p2m p2m ...
  16. *
  17. * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
  18. *
  19. * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
  20. * maximum representable pseudo-physical address space is:
  21. * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
  22. *
  23. * P2M_PER_PAGE depends on the architecture, as a mfn is always
  24. * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
  25. * 512 and 1024 entries respectively.
  26. *
  27. * In short, these structures contain the Machine Frame Number (MFN) of the PFN.
  28. *
  29. * However not all entries are filled with MFNs. Specifically for all other
  30. * leaf entries, or for the top root, or middle one, for which there is a void
  31. * entry, we assume it is "missing". So (for example)
  32. * pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY.
  33. *
  34. * We also have the possibility of setting 1-1 mappings on certain regions, so
  35. * that:
  36. * pfn_to_mfn(0xc0000)=0xc0000
  37. *
  38. * The benefit of this is, that we can assume for non-RAM regions (think
  39. * PCI BARs, or ACPI spaces), we can create mappings easily b/c we
  40. * get the PFN value to match the MFN.
  41. *
  42. * For this to work efficiently we have one new page p2m_identity and
  43. * allocate (via reserved_brk) any other pages we need to cover the sides
  44. * (1GB or 4MB boundary violations). All entries in p2m_identity are set to
  45. * INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
  46. * no other fancy value).
  47. *
  48. * On lookup we spot that the entry points to p2m_identity and return the
  49. * identity value instead of dereferencing and returning INVALID_P2M_ENTRY.
  50. * If the entry points to an allocated page, we just proceed as before and
  51. * return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in
  52. * appropriate functions (pfn_to_mfn).
  53. *
  54. * The reason for having the IDENTITY_FRAME_BIT instead of just returning the
  55. * PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
  56. * non-identity pfn. To protect ourselves against we elect to set (and get) the
  57. * IDENTITY_FRAME_BIT on all identity mapped PFNs.
  58. *
  59. * This simplistic diagram is used to explain the more subtle piece of code.
  60. * There is also a digram of the P2M at the end that can help.
  61. * Imagine your E820 looking as so:
  62. *
  63. * 1GB 2GB
  64. * /-------------------+---------\/----\ /----------\ /---+-----\
  65. * | System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
  66. * \-------------------+---------/\----/ \----------/ \---+-----/
  67. * ^- 1029MB ^- 2001MB
  68. *
  69. * [1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100),
  70. * 2048MB = 524288 (0x80000)]
  71. *
  72. * And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
  73. * is actually not present (would have to kick the balloon driver to put it in).
  74. *
  75. * When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
  76. * Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
  77. * of the PFN and the end PFN (263424 and 512256 respectively). The first step
  78. * is to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
  79. * covers 512^2 of page estate (1GB) and in case the start or end PFN is not
  80. * aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn
  81. * to end pfn. We reserve_brk top leaf pages if they are missing (means they
  82. * point to p2m_mid_missing).
  83. *
  84. * With the E820 example above, 263424 is not 1GB aligned so we allocate a
  85. * reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
  86. * Each entry in the allocate page is "missing" (points to p2m_missing).
  87. *
  88. * Next stage is to determine if we need to do a more granular boundary check
  89. * on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
  90. * We check if the start pfn and end pfn violate that boundary check, and if
  91. * so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
  92. * granularity of setting which PFNs are missing and which ones are identity.
  93. * In our example 263424 and 512256 both fail the check so we reserve_brk two
  94. * pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing"
  95. * values) and assign them to p2m[1][2] and p2m[1][488] respectively.
  96. *
  97. * At this point we would at minimum reserve_brk one page, but could be up to
  98. * three. Each call to set_phys_range_identity has at maximum a three page
  99. * cost. If we were to query the P2M at this stage, all those entries from
  100. * start PFN through end PFN (so 1029MB -> 2001MB) would return
  101. * INVALID_P2M_ENTRY ("missing").
  102. *
  103. * The next step is to walk from the start pfn to the end pfn setting
  104. * the IDENTITY_FRAME_BIT on each PFN. This is done in set_phys_range_identity.
  105. * If we find that the middle leaf is pointing to p2m_missing we can swap it
  106. * over to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this
  107. * point we do not need to worry about boundary aligment (so no need to
  108. * reserve_brk a middle page, figure out which PFNs are "missing" and which
  109. * ones are identity), as that has been done earlier. If we find that the
  110. * middle leaf is not occupied by p2m_identity or p2m_missing, we dereference
  111. * that page (which covers 512 PFNs) and set the appropriate PFN with
  112. * IDENTITY_FRAME_BIT. In our example 263424 and 512256 end up there, and we
  113. * set from p2m[1][2][256->511] and p2m[1][488][0->256] with
  114. * IDENTITY_FRAME_BIT set.
