ttm_tt.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /**************************************************************************
  2. *
  3. * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. /*
  28. * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29. */
  30. #include <linux/vmalloc.h>
  31. #include <linux/sched.h>
  32. #include <linux/highmem.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/file.h>
  35. #include <linux/swap.h>
  36. #include "ttm/ttm_module.h"
  37. #include "ttm/ttm_bo_driver.h"
  38. #include "ttm/ttm_placement.h"
  39. static int ttm_tt_swapin(struct ttm_tt *ttm);
  40. #if defined(CONFIG_X86)
  41. static void ttm_tt_clflush_page(struct page *page)
  42. {
  43. uint8_t *page_virtual;
  44. unsigned int i;
  45. if (unlikely(page == NULL))
  46. return;
  47. page_virtual = kmap_atomic(page, KM_USER0);
  48. for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
  49. clflush(page_virtual + i);
  50. kunmap_atomic(page_virtual, KM_USER0);
  51. }
  52. static void ttm_tt_cache_flush_clflush(struct page *pages[],
  53. unsigned long num_pages)
  54. {
  55. unsigned long i;
  56. mb();
  57. for (i = 0; i < num_pages; ++i)
  58. ttm_tt_clflush_page(*pages++);
  59. mb();
  60. }
  61. #elif !defined(__powerpc__)
  62. static void ttm_tt_ipi_handler(void *null)
  63. {
  64. ;
  65. }
  66. #endif
  67. void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
  68. {
  69. #if defined(CONFIG_X86)
  70. if (cpu_has_clflush) {
  71. ttm_tt_cache_flush_clflush(pages, num_pages);
  72. return;
  73. }
  74. #elif defined(__powerpc__)
  75. unsigned long i;
  76. for (i = 0; i < num_pages; ++i) {
  77. if (pages[i]) {
  78. unsigned long start = (unsigned long)page_address(pages[i]);
  79. flush_dcache_range(start, start + PAGE_SIZE);
  80. }
  81. }
  82. #else
  83. if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
  84. printk(KERN_ERR TTM_PFX
  85. "Timed out waiting for drm cache flush.\n");
  86. #endif
  87. }
  88. /**
  89. * Allocates storage for pointers to the pages that back the ttm.
  90. *
  91. * Uses kmalloc if possible. Otherwise falls back to vmalloc.
  92. */
  93. static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
  94. {
  95. unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
  96. ttm->pages = NULL;
  97. if (size <= PAGE_SIZE)
  98. ttm->pages = kzalloc(size, GFP_KERNEL);
  99. if (!ttm->pages) {
  100. ttm->pages = vmalloc_user(size);
  101. if (ttm->pages)
  102. ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
  103. }
  104. }
  105. static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
  106. {
  107. if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
  108. vfree(ttm->pages);
  109. ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
  110. } else {
  111. kfree(ttm->pages);
  112. }
  113. ttm->pages = NULL;
  114. }
  115. static struct page *ttm_tt_alloc_page(unsigned page_flags)
  116. {
  117. gfp_t gfp_flags = GFP_HIGHUSER;
  118. if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  119. gfp_flags |= __GFP_ZERO;
  120. if (page_flags & TTM_PAGE_FLAG_DMA32)
  121. gfp_flags |= __GFP_DMA32;
  122. return alloc_page(gfp_flags);
  123. }
  124. static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
  125. {
  126. int write;
  127. int dirty;
  128. struct page *page;
  129. int i;
  130. struct ttm_backend *be = ttm->be;
  131. BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
  132. write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
  133. dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
  134. if (be)
  135. be->func->clear(be);
  136. for (i = 0; i < ttm->num_pages; ++i) {
  137. page = ttm->pages[i];
  138. if (page == NULL)
  139. continue;
  140. if (page == ttm->dummy_read_page) {
  141. BUG_ON(write);
  142. continue;
  143. }
  144. if (write && dirty && !PageReserved(page))
  145. set_page_dirty_lock(page);
  146. ttm->pages[i] = NULL;
  147. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
  148. put_page(page);
  149. }
  150. ttm->state = tt_unpopulated;