  115. *
  116. * All other regions that are void (or not filled) either point to p2m_missing
  117. * (considered missing) or have the default value of INVALID_P2M_ENTRY (also
  118. * considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
  119. * contain the INVALID_P2M_ENTRY value and are considered "missing."
  120. *
  121. * This is what the p2m ends up looking (for the E820 above) with this
  122. * fabulous drawing:
  123. *
  124. * p2m /--------------\
  125. * /-----\ | &mfn_list[0],| /-----------------\
  126. * | 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
  127. * |-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
  128. * | 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
  129. * |-----| \ | [p2m_identity]+\\ | .... |
  130. * | 2 |--\ \-------------------->| ... | \\ \----------------/
  131. * |-----| \ \---------------/ \\
  132. * | 3 |\ \ \\ p2m_identity
  133. * |-----| \ \-------------------->/---------------\ /-----------------\
  134. * | .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
  135. * \-----/ / | [p2m_identity]+-->| ..., ~0 |
  136. * / /---------------\ | .... | \-----------------/
  137. * / | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
  138. * / | IDENTITY[@256]|<----/ \---------------/
  139. * / | ~0, ~0, .... |
  140. * | \---------------/
  141. * |
  142. * p2m_missing p2m_missing
  143. * /------------------\ /------------\
  144. * | [p2m_mid_missing]+---->| ~0, ~0, ~0 |
  145. * | [p2m_mid_missing]+---->| ..., ~0 |
  146. * \------------------/ \------------/
  147. *
  148. * where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
  149. */
  150. #include <linux/init.h>
  151. #include <linux/module.h>
  152. #include <linux/list.h>
  153. #include <linux/hash.h>
  154. #include <linux/sched.h>
  155. #include <linux/seq_file.h>
  156. #include <asm/cache.h>
  157. #include <asm/setup.h>
  158. #include <asm/xen/page.h>
  159. #include <asm/xen/hypercall.h>
  160. #include <asm/xen/hypervisor.h>
  161. #include <xen/grant_table.h>
  162. #include "multicalls.h"
  163. #include "xen-ops.h"
  164. static void __init m2p_override_init(void);
  165. unsigned long xen_max_p2m_pfn __read_mostly;
  166. #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
  167. #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
  168. #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
  169. #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
  170. /* Placeholders for holes in the address space */
  171. static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
  172. static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
  173. static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
  174. static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
  175. static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
  176. static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE);
  177. static RESERVE_BRK_ARRAY(unsigned long, p2m_identity, P2M_PER_PAGE);
  178. RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
  179. RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
  180. /* We might hit two boundary violations at the start and end, at max each
  181. * boundary violation will require three middle nodes. */
  182. RESERVE_BRK(p2m_mid_identity, PAGE_SIZE * 2 * 3);
  183. /* When we populate back during bootup, the amount of pages can vary. The
  184. * max we have is seen is 395979, but that does not mean it can't be more.
  185. * But some machines can have 3GB I/O holes even. So lets reserve enough
  186. * for 4GB of I/O and E820 holes. */
  187. RESERVE_BRK(p2m_populated, PMD_SIZE * 4);
  188. static inline unsigned p2m_top_index(unsigned long pfn)
  189. {
  190. BUG_ON(pfn >= MAX_P2M_PFN);
  191. return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
  192. }
  193. static inline unsigned p2m_mid_index(unsigned long pfn)
  194. {
  195. return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
  196. }
  197. static inline unsigned p2m_index(unsigned long pfn)
  198. {
  199. return pfn % P2M_PER_PAGE;
  200. }
  201. static void p2m_top_init(unsigned long ***top)
  202. {
  203. unsigned i;
  204. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  205. top[i] = p2m_mid_missing;
  206. }
  207. static void p2m_top_mfn_init(unsigned long *top)
  208. {
  209. unsigned i;
  210. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  211. top[i] = virt_to_mfn(p2m_mid_missing_mfn);
  212. }
  213. static void p2m_top_mfn_p_init(unsigned long **top)
  214. {
  215. unsigned i;
  216. for (i = 0; i < P2M_TOP_PER_PAGE; i++)
  217. top[i] = p2m_mid_missing_mfn;
  218. }
  219. static void p2m_mid_init(unsigned long **mid)
  220. {
  221. unsigned i;
  222. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  223. mid[i] = p2m_missing;
  224. }
  225. static void p2m_mid_mfn_init(unsigned long *mid)
  226. {
  227. unsigned i;
  228. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  229. mid[i] = virt_to_mfn(p2m_missing);
  230. }
  231. static void p2m_init(unsigned long *p2m)
  232. {
  233. unsigned i;
  234. for (i = 0; i < P2M_MID_PER_PAGE; i++)
  235. p2m[i] = INVALID_P2M_ENTRY;
  236. }
  237. /*
  238. * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
  239. *
  240. * This is called both at boot time, and after resuming from suspend:
  241. * - At boot time we're called very early, and must use extend_brk()
  242. * to allocate memory.