  151. ttm->first_himem_page = ttm->num_pages;
  152. ttm->last_lomem_page = -1;
  153. }
  154. static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
  155. {
  156. struct page *p;
  157. struct ttm_bo_device *bdev = ttm->bdev;
  158. struct ttm_mem_global *mem_glob = bdev->mem_glob;
  159. int ret;
  160. while (NULL == (p = ttm->pages[index])) {
  161. p = ttm_tt_alloc_page(ttm->page_flags);
  162. if (!p)
  163. return NULL;
  164. if (PageHighMem(p)) {
  165. ret =
  166. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  167. false, false, true);
  168. if (unlikely(ret != 0))
  169. goto out_err;
  170. ttm->pages[--ttm->first_himem_page] = p;
  171. } else {
  172. ret =
  173. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  174. false, false, false);
  175. if (unlikely(ret != 0))
  176. goto out_err;
  177. ttm->pages[++ttm->last_lomem_page] = p;
  178. }
  179. }
  180. return p;
  181. out_err:
  182. put_page(p);
  183. return NULL;
  184. }
  185. struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
  186. {
  187. int ret;
  188. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  189. ret = ttm_tt_swapin(ttm);
  190. if (unlikely(ret != 0))
  191. return NULL;
  192. }
  193. return __ttm_tt_get_page(ttm, index);
  194. }
  195. int ttm_tt_populate(struct ttm_tt *ttm)
  196. {
  197. struct page *page;
  198. unsigned long i;
  199. struct ttm_backend *be;
  200. int ret;
  201. if (ttm->state != tt_unpopulated)
  202. return 0;
  203. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  204. ret = ttm_tt_swapin(ttm);
  205. if (unlikely(ret != 0))
  206. return ret;
  207. }
  208. be = ttm->be;
  209. for (i = 0; i < ttm->num_pages; ++i) {
  210. page = __ttm_tt_get_page(ttm, i);
  211. if (!page)
  212. return -ENOMEM;
  213. }
  214. be->func->populate(be, ttm->num_pages, ttm->pages,
  215. ttm->dummy_read_page);
  216. ttm->state = tt_unbound;
  217. return 0;
  218. }
  219. #ifdef CONFIG_X86
  220. static inline int ttm_tt_set_page_caching(struct page *p,
  221. enum ttm_caching_state c_state)
  222. {
  223. if (PageHighMem(p))
  224. return 0;
  225. switch (c_state) {
  226. case tt_cached:
  227. return set_pages_wb(p, 1);
  228. case tt_wc:
  229. return set_memory_wc((unsigned long) page_address(p), 1);
  230. default:
  231. return set_pages_uc(p, 1);
  232. }
  233. }
  234. #else /* CONFIG_X86 */
  235. static inline int ttm_tt_set_page_caching(struct page *p,
  236. enum ttm_caching_state c_state)
  237. {
  238. return 0;
  239. }
  240. #endif /* CONFIG_X86 */
  241. /*
  242. * Change caching policy for the linear kernel map
  243. * for range of pages in a ttm.
  244. */
  245. static int ttm_tt_set_caching(struct ttm_tt *ttm,
  246. enum ttm_caching_state c_state)
  247. {
  248. int i, j;
  249. struct page *cur_page;
  250. int ret;
  251. if (ttm->caching_state == c_state)
  252. return 0;
  253. if (c_state != tt_cached) {
  254. ret = ttm_tt_populate(ttm);
  255. if (unlikely(ret != 0))
  256. return ret;
  257. }
  258. if (ttm->caching_state == tt_cached)
  259. ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
  260. for (i = 0; i < ttm->num_pages; ++i) {
  261. cur_page = ttm->pages[i];
  262. if (likely(cur_page != NULL)) {
  263. ret = ttm_tt_set_page_caching(cur_page, c_state);
  264. if (unlikely(ret != 0))
  265. goto out_err;
  266. }
  267. }
  268. ttm->caching_state = c_state;
  269. return 0;
  270. out_err:
  271. for (j = 0; j < i; ++j) {
  272. cur_page = ttm->pages[j];
  273. if (likely(cur_page != NULL)) {
  274. (void)ttm_tt_set_page_caching(cur_page,
  275. ttm->caching_state);
  276. }
  277. }
  278. return ret;
  279. }
  280. int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
  281. {
  282. enum ttm_caching_state state;
  283. if (placement & TTM_PL_FLAG_WC)
  284. state = tt_wc;
  285. else if (placement & TTM_PL_FLAG_UNCACHED)
  286. state = tt_uncached;
  287. else
  288. state = tt_cached;
  289. return ttm_tt_set_caching(ttm, state);
  290. }
  291. static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