  243. *
  244. * - After resume we're called from within stop_machine, but the mfn
  245. * tree should alreay be completely allocated.
  246. */
  247. void __ref xen_build_mfn_list_list(void)
  248. {
  249. unsigned long pfn;
  250. /* Pre-initialize p2m_top_mfn to be completely missing */
  251. if (p2m_top_mfn == NULL) {
  252. p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
  253. p2m_mid_mfn_init(p2m_mid_missing_mfn);
  254. p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
  255. p2m_top_mfn_p_init(p2m_top_mfn_p);
  256. p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
  257. p2m_top_mfn_init(p2m_top_mfn);
  258. } else {
  259. /* Reinitialise, mfn's all change after migration */
  260. p2m_mid_mfn_init(p2m_mid_missing_mfn);
  261. }
  262. for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) {
  263. unsigned topidx = p2m_top_index(pfn);
  264. unsigned mididx = p2m_mid_index(pfn);
  265. unsigned long **mid;
  266. unsigned long *mid_mfn_p;
  267. mid = p2m_top[topidx];
  268. mid_mfn_p = p2m_top_mfn_p[topidx];
  269. /* Don't bother allocating any mfn mid levels if
  270. * they're just missing, just update the stored mfn,
  271. * since all could have changed over a migrate.
  272. */
  273. if (mid == p2m_mid_missing) {
  274. BUG_ON(mididx);
  275. BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
  276. p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
  277. pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
  278. continue;
  279. }
  280. if (mid_mfn_p == p2m_mid_missing_mfn) {
  281. /*
  282. * XXX boot-time only! We should never find
  283. * missing parts of the mfn tree after
  284. * runtime. extend_brk() will BUG if we call
  285. * it too late.
  286. */
  287. mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
  288. p2m_mid_mfn_init(mid_mfn_p);
  289. p2m_top_mfn_p[topidx] = mid_mfn_p;
  290. }
  291. p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
  292. mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
  293. }
  294. }
  295. void xen_setup_mfn_list_list(void)
  296. {
  297. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  298. HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
  299. virt_to_mfn(p2m_top_mfn);
  300. HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
  301. }
  302. /* Set up p2m_top to point to the domain-builder provided p2m pages */
  303. void __init xen_build_dynamic_phys_to_machine(void)
  304. {
  305. unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
  306. unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
  307. unsigned long pfn;
  308. xen_max_p2m_pfn = max_pfn;
  309. p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
  310. p2m_init(p2m_missing);
  311. p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
  312. p2m_mid_init(p2m_mid_missing);
  313. p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
  314. p2m_top_init(p2m_top);
  315. p2m_identity = extend_brk(PAGE_SIZE, PAGE_SIZE);
  316. p2m_init(p2m_identity);
  317. /*
  318. * The domain builder gives us a pre-constructed p2m array in
  319. * mfn_list for all the pages initially given to us, so we just
  320. * need to graft that into our tree structure.
  321. */
  322. for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
  323. unsigned topidx = p2m_top_index(pfn);
  324. unsigned mididx = p2m_mid_index(pfn);
  325. if (p2m_top[topidx] == p2m_mid_missing) {
  326. unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
  327. p2m_mid_init(mid);
  328. p2m_top[topidx] = mid;
  329. }
  330. /*
  331. * As long as the mfn_list has enough entries to completely
  332. * fill a p2m page, pointing into the array is ok. But if
  333. * not the entries beyond the last pfn will be undefined.
  334. */
  335. if (unlikely(pfn + P2M_PER_PAGE > max_pfn)) {
  336. unsigned long p2midx;
  337. p2midx = max_pfn % P2M_PER_PAGE;
  338. for ( ; p2midx < P2M_PER_PAGE; p2midx++)
  339. mfn_list[pfn + p2midx] = INVALID_P2M_ENTRY;
  340. }
  341. p2m_top[topidx][mididx] = &mfn_list[pfn];
  342. }
  343. m2p_override_init();
  344. }
  345. unsigned long get_phys_to_machine(unsigned long pfn)
  346. {
  347. unsigned topidx, mididx, idx;
  348. if (unlikely(pfn >= MAX_P2M_PFN))
  349. return INVALID_P2M_ENTRY;
  350. topidx = p2m_top_index(pfn);
  351. mididx = p2m_mid_index(pfn);
  352. idx = p2m_index(pfn);
  353. /*
  354. * The INVALID_P2M_ENTRY is filled in both p2m_*identity
  355. * and in p2m_*missing, so returning the INVALID_P2M_ENTRY
  356. * would be wrong.
  357. */
  358. if (p2m_top[topidx][mididx] == p2m_identity)
  359. return IDENTITY_FRAME(pfn);
  360. return p2m_top[topidx][mididx][idx];
  361. }
  362. EXPORT_SYMBOL_GPL(get_phys_to_machine);
  363. static void *alloc_p2m_page(void)
  364. {
  365. return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
  366. }
  367. static void free_p2m_page(void *p)
  368. {
  369. free_page((unsigned long)p);
  370. }
  371. /*
  372. * Fully allocate the p2m structure for a given pfn. We need to check
  373. * that both the top and mid levels are allocated, and make sure the
  374. * parallel mfn tree is kept in sync. We may race with other cpus, so
  375. * the new pages are installed with cmpxchg; if we lose the race then
  376. * simply free the page we allocated and use the one that's there.
  377. */
  378. static bool alloc_p2m(unsigned long pfn)
  379. {
  380. unsigned topidx, mididx;
  381. unsigned long ***top_p, **mid;
  382. unsigned long *top_mfn_p, *mid_mfn;
  383. topidx = p2m_top_index(pfn);
  384. mididx = p2m_mid_index(pfn);
  385. top_p = &p2m_top[topidx];
  386. mid = *top_p;
  387. if (mid == p2m_mid_missing) {
  388. /* Mid level is missing, allocate a new one */
  389. mid = alloc_p2m_page();
  390. if (!mid)
  391. return false;
  392. p2m_mid_init(mid);
  393. if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
  394. free_p2m_page(mid);
  395. }
  396. top_mfn_p = &p2m_top_mfn[topidx];
  397. mid_mfn = p2m_top_mfn_p[topidx];
  398. BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
  399. if (mid_mfn == p2m_mid_missing_mfn) {
  400. /* Separately check the mid mfn level */
  401. unsigned long missing_mfn;
  402. unsigned long mid_mfn_mfn;
  403. mid_mfn = alloc_p2m_page();
  404. if (!mid_mfn)
  405. return false;
  406. p2m_mid_mfn_init(mid_mfn);
  407. missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
  408. mid_mfn_mfn = virt_to_mfn(mid_mfn);
  409. if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
  410. free_p2m_page(mid_mfn);
  411. else
  412. p2m_top_mfn_p[topidx] = mid_mfn;
  413. }
  414. if (p2m_top[topidx][mididx] == p2m_identity ||
  415. p2m_top[topidx][mididx] == p2m_missing) {
  416. /* p2m leaf page is missing */
  417. unsigned long *p2m;
  418. unsigned long *p2m_orig = p2m_top[topidx][mididx];
  419. p2m = alloc_p2m_page();
  420. if (!p2m)
  421. return false;
  422. p2m_init(p2m);
  423. if (cmpxchg(&mid[mididx], p2m_orig, p2m) != p2m_orig)
  424. free_p2m_page(p2m);
  425. else
  426. mid_mfn[mididx] = virt_to_mfn(p2m);
  427. }
  428. return true;
  429. }
  430. static bool __init early_alloc_p2m_middle(unsigned long pfn, bool check_boundary)
  431. {
  432. unsigned topidx, mididx, idx;
  433. unsigned long *p2m;
  434. unsigned long *mid_mfn_p;
  435. topidx = p2m_top_index(pfn);
  436. mididx = p2m_mid_index(pfn);
  437. idx = p2m_index(pfn);
  438. /* Pfff.. No boundary cross-over, lets get out. */
  439. if (!idx && check_boundary)
  440. return false;
  441. WARN(p2m_top[topidx][mididx] == p2m_identity,
  442. "P2M[%d][%d] == IDENTITY, should be MISSING (or alloced)!\n",
  443. topidx, mididx);
  444. /*
  445. * Could be done by xen_build_dynamic_phys_to_machine..