  292. {
  293. int i;
  294. struct page *cur_page;
  295. struct ttm_backend *be = ttm->be;
  296. if (be)
  297. be->func->clear(be);
  298. (void)ttm_tt_set_caching(ttm, tt_cached);
  299. for (i = 0; i < ttm->num_pages; ++i) {
  300. cur_page = ttm->pages[i];
  301. ttm->pages[i] = NULL;
  302. if (cur_page) {
  303. if (page_count(cur_page) != 1)
  304. printk(KERN_ERR TTM_PFX
  305. "Erroneous page count. "
  306. "Leaking pages.\n");
  307. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
  308. PageHighMem(cur_page));
  309. __free_page(cur_page);
  310. }
  311. }
  312. ttm->state = tt_unpopulated;
  313. ttm->first_himem_page = ttm->num_pages;
  314. ttm->last_lomem_page = -1;
  315. }
  316. void ttm_tt_destroy(struct ttm_tt *ttm)
  317. {
  318. struct ttm_backend *be;
  319. if (unlikely(ttm == NULL))
  320. return;
  321. be = ttm->be;
  322. if (likely(be != NULL)) {
  323. be->func->destroy(be);
  324. ttm->be = NULL;
  325. }
  326. if (likely(ttm->pages != NULL)) {
  327. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  328. ttm_tt_free_user_pages(ttm);
  329. else
  330. ttm_tt_free_alloced_pages(ttm);
  331. ttm_tt_free_page_directory(ttm);
  332. }
  333. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
  334. ttm->swap_storage)
  335. fput(ttm->swap_storage);
  336. kfree(ttm);
  337. }
  338. int ttm_tt_set_user(struct ttm_tt *ttm,
  339. struct task_struct *tsk,
  340. unsigned long start, unsigned long num_pages)
  341. {
  342. struct mm_struct *mm = tsk->mm;
  343. int ret;
  344. int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
  345. struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
  346. BUG_ON(num_pages != ttm->num_pages);
  347. BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
  348. /**
  349. * Account user pages as lowmem pages for now.
  350. */
  351. ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
  352. false, false, false);
  353. if (unlikely(ret != 0))
  354. return ret;
  355. down_read(&mm->mmap_sem);
  356. ret = get_user_pages(tsk, mm, start, num_pages,
  357. write, 0, ttm->pages, NULL);
  358. up_read(&mm->mmap_sem);
  359. if (ret != num_pages && write) {
  360. ttm_tt_free_user_pages(ttm);
  361. ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
  362. return -ENOMEM;
  363. }
  364. ttm->tsk = tsk;
  365. ttm->start = start;
  366. ttm->state = tt_unbound;
  367. return 0;
  368. }
  369. struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
  370. uint32_t page_flags, struct page *dummy_read_page)
  371. {
  372. struct ttm_bo_driver *bo_driver = bdev->driver;
  373. struct ttm_tt *ttm;
  374. if (!bo_driver)
  375. return NULL;
  376. ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
  377. if (!ttm)
  378. return NULL;
  379. ttm->bdev = bdev;
  380. ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  381. ttm->first_himem_page = ttm->num_pages;
  382. ttm->last_lomem_page = -1;
  383. ttm->caching_state = tt_cached;
  384. ttm->page_flags = page_flags;
  385. ttm->dummy_read_page = dummy_read_page;
  386. ttm_tt_alloc_page_directory(ttm);
  387. if (!ttm->pages) {
  388. ttm_tt_destroy(ttm);
  389. printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
  390. return NULL;
  391. }
  392. ttm->be = bo_driver->create_ttm_backend_entry(bdev);
  393. if (!ttm->be) {
  394. ttm_tt_destroy(ttm);
  395. printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
  396. return NULL;
  397. }
  398. ttm->state = tt_unpopulated;
  399. return ttm;
  400. }
  401. void ttm_tt_unbind(struct ttm_tt *ttm)
  402. {
  403. int ret;
  404. struct ttm_backend *be = ttm->be;
  405. if (ttm->state == tt_bound) {
  406. ret = be->func->unbind(be);
  407. BUG_ON(ret);
  408. ttm->state = tt_unbound;
  409. }
  410. }
  411. int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  412. {
  413. int ret = 0;
  414. struct ttm_backend *be;
  415. if (!ttm)
  416. return -EINVAL;
  417. if (ttm->state == tt_bound)
  418. return 0;
  419. be = ttm->be;
  420. ret = ttm_tt_populate(ttm);
  421. if (ret)
  422. return ret;