  446. */
  447. if (p2m_top[topidx][mididx] != p2m_missing)
  448. return false;
  449. /* Boundary cross-over for the edges: */
  450. p2m = extend_brk(PAGE_SIZE, PAGE_SIZE);
  451. p2m_init(p2m);
  452. p2m_top[topidx][mididx] = p2m;
  453. /* For save/restore we need to MFN of the P2M saved */
  454. mid_mfn_p = p2m_top_mfn_p[topidx];
  455. WARN(mid_mfn_p[mididx] != virt_to_mfn(p2m_missing),
  456. "P2M_TOP_P[%d][%d] != MFN of p2m_missing!\n",
  457. topidx, mididx);
  458. mid_mfn_p[mididx] = virt_to_mfn(p2m);
  459. return true;
  460. }
  461. static bool __init early_alloc_p2m(unsigned long pfn)
  462. {
  463. unsigned topidx = p2m_top_index(pfn);
  464. unsigned long *mid_mfn_p;
  465. unsigned long **mid;
  466. mid = p2m_top[topidx];
  467. mid_mfn_p = p2m_top_mfn_p[topidx];
  468. if (mid == p2m_mid_missing) {
  469. mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
  470. p2m_mid_init(mid);
  471. p2m_top[topidx] = mid;
  472. BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
  473. }
  474. /* And the save/restore P2M tables.. */
  475. if (mid_mfn_p == p2m_mid_missing_mfn) {
  476. mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
  477. p2m_mid_mfn_init(mid_mfn_p);
  478. p2m_top_mfn_p[topidx] = mid_mfn_p;
  479. p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
  480. /* Note: we don't set mid_mfn_p[midix] here,
  481. * look in early_alloc_p2m_middle */
  482. }
  483. return true;
  484. }
  485. bool __init early_set_phys_to_machine(unsigned long pfn, unsigned long mfn)
  486. {
  487. if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
  488. if (!early_alloc_p2m(pfn))
  489. return false;
  490. if (!early_alloc_p2m_middle(pfn, false /* boundary crossover OK!*/))
  491. return false;
  492. if (!__set_phys_to_machine(pfn, mfn))
  493. return false;
  494. }
  495. return true;
  496. }
  497. unsigned long __init set_phys_range_identity(unsigned long pfn_s,
  498. unsigned long pfn_e)
  499. {
  500. unsigned long pfn;
  501. if (unlikely(pfn_s >= MAX_P2M_PFN || pfn_e >= MAX_P2M_PFN))
  502. return 0;
  503. if (unlikely(xen_feature(XENFEAT_auto_translated_physmap)))
  504. return pfn_e - pfn_s;
  505. if (pfn_s > pfn_e)
  506. return 0;
  507. for (pfn = (pfn_s & ~(P2M_MID_PER_PAGE * P2M_PER_PAGE - 1));
  508. pfn < ALIGN(pfn_e, (P2M_MID_PER_PAGE * P2M_PER_PAGE));
  509. pfn += P2M_MID_PER_PAGE * P2M_PER_PAGE)
  510. {
  511. WARN_ON(!early_alloc_p2m(pfn));
  512. }
  513. early_alloc_p2m_middle(pfn_s, true);
  514. early_alloc_p2m_middle(pfn_e, true);
  515. for (pfn = pfn_s; pfn < pfn_e; pfn++)
  516. if (!__set_phys_to_machine(pfn, IDENTITY_FRAME(pfn)))
  517. break;
  518. if (!WARN((pfn - pfn_s) != (pfn_e - pfn_s),
  519. "Identity mapping failed. We are %ld short of 1-1 mappings!\n",
  520. (pfn_e - pfn_s) - (pfn - pfn_s)))
  521. printk(KERN_DEBUG "1-1 mapping on %lx->%lx\n", pfn_s, pfn);
  522. return pfn - pfn_s;
  523. }
  524. /* Try to install p2m mapping; fail if intermediate bits missing */
  525. bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
  526. {
  527. unsigned topidx, mididx, idx;
  528. if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
  529. BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
  530. return true;
  531. }
  532. if (unlikely(pfn >= MAX_P2M_PFN)) {
  533. BUG_ON(mfn != INVALID_P2M_ENTRY);
  534. return true;
  535. }
  536. topidx = p2m_top_index(pfn);
  537. mididx = p2m_mid_index(pfn);
  538. idx = p2m_index(pfn);
  539. /* For sparse holes were the p2m leaf has real PFN along with
  540. * PCI holes, stick in the PFN as the MFN value.
  541. */
  542. if (mfn != INVALID_P2M_ENTRY && (mfn & IDENTITY_FRAME_BIT)) {
  543. if (p2m_top[topidx][mididx] == p2m_identity)
  544. return true;
  545. /* Swap over from MISSING to IDENTITY if needed. */
  546. if (p2m_top[topidx][mididx] == p2m_missing) {
  547. WARN_ON(cmpxchg(&p2m_top[topidx][mididx], p2m_missing,
  548. p2m_identity) != p2m_missing);
  549. return true;
  550. }
  551. }
  552. if (p2m_top[topidx][mididx] == p2m_missing)
  553. return mfn == INVALID_P2M_ENTRY;
  554. p2m_top[topidx][mididx][idx] = mfn;
  555. return true;
  556. }
  557. bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
  558. {
  559. if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
  560. if (!alloc_p2m(pfn))
  561. return false;
  562. if (!__set_phys_to_machine(pfn, mfn))
  563. return false;
  564. }
  565. return true;
  566. }
  567. #define M2P_OVERRIDE_HASH_SHIFT 10
  568. #define M2P_OVERRIDE_HASH (1 << M2P_OVERRIDE_HASH_SHIFT)
  569. static RESERVE_BRK_ARRAY(struct list_head, m2p_overrides, M2P_OVERRIDE_HASH);
  570. static DEFINE_SPINLOCK(m2p_override_lock);
  571. static void __init m2p_override_init(void)
  572. {
  573. unsigned i;
  574. m2p_overrides = extend_brk(sizeof(*m2p_overrides) * M2P_OVERRIDE_HASH,
  575. sizeof(unsigned long));
  576. for (i = 0; i < M2P_OVERRIDE_HASH; i++)
  577. INIT_LIST_HEAD(&m2p_overrides[i]);
  578. }
  579. static unsigned long mfn_hash(unsigned long mfn)
  580. {
  581. return hash_long(mfn, M2P_OVERRIDE_HASH_SHIFT);
  582. }
  583. /* Add an MFN override for a particular page */
  584. int m2p_add_override(unsigned long mfn, struct page *page,
  585. struct gnttab_map_grant_ref *kmap_op)
  586. {
  587. unsigned long flags;
  588. unsigned long pfn;
  589. unsigned long uninitialized_var(address);
  590. unsigned level;
  591. pte_t *ptep = NULL;
  592. int ret = 0;
  593. pfn = page_to_pfn(page);
  594. if (!PageHighMem(page)) {
  595. address = (unsigned long)__va(pfn << PAGE_SHIFT);
  596. ptep = lookup_address(address, &level);
  597. if (WARN(ptep == NULL || level != PG_LEVEL_4K,
  598. "m2p_add_override: pfn %lx not mapped", pfn))
  599. return -EINVAL;
  600. }
  601. WARN_ON(PagePrivate(page));
  602. SetPagePrivate(page);
  603. set_page_private(page, mfn);
  604. page->index = pfn_to_mfn(pfn);
  605. if (unlikely(!set_phys_to_machine(pfn, FOREIGN_FRAME(mfn))))
  606. return -ENOMEM;
  607. if (kmap_op != NULL) {
  608. if (!PageHighMem(page)) {
  609. struct multicall_space mcs =
  610. xen_mc_entry(sizeof(*kmap_op));
  611. MULTI_grant_table_op(mcs.mc,
  612. GNTTABOP_map_grant_ref, kmap_op, 1);
  613. xen_mc_issue(PARAVIRT_LAZY_MMU);
  614. }
  615. /* let's use dev_bus_addr to record the old mfn instead */
  616. kmap_op->dev_bus_addr = page->index;
  617. page->index = (unsigned long) kmap_op;
  618. }
  619. spin_lock_irqsave(&m2p_override_lock, flags);
  620. list_add(&page->lru, &m2p_overrides[mfn_hash(mfn)]);
  621. spin_unlock_irqrestore(&m2p_override_lock, flags);
  622. /* p2m(m2p(mfn)) == mfn: the mfn is already present somewhere in
  623. * this domain. Set the FOREIGN_FRAME_BIT in the p2m for the other
  624. * pfn so that the following mfn_to_pfn(mfn) calls will return the
  625. * pfn from the m2p_override (the backend pfn) instead.
  626. * We need to do this because the pages shared by the frontend
  627. * (xen-blkfront) can be already locked (lock_page, called by
  628. * do_read_cache_page); when the userspace backend tries to use them
  629. * with direct_IO, mfn_to_pfn returns the pfn of the frontend, so
  630. * do_blockdev_direct_IO is going to try to lock the same pages
  631. * again resulting in a deadlock.