  423. ret = be->func->bind(be, bo_mem);
  424. if (ret) {
  425. printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
  426. return ret;
  427. }
  428. ttm->state = tt_bound;
  429. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  430. ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
  431. return 0;
  432. }
  433. EXPORT_SYMBOL(ttm_tt_bind);
  434. static int ttm_tt_swapin(struct ttm_tt *ttm)
  435. {
  436. struct address_space *swap_space;
  437. struct file *swap_storage;
  438. struct page *from_page;
  439. struct page *to_page;
  440. void *from_virtual;
  441. void *to_virtual;
  442. int i;
  443. int ret;
  444. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  445. ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
  446. ttm->num_pages);
  447. if (unlikely(ret != 0))
  448. return ret;
  449. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  450. return 0;
  451. }
  452. swap_storage = ttm->swap_storage;
  453. BUG_ON(swap_storage == NULL);
  454. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  455. for (i = 0; i < ttm->num_pages; ++i) {
  456. from_page = read_mapping_page(swap_space, i, NULL);
  457. if (IS_ERR(from_page))
  458. goto out_err;
  459. to_page = __ttm_tt_get_page(ttm, i);
  460. if (unlikely(to_page == NULL))
  461. goto out_err;
  462. preempt_disable();
  463. from_virtual = kmap_atomic(from_page, KM_USER0);
  464. to_virtual = kmap_atomic(to_page, KM_USER1);
  465. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  466. kunmap_atomic(to_virtual, KM_USER1);
  467. kunmap_atomic(from_virtual, KM_USER0);
  468. preempt_enable();
  469. page_cache_release(from_page);
  470. }
  471. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
  472. fput(swap_storage);
  473. ttm->swap_storage = NULL;
  474. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  475. return 0;
  476. out_err:
  477. ttm_tt_free_alloced_pages(ttm);
  478. return -ENOMEM;
  479. }
  480. int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
  481. {
  482. struct address_space *swap_space;
  483. struct file *swap_storage;
  484. struct page *from_page;
  485. struct page *to_page;
  486. void *from_virtual;
  487. void *to_virtual;
  488. int i;
  489. BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
  490. BUG_ON(ttm->caching_state != tt_cached);
  491. /*
  492. * For user buffers, just unpin the pages, as there should be
  493. * vma references.
  494. */
  495. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  496. ttm_tt_free_user_pages(ttm);
  497. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  498. ttm->swap_storage = NULL;
  499. return 0;
  500. }
  501. if (!persistant_swap_storage) {
  502. swap_storage = shmem_file_setup("ttm swap",
  503. ttm->num_pages << PAGE_SHIFT,
  504. 0);
  505. if (unlikely(IS_ERR(swap_storage))) {
  506. printk(KERN_ERR "Failed allocating swap storage.\n");
  507. return -ENOMEM;
  508. }
  509. } else
  510. swap_storage = persistant_swap_storage;
  511. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  512. for (i = 0; i < ttm->num_pages; ++i) {
  513. from_page = ttm->pages[i];
  514. if (unlikely(from_page == NULL))
  515. continue;
  516. to_page = read_mapping_page(swap_space, i, NULL);
  517. if (unlikely(to_page == NULL))
  518. goto out_err;
  519. preempt_disable();
  520. from_virtual = kmap_atomic(from_page, KM_USER0);
  521. to_virtual = kmap_atomic(to_page, KM_USER1);
  522. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  523. kunmap_atomic(to_virtual, KM_USER1);
  524. kunmap_atomic(from_virtual, KM_USER0);
  525. preempt_enable();
  526. set_page_dirty(to_page);
  527. mark_page_accessed(to_page);
  528. page_cache_release(to_page);
  529. }
  530. ttm_tt_free_alloced_pages(ttm);
  531. ttm->swap_storage = swap_storage;
  532. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  533. if (persistant_swap_storage)
  534. ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
  535. return 0;
  536. out_err:
  537. if (!persistant_swap_storage)
  538. fput(swap_storage);
  539. return -ENOMEM;
  540. }