  632. * As a side effect get_user_pages_fast might not be safe on the
  633. * frontend pages while they are being shared with the backend,
  634. * because mfn_to_pfn (that ends up being called by GUPF) will
  635. * return the backend pfn rather than the frontend pfn. */
  636. ret = __get_user(pfn, &machine_to_phys_mapping[mfn]);
  637. if (ret == 0 && get_phys_to_machine(pfn) == mfn)
  638. set_phys_to_machine(pfn, FOREIGN_FRAME(mfn));
  639. return 0;
  640. }
  641. EXPORT_SYMBOL_GPL(m2p_add_override);
  642. int m2p_remove_override(struct page *page, bool clear_pte)
  643. {
  644. unsigned long flags;
  645. unsigned long mfn;
  646. unsigned long pfn;
  647. unsigned long uninitialized_var(address);
  648. unsigned level;
  649. pte_t *ptep = NULL;
  650. int ret = 0;
  651. pfn = page_to_pfn(page);
  652. mfn = get_phys_to_machine(pfn);
  653. if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT))
  654. return -EINVAL;
  655. if (!PageHighMem(page)) {
  656. address = (unsigned long)__va(pfn << PAGE_SHIFT);
  657. ptep = lookup_address(address, &level);
  658. if (WARN(ptep == NULL || level != PG_LEVEL_4K,
  659. "m2p_remove_override: pfn %lx not mapped", pfn))
  660. return -EINVAL;
  661. }
  662. spin_lock_irqsave(&m2p_override_lock, flags);
  663. list_del(&page->lru);
  664. spin_unlock_irqrestore(&m2p_override_lock, flags);
  665. WARN_ON(!PagePrivate(page));
  666. ClearPagePrivate(page);
  667. if (clear_pte) {
  668. struct gnttab_map_grant_ref *map_op =
  669. (struct gnttab_map_grant_ref *) page->index;
  670. set_phys_to_machine(pfn, map_op->dev_bus_addr);
  671. if (!PageHighMem(page)) {
  672. struct multicall_space mcs;
  673. struct gnttab_unmap_grant_ref *unmap_op;
  674. /*
  675. * It might be that we queued all the m2p grant table
  676. * hypercalls in a multicall, then m2p_remove_override
  677. * get called before the multicall has actually been
  678. * issued. In this case handle is going to -1 because
  679. * it hasn't been modified yet.
  680. */
  681. if (map_op->handle == -1)
  682. xen_mc_flush();
  683. /*
  684. * Now if map_op->handle is negative it means that the
  685. * hypercall actually returned an error.
  686. */
  687. if (map_op->handle == GNTST_general_error) {
  688. printk(KERN_WARNING "m2p_remove_override: "
  689. "pfn %lx mfn %lx, failed to modify kernel mappings",
  690. pfn, mfn);
  691. return -1;
  692. }
  693. mcs = xen_mc_entry(
  694. sizeof(struct gnttab_unmap_grant_ref));
  695. unmap_op = mcs.args;
  696. unmap_op->host_addr = map_op->host_addr;
  697. unmap_op->handle = map_op->handle;
  698. unmap_op->dev_bus_addr = 0;
  699. MULTI_grant_table_op(mcs.mc,
  700. GNTTABOP_unmap_grant_ref, unmap_op, 1);
  701. xen_mc_issue(PARAVIRT_LAZY_MMU);
  702. set_pte_at(&init_mm, address, ptep,
  703. pfn_pte(pfn, PAGE_KERNEL));
  704. __flush_tlb_single(address);
  705. map_op->host_addr = 0;
  706. }
  707. } else
  708. set_phys_to_machine(pfn, page->index);
  709. /* p2m(m2p(mfn)) == FOREIGN_FRAME(mfn): the mfn is already present
  710. * somewhere in this domain, even before being added to the
  711. * m2p_override (see comment above in m2p_add_override).
  712. * If there are no other entries in the m2p_override corresponding
  713. * to this mfn, then remove the FOREIGN_FRAME_BIT from the p2m for
  714. * the original pfn (the one shared by the frontend): the backend
  715. * cannot do any IO on this page anymore because it has been
  716. * unshared. Removing the FOREIGN_FRAME_BIT from the p2m entry of
  717. * the original pfn causes mfn_to_pfn(mfn) to return the frontend
  718. * pfn again. */
  719. mfn &= ~FOREIGN_FRAME_BIT;
  720. ret = __get_user(pfn, &machine_to_phys_mapping[mfn]);
  721. if (ret == 0 && get_phys_to_machine(pfn) == FOREIGN_FRAME(mfn) &&
  722. m2p_find_override(mfn) == NULL)
  723. set_phys_to_machine(pfn, mfn);
  724. return 0;
  725. }
  726. EXPORT_SYMBOL_GPL(m2p_remove_override);
  727. struct page *m2p_find_override(unsigned long mfn)
  728. {
  729. unsigned long flags;
  730. struct list_head *bucket = &m2p_overrides[mfn_hash(mfn)];
  731. struct page *p, *ret;
  732. ret = NULL;
  733. spin_lock_irqsave(&m2p_override_lock, flags);
  734. list_for_each_entry(p, bucket, lru) {
  735. if (page_private(p) == mfn) {
  736. ret = p;
  737. break;
  738. }
  739. }
  740. spin_unlock_irqrestore(&m2p_override_lock, flags);
  741. return ret;
  742. }
  743. unsigned long m2p_find_override_pfn(unsigned long mfn, unsigned long pfn)
  744. {
  745. struct page *p = m2p_find_override(mfn);
  746. unsigned long ret = pfn;
  747. if (p)
  748. ret = page_to_pfn(p);
  749. return ret;
  750. }
  751. EXPORT_SYMBOL_GPL(m2p_find_override_pfn);
  752. #ifdef CONFIG_XEN_DEBUG_FS
  753. #include <linux/debugfs.h>
  754. #include "debugfs.h"
  755. static int p2m_dump_show(struct seq_file *m, void *v)
  756. {
  757. static const char * const level_name[] = { "top", "middle",
  758. "entry", "abnormal", "error"};
  759. #define TYPE_IDENTITY 0
  760. #define TYPE_MISSING 1
  761. #define TYPE_PFN 2
  762. #define TYPE_UNKNOWN 3
  763. static const char * const type_name[] = {
  764. [TYPE_IDENTITY] = "identity",
  765. [TYPE_MISSING] = "missing",
  766. [TYPE_PFN] = "pfn",
  767. [TYPE_UNKNOWN] = "abnormal"};
  768. unsigned long pfn, prev_pfn_type = 0, prev_pfn_level = 0;
  769. unsigned int uninitialized_var(prev_level);
  770. unsigned int uninitialized_var(prev_type);
  771. if (!p2m_top)
  772. return 0;
  773. for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn++) {
  774. unsigned topidx = p2m_top_index(pfn);
  775. unsigned mididx = p2m_mid_index(pfn);
  776. unsigned idx = p2m_index(pfn);
  777. unsigned lvl, type;
  778. lvl = 4;
  779. type = TYPE_UNKNOWN;
  780. if (p2m_top[topidx] == p2m_mid_missing) {
  781. lvl = 0; type = TYPE_MISSING;
  782. } else if (p2m_top[topidx] == NULL) {
  783. lvl = 0; type = TYPE_UNKNOWN;
  784. } else if (p2m_top[topidx][mididx] == NULL) {
  785. lvl = 1; type = TYPE_UNKNOWN;
  786. } else if (p2m_top[topidx][mididx] == p2m_identity) {
  787. lvl = 1; type = TYPE_IDENTITY;
  788. } else if (p2m_top[topidx][mididx] == p2m_missing) {
  789. lvl = 1; type = TYPE_MISSING;
  790. } else if (p2m_top[topidx][mididx][idx] == 0) {
  791. lvl = 2; type = TYPE_UNKNOWN;
  792. } else if (p2m_top[topidx][mididx][idx] == IDENTITY_FRAME(pfn)) {
  793. lvl = 2; type = TYPE_IDENTITY;
  794. } else if (p2m_top[topidx][mididx][idx] == INVALID_P2M_ENTRY) {
  795. lvl = 2; type = TYPE_MISSING;
  796. } else if (p2m_top[topidx][mididx][idx] == pfn) {
  797. lvl = 2; type = TYPE_PFN;
  798. } else if (p2m_top[topidx][mididx][idx] != pfn) {
  799. lvl = 2; type = TYPE_PFN;
  800. }
  801. if (pfn == 0) {
  802. prev_level = lvl;
  803. prev_type = type;
  804. }
  805. if (pfn == MAX_DOMAIN_PAGES-1) {
  806. lvl = 3;
  807. type = TYPE_UNKNOWN;
  808. }
  809. if (prev_type != type) {
  810. seq_printf(m, " [0x%lx->0x%lx] %s\n",
  811. prev_pfn_type, pfn, type_name[prev_type]);
  812. prev_pfn_type = pfn;
  813. prev_type = type;
  814. }
  815. if (prev_level != lvl) {
  816. seq_printf(m, " [0x%lx->0x%lx] level %s\n",
  817. prev_pfn_level, pfn, level_name[prev_level]);
  818. prev_pfn_level = pfn;
  819. prev_level = lvl;
  820. }
  821. }
  822. return 0;
  823. #undef TYPE_IDENTITY
  824. #undef TYPE_MISSING
  825. #undef TYPE_PFN
  826. #undef TYPE_UNKNOWN
  827. }
  828. static int p2m_dump_open(struct inode *inode, struct file *filp)
  829. {
  830. return single_open(filp, p2m_dump_show, NULL);
  831. }
  832. static const struct file_operations p2m_dump_fops = {
  833. .open = p2m_dump_open,
  834. .read = seq_read,
  835. .llseek = seq_lseek,
  836. .release = single_release,
  837. };
  838. static struct dentry *d_mmu_debug;
  839. static int __init xen_p2m_debugfs(void)
  840. {
  841. struct dentry *d_xen = xen_init_debugfs();
  842. if (d_xen == NULL)
  843. return -ENOMEM;
  844. d_mmu_debug = debugfs_create_dir("mmu", d_xen);
  845. debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
  846. return 0;
  847. }
  848. fs_initcall(xen_p2m_debugfs);
  849. #endif /* CONFIG_XEN_DEBUG_FS */